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{cha:PR}From Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2016.

It is very common to start with probabilities, and then define
expectations in terms of probabilities (see eq. 2.1 below). I have
done the opposite, because I think that expectations are a better
‘primitive’. I find that I can often have beliefs about a collection of
random quantities X that do not involve probabilities, but which
obey the axioms of Expectation.1 It is also the case that many of the 1 JCR: A later chapter, not yet written,

takes this notion much further.core topics in Statistics, such as Decision Theory (??), are naturally
expressed in terms of expectations rather than probabilities.

2.1 Definition
{sec:PR-def}

If we start with expectations, then we need to define probabilities
in terms of expectations. It turns out that there is no choice in how
to do this, if the resulting probabilities are to obey the Laws of
Probability. The nature of these Laws is explored in Sec. 2.4.

{def:lawP}

Definition 2.1 (Laws of Probability).

1. For any proposition P, Pr(P) ≥ 0;

2. If P if certain, then Pr(P) = 1;

3. If P and Q are mutually exclusive, then Pr(P ∨ Q) = Pr(P) +
Pr(Q).

Theorists have a slightly stronger requirement for (3.). As it
stands, (3.) can be extended to finite disjunctions of mutually-
exclusive propositions, by recursion, termed Finite Additivity. But
theorists require a stronger property, to account for non-finite
disjunctions, termed Countable Additivity; see Sec. 1.6. A few people
get worked up about the different between these two conditions,
and one, Bruno de Finetti, was famous for rejecting Countable
Additivity (see, e.g. de Finetti, 1972, 1974/75). Others have risen to
the challenge of working within the more general but less tractable
framework of Finite Additivity (e.g., Dubins and Savage, 1965, but
this is not an easy read). I doubt it matters at our level of generality,
but I personally have a preference for Finite Additivity, when
reasoning about the real world.
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Here is the definition of probability in terms of expectation,
which ensures that the Laws of Probability hold. Probability is
defined on the domain of random propositions. The definition
makes this clear.

{def:defP}

Definition 2.2 (Probability, ‘Pr’). Let X be a set of random quan-
tities. Let q(x) be any sentence from first-order logic2, termed a 2 That is, a statement about x that

evaluates to either FALSE or TRUE.proposition. Define Q := q(X), termed a random proposition. Then

Pr(Q) := E(1Q),

where 1 is the indicator function.3 3 That is, the function of the proposi-
tion p for which 1p = 0 if p is FALSE,
and 1p = 1 if p is TRUE.It is straightforward to check that complete coherence implies

that probabilities defined in this way satisfy the Laws of Probability.
(1.) follows by Lower-boundedness, because 1P ≥ 0. (2.) follows
by Normalisation, because 1P = 1 if P is certain. (3.) follows
by Additivity, because if P and Q are mutually exclusive, then
1P∨Q = 1P + 1Q. Complete coherence is required to ensure that
these pairwise properties hold for all possible propositions.

Here is the result which shows that this is the only way to define
probability in terms of expectation.

{thm:defP1}

Theorem 2.1. Suppose that Pr(Q) = E{g(Q)}, where

g : {FALSE, TRUE} → R,

for some choice of g. The only choice of g which is compatible with both
complete coherence and the Laws of Probability is g(Q) := 1Q.

Proof. For complete coherence, the FTP (Thm 1.1) asserts that there
is a p ∈ P such that

Pr(Q) = E{g(Q)} = ∑
ω∈Ω

g(q(x(ω))) · p(ω)

for every first-order sentence q(x). The Laws of Probability imply
that if q(x(ω)) = FALSE for all ω then Pr(Q) = 0, and if q(x(ω)) =

TRUE then Pr(Q) = 1. Since p(ω) ≥ 0 and ∑ ω p(ω) = 1, it follows
that g(FALSE) = 0 and g(TRUE) = 1, i.e. g(Q) = 1Q, as was to be
shown.

2.2 Probability Mass Functions
{sec:PR-PMF}

The definition of probability provides a straightforward interpreta-
tion of p ∈ P from the FTP (Thm 1.1).4 4 Notation. Where an equality or

an inequality is being used as a
binary predicate in a first order
sentence, I indicate this with a dot.
This disambiguates the use of these
binary predicates in infix notation.
So, for example, ‘x ≤ y’ in free text is
typically an assertion taken to be true,
while ‘x ≤̇ y’ is a first order sentence
which is either FALSE or TRUE.

{thm:pomega}

Theorem 2.2. If expectations are completely coherent, then

Pr(X =̇ x) =





p
�
ω−1(x)

�
x ∈ X

0 otherwise.



lecture notes on statistical inference 17

Proof. If x �∈ X, then 1X=̇x = 0, and Pr(X =̇ x) = 0 by Normalisa-
tion. In the case where x ∈ X,

Pr(X =̇ x) = ∑ ω
1x(ω)=̇x · p(ω) by the FTP

= ∑ ω
1ω=̇ω−1(x) · p(ω) because ω �→ x is bijective

= p
�
ω−1(x)

�
.

Thus, the properties of p ∈ P translate directly into probabilities
for X. These probabilities are crucial in modern statistical practice,
for reasons discussed at the end of Sec. 2.4. Therefore the following
notation is very handy:

pX(x) := Pr(X =̇ x) x ∈ Rm.

This is termed the Probability Mass Function (PMF) of X. Often the
subscript X is suppressed, when it is obvious from the argument
what the underlying random quantities must be. The above PMF
would usually be written ‘p(x)’.

The trick with the PMF is that it holds over the whole of Rm,
which makes many operations easy to represent, notably those
which simplify the realm of X. The effect on the FTP is dramatic:

E{g(X)} = ∑
ω∈Ω

g(x(ω)) · p(ω)

= ∑
x∈X

g(x) · p
�
ω−1(x)

�

= ∑
x∈X

g(x) · pX(x)

= ∑
x1∈X1

· · · ∑
xm∈Xm

g(x) · pX(x). (2.1)

pX calmly assigns zero probability to those elements of the product
of the realms which are not in the joint realm. Expressed in terms
of PMFs, the necessary and sufficient condition for complete coher-
ence are pX(x) ≥ 0 and ∑x∈A pX(x) = 1 whenever A is a countable
superset of X.

Textbooks which treat probability as primitive must define
expectation in terms of probabilities. So in these textbooks (1.4) is a
definition, not a theorem. Likewise, for this next result.

{thm:MAR}

Theorem 2.3 (Marginalisation Theorem, MAR). Let X := (Y , Z)
where Y and Z are themselves finite collections of random quantities. If
expectations are completely coherent, then

pY (y) = ∑
z∈Z

pX(y, z), (2.2)

where Z is the joint realm of Z, or any countable superset of it.

Proof. We apply the definition of a probability, but use PMFs in the



18 jonathan rougier

FTP:

pY (y) = Pr(Y =̇ y)

= ∑ y� ∑ z 1y�=̇y · pX(y
�, z) from (1.4)

= ∑ z ∑ y� 1y�=̇y pX(y
�, z)

= ∑ z pX(y, z).

Functional equalities. Eq. (2.2) is an example of a functional equality.
My convention is that functional equalities represents sets of equali-
ties, one for each element in the product of the domains of the free
arguments. In other words, in (2.2), for which the free argument is
y, I regard it as superfluous to write ‘for all y ∈ Rm’. Where the
domain of a free argument needs to be constrained in order for
the equality to hold, I provide the constraint after a colon; the first
example of this is (2.3) immediately below.

2.3 Inequalities
{sec:PR-ineq}

A very famous and useful inequality links probabilities and expect-
ations, Markov’s inequality:

Pr(|X| ≥̇ a) ≤ E(|X|)
a

: a > 0. (2.3)

This follows immediately from a · 1|X|≥̇a ≤ |X|, Monotonicity, and
Linearity.

Markov’s inequality is versatile, because it can be applied to any
non-negative function of X. One application is

Pr(|X − µ| ≥̇ a) = Pr(|X − µ|k ≥̇ ak) ≤ E(|X − µ|k)
ak : a, k > 0,

where µ := E(X). As this holds for all k > 0 and also, trivially, for
where k = 0,

Pr(|X − µ| ≥̇ a) ≤ min
k≥0

E(|X − µ|k)
ak : a > 0, (2.4)

the centred moment bound. This bound shows how the absolute
centered moments of X control the behaviour of the tails of the
PMF of X. The special case of k ← 2 is termed Chebyshev’s inequality,
for which the righthand side of (2.4) is σ2/a2, where σ2 := Var(X).
Another application of Markov’s inequality along the same lines
gives Cantelli’s inequality

Pr(X − µ ≥ a) ≤ σ2

σ2 + a2 : a ≥ 0. (2.5)

It is good practice to prove this for oneself!
Another way to apply Markov’s inequality for all X is first to

transform X using a non-negative increasing function. For example,

Pr(X ≥ a) = Pr(ekX ≥ eka) ≤ E(ekX)

eka = e−ka MX(k) : k > 0
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where MX is the MGF, eq. (1.7), of X. As this holds for all k > 0 and
also, trivially, for k = 0,

Pr(X ≥ a) ≤ min
t≥0

e−ta MX(t) (2.6)

known as Chernoff’s inequality.

2.4 Foundational issues
{sec:PR-dutch}

This section tackles the profound question: Why these Laws of Proba-
bility and not some others? The answer to this question must involve
some desire on our part to adopt exactly these Laws and no others;
that is, a common agreement that probabilities which obey these
Laws are sensible, and probabilities which do not obey them are
not-sensible. This requires us to provide a practical definition of
probability which can be used to distinguish between sensible sets
of probabilities and not-sensible ones. And then show that, accord-
ing to this definition, the sensible sets of probabilities are exactly
the ones which obey the Laws of Probability.

Another more pragmatic reason for having another look at prob-
abilities is that it is a mouthful to tell someone that a probability
for a proposition P is the expectation of the indicator function P, as
stated in Def. 2.2 and justified in Thm 2.1. As will now be shown,
probabilities can be much more intuitively described in terms of
bets (or, more formally, betting contracts).

This strand of reasoning about probabilities goes back to Ramsey
(1931)5 and Savage (1954). The basic idea that p := Pr(Q) is an 5 JCR: sort out this reference.

expression of my indifference between having £p with certainty,
and owning a bet which pays £0 if Q is FALSE, and £1 if Q is TRUE.
Call this the betting interpretation of probability.

Under the betting interpretation, I would pay £p to buy one unit
of bet on Q, or I would accept £p to sell one unit of bet. In general
I would exchange w · £p for an outcome of w · £1Q, where w is
the number of units, with w > 0 indicating buying w units of bet
(paying w · £p to collect w · £1Q) and w < 0 indicating selling w
units of bet (receiving |w| · £p to pay out |w| · £1Q). All together, I
am prepared, notionally if not in practice, to enter into contracts of
the form

w · (1Q − p) for any w, negative or positive.

This is always accepting that |w| is not outlandishly large. There is
a generalisation, which goes back to Ramsey (1931), which swaps £
for a more general preference-based currency, which can be thought
of as tickets in a lottery.

At this point, just to be precise, I will call these probabilities
‘betting rates’. Once we have proved that they really ought to obey
the Laws of Probability, we can call them ‘probabilities’.

No one would disgree that the probability of an impossible
proposition is 0, and the probability of a certain proposition is 1.
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This is implied by the betting interpretation (under conditions to be
made clear below). What the betting interpretation does is provide
a way for us to attach probabilities to propositions that are neither
impossible nor certain. In some situations this is straightforward.
The situations of classical probability, for example, where we roll
dice or toss coins, or sample randomly from a population. In this
case, the betting interpretation should give the same answer as
classical probabilities. But the betting interpretation extends to arbi-
trary propositions. For example, proposition Q might be “sea level
in 2100 is at least 0.5 m higher than today”. One can bet on this
proposition, but not embed it in a classical situation: it represents a
one-off event which, come 2100, we will know to be either false or
true.

What would be a not-sensible situation according to the betting
interpretation? It would be one where, in a set of betting rates
p1, . . . , pk on propositions A1, . . . , Ak, it is possible to find a set
of amounts w := (w1, . . . , wk) such that I can never win. More
precisely, I cannot make money on any outcome, and I will lose
money on at least one outcome. In the vernacular, with these
betting rates I could be turned into a ‘money pump’. People would
bet with me for as large a |w| as I could stand, confident that they
cannot lose money, and on at least one outcome they will make
money. Sets of betting rates where this is possible are termed
incoherent, otherwise they are coherent. It seems fundamentally
irrational to have incoherent betting rates; indeed, if it were pointed
out to me that my betting rates were incoherent, I would definitely
want to change them. So not-sensible = incoherent, and sensible =

coherent.

Definition 2.3 (Coherent betting rates). Let A1, . . . , Ak be a set
of propositions, with betting rates p := (p1, . . . , pk). These p are
coherent exactly when there is no set of amounts (w1, . . . , wk)

for which the agent holding these p cannot make money on any
outcome, and will lose money on at least one outcome.

Now for the exciting result. A set of betting rates is coherent if
and only if the betting rates obey the Laws of Probability given in
Def. 2.1. This result knits together the betting interpretation and
the Laws of Probability; it is sometimes termed the Dutch Book
argument, which is the name I will use below. There is a proof
of this result using expectations, which I do not like; see Howson
(1997) and Kadane (2011, sec. 1.7). I will provide a better proof
based on a standard mathematical result, which is given in Sec. 2.8;
that section also contains other material relevant to the following
proof.

{thm:DBT}

Theorem 2.4 (Dutch Book Theorem). Betting rates are coherent if and
only if they obey the Laws of Probability (Def. 2.1).

Proof. Consider any two propositions which are mutually exclu-
sive, and label them P and Q. Let p := Pr(P), q := Pr(Q), and
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r := Pr(P ∨ Q). Construct the outcome matrix of a set of one-unit
bets, where each row is one possible outcome. There are three out-
comes in total: P is true and Q is false, P is false and Q is true, or
P is false and Q is false. Each column is the pay-off for one unit on
one of the three bets, on P, on Q, and on P ∨ Q. Thus

M :=




P Q P ∨ Q

P ∧ ¬Q 1 − p −q 1 − r
¬P ∧ Q −p 1 − q 1 − r
¬P ∧ ¬Q −p −q −r


.

The outcomes for a set of amounts w := (w1, w2, w3) is Mw.
Consider Stiemke’s Theorem (Thm 2.11), with A ← −M and

x ← w. The first alternative now reads Mw < 0. This is the
definition of incoherence. Therefore coherence is equivalent to
the second alternative, which now reads “there exists a y � 0
for which yT M = 0T”, or, more conveniently, “for which MTy =

0.” Now MTy = 0 always has at least one solution, so the set of
solutions is non-empty; denote it S. We have to show

1. If y ∈ S and y � 0, then LP; and

2. If LP, then y ∈ S and y � 0,

where ‘LP’ denotes the Laws of Probability.6 In this set-up, LP 6 I.e. show in the first case that coher-
ence implies LP, and in the second case
that LP implies coherence.

represents 0 < p, 0 < q, p + q = r, and if P is certain then p = 1 (and
q = 0, r = 1). Both p and q are strictly positive if P and Q are not
impossible (see below).

Let s := y1 + y2 + y3. Multiply out MTy = 0 to derive the three
equations

y1 − p · s = 0

y2 − q · s = 0

y1 + y2 − r · s = 0,

which must be satisfied by all y ∈ S. To prove (1.), y � 0 implies
that s > 0. We infer immediately that p > 0, q > 0, and p + q = r.
Now suppose that ¬P is impossible, so that the second and third
rows of M disappear. Equivalently, enforce y2 = y3 = 0. It follows
immediately that p = 1 (and q = 0, r = 1), as required.

Proof of (2.), the converse, using the contrapositive. Suppose that
y ∈ S but y = 0, in which case p, q, r are arbitrary, since they satisfy
0 −� · 0 = 0, violating LP.

Now I can refer to betting rates as ‘probabilities’.
The proof of Thm 2.4 is quite clear about the equivalence of ‘Q

is impossible’ and Pr(Q) = 0. ‘Impossible’ means ‘logically impos-
sible’, not merely ‘almost inconceivable’. Impossible outcomes get
removed from M, but almost inconceivable ones do not, because
one can still lose money if an almost inconceivable outcome occurs.
Thus not-impossible outcomes have positive probabilities under
coherence, even though they may be tiny. It is a mistake to think
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that tiny probabilities can be set to zero. Interesting propositions
can be constructed as disjunctions of billions of mutually exclusive
atomic propositions (see below). If all tiny probabilities were set to
zero, then we could end up with the probability of the certain event
being less than 1, and that would be incoherent. Dennis Lindley
(1985) made this into a Principle.

Definition 2.4 (Cromwell’s Rule). Reserve Pr(Q) = 0 for cases
where Q is logically impossible.

* * *

There are a huge number of additional relations that are implied
by the Laws of Probability; this is the topic of Probability Theory. If
A1, . . . , Ak were a rich set of propositions, then it would be almost
impossible for me to specify coherent probabilities for all of the
propositions that could be constructed from A1, . . . Ak. This is why,
in practice, it is better to build probabilities by applying the Laws of
Probability, achieving probabilities for complicated propositions by
combining simpler ones.

The most primitive strategy for doing this is to break all of the
propositions down into a set of mutually exclusive and exhaustive
‘atoms’, so that every proposition can be expressed as a disjunction
of atoms. For a finite set of propositions, this takes the form of
expanding out the tautology7 7 Remember the distributive rule that

A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C).

TRUE = (A1 ∨ ¬A1) ∧ · · · ∧ (Ak ∨ ¬Ak) =
2k�

j=1

A(j)

where each atom A(j) has the form (Ã1 ∧ · · · ∧ Ãk), where Ãi is
either Ai or ¬Ai. Many of these atoms will be impossible and have
zero probabilities. For example, if Ai implies Aj, then all atoms
with Ai and ¬Aj in them will have zero probabilities. The rest must
have positive probabilities which sum to 1.

This comment is not as abstract as it seems. In Statistics, when
the propositions concern random quantities, the atoms are associ-
ated with the elements of the joint realm of X represented by the
set Ω. We have

TRUE =
�

ω∈Ω

�
X =̇ x(ω)

�
.

The probabilities on the atoms are represented by the function
p ∈ P, according to Thm 2.2. According to Thm 2.4, the two con-
ditions p(ω) ≥ 0 and ∑ω p(ω) = 1 are necessary and sufficient
for coherence. When theorists write “Let Ω be a set, let F be a
σ-algebra over Ω, and let p be a non-negative, finite, σ-additive
measure on F, normalised so that p(Ω) = 1” they are doing exactly
this, but using concepts that allow generalisation to non-countable
Ω, for which the notion of an atom is more tricky.
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2.5 Conditional probabilities
{sec:PR-CP}

The stunning result of the Dutch Book Theorem prompts us to go
further, and consider conditional probabilities. We need to find a
betting interpretation of the conditional betting rate for ‘P given Q’,
and then verify that betting rates are coherent if and only if

Pr(P, Q) = Pr(P | Q) · Pr(Q) (2.7)

which is accepted as the defining property of ‘Pr(P | Q)’.8 Note the 8 The origin of this property is ex-
plored in ??.convention in Probability and Statistics of writing a comma in place

of the conjunction ‘∧’, i.e.

(P, Q) := (P ∧ Q).

Some authors write that Pr(P | Q) is undefined when Pr(Q) = 0; this
is a mistake. In this case (2.7) has form 0 = Pr(P | Q) · 0, and hence
Pr(P | Q) is arbitrary, not undefined.

The interpretation that works is a ‘called-off bet’. Asserting
r = Pr(P | Q) is an expression of my indifference between having r
with certainty, and owning a bet which pays

1Q · 1P + (1 − 1Q) · r.

In this bet I get 1P if Q is true, and my money back if Q is false.
Thus the bet is ‘called off’ if Q is false. All together, I am prepared
to enter into contracts of the form

w · 1Q(1P − r) for any w, positive or negative.
{thm:CDBT}

Theorem 2.5 (Conditional Dutch Book Theorem). Let P and Q be any
two propositions. Then the conditional betting rate Pr(P | Q) is coherent if
and only if Pr(P, Q) = Pr(P | Q) · Pr(Q).

Proof. It’s the same proof as Thm 2.4. Let P and Q be arbitrary
propositions for which all four outcomes concerning P and Q are
possible. Let p := Pr(P, Q), q := Pr(Q), and r := Pr(P | Q). The
outcome matrix is

M :=




P ∧ Q Q P | Q

¬P,¬Q −p −q 0
P,¬Q −p −q 0

¬P, Q −p 1 − q −r
P, Q 1 − p 1 − q 1 − r


.

Letting S denote the solutions to MTy = 0, coherence is equivalent
to y ∈ S and y � 0. We have to show

1. If y ∈ S and y � 0, then p = r · q; and

2. If p = r · q, then y ∈ S and y � 0.

We must also check that we do not violate LP.
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Let s := y1 + y2 + y3 + y4. Multiply out MTy = 0 to give the three
equations

y4 − p · s = 0

y3 + y4 − q · s = 0

y4 − (y3 + y4) · r = 0,

which must be satisifed by all y ∈ S. To prove (1.), y � 0 implies
s > 0, and it is straightforward to check that 0 < p < q < 1 and
p = r · q. To prove (2.), use the same contrapositive as before.

There are obvious adjustments of this general result for special
cases. For example, if Q implies P then 0 < p = q < r = 1, and if Q
implies ¬P then 0 = p = r < q < 1.

2.6 Further thoughts on subjective probabilities
{sec:PR-further}

Here are some more general comments, which apply as much to
expectations as they do to probabilities.

First, how I or anyone else produces a value Pr(Q) is mysterious.
Through my life I have been exposed to information which may be
relevant to the truth of Q; some of this information I have remem-
bered more-or-less intact, other information has done no more than
leave a vague impression. I may go and seek out new information.
In the end, I reach for a probability that ‘seems right’ to me, and
I test out my probability on myself by asking whether I would be
willing to buy or sell a bet at price £p. The Laws of Probability say
no more than Pr(Q) > 0 if Q is not impossible, and Pr(Q) < 1 if Q
is not logically certain. If I have a second proposition R, and Q and
R happen to be mutually exclusive, then the Laws have something
further to say. If it turns out that my probabilities are incoherent,
the Laws do not tell me how to modify them. This is down to me.

On this basis, the impression that we often agree, approximately,
about probabilities deserves some thought. Likewise the related
impression that we are often willing to accept someone else’s prob-
abilities as our own. In fact this latter impression is not so hard to
understand. There are some domains, future weather for example,
where some people have hard-earned expertise. A meteorologist
knows a lot more about future weather than I do, and it would be
sensible of me to accept a meteorologist’s probabilities as my own,
once I have satisfied myself that her probabilities are coherent.9 I 9 This is the practical definition of an

expert: ‘someone whose probabilities
you accept as your own’.

am not accepting her probabilities because they are ‘right’, a con-
cept which makes no sense. I am accepting them, and sometimes
paying for them, because I believe that my decisions made on the
basis of her probabilities about future weather will work out better
than decisions made on the basis of my own probabilities.

But what to make of the impression that we often agree, approx-
imately, about probabilities? The simplest explanation is that we
humans tend to think alike, and, in many cases where we agree,
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it is because we have been exposed to similar models and similar
evidence.

Here is a cute result on this topic—I’m not claiming much more
for it than this! Suppose there is a sequence of experimental out-
comes, E1, E2, . . . , all of which are implied by a scientific model M.
Represent this as

Pr(EA | M) = 1 for all A,

where EA denotes the conjunction of any subset A of the experi-
mental outcomes.10 Then we have the following remarkable result, 10 I.e., EA := ∧i∈A Ei where A ⊂ N.

termed the First Induction Theorem by Good (1975), and originally
proved by Wrinch and Jeffreys (1921).

{thm:1IT}

Theorem 2.6 (First Induction Theorem). Let Pr(EA | M) = 1 for all A.
If Pr(M) > 0, then

lim
n→∞

Pr(En | E1, . . . , En−1) = 1.

Proof. Under the conditions of the theorem,

Pr(EA) = Pr(EA | M)Pr(M) + Pr(EA | ¬M)Pr(¬M)

≥ Pr(EA | M)Pr(M)

= Pr(M)

for al A. Now let A ← {1, . . . , n} and write the lefthand side as

pn := Pr(E1, . . . , En) = Pr(E1)
n

∏
i=2

Pr(Ei | E1, . . . , Ei−1).

p1, p2, . . . is a monotone non-increasing sequence bounded below
by Pr(M). Since Pr(M) > 0 it converges to a positive limit, in which
case Pr(En | E1, . . . , En−1) converges to 1.

The remarkable thing about this result is that the displayed equa-
tion in Thm 2.6 makes no reference to model M at all. It indicates
that anyone who believes that M implies the E’s and that M is not
logically impossible is bound, sooner or later, on the accumulation
of enough evidence, to act as though M is true, in terms of their
probabilities for other implications of M. Relaxing the conditions of
the result, to allow for ‘fuzziness’ in the definition of M and in the
nature of the evidence, we can still infer that probabilities will tend
to be similar, because we will be channeled by exposure to similar
evidence into probabilistically similar models for the world.

2.7 Uncountable realms
{sec:PR-uncountable}

The case of countable realms was discussed in Sec. 1.6. Here I
consider the case of uncountable realms. The crucial result, from
Analysis, is as follows.

{thm:count}

Theorem 2.7. Let Ω be a set, not necessarily finite or countable, and define
∑ω∈Ω a(ω) to be the supremum of ∑ω∈W a(ω) over all finite W ⊂ Ω. If
a(ω) ≥ 0 and ∑ω∈Ω a(ω) < ∞, then at most countably many of the a’s
are non-zero.
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Proof. This proof is sketched in Schechter (1997, sec. 10.40). The
definition of the sum over Ω generalises the case where Ω is fi-
nite or countable. Accepting the conditions of the theorem, let
∑ω∈Ω a(ω) = 1, without loss of generality. Then Ωm :=

�
ω
�� a(ω) > 1/m

�

must be finite, indeed |Ωm| < m. But {Ωm} is an non-decreasing
sequence and

∑
ω∈Ω

a(ω) = lim
m→∞ ∑

ω∈Ωm

a(ω)

from which the result follows.

The Laws of Probability (Def. 2.1) imply that p(ω) ≥ 0 and
∑ω∈Ω p(ω) = 1. Thm 2.7 therefore asserts that at most a countable
subset of Ω has non-zero p(ω). In accordance with the proof,
denote this subset as Ω∞. This subset is most clearly visualised in
terms of the distribution function of X := (X1, . . . , Xm), denoted

FX(x) := Pr(X ≤̇ x), x ∈ Rm. (2.8)

This has the obvious properties of FX(−∞ · 1) = 0, FX(∞ · 1) = 1,
and FX non-decreasing. According to Thm 2.7, additionally FX is
constant almost everywhere, except for right-continuous discontinu-
ities at each x ∈ Ω∞.

Perhaps it is not surprising that statisticians make very little
effort to construct FX correctly according to Thm 2.7, which would
involve specifying a Ω∞, and p(ω) for every ω ∈ Ω∞. Instead,
the ubiquitous practice when Ω is uncountable is to use a smooth
approximation,{eq:PDF0}

FX(x) ≈ F̃X(x) =
x�

−∞

pX(y)dy (2.9a)

for some specified pX which is piecewise continuous11 and satisfies 11 I.e., made up of a finite number of
continuous pieces.

pX(y) ≥ 0 and
∞�

−∞

pX(y)dy = 1, (2.9b)

where
�
�dy denotes the usual m-dimensional Riemann integral.

In this approximation pX is termed the probability density function
(PDF) of X. Unfortunately, the ubiquitous practice in Statistics is to
use the same symbol pX for both PMFs and PDFs, although they do
not even have the same units.

Any X whose distribution function can be represented by (2.9)
is termed continuous. Otherwise, X is discrete; any X for which Ω is
finite or countable is discrete.

In one sense (2.9) is a horrible approximation. It asserts that
Pr(X =̇ x) = 0 for every x ∈ Rm. And yet, were we to measure
X, the result would be a value X = xobs ∈ Rm, which would seem
to be an impossible outcome according to these probabilities. The
sophisticated answer is that what we actually measure is a value for
X in the tiny region near to xobs, for which (2.9) asserts

Pr(x <̇ X ≤̇ x + dx) = pX(x)dx. (2.10)
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This interpretation underpins the following useful principal for
doing mathematics with continuous random quantities:

Treat all random quantities as discrete, but write the PMF of contin-
uous random quantities as pX(x) dx. Marginalise over continuous
random quantities using a Riemann integral.

In this principal, the symbol dx is standing in for the precision of
the measurement, and therefore it represents a positive real number.
So it can be treated as such, for example when cancelling.

There are, of course, much more elegant treatments of continu-
ous random quantities within Measure Theory. They are internally
consistent, in a way that the above principal is not. What Mea-
sure Theory cannot do, though, is fix the basic problem that no
operationally-defined quantity in nature has a continuous distribu-
tion.

2.8 Convexity and Stiemke’s Theorem
{sec:PR-convex}

This is a self-contained derivation of the Supporting Hyperplane
Theorem and Stiemke’s Theorem; see Çınlar and Vanderbei (2013)
for a brief review of closed sets and convexity, and Rockafellar
(1970) for more details. All lower-case symbols are vectors, except
for d, and so I have not bothered to distinguish between vectors and
scalars using bold, as I did for the previous sections of this chapter;
I do, however, write 0 for scalar zero and 0 for vector zero.

Let Rn be n-dimensional Euclidean space, and let C ⊂ Rn. Recall
that C is open exactly when for every c ∈ C there is an r > 0 for
which Br(c) ⊂ C.12 A set is closed exactly when its complement 12 Br(c) is the (open) ball of radius r

centred at c, defined as

Br(c) :=
�

x
�� �c − x� < r

�
.

Below, the closed ball is defined as

B̄r(c) :=
�

x
�� �c − x� ≤ r

�
.

is open. The closure of C, denoted cl C, is the smallest closed set
containing C. The interior of C, denoted int C, is the largest open
set contained in C. The boundary of C is ∂C := cl C \ int C. The
boundary of a closed set lies in the set.

The set C is convex exactly when the chord between any two
elements of C lies entirely within C. Formally, C is convex exactly
when λx + (1 − λ)y ∈ C whenever x, y ∈ C and 0 < λ < 1.

Let C be a non-empty closed convex set and choose a y �∈ C.
It is almost obvious that the projection of y onto C, denoted ȳ, is
unique. To find this projection, construct a closed ball B̄r(y), and
gradually increase r from 0 until B̄r(y) and C touch; they first touch
at ȳ ∈ ∂C ⊂ S, and ȳ must be unique because both the ball and C
are closed and convex. For every point c ∈ C, the line from y to ȳ
to c forms an non-acute angle. Therefore the hyperplane normal
to y − ȳ which contains ȳ separates y from C. Call this a tangential
hyperplane at ȳ. Its expression is (y − ȳ)T(x − ȳ) = 0, or aT x = d, for
scalar d. Thus we have:

{thm:sepHT}

Theorem 2.8 (Mini Separating Hyperplane Theorem). Let C ⊂ Rn

be a non-empty closed convex set. if y �∈ C then there exists a ∈ Rn and
d ∈ R such that aTy < d and aTc ≥ d for all c ∈ C.
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The projection mapping from the exterior of C to ∂C is surjective;
that is, every point on ∂C is the projection of at least one point in
the exterior of C, and has at least one tangential hyperplane. This
gives the Supporting Hyperplane Theorem.

{thm:supHT}

Theorem 2.9 (Supporting Hyperplane Theorem, SHT). Let C ⊂ Rn be
a non-empty closed convex set and let c0 be any element in the boundary
of C. Then there exists an a ∈ Rn, a �= 0, such that aTc ≥ aTc0 for all
c ∈ C.

Before proving the next result, a brief aside on vector inequali-
ties:

1. x ≥ 0 exactly when xi ≥ 0 for all i.

2. x > 0 exactly when x ≥ 0 and x �= 0.

3. x � 0 exactly when xi > 0 for all i.

Conventions differ concerning the interpretation of x > 0, so it is
best to check.13 13 The main alternative convention

is to use ≥ and > for element-wise
inequalities, and x � 0 for the case
‘x ≥ 0 and x �= 0’. In other words, to
use ≥, �, and > where I use ≥, >, and
�.

Now consider the set

C :=
�

y
�� y = Ax, x ≥ 0

�
,

where A is an m × n matrix. It is straightforward to check that this
set is closed and convex; in fact, it is termed a convex cone. For any
point y ∈ Rm, there are only two possibilities; either y ∈ C or y �∈ C.
In the first case, there exists x ≥ 0 such that y = Ax. In the second
case, the Mini Separating Hyperplane Theorem (Thm 2.8) asserts
the existence of a and d such that aTy < d and aTc ≥ d for all c ∈ C.
So in this case

aTy < d ≤ aT Ax for all x ≥ 0. (†)

Since x = 0 is possible, d ≤ 0, and hence aTy < 0. If any component
of aT A was negative, then aT Ax could be made arbitrarily small,
and hence, necessarily, aT A ≥ 0. This result is Farkas’s Lemma. It is
generally expressed as follows.14 14 With a ← y and y ← b.

Theorem 2.10 (Farkas’s Lemma). Let A be an m × n real-valued matrix.
Then exactly one of the two alternatives is possible:

1. Ax = b has a solution x ≥ 0; or

2. yTb < 0 and yT A ≥ 0T has a solution y ∈ Rm.

There are lots of variants of Farkas’s Lemma; the one I used in
the proof of Thm 2.4 was Stiemke’s Theorem, and another closely-
related result is Gordan’s Theorem. They can both be proved as
follows.

For arbitrary x ∈ Rn, write

x = x+ − x−,
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where x+ and x− were defined in (1.9); in the vector case, the
maximums are taken element-wise. Then

Ax = A(x+ − x−) =
�

A −A
� �x+

x−

�

where the vector is now non-negative. Applying Farkas’s Lemma
then gives the two alternatives:

1. Ax = b for some x ∈ Rn; or

2. yTb < 0 and yT A = 0T for some y ∈ Rm .

The second part of the second condition is the unique solution
to yT[A,−A] ≥ 0T. For Stiemke’s Theorem, let b be some value
satisfying b < 0. If there is no such value for which the first alter-
native is satisfied, then yTb < 0 for every b < 0, and hence y � 0.
By multiplying A by −1 we get the usual expression of Stiemke’s
Theorem.

{thm:stiemke}

Theorem 2.11 (Stiemke’s Theorem). Let A be an m × n matrix of reals.
Then exactly one of these two alternatives is true:

1. Ax > 0 for some x ∈ Rn; or

2. yT A = 0 for some y � 0.

Gordan’s Theorem is the same, except with b � 0, in which case
Ax � 0 and y > 0.




