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This homework is about some of the inferential issues which arise when do-

ing experiments to assess causal effects. In this case, the question is whether

drinking a glass of milk in the morning causes children to grow faster.

Note that where there is no mark given, this type of question is unlikely

to come up in an exam.

1. The experimental protocol is as follows. The experiment will run for

one school year, for all of the children in one class. The heights of the

children will be measured at the beginning and end of the year; the

outcome will be the change in height for each of the children. The

‘treatment’ group will be given a 100 ml glass of milk each morning, at

the start of class. The ‘control’ group will be given a 100 ml glass of

water. Half of the boys will be allocated to the treatment group, and

half of the girls will be allocated to the treatment group. All of the

other children will be in the control group. Selection of the subset of

boys and girls in the treatment group will be random.

(a) Why does the control group get a glass of water rather than noth-

ing at all?

Answer. The treatment involves an additional drink, plus that the

drink is milk. To isolate the effect of the milk from the effect of the

additional drink, we need to put an additional drink into the control.
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Also, being ‘treated’ has a placebo effect, so we want the control group

to have a ‘treatment’ as well.

(b) Why is allocation to treatment or control ‘blocked’ by boy or girl?

Answer. We would like to derive results separately for boys and girls,

because they might be different. Therefore we want to divide our

resources evenly between them. Following any other scheme, we might

end up with mostly boys, or mostly girls, in which case the other half

of the experiment would be less conclusive.

(c) Why is allocation to treatment or control within blocks done at

random?

Answer. Any other scheme risks some form of ‘confounding’, in which

the allocation scheme and the treatment cannot be separated, and so

the treatment effect cannot be isolated. For example, if we allocated on

the basis of first letter of the surname, then the fact that some surnames

are more common in some ethnic groups means that treatment and

ethnic group are confounded.

(d) Provide an R snippet that identifies the children to be in the treat-

ment group.

Answer. This is how an experienced R user (e.g. me!) might do it:

## sex of each child, ordered alphabetically, is provided

male <- c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,

TRUE, FALSE, TRUE, FALSE, FALSE) # etc etc

## here is the caclulation

ismale <- which(male)

isfemale <- which(!male)
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istreat <- lapply(list(ismale, isfemale), function(x) {

sample(x, size = floor(length(x) / 2))

})

treat <- rep(FALSE, length(male))

treat[unlist(istreat)] <- TRUE

If you are interested in R, make sure you understand the functions used

here: lapply, sample, unlist.

2. The standard notation for a statistical model is

Y ∼ f(θ) θ ∈ Ω

where f is the name of the model, θ are the parameters, and Ω is the

parameter space, which is usually a convex subset of Euclidean space.

This is synomymous with the statement

Pr(Y =̇ y; θ) = f(y; θ)

(a) The Maximum Likelihood Estimator (MLE) of θ is defined as

θ̂(y) := argmax
θ∈Ω

f(y; θ).

Show that if g : θ 7→ ψ is bijective, then the MLE of ψ satisfies

ψ̂(y) = g(θ̂(y)). That is, the MLE is invariant to bijective trans-

formations. This is one of its most attractive features. [10 marks]

Answer. Under the mapping, we have fψ(y;ψ) = f(y; g−1(ψ)), with
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ψ ∈ Ψ := g(Ω). Then, letting ψ ∈ Ψ be arbitrary,

fψ(y;ψ) = f(y; g−1(ψ))

≤ f(y; θ̂(y)) because θ̂ is the MLE

= f(y; g−1gθ̂(y))

= f(y; g−1ψ̂(y)) setting ψ̂ := gθ̂

= fψ(y; ψ̂(y))

and hence ψ̂ = gθ̂ is the MLE for ψ, because its probability for y is at

least as large as an arbitrary point selected from Ψ.

(b) If θ = (θ1, θ2), then the MLE of θ1 is defined to be the first com-

ponent of the MLE of θ, and similarly for generalisations. Show

that if g : θ 7→ ψ is not bijective, but can be embedded within a

bijective mapping by adding additional elements, then the MLE

of ψ is g(θ̂(y)). [5 marks]

Answer. This is mostly about notation. Let

θ 7→ (g(θ), h(θ)) =: (ψ, φ)

be bijective, for careful choice of h. Then by the result in Q2a, (ψ̂, φ̂) =

(gθ̂, hθ̂), and hence ψ̂(y) = g(θ̂(y)).

3. Let Y1, . . . , Ym be the change in heights of the control group, and

Z1, . . . , Zn be the change heights of the treatment group. A standard

model would be

f(y, z;µc, µt, σ
2) =

m∏
i=1

φ(yi;µc, σ
2) ·

n∏
j=1

φ(zj;µt, σ
2)

where φ is the Normal density function with specified expectation and

variance. The treatment effect is defined as ψ := µt − µc. Show that

the MLE for the treatment effect is

ψ̂(y, z) = z̄ − ȳ (corrected typo.)
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where ȳ and z̄ are the sample means of Y and Z. [10 marks]

Obviously, this is a very attractive model, since it has such an intuitive

measure of the treatment effect. Note that the sample sizes have no

effect in the estimator of the treatment effect, although, as we will

see later, they have an important effect in the uncertainty about the

treatment effect.

Answer. Write the parameters as θ := (µc, µt, σ
2). We would like to know

the MLE of ψ := µt − µc. This can be embedded in a bijective function of

θ, for example, θ 7→ (ψ, µt, σ
2). Therefore we know from the result in Q2b

that we have to find the MLE of θ, and the MLE for ψ will follow directly.

To find the MLE of θ, we take logarithms (since log is an increasing function

on the positive reals, and probabilities are non-negative), and then maximise.

I.e.

θ̂(y, z) = argmax
µc,µt,σ2

{∑
i
log φ(yi;µc, σ

2) +
∑

j
log φ(zj ;µt, σ

2)
}

= argmax
σ2

{
argmax

µc

∑
i
log φ(yi;µc, σ

2) + argmax
µt

∑
i
log φ(zi;µt, σ

2)

}
Taking the first term,∑

i
log φ(yi;µc, σ

2) =
−m

2
log(2πσ2)− 1

2σ2

∑
i
(yi − µc)2

which is maximised over µc at µ̂c(y, z) = ȳ, regardless of the value of σ2 or

of z. The argument for the MLE of µt proceeds the same way, and we end up

with θ̂(y, z) = (ȳ, z̄, σ̂2(y, z)), where we have not bothered to compute the

MLE for σ2. Then applying the result from Q2b we derive ψ̂(y, z) = z̄− ȳ.

4. The growth rate is not constant with age, and so it makes sense to incor-

porate the age of each child in the model for the change in height. How

might you modify the above statistical model to allow for this? [5 marks]

Answer. Let x1, . . . , xm, xm+1, . . . xm+n be the ages of the children at the

start of the experiment. One simple model would be to include a common
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age effect using

f(y, z;µc, µt, α, σ
2) =

m∏
i=1

φ(yi;µc+α(xi−x̄), σ2)·
n∏
j=1

φ(zj ;µt+α(xm+j−x̄), σ2)

where x̄ is the arithmetic mean of all of the ages. In this model, µt − µc is

still the treatment effect, in the sense that if you contrasted the treatment

with the control for one child of age x, the difference in the expectations

would be {µt + α(x− x̄)} − {µc + α(x− x̄)} = µt − µc. However, the MLE

of µt − µc would be different to before, because the model is different.

5. Ideally, the estimated treatment effect could be used to decide whether

or not to make milk available in the school. Briefly consider the diffi-

culties in generalising from the experiment to the school.

This question does not have a simple answer. Its purpose is to illus-

trate that even in this rather simple situation, generalising from an

experiment on a sample to an inference about a population is hard.
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