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Statistical Decision Theory

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2015.

The basic premise of Statistical Decision Theory is that we want to
make inferences about the parameter of a family of distributions.
So the starting point of this chapter is a family of distributions for
the observables Y := (Y1, . . . , Yn), of the general form

Y ∼ f (· ; θ) for some θ ∈ Ω,

where f is the ‘model’, θ is the ‘parameter’, and Ω the ‘parameter
space’, just as in Chapter 3. Nothing in this chapter depends on
whether Y is a scalar or a vector, and so I will write Y throughout.
The parameter space Ω may be finite or non-finite, possibly non-
countable; generally, though, I will treat it as finite, since this turns
out to be much simpler. The value f (y; θ) denotes the probability
of Y =̇ y under family member θ. I will assume throughout this
chapter that f (y; θ) is easily computed.

These basic premises, (i) that we are interested in the value of
the parameter θ, and (ii) that f (y; t) is easily computed, are both
restrictive, as was discussed in Chapter 3. But in this chapter and
the next we are exploring the challenges of Frequentist inference,
which operates in a more restrictive domain than modern Bayesian
inference.

4.1 General Decision Theory

There is a general theory of decision-making, of which Statistical
Decision Theory is a special case. Here I outline the general theory,
subject to one restriction which always holds for Statistical Decision
Theory (to be introduced below). In general we should imagine
the statistician applying decision theory on behalf of a client, but
for simplicity of exposition I will assume the statistician is her own
client.

There is a set of random quantities X with domain X; as above
I treat these as a scalar quantity, without loss of generality. The
statistician contemplates a set of actions, a ∈ A. Associated with
each action is a consequence which depends on X. This is quanti-
fied in terms of a loss function, L : A× X → R, with larger values
indicating worse consequences. Thus L(a, x) is the loss incurred by
the statistician if action a is taken and X turns out to be x.
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Before making her choice of action, the statistician will observe
Y ∈ Y. Her choice should be some function of the value of Y, and
this is represented as a decision rule, δ : Y → A. Of the many ways
in which she might choose δ, one possibility is to minimise her
expected loss, and this is termed the Bayes rule,

δ∗ := argmin
δ∈D

E{L(δ(Y), X)},

where D is the set of all possible rules. The value E{L(δ(Y), X)} is
termed the Bayes risk of decision rule δ, and therefore the Bayes rule
is the decision rule which minimises the Bayes risk.

There is a justly famous result which gives the explicit form for
a Bayes rule. I will give this result under the restriction anticipated
above, which is that the PMF p(x | y) does not depend on the choice
of action. Decision theory can handle the more general case, but it
is seldom appropriate for Statistical Decision Theory.

Theorem 4.1 (Bayes Rule Theorem, BRT). A Bayes rule satisfies

δ∗(y) = argmin
a∈A

E{L(a, X) | Y =̇ y} (4.1)

whenever y ∈ supp Y.1 1 Recollect that supp Y is the subset
of Y for which p(y) > 0, termed the
‘support’ of Y.This astounding result indicates that the minimisation of ex-

pected loss over the space of all functions from Y to A can be
achieved by the pointwise minimisation over A of the expected
loss conditional on Y =̇ y. It converts an apparently intractable
problem into a simple one.

Proof. As usual, we take expectations to be completely coherent.
Then the FTP (Thm 1.2) asserts the existence of a PMF for (X, Y),
which we can factorise as

p(x, y) = p(x | y)p(y)

using the notation and concepts from Chapter 1. Now take any
δ ∈ D, for which

E{L(δ(Y), X)} = ∑ y ∑ x L(δ(y), x) · p(x | y)p(y) by the FTP

≥ ∑ y

�
argmina ∑ x L(a, x)p(x | y)

�
p(y)

= ∑ y

�
∑ x L(δ∗(y), x)p(x | y)

�
p(y) from (4.1) and the CFTP, (3.6)

= ∑ y ∑ x L(δ∗(y), x) · p(x | y)p(y)

= E{L(δ∗(Y), X)} FTP again.

Hence δ∗ provides a lower bound on the expected loss, over all
possible decision rules. Note that the sum over y can actually be
over supp Y if there are y for which p(y) = 0, which ensures that
the conditional expectation inside the curly brackets is always
well-defined.
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4.2 Inference about parameters

Now consider the special case of Statistical Decision Theory, in
which inference is not about some random quantities X, but about
the parameter θ. For simplicity I will assume that the parameter
space is finite.2 Furthermore, because nothing in this chapter 2 See the comment after Thm 4.2 for

extensions.depends on whether each element of the parameter space is a
scalar or a vector, I will treat θ as a scalar and write

Ω :=
�

θ1, . . . , θk
�

,

rather than my usual notation for elements of sets, which is to use
superscripts in parentheses (i.e. I will write θj rather than θ(j)). A
word about notation. I will write ‘θj’ to indicate one of the elements
of Ω, and ‘θ’ to indicate the unknown index of Ω (Frequentist)
or the random variable with realm Ω (Bayesian). This is clearer
than letting one symbol represent several different things, which is
unfortunately a common practice.

The three types of inference about θ are (i) point estimation,
(ii) set estimation, and (iii) hypothesis testing. It is a great concep-
tual and practical simplification that Statistical Decision Theory
distinguishes between these three types simply according to their
action sets, which are:

Type of inference Action set A

Point estimation The parameter space, Ω. See Sec. 4.4.

Set estimation The set of all subsets of Ω, denoted 2Ω. See
Sec. 4.5.

Hypothesis testing A specified partition of Ω, denoted P below.
See Sec. 4.6.

One challenge for Statistical Decision Theory is that finding the
Bayes rule requires specifying a prior distribution over Ω, which I
will denote

π := (π1, . . . , πk) ∈ Sk−1

where Sk−1 is the (k − 1)-dimensional unit simplex, see (1.4). Apply-
ing the BRT (Thm 4.1),

δ∗(y) = argmin
a∈A

E{L(a, θ) | Y =̇ y}

= argmin
a∈A

∑ j L(a, θj) · p(θj | y) by the CFTP,

where the conditional PMF is

p(θj | y) =
f (y; θj) · πj

Pr(Y =̇ y)
=

f (y; θj) · πj

∑j� f (y; θj�) · πj�
(4.2)

by Bayes’s Theorem. So the Bayes rule will not be an attractive
way to choose a decision rule for Frequentist statisticians, who are
reluctant to specify a prior distribution for θ. These statisticians
need a different approach to choosing a decision rule.
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The accepted approach for Frequentist statisticians is to nar-
row the set of possible decision rules by ruling out those that are
obviously bad. Define the risk function for rule δ as

R(δ, θj) := E{L(δ(Y), θj); θj}
= ∑ y L(δ(y), θj) · f (y; θj). (4.3)

That is, R(δ, θj) is the expected loss from rule δ when θ = θj. A
decision rule δ dominates another rule δ� exactly when

R(δ, θj) ≤ R(δ�, θj) for all θj ∈ Ω,

with a strict inequality for at least one θj ∈ Ω. If you had both δ

and δ�, you would never want to use δ�.3 A decison rule is admissible 3 Here I am assuming that all other
considerations are the same in the
two cases: e.g. δ(y) and δ�(y) take
about the same amount of resource to
compute.

exactly when it is not dominated by any other rule; otherwise it is
inadmissible. So the accepted approach is to reduce the set of pos-
sible decision rules under consideration by only using admissible
rules.

It is hard to disagree with this approach, although one wonders
how big the set of admissible rules will be, and how easy it is to
enumerate the set of admissible rules in order to choose between
them. This is the subject of Sec. 4.3. To summarise,

Theorem 4.2 (Wald’s Complete Class Theorem, CCT). In the case
where both the action set A and the parameter space Ω are finite, a de-
cision rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π with strictly positive values.

There are generalisations of this theorem to non-finite realms for
Y, non-finite action sets, and non-finite parameter spaces; however,
the results are highly technical. See Schervish (1995, ch. 3), Berger
(1985, chs 4, 8), and Ghosh and Meeden (1997, ch. 2) for more
details and references to the original literature.

So what does the CCT say? First of all, if you select a Bayes
rule according to some prior distribution π � 0 then you cannot
ever choose an inadmissible decision rule.4 So the CCT states that 4 Here I am using a fairly common

notion for vector inequalities. If all
components of x are non-negative, I
write x ≥ 0. It in addition at least one
component is positive, I write x > 0.
If all components are positive I write
x � 0. For comparing two vectors,
x ≥ y exactly when x − y ≥ 0, and so
on.

there is a very simple way to protect yourself from choosing an
inadmissible decision rule. Second, if you cannot produce a π � 0
for which your proposed rule δ is a Bayes Rule, then you cannot
show that δ is admissible.

But here is where you must pay close attention to logic. Suppose
that δ� is inadmissible and δ is admissible. It does not follow that
δ dominates δ�. So just knowing of an admissible rule does not
mean that you should abandon your inadmissible rule δ�. You
can argue that although you know that δ� is inadmissible, you do
not know of a rule which dominates it. All you know, from the
CCT, is the family of rules within which the dominating rule must
live: it will be a Bayes rule for some π � 0. This may seem a
bit esoteric, but it is crucial in understanding modern parametric
inference. Statisticians sometimes use inadmissible rules according
to standard loss functions. They can argue that yes, their rule δ is or
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may be inadmissible, which is unfortunate, but since the identity of
the dominating rule is not known, it is not wrong to go on using δ.
Nevertheless, it would be better to use an admissible rule.

4.3 The Complete Class Theorem

This section can be skipped once the previous section has been read.
But it describes a very beautiful result, Thm 4.2 above, originally
due to an iconic figure in Statistics, Abraham Wald.5 I assume 5 For his tragic story, see https://en.

wikipedia.org/wiki/Abraham_Wald.throughout this section that all sets are finite: the realm Y, the
action set A, and the parameter space Ω.

The CCT is if-and-only-if. Let π be any prior distribution on Ω.
Both branches use a simple result that relates the Bayes Risk of a
decision rule δ to its Risk Function:

E{L(δ(Y), θ)} = ∑ j E{L(δ(Y), θj); θj} · πj by (1.28) and (1.26)

= ∑ j R(δ, θj) · πj. (†)

The first branch is easy to prove.

Theorem 4.3. If δ is a Bayes rule for prior distribution π � 0, then it is
admissible.

Proof. By contradiction. Suppose that the Bayes rule δ is not admis-
sible; i.e. there exists a rule δ� which dominates it. In this case

E{L(δ(Y), θ)} = ∑ j R(δ, θj) · πj from (†)

> ∑ j R(δ�, θj) · πj if π � 0

= E{L(δ�(Y), θ)}

and hence δ cannot have been a Bayes rule, because δ� has a smaller
expected loss. The strict inequality holds if δ� dominates δ and
π � 0. Without it, we cannot deduce a contradiction.

The second branch of the CCT is harder to prove. The proof
uses one of the great theorems in Mathematics, the Supporting
Hyperplane Theorem (SHT, given below in Thm 4.5).

Theorem 4.4. If δ is admissible, then it is a Bayes rule for some prior
distribution π � 0.

For a given loss function L and model f , construct the risk matrix,

Rij := R(δi, θj)

over the set of all decision rules. If there are m decision rules al-
thogether (m is finite because Y and A are both finite), then R repre-
sents m points in k-dimensional space, where k is the cardinality of
Ω.

Now consider randomised rules, indexed by w ∈ Sm−1. For
randomised rule w, actual rule δi is selected with probability wi.
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The risk for rule w is

R(w, θj) := ∑ i E{L(δi(Y), θj); θj} · wi by the (1.28)

= ∑ i R(δi, θj) · wi.

If we also allow randomised rules—and there is no reason to dis-
allow them, as the original rules are all still available as special
cases—then the set of risks for all possible randomised rules is the
convex hull of the rows of the risk matrix R, denoted [R] ⊂ Rk, and
termed the risk set.6 We can focus on the risk set because every 6 If x(1), . . . , x(m) are m points in

Rk, then the convex hull of these
points is the set of x ∈ Rk for which
x = w1x(1) + · · ·+ wmx(m) for some
w ∈ Sm−1.

point in [R] corresponds to at least one choice of w ∈ Sm−1.
Only a very small subset of the risk set will be admissible. A

point r ∈ [R] is admissible exactly when it is on the lower boundary
of [R]. More formally, define the ‘quantant’ of r to be the set

Q(r) :=
�

x ∈ Rk : x ≤ r
�

(see footnote 4). By definition, r is dominated by every r� for
which r� ∈ Q(r) \ {r}. So r ∈ [R] is admissible exactly when
[R] ∩ Q(r) = {r}. The set of r for satisfying this condition is the
lower boundary of [R], denoted λ(R).

Now we have to show that every point in λ(R) is a Bayes rule for
some π � 0. For this we use the SHT, the proof of which can be
found in any book on convex analysis.

Theorem 4.5 (Supporting Hyperplane Theorem, SHT). Let [R] be a
convex set in Rk, and let r be a point on the boundary of [R]. Then there
exists an a ∈ Rk not equal to 0 such that

aTr = min
r�∈[R]

aTr�.

So let r ∈ λ(R) be any admissible risk. Let a ∈ Rk be the co-
efficients of its supporting hyperplane. Because r is on the lower
boundary of [R], a � 0.7 Set 7 Proof: because if r is on the lower

boundary, the slightest decrease in any
component of r must move r outside
[R].πj :=

aj

∑ j� aj�
j = 1, . . . , k,

so that π ∈ Sk−1 and π � 0. Then the SHT asserts that

∑ j rj · πj ≤ ∑ j r�j · πj for all r� ∈ [R]. (‡)

Let w be any randomised strategy with risk r. Since ∑ j rj · πj is
the expected loss of w (see †), (‡) asserts that w is a Bayes rule for
prior distribution π. Because r was an arbitrary point on λ(R),
and hence an arbitrary admissible rule, this completes the proof of
Thm 4.4.

4.4 Point estimation

For point estimation the action space is A = Ω, and the loss func-
tion L(θj, θj�) represents the (negative) consequence of choosing θj
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as a point estimate of θ, when the ‘true’ value of θ is θj� . Note that
this is questionable, if θ does not correspond to an operationally-
defined quantity such as the population mean. If the model and
its parameters are a convenient abstraction, then there is no ‘true’
value. I return to this issue in ??.

There will be situations where an obvious loss function L : Ω × Ω → R

presents itself. But not very often. Hence the need for a generic loss
function which is acceptable over a wide range of situations. A
natural choice in the very common case where Ω is a convex subset
of Rd is a convex loss function,8 8 If Ω is convex then it is uncountable,

and hence definitely not finite. But
this does not have any disturbing
implications for the following analysis.

L(θj, θj�) ← h(θj − θj�) (4.4)

where h : Rd → R is a smooth non-negative convex function
with h(0) = 0. This type of loss function asserts that small errors
are much more tolerable than large ones. One possible further
restriction would be that h is an even function.9 This would assert 9 I.e. h(−x) = h(x).

that under-prediction incurs the same loss as over-prediction. There
are many situations where this is not appropriate, but in these cases
a generic loss function should be replaced by a more specific one.

Proceeding further along the same lines, an even, differentiable
and strictly convex loss function can be approximated by a quadratic
loss function,

h(x) ∝ xTQ x (4.5)

where Q is a symmetric positive-definite d × d matrix. This follows
directly from a Taylor series expansion of h around 0:

h(x) = 0 + 0 + 1
2 xT∇2h(0) x + 0 + O(�x�4)

where the first 0 is because h(0) = 0, the second 0 is because
∇h(0) = 0 since h is minimised at x = 0, and the third 0 is because
h is an even function. ∇2h is the hessian matrix of second deriva-
tives, and it is symmetric by construction, and positive definite at
x = 0, if h is strictly convex and minimised at 0.

In the absence of anything more specific the quadratic loss
function is the generic loss function for point estimation. Hence the
following result is widely applicable.

Theorem 4.6. Under a quadratic loss function, the Bayes rule for point
prediction is the conditional expectation

δ∗(y) = E(θ | Y =̇ y).

A Bayes rule for a point estimation is known as a Bayes estima-
tor. Note that although the matrix Q is involved in defining the
quadratic loss function in (4.5), it does not influence the Bayes es-
timator. Thus the Bayes estimator is the same for an uncountably
large class of loss functions. Depending on your point of view, this
is either its most attractive or its most disturbing feature.

Proof. Here is a proof that does not involve differentiation. The BRT
(Thm 4.1) asserts that

δ∗(y) = argmin
t∈Ω

E{L(t, θ) | Y =̇ y}. (4.6)
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So let ψ(y) := E(θ | Y =̇ y). For simplicity, treat θ as a scalar. Then

L(t, θ) ∝ (t − θ)2

= (t − ψ(y) + ψ(y)− θ)2

= (t − ψ(y))2 + 2(t − ψ(y))(ψ(y)− θ) + (ψ(y)− θ)2.

Take expectations conditional on Y =̇ y to get

E{L(t, θ) | Y =̇ y} ∝ (t − ψ(y))2 + E{(ψ(y)− θ)2 | Y =̇ y}. (†)

Only the first term contains t, and this term is minimised over t by
setting t ← ψ(y), as was to be shown.

The extension to vector θ with loss function (4.5) is straight-
forward, but involves more ink. It is crucial that Q in (4.5) is posi-
tive definite, because otherwise the first term in (†), which becomes
(t − ψ(y))TQ (t − ψ(y)), is not minimised if and only if t = ψ(y).

Note that the same result holds in the more general case of a
point prediction of random quantities X based on observables Y:
under quadratic loss, the Bayes estimator is E(X | Y =̇ y).

* * *

Now apply the CCT (Thm 4.2) to this result. For quadratic loss, a
point estimator for θ is admissible if and only if it is the conditional
expectation with respect to some prior distribution π � 0.10 10 This is under the conditions of

Thm 4.2, or with appropriate exten-
sions of them in the non-finite cases.

Among the casualties of this conclusion is the Maximum Likelihood
Estimator (MLE),

θ̂(y) := argmax
t∈Ω

f (y; t).

Stein’s paradox showed that under quadratic loss, the MLE is not
admissible in the case of a Multinormal distribution with known
variance, by producing an estimator which dominated it. This result
caused such consternation when first published that it might be
termed ‘Stein’s bombshell’. See Efron and Morris (1977) for more
details, and Samworth (2012) for an accessible proof. Interestingly,
the MLE is still the dominant point estimator in applied statistics,
even though its admissibility under quadratic loss is questionable.

4.5 Set estimators

For set estimation the action space is A = 2Ω, and the loss function
L(C, θj) represents the (negative) consequences of choosing C ⊂ Ω
as a set estimate of θ, when the ‘true’ value of θ is θj. The points
made at the start of Sec. 4.4 also apply here; see ??.

There are two contrary requirements for set estimators of θ.
We want the sets to be small, but we also want them to contain θ.
There is a simple way to represent these two requirements as a loss
function, which is to use

L(C, t) ← |C|+ κ · (1 − 1t∈C) for some κ > 0 (4.7a)

where |C| is the cardinality of C.11 The value of κ controls the 11 Here and below I am treating Ω as
countable, for simplicity.
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trade-off between the two requirements. If κ ↓ 0 then minimising
the expected loss will always produce the empty set. If κ ↑ ∞
then minimising the expected loss will always produce Ω. For κ

in-between, the outcome will depend on beliefs about Y and the
value y.

It is important to note that the crucial result, Thm 4.7 below,
continues to hold for the much more general set of loss functions

L(C, t) ← g(|C|) + h(1 − 1t∈C) (4.7b)

where g is non-decreasing and h is strictly increasing. This is a
large set of loss functions, which should satisfy most statisticians
who do not have a specific loss function already in mind.

For point estimators there was a simple characterisation of the
Bayes rule for quadratic loss functions (Thm 4.6). For set estimators
the situation is not so simple. However, for loss functions of the
form (4.7) there is a simple necessary condition for a rule to be a
Bayes rule.

Theorem 4.7. Under a loss function of the form (4.7), δ : Y → 2Ω is a
Bayes rule only if:

∀y, ∀θj ∈ δ(y) θj� �∈ δ(y) =⇒ p(θj� | y) ≤ p(θj | y) (4.8)

where p(θj | y) was defined in (4.2).

Proof. The proof is by contradiction. Fix y and let C ← δ(y). We
show that if (4.8) does not hold, then C does not minimise the ex-
pected loss conditional on Y =̇ y, as required by the BRT (Thm 4.1).
Now,

E{L(C, θ) | Y =̇ y} = |C|+ κ · (1 − Pr{θ ∈ C | Y =̇ y}) (†)

using (4.7a), for simplicity. Let θj ∈ C, and let θj� �∈ C, but with
p(θj� | y) > p(θj | y), contradicting (4.8). In this case, θj and θj�

could be swapped in C, leaving the first term in (†) the same, but
decreasing the second. Hence C could not have minimised the
expected loss conditional on Y =̇ y, and δ could not have been a
Bayes rule.

To give condition (4.8) a simple name, I will refer to it as the
‘level set’ property, since it almost asserts that δ(y) must always be
a level set of the probabilities

�
p(θj | Y =̇ y) : θj ∈ Ω

�
.12 Chapter 5 12 I can only say ‘almost’ because

the property is ambiguous about
the inclusion of θj and θj� for which
p(θj | Y =̇ y) = p(θj� | Y =̇ y), while a
level set is unambiguous.

provides a tighter definition of this property.
Now relate this result to the CCT (Thm 4.2). First, Thm 4.7

asserts that δ having the level set property for all y is necessary
(but not sufficient) for δ to be a Bayes rule for loss functions of the
form (4.7). Second, the CCT asserts that being a Bayes rule is a
necessary (but not sufficient) condition for δ to be admissible.13 So 13 As before, terms and conditions

apply in the non-finite cases.unless δ has the level set property for all y then it is impossible for
δ to be admissible for loss functions of the form (4.7). This result is
embodied in Bayesian approaches to set estimation for θ.
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Definition 9 (High Posterior Probability (HPP) set). The rule
δ : Y → 2Ω is a level-(1 − α) HPP set exactly when it is the smallest
set for which Pr(θ ∈ δ(y) | Y =̇ y) ≥ 1 − α.

This definition acknowledges that for a given level, say (1 − α) ← 0.95,
it might not be possible to find a set C for which Pr(θ ∈ C | Y =̇ y) = 0.95,
so instead we settle for the smallest set whose probability is at least
0.95.14 The requirement that δ(y) is the smallest set automatically 14 If Ω is uncountable, then it is usually

possible to hit 0.95 exactly, in which
case C is an ‘exact’ 95% High Posterior
Density (HPD) set.

ensures that it satisfies the level set property.
Now it is not the case that the collection of, say, level 0.95 HPP

sets (taken over all y ∈ Y) is consistent with the Bayes rule for (4.7)
for some specified κ. So the level 0.95 HPP sets cannot claim to be
a Bayes rule for (4.7). But they satisfy the necessary condition to be
admissible for (4.7), which is a good start. Moreover, the level of an
HPP set is much easier to interpret than the value of κ.

Things are trickier for Frequentist approaches, which must
proceed without a prior distribution for θ ∈ Ω, and thus cannot
compute p(θj | Y =̇ y). Frequentist approaches to set estimation
are based on confidence procedures, which are covered in detail
in Chapter 5. We can make a strong recommendation based on
Thm 4.7. Denote the Frequentist model as

�
f , Ω

�
, for which a prior

distribution π would imply

p(θj | Y =̇ y) =
f (y; θj) · πj

∑j� f (y; θj�) · πj�
.

Clearly, if πj = 1/k for all j, then p(θj | Y =̇ y) ∝ f (y; θj), which
which implies that they have the same level sets. So the recommen-
dation is

• Base confidence procedures on level sets of
�

f (y; θj) : θj ∈ Ω
�

.

This recommendation ensures that confidence procedures satisfy
the necessary condition to be admissible for (4.7). I will be adopting
this recommendation in Chapter 5.

4.6 Hypothesis tests

For hypothesis tests, the action space is a partition of Ω, denoted

H :=
�

H0, H1, . . . , Hd
�

.

Each element of H is termed a hypothesis; it is traditional to number
the hypotheses from zero. The loss function L(Hi, θj) represents the
(negative) consequences of choosing element Hi, when the ’true’
value of θ is θj. It would be usual for the loss function to satisfy

θj ∈ Hi =⇒ L(Hi, θj) = min
i�

L(Hi� , θj)

on the grounds that an incorrect choice of element should never
incur a smaller loss than the correct choice.

I will be quite cavalier about hypothesis tests. If the statistician
has a complete loss function, then the CCT (Thm 4.2) applies,
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a π � 0 must be found, and there is nothing more to be said.
The famous Neyman-Pearson (NP) Lemma is of this type. It has
Ω = {θ0, θ1}, with Hi = {θi}, and loss function

L θ0 θ1

H0 0 �1

H1 �0 0

with �0, �1 > 0. The NP Lemma asserts that a decision rule for
choosing between H0 and H1 is admissible if and only if it has the
form

f (y; θ0)

f (y; θ1)





< c choose H1

= c toss a coin

> c choose H0

for some c > 0. This is just the CCT (Thm 4.2).15 15 In fact, c = (π1/π0) · (�1/�0), where
(π0, π1) is the prior probability for
which π1 = 1 − π0.

The NP Lemma is particularly simple, corresponding to a choice
in a family with only two elements. In situations more complicated
than this, it is extremely challenging and time-consuming to specify
a loss function. And yet statisticians would still like to choose
between hypotheses, in decision problems whose outcome does not
seem to justify the effort required to specify the loss function.16 16 Just to be clear, important decisions

should not be based on cut-price
procedures: an important decision
warrants the effort required to specify
a loss function.

There is a generic loss function for hypothesis tests, but it is
hardly defensible. The 0-1 (’zero-one’) loss function is

L(Hi, θj) ← 1 − 1θj∈Hi ,

i.e., zero if θj is in Hi, and one if it is not. Its Bayes rule is to select
the hypothesis with the largest conditional probability. It is hard
to think of a reason why the 0-1 loss function would approximate
a wide range of actual loss functions, unlike in the cases of generic
loss functions for point estimation and set estimation. This is not
to say that it is wrong to select the hypothesis with the largest
conditional probability; only that the 0-1 loss function does not
provide a very compelling reason.

* * *
There is another approach which has proved much more popular.

In fact, it is the dominant approach to hypothesis testing. This is to
co-opt the theory of set estimators, for which there is a defensible
generic loss function, which has strong implications for the selec-
tion of decision rules (see Sec. 4.5). The statistician can use her set
estimator δ : Y → 2Ω to make at least some distinctions between the
members of H, on the basis of the value of the observable, yobs:

• ‘Accept’ Hi exactly when δ(yobs) ⊂ Hi,

• ‘Reject’ Hi exactly when δ(yobs) ∩ Hi = ∅,

• ‘Undecided’ about Hi otherwise.

Note that these three terms are given in scare quotes, to indicate
that they acquire a technical meaning in this context. We do not use
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the scare quotes in practice, but we always bear in mind that we
are not “accepting Hi” in the vernacular sense, but simply asserting
that δ(yobs) ⊂ Hi for our particular choice of δ.

Looking at the three options above, there are two classes of
outcome. If we accept Hi then we must reject all of the other hy-
potheses. But if we are undecided about Hi then we cannot accept
any hypothesis. One very common case is where H =

�
H0, H1

�
,

which is known as Null Hypothesis Significance Testing (NHST),
where H0 is the null hypothesis and H1 is the alternative hypothesis.
There are two versions of NHST. In the first, known as a two-sided
test (or ‘two-tailed test’), the H0 is a tiny subset of Ω, too small for
δ(yobs) to get inside. Therefore it is impossible to accept H0, and all
that we can do is reject H0 and accept H1, or be undecided. In the
second case, known as a one-sided test (or ‘one-tailed test’), H0 is a
sizeable subset of Ω, and then it is possible to accept H0 and reject
H1.

For example, suppose that Y ∼ f (· ; µ, σ2) where µ and σ2 are
respectively the expectation and variance of X, and (µ, σ2) ∈ R2

++.
Consider two different NHSTs:

Test A

H0 : κ = c

H1 : κ �= c

Test B

H0 : κ ≥ c

H1 : κ < c

where κ := σ/µ ∈ R++, known as the ‘coefficient of variation’, and
c is some specified constant. Test A is a one-sided test, in which it
is impossible to accept H0, and so there are only two outcomes: to
reject H0, or to be undecided, which is usually termed ‘fail to reject
H0’. Test B is a two-sided test in which we can accept H0 and reject
H1, or accept H1 and reject H0, or be undecided.

In applications we usually want to do a one-sided test. For
example, if µ is the performance of a new treatment relative to
a control, then we can be fairly sure a priori that µ = 0 is false:
different treatments seldom have identical effects. What we want
to know is whether the new treatment is worse or better than the
control: i.e. we want H0 : µ ≤ 0 versus H1 : µ > 0. In this case we
can find in favour of H0, or in favour of H1, or be undecided. In a
one-sided test, it would be sensible to push the upper bound of H0

above µ = 0 to some value µ0 > 0, which is the minimial clinically
significant difference (MCSD).

NHST is practiced mainly by Frequentist statisticians, and so
I will continue in a Frequentist vein. In the Frequentist approach,
it is conventional to use a 95% confidence set as the set estimator
for hypothesis testing. Other levels, notably 90% and 99%, are
occasionally used. If H0 is rejected using a 95% confidence set,
then this is reported as “H0 is rejected at a significance level of 5%”
(occasionally 10% or 1%). Confidence sets are covered in detail in
Chapter 5.

This confidence set approach to hypothesis testing seems quite
clear-cut, but we must end on a note of caution. First, the statisti-
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cian has not solved the decision problem of choosing an element
of H. She has solved a different problem. Based on a set estimator,
she may reject H0 on the basis of yobs, but that does not mean she
should proceed as though H0 is false. This would require her to
solve the correct decision problem, for which she would have to
supply a loss function. So, first caution:

• Rejecting H0 is not the same as deciding that H0 is false. Signifi-
cance tests do not solve decision problems.

Second, loss functions of the form (4.7) may be generic, but that
does not mean that there is only one 95% confidence procedure.17 17 The same point can be made about

95% HPP sets, for which there is one
for each prior distribution over Ω.

As Chapter 5 will show, there are an uncountable number of ways
of constructing a 95% confidence procedure. In fact, there are an
uncountable number of ways of constructing a 95% confidence
procedure based on level sets of the likelihood function. So the
statistician still needs to make and to justify two subjective choices,
leading to the second caution:

• Accepting or rejecting a hypothesis is contingent on the choice of
confidence procedure, as well as on the level.


