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1. Define what it means for a decision rule to be admissible, and illustrate with

a diagram containing both admissible and inadmissible decision rules. State

Wald’s Complete Class Theorem. Explain why an inadmissible decision rule

is not necessarily dominated by a Bayes rule. (Hint: a diagram similar to

that used in the proof of Complete Class Theorem might help.) [15 marks]

Answer. As usual, let the model be Y ∼ {f,Ω}. Define the risk function for

decision rule δ as

R(δ, θ) := E{L(δ(Y ), θ); θ}.

A rule is admissible exactly when it is not dominated by any other rule. That is,

δ is admissible exactly when there is no other rule δ′ satisfying

R(δ′, θ) ≤ R(δ, θ) for all θ ∈ Ω

with a strict inequality for at least one θ. See the diagram at the end. The

righthand panel shows an example of an inadmissible rule which is not dominated

by a Bayes rule. But I appreciate that the wording of my question was not very

clear: “not dominated by every Bayes rule” is what I meant.

2. Give a simple direct proof that all Bayes Rules with strictly positive prior

probabilities are admissible (hint: use proof by contradiction). [10 marks]

Answer. Suppose that δ is a Bayes Rule which is inadmissible. In this case there
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is another rule δ′ which dominates it. Hence, computing the expected loss

E{L(δ(Y ), θ)} = E{E[L(δ(Y ), θ) | θ]} Law of iterated expectation

= E{R(δ, θ)} definition of Risk function

> E{R(δ′, θ)} Monotonicity, see below

= E{L(δ′(Y ), θ)} reversing previous steps

which is a contradiction, because it shows that δ could not have been a Bayes

Rule. The inequality follows from the Monotonicity property of expectations: if

X ≥ Y , then E(X) ≥ E(Y ). In this case, because the prior probabilities are

strictly positive, the inequality must be strict, because then there will be positive

probability on a θj for which R(δ, thetaj) > R(δ′, θj).

3. In the case of point estimation, describe the behaviour of the Bayes Rule for

the loss function

L(θ̃, θ) = 1− 1|θ̃−θ|≤ε

in the limit as ε ↓ 0. For convenience, consider the case where Ω = R; you

might find a diagram helpful. [10 marks]

Answer. According to the Bayes Rule Theorem, the Bayes Rule for fixed ε > 0

is

θ∗(y) = argmin
θ̃∈Ω

E{1− 1|θ̃−θ|≤ε | Y = y}

= argmin
θ̃∈Ω

(
1− Pr{|θ̃ − θ| ≤ ε | Y = y}

)
= argmax

θ̃∈Ω

Pr{θ̃ − ε ≤ θ < θ̃ + ε | Y = y}

which is the posterior probability content of a strip of width ε centred around θ̃.

This probability is maximised when p(θ̃ − ε | y) = p(θ̃ + ε | y), because otherwise

it would be better to move θ̃ slightly to the left or the right. As ε ↓ 0, this strip

gets narrower. See the diagram at the end.

4. In the case of hypothesis testing, show that if the loss function is zero-one
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then the Bayes Rule is to select the hypothesis with the largest posterior

probability. [5 marks]

Answer. The zero-one loss function is

L(H, θ) = 1− 1θ∈H .

According to the Bayes Rule Theorem, the Bayes Rule is

δ∗(y) = argmin
H∈H

E{1− 1θ∈H | Y = y}

= argmin
H∈H

(
1− Pr{θ ∈ H | Y = y}

)
= argmax

H∈H
Pr{θ ∈ H | Y = y},

as claimed in the question.

5. An analyst at a hospital has ‘failed to reject’ the hypothesis that mortality

rates from emergency surgery are the same on weekdays and weekend-days.

He claims that this proves that there is no excess mortality at the weekend.

What do you make of his claim? [15 marks]

Answer. Not much, to be honest. What he has actually found is that C(y)

intercepts H0 : µW = µD, where the parameter space contains (µW , µD), the

mortality rates for weekdays and weekend-days, and maybe other parameters as

well. Consider six different ways this could occur (see diagram at the end)—would

you draw the same conclusion as the analyst from all of these? Wouldn’t it have

been so much more informative if he had drawn the picture?!

We would also need more details about the nature of the set estimator C. For

example, what is its level, and how is it constructed?
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