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With these questions, you can get a feeling for how much detail is required

by the tariff; the last question, for example, requires quite a lot of detail for 15

marks. Remember this very general advice about answering exam questions

in maths: (i) make sure you have defined all of the terms in the question, and

(ii) if you are asked to prove something, make sure you state exactly what it

is you need to show.

1. Suppose that Y ∼ Binomial(p, n) where p ∈ [0, 1] and n is spec-

ified. Give an example of a composite hypothesis with zero mea-

sure. [5 marks]

Answer. A composite hypothesis contains more than one element of the

parameter space. In this case the parameter space [0, 1] has the cardinality

of the continuum, and thus any countable subset has measure zero. So H0 :

p ∈
{

0.1, 0.2
}

is an example of a composite hypothesis with zero measure.

2. Apparently, 71 people out of 103 experienced ‘enhanced gastric trans-

port’ after eating a serving of probiotic yogurt each day for two weeks.

Starting from the model Y ∼ Binomial(p, n = 103), with p ∈ [0, 1],

sketch a Wilks 95% confidence set for p. You should provide as much

information as you can without using a calculator. [10 marks]

Answer. This is a 1D problem. In this case, the Wilks 95% confidence
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procedure has, by Allan’s Rule of Thumb,

C(y; 0.05) =
{
p ∈ [0, 1]

∣∣ log f(y; p, n) > log f(y; p̂(y), n)− 2
}

where n is known and the ‘2’ comes from the more general formula F−1
χ2
1

(1− α)/2.

For the Binomial model,

log f(y; p, n) = c+ y log p+ (n− y) log(1− p)

where c is a constant that depends on (y, n) but not on p. It is easy to

see that p̂(y) = y/n. The second derivative of log f(y; p, n) with respect to

p is negative, so log f(71; p, n = 103) is concave for p ∈ (0, 1), peaking at

p̂(y) = 71/103 ≈ 0.7, and asymptoting at p = 0 and p = 1. So here is my

sketch:

3. Suppose you wanted to test the null hypothesis H0 : p = 0.8, and you

had found out that 0.8 was outside the Wilks 95% confident set. How

would you go about computing the P -value for H0; illustrate with a

sketch. [10 marks]

Answer. The P -value is the smallest value for α for which p = 0.8 is outside
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the level (1 − α) confidence set. Since the parameter space is continuous,

this is the value of α for which 0.8 is on the boundary of the level (1 − α)

confidence set.

If p = 0.8 is outside the 95% confidence set, then it must be above the upper

limit of the confidence set, because the confidence set contains p = 0.7 (the

ML estimate), and it is convex because the log-likelihood is concave. So I

need to increase the level of the confidence set until 0.8 is at its upper limit.

This involves finding the vertical distance from log f(71; 71/103, 103) to the

level set that just touches p = 0.8; call this distance d. Then solve

d = F−1
χ2
1

(1− α)

for α, which is the P -value. This value of α will be smaller than 0.05. Here

is my sketch:

4. Suppose instead that you were asked to compute the P -value of f0 =

Binomial(p = 0.8, n = 103) directly, using the test statistic t(y) = y.

Provide a sketch showing the value that you would compute. Again,

provide as much detail as you can without using a calculator. [10 marks]

Answer. As is well known, E(Y ; p, n) = np, and Var(Y ; p, n) = np(1 − p).
So under the null model f0, Y has expectation 103 × 0.8 ≈ 80, variance
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103×0.8×0.2 ≈ 1.6, and standard deviation ≈ 1.3. This allows us to sketch

the distribution of t(Y ) = Y under f0, and show the P -value as an area.

Here is my sketch:

5. Outline Fisher’s dichotomy for interpreting P -values, and explain the

main difficulty with this interpretation. [15 marks]

Answer. Suppose we have computed a small P -value such as p(yobs; t) =

0.015. We know, from the definition of a significance procedure, that

Pr{p(Y ; t) ≤ 0.015; f0} ≤ 0.015,

because p(Y ; t) is super-uniform under f0. Fisher’s dichotomy is, for a small

p-value:

EITHER f0 is ‘true’ and something improbable has occurred, OR

f0 is false.

If we accept this dichotomy at face value, then we might conclude, on the

basis that improbable events happen infrequently, that f0 is probably false.

This is technically illogical (we have not computed Pr{f0 = true |Y = yobs}),
yet it seems natural.
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The main difficulty is that we know, a priori, that f0 is false. We cannot

read the book of nature, so all hypotheses are products of our minds (or, as

a Martian would say, “our puny minds”), and formulated according to the

very simple toolbox of statistical models which we have developed. Nature

is much richer in her complexity than we can imagine, or express. So what

we must really acknowledge is the much less interesting dichotomy

f0 is false. EITHER our significance procedure is not powerful

enough to reveal this to us, OR it is.

Assuming a sensible choice for t, the power of a significance procedure is

determined mainly by the sample size, which we denote as n. When n

is small, we expect p(Y ; t) to be approximately uniform, which equates to

approximately meaningless. When n is large, we expect p(Y ; t) to be tiny,

because f0 is false.

People who use significance procedures to ‘reject’ the null model f0 must

belive that somewhere between n = 1 and n = large there is a ‘sweet spot’

in which a large P -value indicates that f0 is ‘good enough’, and a small P -

value indicates that f0 should be rejected. Unfortunately, it is very difficult

to determine either where the sweet-spot is, or what we mean by ‘good

enough’.

The prevailing view among professional statisticians is that the P -value is

an indicator of the power of the significance procedure to reject f0 (e.g, the

sample size), rather than the ‘truth’ of f0.
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