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In these questions, we have Y ∼ {f,Ω} as usual. The questions without

marks are unlikely to turn up on an exam, but you should do them anyway,

for practice.

1. Let X be a random quantity with distribution function FX . Prove that

if FX is continuous then Y := FX(X) has a Uniform distribution. Note

that this is a more general result than the easy proof in the case where

FX is strictly increasing. See Casella & Berger (2002, Thm 2.1.10).

Answer. The difficulty is that FX continuous does not imply that F−1
X (FX(x)) = x,

because FX may have flat segments indicating intervals for X for which

Pr(a < X ≤ b) = 0.

2. This standard result is used in the Marginalisation theorem for confi-

dence procedures. Let q(y) and r(y) be first-order sentences (i.e. state-

ments about y which are either true or false). Prove that if

∀(y)(q(y)→ r(y)),

then Pr{q(Y ); θ} ≤ Pr{r(Y ); θ} for all θ ∈ Ω.

Answer. There are lots of ways to answer this question. Here is mine. We

have, by definition,

Pr{q(Y ); θ} = E{1q(Y ); θ} =
∑

y
1q(y) · f(y; θ),
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where 1 is the indicator function, as usual. Hence

Pr{r(Y ); θ} − Pr{q(Y ); θ} =
∑

y
(1r(y) − 1q(y)) · f(y; θ).

If q(y)→ r(y) then 1q(y) ≤ 1r(y), and 1r(y) − 1q(y) ≥ 0. If this holds for all

y ∈ Y then

Pr{r(Y ); θ} − Pr{q(Y ); θ} =
∑

y
(1r(y) − 1q(y)) · f(y; θ) as above

≥
∑

y
0 · f(y; θ) = 0.

As θ is arbitrary, this shows that Pr{q(Y ); θ} ≤ Pr{r(Y ); θ} for all θ, as

required.

3. Consider functions C : Y× [0, 1]× [0, 1]→ 2Ω of the form

C(y, u, α) =
{
θj ∈ Ω : a · u+ b > α

}
.

Suppose that U ∼ U[0, 1], independently of Y for all θ ∈ Ω. State the

model for (Y, U). Under what conditions on a and b is C a family of

level (1 − α) confidence procedures for θ? Interpret this result as a

reflection on the usefulness of confidence procedures. [15 marks]

Answer. The model for (Y,U) is {f∗,Ω} where

f∗(y, u; θ) = Pr(U = u) · Pr(Y = y; θ) = 10≤u≤1 · f(y; θ),

by the independence of U and Y , and that U is Uniform. The Families

of Confidence Procedures theorem states that C is a family of confidence

procedures if (and only if) a·U+b is super-uniform for all θ. Let G := a·U+b.

Then we require FG(v) ≤ v for all v ∈ [0, 1], where FG is the distribution
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function of G. Now

FG(v) = Pr(G ≤ v)

= Pr(a · U + b ≤ v)

= Pr(U ≤ (v − b)/a) taking a > 0

= (v − b)/a.

So a and b must satisfy (v− b)/a ≤ v for all v ∈ [0, 1]. Taking v = 0 implies

that b ≥ 0. Taking v = 1 implies that b ≥ 1− a. So a ≥ 1 and b ≥ 0 suffice.

If we take a ← 1 and b ← 0, then C is a family of exact confidence proce-

dures for θ. We also have, for any (a, b) satisfying the condition above, an

uncountably infinite number of other families of confidence procedures for

θ. That is a lot of confidence procedures. They are all completely useless,

since they make no reference to y at all. So this example warns us that there

is an uncountably infinite number of confidence procedures, for any level we

care to select, which are useless. Therefore we have to make a special effort

to select confidence procedures which are useful.

4. Using Wilks’s Theorem, construct a family of approximately exact

confidence procedures which does not satisfy the Level Set Property.

Sketch a level 95% confidence set from this family in the case where

Ω ⊂ R. [10 marks]

Answer. Let w(y, θj) be the Wilks’s Theorem test statistic,

w(y, θj) := − 2 log
f(y; θj)

f(y; θ̂(y))
,

where θ̂ is the Maximum Likelihood Estimator. Wilks’s Theorem asserts

that, under certain regularity conditions, w(Y, θj)
∣∣
θ=θj

has an approximately

χ2
d distribution for all θj ∈ Ω, where d := dim Ω. According to the Proba-

bility Integral Transform,

U := Fχ2
d

(
w(Y, θj)

)
has an approximately Uniform distribution for all θj ∈ Ω, where Fχ2

d
is the
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distribution function of the χ2
d distribution.

In the lecture we used that if U is uniform, then 1−U is also uniform. But

what if we had continued with U instead of 1 − U? From the Family of

Confidence Procedures theorem, the acceptance region of the level (1 − α)

confidence procedure would have been

Fχ2
d

(
w(y, θj)

)
> α

⇐⇒ w(y, θj) > F−1
χ2
d

(α)

⇐⇒ −2 log
f(y; θj)

f(y; θ̂(y))
> F−1

χ2
d

(α)

⇐⇒ log f(y; θ) < log f(y; θ̂(y))− F−1
χ2
d

(α)/2

which is the opposite of the Level Set Property. Here is my sketch. This

is a legitimate but alarming confidence set, and definitely not a confidence

interval.

5. Prove that confidence sets which satisfy the Level Set Property are

‘transformation invariant’. Start by exploring what this might mean
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(hint: think about expressing the same model with a different param-

eter φ, where g : θ 7→ φ is bijective). [15 marks]

Answer. Suppose we had expressed our model in terms of φ instead of θ,

so that

Y ∼ fφ(y;φ) φ ∈ Φ,

where fφ(y;φ) = f(y; g−1(φ)) and Φ = gΩ. For C to be transformation

invariant, we would want Cφ(y) = gC(y) for all y. That is, we would get the

same set in Ω whether we specified our model with θ itself, or with φ and

then transformed. We have already shown that the MLE is transformation

invariant.

Assume that our confidence procedures both have the Level Set Property,

i.e.

C(y) =
{
θ ∈ Ω

∣∣ f(y; θ) ≥ c
}

Cφ(y) =
{
φ ∈ Φ

∣∣ fφ(y;φ) ≥ c
}

where, for reasons that will become apparent, I have used the same threshold

c in both cases. We have to show that θ ∈ C(y) ⇐⇒ φ ∈ Cφ(y). So:

θ ∈ C(y) ⇐⇒ f(y; θ) ≥ c

⇐⇒ f(y; g−1g(θ)) ≥ c

⇐⇒ f(y; g−1(φ)) ≥ c as φ = g(θ)

⇐⇒ fφ(y;φ) ≥ c

⇐⇒ φ ∈ Cφ(y),

as needed to be shown.
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