

# HW5, Theory of Inference 2015/6

Jonathan Rougier  
School of Mathematics  
University of Bristol UK

In these questions, we have  $Y \sim \{f, \Omega\}$  as usual. The questions without marks are unlikely to turn up on an exam, but you should do them anyway, for practice.

1. Let  $X$  be a random quantity with distribution function  $F_X$ . Prove that if  $F_X$  is continuous then  $Y := F_X(X)$  has a Uniform distribution. Note that this is a more general result than the easy proof in the case where  $F_X$  is strictly increasing. See Casella & Berger (2002, Thm 2.1.10).

**Answer.** The difficulty is that  $F_X$  continuous does not imply that  $F_X^{-1}(F_X(x)) = x$ , because  $F_X$  may have flat segments indicating intervals for  $X$  for which  $\Pr(a < X \leq b) = 0$ .

2. This standard result is used in the Marginalisation theorem for confidence procedures. Let  $q(y)$  and  $r(y)$  be first-order sentences (i.e. statements about  $y$  which are either **true** or **false**). Prove that if

$$\forall(y)(q(y) \rightarrow r(y)),$$

then  $\Pr\{q(Y); \theta\} \leq \Pr\{r(Y); \theta\}$  for all  $\theta \in \Omega$ .

**Answer.** There are lots of ways to answer this question. Here is mine. We have, by definition,

$$\Pr\{q(Y); \theta\} = \mathbb{E}\{\mathbb{1}_{q(Y)}; \theta\} = \sum_y \mathbb{1}_{q(y)} \cdot f(y; \theta),$$

where  $\mathbb{1}$  is the indicator function, as usual. Hence

$$\Pr\{r(Y); \theta\} - \Pr\{q(Y); \theta\} = \sum_y (\mathbb{1}_{r(y)} - \mathbb{1}_{q(y)}) \cdot f(y; \theta).$$

If  $q(y) \rightarrow r(y)$  then  $\mathbb{1}_{q(y)} \leq \mathbb{1}_{r(y)}$ , and  $\mathbb{1}_{r(y)} - \mathbb{1}_{q(y)} \geq 0$ . If this holds for all  $y \in \mathcal{Y}$  then

$$\begin{aligned} \Pr\{r(Y); \theta\} - \Pr\{q(Y); \theta\} &= \sum_y (\mathbb{1}_{r(y)} - \mathbb{1}_{q(y)}) \cdot f(y; \theta) \quad \text{as above} \\ &\geq \sum_y 0 \cdot f(y; \theta) = 0. \end{aligned}$$

As  $\theta$  is arbitrary, this shows that  $\Pr\{q(Y); \theta\} \leq \Pr\{r(Y); \theta\}$  for all  $\theta$ , as required.

3. Consider functions  $C : \mathcal{Y} \times [0, 1] \times [0, 1] \rightarrow 2^\Omega$  of the form

$$C(y, u, \alpha) = \{\theta_j \in \Omega : a \cdot u + b > \alpha\}.$$

Suppose that  $U \sim \text{U}[0, 1]$ , independently of  $Y$  for all  $\theta \in \Omega$ . State the model for  $(Y, U)$ . Under what conditions on  $a$  and  $b$  is  $C$  a family of level  $(1 - \alpha)$  confidence procedures for  $\theta$ ? Interpret this result as a reflection on the usefulness of confidence procedures. [15 marks]

**Answer.** The model for  $(Y, U)$  is  $\{f^*, \Omega\}$  where

$$f^*(y, u; \theta) = \Pr(U = u) \cdot \Pr(Y = y; \theta) = \mathbb{1}_{0 \leq u \leq 1} \cdot f(y; \theta),$$

by the independence of  $U$  and  $Y$ , and that  $U$  is Uniform. The Families of Confidence Procedures theorem states that  $C$  is a family of confidence procedures if (and only if)  $a \cdot U + b$  is super-uniform for all  $\theta$ . Let  $G := a \cdot U + b$ . Then we require  $F_G(v) \leq v$  for all  $v \in [0, 1]$ , where  $F_G$  is the distribution

function of  $G$ . Now

$$\begin{aligned}
F_G(v) &= \Pr(G \leq v) \\
&= \Pr(a \cdot U + b \leq v) \\
&= \Pr(U \leq (v - b)/a) \quad \text{taking } a > 0 \\
&= (v - b)/a.
\end{aligned}$$

So  $a$  and  $b$  must satisfy  $(v - b)/a \leq v$  for all  $v \in [0, 1]$ . Taking  $v = 0$  implies that  $b \geq 0$ . Taking  $v = 1$  implies that  $b \geq 1 - a$ . So  $a \geq 1$  and  $b \geq 0$  suffice.

If we take  $a \leftarrow 1$  and  $b \leftarrow 0$ , then  $C$  is a family of exact confidence procedures for  $\theta$ . We also have, for any  $(a, b)$  satisfying the condition above, an uncountably infinite number of other families of confidence procedures for  $\theta$ . That is a lot of confidence procedures. They are all completely useless, since they make no reference to  $y$  at all. So this example warns us that there is an uncountably infinite number of confidence procedures, for any level we care to select, which are useless. Therefore we have to make a special effort to select confidence procedures which are useful.

4. Using Wilks's Theorem, construct a family of approximately exact confidence procedures which does not satisfy the Level Set Property. Sketch a level 95% confidence set from this family in the case where  $\Omega \subset \mathbb{R}$ . [10 marks]

**Answer.** Let  $w(y, \theta_j)$  be the Wilks's Theorem test statistic,

$$w(y, \theta_j) := -2 \log \frac{f(y; \theta_j)}{f(y; \hat{\theta}(y))},$$

where  $\hat{\theta}$  is the Maximum Likelihood Estimator. Wilks's Theorem asserts that, under certain regularity conditions,  $w(Y, \theta_j)|_{\theta=\theta_j}$  has an approximately  $\chi_d^2$  distribution for all  $\theta_j \in \Omega$ , where  $d := \dim \Omega$ . According to the Probability Integral Transform,

$$U := F_{\chi_d^2}(w(Y, \theta_j))$$

has an approximately Uniform distribution for all  $\theta_j \in \Omega$ , where  $F_{\chi_d^2}$  is the

distribution function of the  $\chi_d^2$  distribution.

In the lecture we used that if  $U$  is uniform, then  $1 - U$  is also uniform. But what if we had continued with  $U$  instead of  $1 - U$ ? From the Family of Confidence Procedures theorem, the acceptance region of the level  $(1 - \alpha)$  confidence procedure would have been

$$\begin{aligned}
 F_{\chi_d^2}(w(y, \theta_j)) &> \alpha \\
 \iff w(y, \theta_j) &> F_{\chi_d^2}^{-1}(\alpha) \\
 \iff -2 \log \frac{f(y; \theta_j)}{f(y; \hat{\theta}(y))} &> F_{\chi_d^2}^{-1}(\alpha) \\
 \iff \log f(y; \theta) &< \log f(y; \hat{\theta}(y)) - F_{\chi_d^2}^{-1}(\alpha)/2
 \end{aligned}$$

which is the opposite of the Level Set Property. Here is my sketch. This is a legitimate but alarming confidence set, and definitely not a confidence interval.



5. Prove that confidence sets which satisfy the Level Set Property are ‘transformation invariant’. Start by exploring what this might mean

(hint: think about expressing the same model with a different parameter  $\phi$ , where  $g : \theta \mapsto \phi$  is bijective). [15 marks]

**Answer.** Suppose we had expressed our model in terms of  $\phi$  instead of  $\theta$ , so that

$$Y \sim f_\phi(y; \phi) \quad \phi \in \Phi,$$

where  $f_\phi(y; \phi) = f(y; g^{-1}(\phi))$  and  $\Phi = g\Omega$ . For  $C$  to be transformation invariant, we would want  $C_\phi(y) = gC(y)$  for all  $y$ . That is, we would get the same set in  $\Omega$  whether we specified our model with  $\theta$  itself, or with  $\phi$  and then transformed. We have already shown that the MLE is transformation invariant.

Assume that our confidence procedures both have the Level Set Property, i.e.

$$\begin{aligned} C(y) &= \{\theta \in \Omega \mid f(y; \theta) \geq c\} \\ C_\phi(y) &= \{\phi \in \Phi \mid f_\phi(y; \phi) \geq c\} \end{aligned}$$

where, for reasons that will become apparent, I have used the same threshold  $c$  in both cases. We have to show that  $\theta \in C(y) \iff \phi \in C_\phi(y)$ . So:

$$\begin{aligned} \theta \in C(y) &\iff f(y; \theta) \geq c \\ &\iff f(y; g^{-1}g(\theta)) \geq c \\ &\iff f(y; g^{-1}(\phi)) \geq c \quad \text{as } \phi = g(\theta) \\ &\iff f_\phi(y; \phi) \geq c \\ &\iff \phi \in C_\phi(y), \end{aligned}$$

as needed to be shown.