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In these questions, we have Y ~ {f, Q} as usual. The questions without
marks are unlikely to turn up on an exam, but you should do them anyway,

for practice.

1. Let X be a random quantity with distribution function Fx. Prove that
if Fy is continuous then Y := Fx(X) has a Uniform distribution. Note
that this is a more general result than the easy proof in the case where
Fx is strictly increasing. See Casella & Berger (2002, Thm 2.1.10).

Answer. The difficulty is that Fi continuous does not imply that Fy' (Fx () = =,
because F'x may have flat segments indicating intervals for X for which
Pr(a <X <b)=0.

2. This standard result is used in the Marginalisation theorem for confi-
dence procedures. Let ¢(y) and r(y) be first-order sentences (i.e. state-

ments about y which are either true or false). Prove that if

v(y)(a(y) = r(y)),
then Pr{q(Y);0} < Pr{r(Y);0} for all § € Q.

Answer. There are lots of ways to answer this question. Here is mine. We

have, by definition,
Pr{Q(Y); 0} = E{]lq(Y)§ 9} = Zy ]lq(y) : f(y; 6)7
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where 1 is the indicator function, as usual. Hence

Pr{r(Y);0} — Pr{q(Y); 0} = Zy (L) — Tgqy) - fy30).

If q(y) — T(y) then ]lq(y) < ]lr(y)a and ]l,,(y) — ]lq(y) > (. If this holds for all
y € Y then

PI‘{T‘(Y); 0} - Pr{Q(Y); ‘9} = Zy (]lr(y) - ]lq(y)) ’ f(ya 9) as above
> ZyO-f(y;9) = 0.
As 0 is arbitrary, this shows that Pr{q(Y);0} < Pr{r(Y);0} for all 0, as
required.
. Consider functions C': Y x [0,1] x [0, 1] — 2% of the form

Cly,u,0) ={0; €Q:a-u+b>a}.

Suppose that U ~ U[0, 1], independently of Y for all 6 € Q. State the
model for (Y, U). Under what conditions on a and b is C' a family of
level (1 — «) confidence procedures for 7 Interpret this result as a

reflection on the usefulness of confidence procedures. [15 marks|

Answer. The model for (Y,U) is {f*,Q} where
[ (y,u;0) = Pr(U = u) - Pr(Y = y;0) = To<u<1 - f(y;0),

by the independence of U and Y, and that U is Uniform. The Families
of Confidence Procedures theorem states that C is a family of confidence
procedures if (and only if) a-U+b is super-uniform for all §. Let G := a-U+b.
Then we require Fg(v) < v for all v € [0, 1], where Fg is the distribution



function of G. Now

Fg(v) =Pr(G <w)
=Pr(a-U+b<v)
=Pr(U < (v—>)/a) taking a > 0
= (v—1")/a.

So a and b must satisfy (v —b)/a < v for all v € [0,1]. Taking v = 0 implies
that b > 0. Taking v = 1 implies that b > 1 —a. So a > 1 and b > 0 suffice.

If we take a < 1 and b < 0, then C is a family of exact confidence proce-
dures for 8. We also have, for any (a,b) satisfying the condition above, an
uncountably infinite number of other families of confidence procedures for
f. That is a lot of confidence procedures. They are all completely useless,
since they make no reference to y at all. So this example warns us that there
is an uncountably infinite number of confidence procedures, for any level we
care to select, which are useless. Therefore we have to make a special effort

to select confidence procedures which are useful.

. Using Wilks’s Theorem, construct a family of approximately exact
confidence procedures which does not satisfy the Level Set Property.
Sketch a level 95% confidence set from this family in the case where
QCR. [10 marks]

Answer. Let w(y,0;) be the Wilks’s Theorem test statistic,

f (y;ﬂj)

w(y,0;) = —2lo
(%) ? gf(y;G(y))

9

where 0 is the Maximum Likelihood Estimator. Wilks’s Theorem asserts

that, under certain regularity conditions, w(Y, 6; has an approximately

o=,
-
X?l distribution for all 6; € €2, where d := dim 2. According to the Proba-

bility Integral Transform,
U= Fy(w(Y,0)))
has an approximately Uniform distribution for all 6; € €2, where in is the
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distribution function of the X<2i distribution.

In the lecture we used that if U is uniform, then 1 — U is also uniform. But
what if we had continued with U instead of 1 — U? From the Family of
Confidence Procedures theorem, the acceptance region of the level (1 — «)

confidence procedure would have been

Fe (w(y,0;)) > a
= ulyb;) > F3 (o)
f(y;9j) -1
—2log ———— > F , («
= gf(y;9(y)) 7 Fa @

= log f(y;0) <log f(y;0(y)) — F ' (a)/2

which is the opposite of the Level Set Property. Here is my sketch. This
is a legitimate but alarming confidence set, and definitely not a confidence

interval.
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5. Prove that confidence sets which satisfy the Level Set Property are

‘transformation invariant’. Start by exploring what this might mean



(hint: think about expressing the same model with a different param-

eter ¢, where g : 0 — ¢ is bijective). [15 marks]

Answer. Suppose we had expressed our model in terms of ¢ instead of 8,
so that

Y~ folyi0)  ¢€@,

where fs(y; ) = f(y;971(¢)) and @ = gQ. For C to be transformation
invariant, we would want Cy(y) = gC(y) for all y. That is, we would get the
same set in {2 whether we specified our model with @ itself, or with ¢ and
then transformed. We have already shown that the MLE is transformation

invariant.

Assume that our confidence procedures both have the Level Set Property,

l.e.

Cly) ={0 €| f(y;0) > c}
Coly) = {d € P | foly; 6) = c}

where, for reasons that will become apparent, I have used the same threshold
¢ in both cases. We have to show that § € C(y) <= ¢ € Cy(y). So:

0eCly) < fly;0)>c
<~ f(y;9 '9(0))
= fly;97'(9)
— foly;0) = c
— ¢ € Cy(y),

>c
>c as ¢ = g(0)

as needed to be shown.



