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This chapter is a continuation of Chapter 4, and the same condi-
tions hold; re-read the introduction to Chapter 4 if necessary, and
the start of Sec. 4.2. In brief, interest focuses on the parameter θ in
the model

Y ∼ f (· ; θ) for some θ ∈ Ω, (5.1)

where Y are observables and f (y; θ) is assumed to be easily com-
puted. The parameter space is denoted

Ω :=
�

θ1, . . . , θk
�

for simplicity, even though the parameter may be vector-valued,
and the parameter space may be uncountable; typically the para-
meter space is a convex subset of a finite-dimensional Euclidean
space. An element of Ω is denoted θj, and the observed value of Y
is denoted yobs.

Throughout this chapter we accept that it is useful to make
inferences about the parameter of the statistical model. I regard this
notion as unscientific, as explained in ??. Nevertheless, confidence-
set-based hypothesis testing (Sec. 4.6) is very widely practiced and,
accepting that this is not going to change, it is important that we
use the best confidence sets that we can. For this purpose we must
sometimes suppose the ‘truth’ of the statistical model, and refer to
the ‘true’ parameter, which I will denote as θ.

New notation. In this chapter we have the tricky situation in which
a specified function g : Y× Ω → R becomes a random quantity
when Y is a random quantity. Then the distribution of g(Y, θj)

depends on the value of θ. Often the value of θ will be the same
value as the second argument to g, but this is not implied by simply
writing g(Y, θj). So it is best to make the value of θ explicit, when
writing about the distribution of g(Y, θj). Hence I write g(Y, θj)

��
θ=θj

to indicate the random quantity g(Y, θj) when Y ∼ f (· ; θj).

5.1 Confidence procedures and confidence sets

A confidence procedure is a special type of decision rule for the
problem of set estimation. Hence it is a function of the form
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C : Y → 2Ω, where 2Ω is the set of all sets of Ω.1 Decision rules 1 In this chapter I am using ‘C’ for a
confidence procedure, rather than ‘δ’
for a decision rule.

for set estimators were discussed in Sec. 4.5.

Definition 10 (Confidence procedure). C : Y → 2Ω is a level-(1 − α)

confidence procedure exactly when

Pr{θj ∈ C(Y); θj} ≥ 1 − α for all θj ∈ Ω.

If the probability equals (1 − α) for all θj, then C is an exact level-(1 − α)

confidence procedure.2 2 Exact is a special case. But when it
necessary to emphasize that C is not
exact, the term ‘conservative’ is used.The value Pr{θj ∈ C(Y); θj} is termed the coverage of C at θj.

Thus a 95% confidence procedure has coverage of at least 95%
for all θj, and an exact 95% confidence procedure has coverage
of exactly 95% for all θj. The diameter of C(y) can grow rapidly
with its coverage.3 In fact, the relation must be extrememly convex 3 The diameter of a set in a metric

space such as Euclidean space is the
maximum of the distance between two
points in the set.

when coverage is nearly one, because, in the case where Ω = R,
the diameter at coverage = 1 is unbounded. So an increase in the
coverage from, say 95% to 99%, could correspond to a doubling
or more of the diameter of the confidence procedure. For this
reason, exact confidence procedures are highly valued, because a
conservative 95% confidence procedure can deliver sets that are
much larger than an exact one.

But, immediately a note of caution. It seems obvious that exact
confidence procedures should be preferred to conservative ones,
but this is easily exposed as a mistake. Suppose that Ω = R.
Then the following procedure is an exact level-(1 − α) confidence
procedure for θ. First, draw a random variable U with a standard
uniform distribution.4 Then set 4 See footnote 6.

C(y) :=




R U ≤ 1 − α

{0} otherwise.
(†)

This is an exact level-(1 − α) confidence procedure for θ, but also
a meaningless one because it does not depend on y. If it is ob-
jected that this procedure is invalid because it includes an auxiliary
random variable, then this rules out the method of generating
approximately exact confidence procedures using bootstrap cali-
bration (Sec. 5.3.3). And if it is objected that confidence procedures
must depend on y, then (†) could easily be adapted so that y is the
seed of a numerical random number generator for U. So something
else is wrong with (†). In fact, it fails a necessary condition for ad-
missibility that was derived in Sec. 4.5. This will be discussed in
Sec. 5.2.

It is helpful to distinguish between the confidence procedure
C, which is a function of y, and the result when C is evaluated at
y ← yobs, which is a set in Ω. I like the terms used in Morey et al.
(2015), which I will also adapt to P-values in Sec. 5.5.

Definition 11 (Confidence set). C(yobs) is a level-(1 − α) confidence set
exactly when C is a level-(1 − α) confidence procedure.
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So a confidence procedure is a function, and a confidence set
is a set. If Ω ⊂ R and C(yobs) is convex, i.e. an interval, then
a confidence set (interval) is represented by a lower and upper
value. We should write, for example, “using procedure C, the 95%
confidence interval for θ is [0.55, 0.74]”, inserting “exact” if the
confidence procedure C is exact.

5.2 Families of confidence procedures

The trick with confidence procedures is to construct one with a
specified level, or, failing that, a specified lower bound on the level.
One could propose an arbitrary C : Y → 2Ω, and then laboriously
compute the coverage for every θj ∈ Ω. At that point one would
know the level of C as a confidence procedure, but it is unlikely to
be 95%; adjusting C and iterating this procedure many times until
the minimum coverage was equal to 95% would be exceedingly
tedious. So we need to go backwards: start with the level, e.g. 95%,
then construct a C guaranteed to have this level.

Define a family of confidence procedures as C : Y× [0, 1] → 2Ω, where
C(·; α) is a level-(1 − α) confidence procedure for each α. If we start
with a family of confidence procedures for a specified model, then
we can compute a confidence set for any level we choose.

It turns out that families of confidence procedures all have the
same form. The key concept is stochastic dominance. Let X and Y be
two scalar random quantities. Then X stochastically dominates Y
exactly when

Pr(X ≤̇ v) ≤ Pr(Y ≤̇ v) for all v ∈ R.

Visually, the distribution function for X is never to the left of the
distribution function for Y.5 Although it is not in general use, I 5 Recollect that the distribu-

tion function of X has the form
F(x) := Pr(X ≤̇ x) for x ∈ R.

define the following term.

Definition 12 (Super-uniform). The random quantity X is super-
uniform exactly when it stochastically dominates a standard uniform
random quantity.6 6 A standard uniform random quantity

being one with distribution function
F(u) = max{0, min{u, 1}}.In other words, X is super-uniform exactly when Pr(X ≤ u) ≤ u

for all 0 ≤ u ≤ 1. Note that if X is super-uniform then its support
is bounded below by 0, but not necessarily bounded above by 1.
Now here is a representation theorem for families of confidence
procedures.7 7 Look back to ‘New notation’ at the

start of the Chapter for the definition
of g(Y; θj)

��
θ=θj

.Theorem 5.1 (Families of Confidence Procedures, FCP). Let
g : Y× Ω → R. Then

C(y; α) :=
�

θj ∈ Ω : g(y, θj) > α
�

(5.2)

is a family of level-(1 − α) confidence procedures if and only if g(Y, θj)
��
θ=θj

is super-uniform for all θj ∈ Ω. C(·; α) is exact if and only if g(Y, θj)
��
θ=θj

is uniform for all θj.
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Proof.
(⇐). Let g(Y, θj)

��
θ=θj

be super-uniform for all θj. Then, for arbitrary

θj,

Pr{θj ∈ C(Y; α); θj} = Pr{g(Y, θj) >̇ α; θj}
= 1 − Pr{g(Y, θj) ≤̇ α; θj}
= 1 − (≤ α) ≥ 1 − α

as required. For the case where g(Y, θj)
��
θ=θj

is uniform, the inequal-

ity is replaced by an equality.

(⇒). This is basically the same argument in reverse. Let C(·; α)

defined in (5.2) be a level-(1 − α) confidence procedure. Then, for
arbtrary θj,

Pr{g(Y, θj) >̇ α; θj} ≥ 1 − α.

Hence Pr{g(Y, θj) ≤̇ α; θj} ≤ α, showing that g(Y, θj)
��
θ=θj

is super-

uniform as required. Again, if C(·; α) is exact, then the inequality is
replaced by a equality, and g(Y, θj)

��
θ=θj

is uniform.

Families of confidence procedures have the very intuitive nesting
property, that

α < α� =⇒ C(y; α) ⊃ C(y; α�). (5.3)

In other words, higher-level confidence sets are always supersets
of lower-level confidence sets from the same family. This has some-
times been used as part of the definition of a family of confidence
procedures (see, e.g., Cox and Hinkley, 1974, ch. 7), but I prefer to
see it as an unavoidable consequence of the fact that all families
must be defined using (5.2) for some g.

* * *

Sec. 4.5 made a recommendation about set estimators for θ,
which was that confidence procedures should be based on level
sets of

�
f (y; θj) : θj ∈ Ω

�
. This was to satisfy a necessary condition

to be admissible under the loss function (4.7). Here I restate that
recommendation as a property.

Definition 13 (Level Set Property, LSP). A confidence procedure C has
the Level Set Property exactly when

C(y) =
�

θj ∈ Ω such that f (y; θj) > c
�

for some c which may depend on y. A family of confidence procedures
has the LSP exactly when C(· ; α) has the LSP for all α, for which c may
depend on y and α.

A family of confidence procedures does not necessarily have the
LSP. So it is not obvious, but highly gratifying, that it is possible
to construct families of confidence procedures with the LSP. Three
different approaches are given in the next section.
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5.3 Methods for constructing confidence procedures

All three of these methods produce families of confidence proce-
dures with the LSP. This is a long section, and there is a summary
in Sec. 5.3.4.

5.3.1 Markov’s inequality

Here is a result that has pedagogic value, because it can be used to
generate an uncountable number of families of confidence proce-
dures, each with the LSP.

Theorem 5.2. Let h be any PMF for Y. Then

C(y; α) :=
�

θj ∈ Ω : f (y, θj) > α · h(y)
�

(5.4)

is a family of confidence procedures, with the LSP.

Proof. Define g(y, θj) := f (y; θj)
�

h(y), which may be ∞. Then the
result follows immediately from Thm 5.1 because g(Y, θj)

��
θ=θj

is

super-uniform for each θj:

Pr{ f (Y; θj)
�

h(Y) ≤̇ u; θj} = Pr{h(Y)
�

f (Y; θj) ≥̇ 1/u; θj}

≤ E{h(Y)
�

f (Y; θj); θj}
1/u

Markov’s inequality, (??)

≤ 1
1/u

= u.

For the final inequality,

E{h(Y)
�

f (Y; θj); θj} = ∑
y∈supp f (· ;θj)

h(y)
f (y; θj)

· f (y; θj) FTP, Thm 1.2

= ∑
y∈supp f (· ;θj)

h(y)

≤ 1.

If supp h ⊂ supp f (· ; θj), then this inequality is an equality.

Among the interesting choices for g, one possibility is g ← f (· ; θi),
for θi ∈ Ω. Note that with this choice, the confidence set of (5.4) al-
ways contains θi. So we know that we can construct a level-(1 − α)

confidence procedure whose confidence sets will always contain θi,
for any θi ∈ Ω.

This is another illustration of the fact that the definition of a
confidence procedure given in Def. 10 is too broad to be useful.
But now we see that insisting on the LSP is not enough to resolve
the issue. Two statisticians can both construct 95% confidence sets
for θ which satisfy the LSP, using different families of confidence
procedures. Yet the first statistician may reject the null hypothesis
that H0 : θ = θi (see Sec. 4.6), and the second statistician may fail to
reject it, for any θi ∈ Ω.

Actually, the situation is not as grim as it seems. Markov’s
inequality is very slack (refer to its proof at eq. ??), and so the cov-
erage of the family of confidence procedures defined in Thm 5.2
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is likely to be much larger than (1 − α), e.g. much larger than 95%.
Remembering the comment about the rapid increase in the diam-
eter of the confidence set as the coverage increases, from Sec. 5.1,
a more likely outcome is that C(y; 0.05) is large for many different
choices of h, in which case no one rejects the null hypothesis.

All in all, it would be much better to use an exact family of
confidence procedures, if one existed. And, for perhaps the most
popular model in the whole of Statistics, this is the case.

5.3.2 The Linear Model

The Linear Model (LM) is commonly expressed as

Y D
= Xβ + � where � ∼ Nn(0, σ2 In) (5.5)

where Y is an n-vector of observables, X is a specified n × p matrix
of regressors, β is a p-vector of regression coefficients, and � is an
n-vector of residuals.8 The parameter is (β, σ2) ∈ Rp ×R++. 8 Usually I would make Y and � bold,

being vectors, and I would prefer not
to use X for a specified matrix, but this
is the standard notation.

‘Nn(·)’ denotes the n-dimensional Multinormal distribution with
specified expectation vector and variance matrix (see, e.g., Mardia

et al., 1979, ch. 3). The symbol ‘ D
=’ denotes ‘equal in distribution’;

this notation is useful here because the Multinormal distribution is
closed under affine transformations. Hence Y has a Multinormal
distribution, because it is an affine transformation of �. So the LM
must be restricted to applications for which Y can be thought of,
at least approximately, as a collection of n random quantities each
with realm R, and for each of which our uncertainty is approxi-
mately symmetric. Many observables fail to meet these necessary
conditions (e.g. applications in which Y is a collection of counts);
for these applications, we have Generalized Linear Models (GLMs).
GLMs retain many of the attractive properties of LMs.

Wood (2015, ch. 7) provides an insightful summary of the LM,
while Draper and Smith (1998) give many practical details.

Now I show that the Maximum Likelihood Estimator (MLE) of
(5.5) is

β̂(y) = (XTX)−1XTy
�σ2(y) = n−1(y − ŷ)T(y − ŷ)

where ŷ := Xβ̂(y).

Proof. For a LM, it is more convenient to minimise −2 log f (y; β j, σ2
j )

over (β j, σ2
j ) than to maximise f (y; β j, σ2

j ).
9 Then 9 Note my insistence that (β j, σ2

j )

be considered as an element of the
parameter space, not as the ‘true’
value.−2 log f (y; β j, σ2

j ) = n log(2πσ2
j ) +

1
σ2

j
(y − Xβ j)

T(y − Xβ j)

from the PDF of the Multinormal distribution. Now use a simple
device to show that this is minimised at β j = β̂(y) for all values of
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σ2
j . I will write β̂ rather than β̂(y):

(y − Xβ j)
T(y − Xβ j)

= (y − Xβ̂ + Xβ̂ − Xβ j)
T(y − Xβ̂ + Xβ̂ − Xβ j)

= (y − ŷ)T(y − ŷ) + 0 + (Xβ̂ − Xβ j)
T(Xβ̂ − Xβ j) (†)

where multiplying out shows that the cross-product term in the
middle is zero. Only the final term contains β j. Writing this term as

(β̂ − β j)
T(XTX)(β̂ − β j)

shows that if X has full column rank, so that XTX is positive defi-
nite, then (†) is minimised if and only if β j = β̂. Then

−2 log f (y; β̂, σ2
j ) = n log(2πσ2

j ) +
1
σ2

j
(y − ŷ)T(y − ŷ).

Solving the first-order condition gives the MLE for �σ2(y), and it is
easily checked that this is a global minimum.

Now suppose we want a confidence procedure for β. For simplic-
ity, I will assume that σ2 is specified, and for practical purposes I
would replace it by �σ2(yobs) in calculations. This is known as plug-
ging in for σ2. The LM extends to the case where σ2 is not specified,
but, as long as n/(n − p) ≈ 1, it makes little difference in practice to
plug in.10 10 As an eminent applied statistician

remarked to me: it if matters to
your conclusions whether you use
a standard Normal distribution or
a Student-t distribution, then you
probability have bigger things to worry
about.

With β j representing an element of the β-parameter space Rp,
and σ2 specified, we have, from the results above,

−2 log

�
f (y; β j, σ2)

f (y; β̂(y), σ2)

�
=

1
σ2 {β̂(y)− β j}T(XTX){β̂(y)− β j}. (5.6)

Now suppose we could prove the following.

Theorem 5.3. With σ2 specified,

1
σ2 {β̂(Y)− β j}T(XTX){β̂(Y)− β j}

��
β=β j

has a χ2
p distribution.

We could define the decision rule:

C(y; α) :=

�
β j ∈ Rp : −2 log

�
f (y; β j, σ2)

f (y; β̂(y), σ2)

�
< χ−2

p (1 − α)

�
.

(5.7)
where χ−2

p (1 − α) denotes the (1 − α)-quantile of the χ2
p distribution.

Under Thm 5.3, (5.6) shows that C in (5.7) would be an exact level-
(1 − α) confidence procedure for β; i.e. it provides a family of exact
confidence procedures. Also note that it satisfies the LSP from
Def. 13.

After that build-up, it will come as no surprise to find out that
Thm 5.3 is true. Substituting Y for y in the MLE of β gives

β̂(Y) D
= (XTX)−1XT(Xβ + �)

D
= β + (XTX)−1XT�,
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writing σ for
√

σ2. So the distribution of β̂(Y) is another Multi-
normal distribution

β̂(Y) ∼ Np(β, Σ) where Σ := σ2(XTX)−1.

Now apply a standard result for the Multinormal distribution to
deduce

{β̂(Y)− β j}TΣ−1{β̂(Y)− β j}|β=β j ∼ χ2
p (†)

(see Mardia et al., 1979, Thm 2.5.2). This proves Thm 5.3 above.
Let’s celebrate this result!

Theorem 5.4. For the LM with σ2 specified, C defined in (5.7) is a family
of exact confidence procedures for β, which has the LSP.

Of course, when we plug-in for σ2 we slightly degrade this result,
but not by much if n/(n − p) ≈ 1.

This happy outcome where we can find a family of exact con-
fidence procedures with the LSP is more-or-less unique to the
regression parameters in the LM. but it is found, approximately, in
the large-n behaviour of a much wider class of models, including
GLMs, as explained next.

5.3.3 Wilks confidence procedures

There is a beautiful theory which explains how the results from
Sec. 5.3.2 generalise to a much wider class of models than the LM.
The theory is quite strict, but it almost-holds over relaxations of
some of its conditions. Stated informally, if Y := (Y1, . . . , Yn) and

f (y; θj) =
n

∏
i=1

f1(yi; θj) for some θ ∈ Ω, (5.8)

(see Sec. 3.1) and f1 is a regular model, and the parameter space Ω is
a convex subset of Rp (and invariant to n), then

−2 log
� f (Y; θj)

f (Y; θ̂(Y))

�����
θ=θj

D−−−→ χ2
p (5.9)

where θ̂ is the Maximum Likelihood Estimator (MLE) of θ, and

‘ D−−−→’ denotes ‘convergence in distribution’ as n increases without
bound. Eq. (5.9) is sometimes termed Wilks’s Theorem, hence the
name of this subsection.

The definition of ‘regular model’ is quite technical, but a working
guideline is that f1(yi; θj) must be smooth and differentiable in θj

for each yi; in particular, supp Yi must not depend on θj. Cox (2006,
ch. 6) provides a summary of this result and others like it, and
more details can be found in Casella and Berger (2002, ch. 10), or,
for the full story, in van der Vaart (1998).

This result is true for the LM, because we showed that it is
exactly true for any n provided that σ2 is specified, and the ML
plug-in for σ2 converges on the true value as n/(n − p) → 1.11 11 This is a general property of the

MLE, that it is consistent when f has
the product form given in (5.8).
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In general, we can use it the same way as in the LM, to derive a
decision rule:

C(y; α) :=
�

θj ∈ Ω : −2 log
� f (Y; θj)

f (Y; θ̂(Y))

�
< χ−2

p (1 − α)

�
. (5.10)

As already noted, this C satisfies the LSP. Further, under the con-
ditions for which (5.9) is true, C is also a family of approximately
exact confidence procedures.

Eq. (5.10) can be written differently, perhaps more intuitively.
Define

L(θj; y) := f (y; θj)

known as the likelihood function of θj; sometimes the y argument is
suppressed, notably when y ← yobs. Let � := log L, the log-likelihood
function. Then (5.10) can be written

C(y; α) =
�

θj ∈ Ω : �(θj; y) > �(θ̂(y); y)− κ(α)
�

(5.11)

where κ(α) := χ−2
p (1 − α)/2. In this procedure we keep all θj ∈ Ω

whose log-likelihood values are within κ(α) of the maximum log-
likelihood. In the common case where Ω ⊂ R, (5.11) gives ‘Allan’s
Rule of Thumb’:12 12 After Allan Seheult, who first taught

it to me.
• For an approximate 95% confidence procedure for a scalar para-

meter, keep all values of θj ∈ Ω for which the log-likelihood is
within 2 of the maximum log-likelihood.

The value 2 is from χ−2
1 (0.95)/2 = 1.9207. . . ≈ 2.

Bootstrap calibration. The pertinent question, as always with meth-
ods based on asymptotic properties for particular types of model,
is whether the approximation is a good one. The crucial concept
here is level error. The coverage that we want is at least (1 − α)

everywhere, which is termed the ‘nominal level’. But were we to
evaluate a confidence procedure such as (5.11) for a general model
(not a LM) we would find that, over all θj ∈ Ω, that the minimum
coverage was not (1 − α) but something else; usually something
less than (1 − α). This is the ‘actual level’. The difference is

level error := nominal level − actual level.

Level error exists because the conditions under which (5.11) pro-
vides an exact confidence procedure are not met in practice, outside
the LM. Although it is tempting to ignore level error, experience
suggests that it can be large, and that we should attempt to correct
for level error if we can.

One method for making this correction is bootstrap calibration,
described in DiCiccio and Efron (1996). Here are the steps, based on
(5.11), although with a generic κ in place of the function κ(α):

C(y; κ) =
�

θj ∈ Ω : �(θj; y) > �(θ̂(y); y)− κ
�

. (5.12)
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1. Compute a point estimate for θ, say θ̂obs := θ̂(yobs) the ML
estimate. Other estimates are also possible, see Sec. 4.4.

2. For i = 1, . . . , m:

Sample y(i) ∼ f (· ; θ̂obs), compute and record θ̂(i) := θ̂(y(i)),
and �̂(i) := �(θ̂(i); y(i)).

So, at the end of this process we have θ̂obs and the sample of values�
y(i), θ̂(i), �̂(i)

�
for i = 1, . . . , m. Computing the ML estimate has to

be a quick procedure because m needs to be large, say 1000s.
Now if we choose a particular value for κ, an empirical estimate

of the coverage at θ = θ̂obs is

�cvg(κ) :=
1
m

m

∑
i=1

1
�

θ̂obs ∈ C(y(i); κ)
�

=
1
m ∑ i 1

�
�(θ̂obs; y(i)) > �̂(i) − κ

�

=
1
m ∑ i 1

�
�̂(i) − �(θ̂obs; y(i)) < κ

�
.

Therefore to set the empirical coverage to (1 − α), κ needs to be the
(1 − α)-quantile of the values

�
�̂(i) − �(θ̂obs; y(i))

�m
i=1.

So the final step is to find this value, call it κ∗(α), and then compute
the confidence set C(yobs; κ∗(α)) from (5.12).

This is a very complicated procedure, and it is hard to be pre-
cise about the reduction in level error that occurs (see DiCiccio
and Efron, 1996, for more details). One thing that is definitely in-
formative is the discrepancy between κ∗(α) and κ(α), which is an
indicator of how well the asymptotic conditions hold. Put simply,
if the discrepancy is small then either threshold will do. But if the
discrepancy is large, then κ(α) will not do, and one is forced to use
κ∗(α), or nothing. A large sample is required, for (1 − α) = 0.95:
accurately estimating the 95th percentile is going to require about
m = 1000 samples.13 13 See Harrell and Davis (1982) for a

simple estimator for quantiles.

5.3.4 Summary

With the Linear Model (LM) described in Sec. 5.3.2, we can con-
struct a family of exact confidence procedures, with the LSP, for
the parameters β. Additionally—I did not show it but it follows
directly—we can do the same for all affine functions of the parame-
ters β, including individual components.

In general we are not so fortunate. It is not that we cannot con-
struct families of confidence procedures with the LSP: Sec. 5.3.1
shows that we can, in an uncountable number of different ways.
But their levels will be conservative, and hence they are not very
informative. A better alternative, which ought to work well in large-
n simple models like (5.8) is to use Wilks’s Theorem to construct a
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family of approximately exact confidence procedures, which have
the LSP, see Sec. 5.3.3.

The Wilks approximation can be checked and—one hopes—
improved, using bootstrap calibration. Bootstrap calibration is a
necessary precaution for small n or more complicated models (e.g.
time series or spatial applications). But in these cases a Bayesian ap-
proach is likely to be a better choice, which is reflected in modern
practice.

5.4 Marginalisation

Suppose that g : θ �→ φ is some specified function, and we would
like a confidence procedure for φ. If C is a level-(1 − α) confidence
procedure for φ then it must have φ-coverage of at least (1 − α) for
all θj ∈ Ω. The most common situation is where Ω ⊂ Rp, and
g extracts a single component of θ: for example, θ = (µ, σ2) and
g(θ) = µ. So I call the following result the Confidence Procedure
Marginalisation Theorem.

Theorem 5.5 (Confidence Procedure Marginalisation, CPM). Suppose
that g : θ �→ φ, and that C is a level-(1 − α) procedure for θ. Then gC is a
level-(1 − α) confidence procedure for φ.14 14 gC

:=
�

φj : φj = g(θj) for some θj ∈ C
�

.
Proof. Follows immediately from the fact that θj ∈ C(y) implies that
φj ∈ gC(y) for all y, and hence

Pr{θj ∈ C(Y); θj} ≤ Pr{φj ∈ gC(Y); θj}

for all θj ∈ Ω. So if C has θ-coverage of at least (1 − α), then gC has
φ-coverage of at least (1 − α) as well.

This result shows that we can derive level-(1 − α) confidence
procedures for functions of θ directly from level-(1 − α) confidence
procedures for θ. But it also shows that the coverage of such de-
rived procedures will typically be more than (1 − α), even if the
original confidence procedure is exact.

There is an interesting consequence of this result based on the
confidence procedures defined in Sec. 5.3.2 and Sec. 5.3.3. Taking
the latter more general case, consider the family of approximately
exact confidence procedures defined in (5.12). Let g−1 ⊂ Ω be the
inverse image of g. Then

φj ∈ gC(y; α)

⇐⇒ ∃θj : φj = g(θj) ∧ θj ∈ C(y; α)

⇐⇒ max
θj∈g−1(φj)

�(θj; y) > �(θ̂(y); y)− κ(α)

The expression on the left of the final inequality is the profile log-
likelihood,

�g(φj; y) := max
θj∈g−1(φj)

�(θj; y). (5.13)

It provides a simple rule for computing a log-likelihood for any
function of θj. Because gC is conservative, we would expect to
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be able to reduce the threshold below κ(α) if g is not bijective.
However, this is not an area where the asymptotic theory is very
reliable (i.e. it takes a long time to ‘kick in’). A better option here is
to use bootstrap calibration to derive a κ∗(α) for g, as described in
Sec. 5.3.3.

5.5 P-values

There is a general theory for P-values, also known as significance
levels, which is outlined in Sec. 5.5.2, and critiqued in Sec. 5.5.3
and Sec. 5.5.4. But first I want to focus on P-values as used in Null
Hypothesis Signficance Tests, which is a very common situation.

As discussed in Sec. 5.3, we have methods for constructing
families of good confidence procedures, and the knowledge that
there are also families of confidence procedures which are poor
(including completely uninformative). In this section I will take it
for granted that a family of good confidence procedures has been
used.

5.5.1 P-values and confidence sets

Null Hypothesis Signficance Tests (NHST) were discussed in
Sec. 4.5. In a NHST the parameter space is partitioned as

Ω = {H0, H1},

where typically H0 is a very small set, maybe even a singleton. We
‘reject’ H0 at a significance level of α exactly when a level-(1 − α)

confidence set C(yobs; α) does not intersect H0; otherwise we ‘fail to
reject’ H0 at a significance level of α.

In practice, then, a hypothesis test with a significance level of
5% (or any other specified value) returns one bit of information,
‘reject’, or ’fail to reject’. We do not know whether the decision was
borderline or nearly conclusive; i.e. whether, for rejection, H0 and
C(yobs; 0.05) were close, or well-separated. We can increase the
amount of information if C is a family of confidence procedures, in
the following way.

Definition 14 (P-value, confidence set). Let C(· ; α) be a family of
confidence procedures. The P-value of H0 is the smallest value α for which
C(yobs; α) does not intersect H0.

The picture for determining the P-value is to dial up the value
of α from 0 and shrink the set C(yobs; α), until it is just clear of
H0. Of course we do not have to do this in practice. From the
Representation Theorem (Thm 5.1) we know that C(yobs; α) is
synonymous with a function g : Y× Ω → R, and C(yobs; α) does not
intersect with H0 if and only if

∀θj ∈ H0 : g(yobs, θj) ≤ α.
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Thus the p-value is computed as

p(yobs; H0) := max
θj∈H0

g(yobs, θj), (5.14)

for a specified family of confidence procedures (represented by the
choice of g). Here is an interesting and suggestive result.15 This will 15 Recollect the definition of ‘super-

uniform’ from Def. 12.be the basis for the generalisation in Sec. 5.5.2.

Theorem 5.6. Under Def. 14 and (5.14), p(Y; H0)
��
θ=θj

is super-uniform

for every θj ∈ H0.

Proof. p(y; H0) ≤ u implies that g(y, θj) ≤ u for all θj ∈ H0. Hence

Pr{p(Y; H0) ≤ u; θj} ≤ Pr{g(Y, θj) ≤ u; θj} ≤ u : θj ∈ H0

where the final inequality follows because g(Y, θj)
��
θ=θj

is super-

uniform for all θj ∈ Ω, from Thm 5.1.

If interest concerns H0, then p(yobs; H0) definitely returns more
information than a hypothesis test at any fixed significance level,
because p(yobs; H0) ≤ α implies ‘reject H0’ at significance level α,
and p(yobs; H0) > α implies ‘fail to reject H0’ at signficance level α.
But a p-value of, say, 0.045 would indicate a borderline ‘reject H0’ at
α = 0.05, and a p-value of 0.001 would indicate nearly conclusive
‘reject H0’ at α = 0.05. So the following conclusion is rock-solid:

• When performing a NHST, a p-value is more informative than a
simple ‘reject H0’ or ‘fail to reject H0’ at a specified significance
level (such as 0.05).

5.5.2 The general theory of P-values

Thm 5.6 suggests a more general definition of a p-value, which does
not just apply to hypothesis tests for parametric models, but which
holds much more generally, for any PMF or model for Y.

Definition 15 (Significance procedure). p : Y → R is a significance
procedure for f0 exactly when p(Y) is super-uniform under f0; if p(Y)
is uniform under Y ∼ f0, then p is an exact significance procedure for f0.
The value p(yobs) is a significance level or p-value for f0 exactly when p
is a significance procedure for f0.

This definition can be extended to a set of PMFs for Y by requir-
ing that p is a significance procedure for every element in the set;
this is consistent with the definition of p(y; H0) in Sec. 5.5.1. The
usual extension would be to take the maximum of the p-values over
the set.16 16 Although Berger and Boos (1994)

have an interesting suggestion for
parametric models.

For any specified f , there are a lot of significance procedures for
H0 : Y ∼ f . An uncountable number, actually, because every test
statistic t : Y → R induces a significance procedure. See Sec. 5.6 for the
probability theory which underpins the following result.
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Theorem 5.7. Let t : Y → R. Define

p(y; t) := Pr
�

t(Y) ≥ t(y); f0
�

.

Then p(Y; t) is super-uniform under Y ∼ f0. That is, p(· ; t) is a sig-
nificance procedure for H0 : Y ∼ f0. If the distribution function of
t(Y) is strictly increasing on the realm of t(Y), then p(· ; t) is an exact
significance procedure for H0.

Proof.

p(y; t) = Pr{t(Y) ≥ t(y); f0} = Pr{−t(Y) ≤ −t(y); f0} =: G(−t(y))

where G is the distribution function of −t(Y) under Y ∼ f0. Then

p(Y; t) = G(−t(Y))

which is super-uniform under Y ∼ f0 according to the Probability
Integral Transform (see Sec. 5.6, notably Thm 5.9). The PIT also
covers the case where the distribution function of t(Y) is strictly
increasing on the realm of t(Y), in which case p(· ; t) is uniform
under Y ∼ f0.

Like confidence procedures, significance procedures suffer
from being too broadly defined. Every test statistic induces a
significance procedure. This includes, for example, t(y) = c for
some specified constant c; but clearly a p-value based on this test
statistic is useless.17 So some additional criteria are required to 17 It is a good exercise to check that

t(y) = c does indeed induce a super-
uniform p(· ; t) for every f0.

separate out good from poor significance procedures. The most
pertinent criterion is:

• select a test statistic for which t(Y) which will tend to be larger
for decision-relevant departures from H0.

This will ensure that p(Y; t) will tend to be smaller under decision-
relevant departures from H0. Thus p-values offer a ‘halfway house’
in which an alterntive to H0 is contemplated, but not stated explic-
itly.

Here is a useful example. Suppose that there are two sets of

observations, characterised as Y iid∼ f0 and Z iid∼ f1, for unspecified
PMFs f0 and f1. A common question is whether Y and Z have the
same PMF, so we make this the null hypothesis:

H0 : f0 = f1.

Under H0, (Y , Z) iid∼ f0. Every test statistic t(y, z) induces a sig-
nificance procedure. A few different options for the test statistic
are:

1. The sum of the ranks of y in the ordered set of (y, z). This will
tend to be larger if f0 stochastically dominates f1.

2. As above, but with z instead of y.
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3. The maximum rank of y in the ordered set of (y, z). This will
tend to be larger if the righthand tail of f0 is longer than that of
f1.

4. As above, but with z instead of y.

5. The difference between the maximum and minimum ranks of y
in the ordered set of (y, z). This will tend to be larger if f0 and f1

have the same location, but f0 is more dispersed than f1.

6. As above, but with z instead of y.

7. And so on . . .

There is no ‘portmanteau’ test statistic to examine H0, and in my
view H0 should always be replaced by a much more specific null
hypothesis which suggests a specific test statistic. For example,

H0 : f1 stochastically dominates f0.

In this case (2.) above is a useful test statistic. It is implemented as
the Wilcoxon rank sum test (in its one-sided variant).

5.5.3 Being realistic about significance procedures

Sec. 5.5.1 made the case for reporting an NHST in terms of a p-
value. But what can be said about the more general use of p-values
to ‘score’ the hypothsis H0 : Y ∼ f0? Let’s look at the logic. As
Fisher himself stated, in reference to a very small P-value,

The force with which such a conclusion is supported is logically
that of the simple disjunction: Either an exceptionally rare chance
has occurred, or the theory of random distribution [i.e. the null
hypothesis] is not true. (Fisher, 1956, p. 39).

Fisher encourages us to accept that rare events seldom happen, and
we should therefore conclude with him that a very small P-value
strongly suggests that H0 is not true. This is uncontroversial.

But what would he have written if the P-value had turned out
to be large? The P-value is only useful if we conclude something
different in this case, namely that H0 is not rejected. But this is
where Fisher would run into difficulties, because H0 is an artefact:
f0 is a distribution chosen from among a small set of candidates
for our convenience. So we know a priori that H0 is false: nature is
more complex than we can envisage or represent. Fisher’s logical
disjunction is trivial because the second proposition is always true
(i.e. H0 is always false). So either we confirm what we already know
(small P-value, H0 is false) or we fail to confirm what we already
know (large P-value, but H0 is still false). In the latter case, all that
we have found out is that our choice of test statistic is not powerful
enough to tell us what we already know to be true.

This is not how people who use P-values want to interpret them.
They want a large P-value to mean “No reason to reject H0”, so
that when the P-value is small, they can “Reject H0”. They do not
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want it to mean “My test statistic is not powerful enough to tell
me what me already know to be true, namely that H0 is false.” But
unfortunately that is what it means.

When H0 : (Y1, . . . , Yn)
iid∼ f0, the power of the test statistic is

closely related to the size of the sample, n, from which we infer that
the size of the P-value is decreasing in n. That is to say, we expect

n� > n =⇒ p(yobs; n�) < p(yobs; n) and lim
n↑∞

p(yobs; n) = 0.

This suggests that the P-value is a crude measure of the size of the
sample, which is how many experienced statisticians interpret it.18 18 See, e.g., Andrew Gelman’s blog,

http://andrewgelman.com/2009/06/

18/the_sample_size/.
It also suggests that if there is a threshold for small P-values, it
should be chosen with n in mind: the idea that a single threshold
such as 0.05 would serve across a range of studies with different
values for n seems very naïve. Unfortunately, it also encourages
cheating; see, e.g., Masicampo and Lalande (2012).

Statisticians have been warning about misinterpreting P-values
for nearly 60 years (dating from Lindley, 1957). They continue to
do so in fields which use statistical methods to examine hypotheses,
indicating that the message has yet to sink in. So there is now a
huge literature on this topic. A good place to start is Greenland and
Poole (2013), and then work backwards.

5.5.4 P-values and Generalised Likelihood Ratios

Statisticians recognise that a P-value fails to be informative in
the way that is desired because H0 : Y ∼ f0 is always false. A
better question to ask is: “How well does my f0 perform compared
to other candidate distributions for Y?” This is a comparative
question, which does not require that any one of the candidates be
true. The difficulty is that a large part of the appeal of a significance
procedure is that it only requires a null model f0 and a test statistic
t : Y → R. So this prompts the question: can we bootstrap our way
to a family of candidate distributions for Y with a proper parameter
space containing the null model, just from f0 and t? And indeed we
can.

This suggestion originated with David Cox in Savage et al. (1962,
p. 84), see also Cox (1977). Let the family of distributions be

f (y; θ) ∝ f0(y) eθ·t(y) : θ ≥ 0

This is known as Exponential tilting and the result is a subset of the
Exponential family of distributions. The constant of proportionality
has to ensure that ∑y f (y; θ) = 1 for all θ in some to-be-determined
parameter space Ω. It is straightforward to check that

f (y; θ) =
f0(y) eθ·t(y)

MT(θ)
: MT(θ) < ∞ (5.15a)

where MT is the Moment Generating Function (MGF) of t(Y) under
Y ∼ f0; see (1.10). Therefore the parameter space is defined as

Ω :=
�

θ ≥ 0 : MT(θ) < ∞
�

; (5.15b)
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Ω is a convex subset of R (see, e.g., Schervish, 1995, sec. 2.2).
How can we use this family of distributions? We could compute

a 95% confidence set for θ and see whether 0 was inside it, or, better,
we could compute a P-value for H0 : θ = 0. Actually, both of
these are tricky because 0 is on the edge of the parameter space:
we would have a problem with level error (see Sec. 5.3.3). But
there is no need to follow this route. Going back to Sec. 4.6, we
recollect that the ratio f0(y)

�
f1(y) is the only admissible way to

choose between two candidates f0 and f1. Furthermore, such a
ratio of probabilities is directly interpretable. This suggests that we
compare f0 with the other members of the family in the same way;
and since there are many of them (an uncountable number), we
consider the single ratio

Λ(y; f0) :=
f0(y)

f (y; θ̂(y))
(GLR)

where θ̂(y) is the Maximum Likelihood (ML) estimate, which gives
0 < Λ(y; f0) ≤ 1. This is termed the generalised likelihood ratio (GLR)
for f0.19 19 It is the basis of the family of Wilks

approximately exact confidence
procedures (see Sec. 5.3.3), but here
it is being used directly, rather than
being processed into a confidence set.

We can interpret the GLR as the relative support for f0, because
a small value of the ratio, say 0.05, indicates that there is another
member of the family for which the observations are twenty times
more probable than they are under f0. Thus, by a smoothness
argument, there are many members which are much more probable
than f0. On the other hand, a larger value, say 0.2, indicates that
there is no member of the family for which the observations are
more than five times more probable than they are under f0. In some
people’s minds this may be enough to cast strong doubt on f0, but
I would be more cautious. If I had an a priori reason for selecting
f0 as a good candidate for Y, then I would want strong evidence
before I gave up f0 for another member of this family.

One unexpected but gratifying inequality relates the GLR to the
original P-value:

Λ(y; f0) =
f0(y)

maxθ∈Ω f (y; θ)

= min
θ∈Ω

f0(y)
f (y; θ)

= min
θ∈Ω

1
eθ·t(y)�MT(θ)

= min
θ∈Ω

e−θ·t(y)MT(θ) (†)

≥ Pr
�

t(Y) ≥̇ t(y); f0
�

Chernoff’s ineq., see (1.19)

= p(y; f0).

So p(y; f0) is a lower-bound for the GLR. Here then is a good rea-
son for sticking with f0 when the P-value is large: a large P-value
rules out a small GLR. But this inequality should also make us
concerned about interpreting small P-values. Markov’s inequality,
on which Chernoff’s inequality is based, is quite relaxed, which
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suggests that the GLR could be a lot higher than the P-value. So a
P-value of 0.05 could correspond to a GLR of more than 0.2.

For more insight, consider a classic example, where the null
model is Z ∼ N(0, 1), and t(z) = z; this was first analysed in
Edwards et al. (1963).20 In this case 20 Here Z is the ‘z-statistic’,

(X̄ − µ0)
��

σ2/n,

where X̄ is the sample mean, and σ2

may be replaced by an estimator; see
Sec. 5.3.2. This classic example is also
the most frequently-used statistical
model of all.

MT(θ) = MZ(θ) = exp( 1
2 θ2)

and a quick calculation from (†) gives

Λ(z; f0) = min
θ∈Ω

exp(−θ · z + 1
2 θ2) = exp(− 1

2 z2) : z ≥ 0.

We also have an explicit expression for the original P-value,

p(z; f0) = Pr
�

Z ≥̇ z; f0
�
= 1 − Φ(z) (‡)

where Φ is the distribution function of the standard Normal dis-
tribution. Eq. (‡) can be inverted to express z as a function of the
P-value, and this allows us to plot the GLR against the P-value.
The result is shown in Figure 5.1. In this case, a P-value of 0.05
corresponds to a GLR of 0.26, which is hardly a strong refutation
of f0. In my view this casts serious doubt on the many thousands
(literally) of f0’s which have been rejected with P-values of a little
under 0.05. A GLR of 0.05 corresponds to a P-value of about 0.007.
If someone forced me to provide a threshold for a P-value below
which I would reject f0, my threshold would be 0.007.
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Figure 5.1: The P-value against the
Generalised Likelihood Ratio (GLR)
for the null model Z ∼ N(0, 1)
with t(z) = z. The dashed line has
gradient 1.

To summarize. If you feel compelled to address the question “Is
f0 a good model for Y?” and you select the test statistic t for that
purpose, then you are not restricted simply to computing the P-
value. You can also compute a Generalised Likelihood Ratio (GLR)
for f0 in a family of distributions which is induced by f0 and t.
If the GLR is very small, say less than 0.05, then go ahead and
reject f0—you have already identified a whole set of much better
candidates. If on the other hand the GLR is not small, then you
should be cautious about rejecting f0, if you have other reasons for
favouring it. The only role for the P-value in this assessment is that
it provides a lower bound on the GLR, which will allow you to skip
evaluating the GLR, if the P-value is not small.

5.6 The Probability Integral Transform

Here is a very elegant and useful piece of probability theory. Let
X be a scalar random quantity with realm X and distribution
function F(x) := Pr(X ≤̇ x). By convention, F is defined for all
x ∈ R. By construction, limx↓−∞ F(x) = 0, limx↑∞ F(x) = 1, F is
non-decreasing, and F is continuous from the right, i.e.

lim
x�↓x

F(x�) = F(x).

Define the quantile function

F−(u) := inf
�

x ∈ R : F(x) ≥ u
�

. (5.16)
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The following result is a cornerstone of generating random quanti-
ties with easy-to-evaluate quantile functions.

Theorem 5.8 (Probability Integral Transform, PIT). Let U have a
standard uniform distribution. If F− is the quantile function of X, then
F−(U) and X have the same distribution.

Proof. Let F be the distribution function of X. We must show that

F−(u) ≤ x ⇐⇒ u ≤ F(x) (†)

because then

Pr{F−(U) ≤ x} = Pr{U ≤ F(x)} = F(x)

as required. So stare at Figure 5.2 for a while.
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Figure 5.2: Figure for the proof of
Thm 5.8. The distribution function F is
non-decreasing and continuous from
the right. The quantile function F− is
defined in (5.16).

It is easy to check that

u ≤ F(x) =⇒ F−(u) ≤ x,

which is one half of (†). It is also easy to check that

u� > F(x) =⇒ F−(u�) > x.

Taking the contrapositive of this second implication gives

F−(u�) ≤ x =⇒ u� ≤ F(x),

which is the other half of (†).

Thm 5.8 is the basis for the following result; recollect the defini-
tion of a super-uniform random quantity from Def. 12. This result
is used in Thm 5.7.

Theorem 5.9. If F is the distribution function of X, then F(X) has a
super-uniform distribution. If the support of X is convex then F(X) has a
uniform distribution.
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Proof. Check from Figure 5.2 that F(F−(u)) ≥ u. Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} from Thm 5.8

≤ Pr{U ≤ u}
= u.

In the case where the support of X is convex, the distribution
function F is strictly increasing between lower and upper limits, in
which case F(F−(u)) = u for u ∈ (0, 1). Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} = Pr{U ≤ u} = u,

as required.


