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3.1 Introduction

The basic premise of Statistical Decision Theory is that we want to
make inferences about the parameter of a family of distributions
(see Section 1.3). So the starting point of this chapter is a model for
the observables Y ∈ Y of the general form

E =
�
Y, Ω, f

�
,

just as in Chapter 1 and Chapter 2. The value f (y; θ) denotes the
probability that Y = y under family member θ ∈ Ω, where θ is
the parameter, and Ω is the parameter space. I will stick with my
convention that Y is countable and Ω is uncountably infinite. I will
assume throughout this chapter that f (y; θ) is easy to evaluate (see
Section 1.2).

We accept as our working hypothesis that E is true (see Sec-
tion 1.1), so that inference is learning about Θ, the true value of
the parameter. More precisely, we would like to understand how
to construct the ‘Ev’ function from Chapter 2, in such a way that it
reflects our needs, which will vary from application to application.
Statistical Decision Theory allows us to select an ‘Ev’ which is suit-
able for the type of inference we want to make, and which reflects
the consequence of making a poor inference.

The the set of possible inferences is termed the action set, A, with
typical element a. The consequence of making a poor inference is
specified as the loss function L : A× Ω → R, with larger values
indicating worse consequences. Thus L(a, θ) is the loss incurred by
the statistician if action a is taken and Θ turns out to be θ. I will
assume, as is natural, that L is bounded, but many results below
also hold in the more general case.

Before making her choice of action, the statistician will observe
y, a value for Y. Her choice should be some function of the value
y, and this is represented as a decision rule, δ : Y → A. As we are
taking the model E as given, δ(y) in this chapter is the analogue of
Ev(E, y) from Chapter 2.

The three main types of inference about Θ are (i) point estima-
tion, (ii) set estimation, and (iii) hypothesis testing. It is a great
conceptual and practical simplification that Statistical Decision
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Theory distinguishes between these three types simply according to
their action sets, which are:

Type of inference Action set A

Point estimation The parameter space, Ω. See Section 3.5.

Set estimation The set of all subsets of Ω, denoted 2Ω. See
Section 3.6.

Hypothesis testing A specified partition of Ω, denoted H below.
See Section 3.7.

All three of these types of inference are easily adapted to spec-
ified functions of Θ, say g(Θ). Thus point estimation would have
A = gΩ; set estimation would have A = 2gΩ, and hypothesis
testing would have A = a specified partition of gΩ. For example, if
θ = (θ1, θ2) but θ2 is nuisance parameter, then g(θ) = θ1. In point
estimation, A = Ω1, and L(a, θ) = L1(a, θ1), where θ1 is the value of
Θ1, and a ∈ Ω1 is the point estimate of Θ1.

The next three sections develop some general results for Statisti-
cal Decision Theory, applicable to all types of inference, and then
the later sections consider each of the three types in more detail.

3.2 Bayes rules

In a Bayesian approach, Θ is treated as a random variable, and the
model E is augmented by a prior probability density function (PDF)
π, for which Pr(Θ ∈ S) =

�
θ∈S π(θ)dθ for any well-behaved S ∈ Ω;

see Section 1.5. I will write the joint distribution of (Y, Θ) as

p(y, θ) = f (y; θ)π(θ).

From this joint distribution, we can also calculate, as needed, the
marginal distribution p(y) and the posterior distribution p(θ | y); the
latter using Bayes’s theorem.

Let D be the set of all possible decision rules. The decision rule
δ∗ is a Bayes rule exactly when

E{L(δ∗(Y), Θ)} ≤ E{L(δ(Y), Θ} for all δ ∈ D. (3.1)

The value E{L(δ(Y), Θ)} is termed the Bayes risk of decision rule δ,
and is always well-defined under the condition that L is bounded.
Therefore a Bayes rule is any decision rule which minimizes the
Bayes risk, for some action set, loss function, model, and prior
distribution. There is a justly famous result which gives the explicit
form for a Bayes rule.

Theorem 3.1 (Bayes Rule Theorem, BRT). If A is finite, then a Bayes
rule exists1 and satisfies δ∗ = δ̃, where 1 Finiteness of A ensures existence.

Similar but more general results are
possible, but they require tedious and
distracting topological conditions to
ensure that a minimum obtains within
D.

δ̃(y) := argmin
a∈A

E{L(a, Θ) | Y = y}. (3.2)
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Proof. I will show that E{L(δ(Y), Θ)} ≥ E{L(δ̃(Y), Θ)} for all
δ : Y → A; i.e. that δ̃ minimises the Bayes risk. Let δ be arbitrary.
Then

E{L(δ(Y), Θ)} =
�

∑ y L(δ(y), θ) · p(y, θ)dθ

= ∑ y

�
L(δ(y), θ)p(θ | y)dθ · p(y)

≥ ∑ y min
a

��
L(a, θ)p(θ | y)dθ

�
· p(y) as p(y) ≥ 0

= ∑ y

�
L(δ̃(y), θ)p(θ | y)dθ · p(y) from (3.2)

=
�

∑ y L(δ̃(y), θ) · p(y, θ)dθ

= E{L(δ̃(Y), Θ)}.

This astounding result indicates that the minimization of ex-
pected loss over the space of all functions from Y to A can be
achieved by the pointwise minimization over A of the expected
loss conditional on Y = y. It converts an apparently intractable
problem into a simple one.

The next result will not be a surprise for those who have read
Chapter 2.

Theorem 3.2. Bayes rules respect the Likelihood Principle (LP, see
Definition 2.5).

Proof. Let E1 = {Y1, Ω, f1} and E2 = {Y2, Ω, f2} be different models
with the same parameter Θ. Because they have the same parameter,
they have the same prior distribution π. By Bayes’s theorem,

p1(θ | y1) ∝ f1(y1; θ)π(θ)

p2(θ | y2) ∝ f2(y2; θ)π(θ)

where the missing multiplicative constants are p1(y1)
−1 and

p2(y2)
−1, respectively. Now suppose that

f1(y1; •) = c(y1, y2) · f2(y2; •),

as in the condition for the LP. I will show that this implies δ∗1 (y1) = δ∗2 (y2),
as required by the LP. By the Bayes Rule Theorem (Theorem 3.1),

δ∗1 (y1) = argmin
a

E1{L(a, Θ) | Y1 = y1}

= argmin
a

�
L(a, θ) · f1(y1; θ)π(θ)dθ

= argmin
a

�
L(a, θ) · c(y1, y2) f2(y2; θ)π(θ)dθ

= argmin
a

�
L(a, θ) · f2(y2; θ)π(θ)dθ

= argmin
a

E2{L(a, Θ) | Y2 = y2}

= δ∗2 (y2).
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To hark back to the analysis in Chapter 2, if your inference (i.e.
your decision rule) does not respect the LP then you are either illog-
ical or obtuse—please excuse me for being blunt. So Theorem 3.2 is
a good reason for selecting a Bayes rule as your decision rule. You
can also be sure that your decision rule respects the Conditionality
Principle (CP, Definition 2.7) and the Stopping Rule Principle (SRP,
Definition 2.11). To assert the contrapositive, if your decision rule
does not respect the LP, CP, and SRP, then it cannot be a Bayes rule.

3.3 Admissible rules

As discussed in Section 1.4, Frequentist statisticians are averse
to prior distributions. But it is not possible to construct Bayes
rules without them, and so Frequentist statisticians need another
approach to selecting their decision rule for some action set, loss
function, and model.

The accepted approach is to narrow the set of possible decision
rules by ruling out those that are obviously bad. Define the risk
function for rule δ as

R(δ, θ) := E{L(δ(Y), θ); θ} = ∑ y L(δ(y), θ) · f (y; θ). (3.3)

That is, R(δ, θ) is the expected loss from rule δ in family member θ.
A decision rule δ dominates another rule δ� exactly when

R(δ, θ) ≤ R(δ�, θ) for all θ ∈ Ω,

with a strict inequality for at least one θ ∈ Ω. If you had both δ

and δ�, you would never want to use δ�.2 A decison rule is admissible 2 Here I am assuming that all other
considerations are the same in the
two cases: e.g. δ(y) and δ�(y) take
about the same amount of resource to
compute.

exactly when it is not dominated by any other rule; otherwise it is
inadmissible. So the accepted approach is to reduce the set of pos-
sible decision rules under consideration by only using admissible
rules.

It is hard to disagree with this approach, although one wonders
how big the set of admissible rules will be, and how easy it is to
enumerate the set of admissible rules in order to choose between
them. It turns out that this issue has a clear-cut answer.

Theorem 3.3 (Wald’s Complete Class Theorem, CCT). Let E = {Y, Ω, f },
A, and L be given. In the case where Ω is finite, a decision rule δ is admis-
sible if and only if it is a Bayes rule for some positive prior distribution
π.

The proof is given in Section 3.4. There are generalisations of
this theorem to non-finite and uncountable Ω; however, the results
are highly technical. See Ferguson (1967, ch. 2), Schervish (1995,
ch. 3), Berger (1985, chs 4, 8), and Ghosh and Meeden (1997, ch. 2)
for more details and references to the original literature. In the rest
of this section, I will assume the more general result, which is that
a decision rule is admissible if and only if it is a Bayes rule, which
holds for practical purposes.
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So what does the CCT say? First of all, admissible decision rules
obey the LP. This follows from the fact that admissible rules are
Bayes rules, and Bayes rules respect the LP, by Theorem 3.2. Insofar
as we think respecting the LP is a good thing, this provides support
for using admissible decision rules, because we cannot be certain
that inadmissible rules respect the LP.

Second, if you select a Bayes rule according to some positive
prior distribution π then you cannot ever choose an inadmissible
decision rule. So the CCT states that there is a very simple way
to protect yourself from choosing an inadmissible decision rule.
Finally, if you cannot produce a positive π for which your proposed
rule δ is a Bayes Rule, then you cannot show that δ is admissible.

But here is where you must pay close attention to logic. Suppose
that δ� is inadmissible and δ is admissible. It does not follow that
δ dominates δ�. So just knowing of an admissible rule does not
mean that you should abandon your inadmissible rule δ�. You can
argue that although you know that δ� is inadmissible, you do not
know of a rule which dominates it. All you know, from the CCT,
is the family of rules within which the dominating rule must live:
it will be a Bayes rule for some positive π. Statisticians sometimes
use inadmissible rules according to standard loss functions. They
can argue that yes, their rule δ is or may be inadmissible, which
is unfortunate, but since the identity of the dominating rule is not
known, it is not wrong to go on using δ. Do not attempt to explore
this line of reasoning with your client!

3.4 The Complete Class Theorem

This section can be skipped once the previous section has been read.
It proves a very powerful result, Theorem 3.3 above, originally due
to an iconic figure in Statistics, Abraham Wald.3 The parameter 3 For his tragic story, see https://en.

wikipedia.org/wiki/Abraham_Wald.space is assumed to be finite, so write it as

Ω =
�

θ1, . . . , θk
�

.

Denote the available decision rules as δi, for i = 1, 2, . . . ; I am
assuming that the set of rules is countable, but this is without loss
of generality (we will shortly create an uncountable number of
decision rules). For each decision rule, define the risk function as

Rij := E{L(δi(Y), θj); θj}





i = 1, 2, . . .

j = 1, . . . , k.

Thus Rij is the expected loss for rule δi under parameter value θj.
I will give a blackboard proof for k = 2 which generalises to any

finite k. Call δ1, δ2, . . . the ‘pure’ rules, and R1, R2, . . . the pure risks,
where Ri = (Ri1, . . . , Rik). Panel (a) in Figure 3.4 shows a set of
pure risks when k = 2.

We must widen the set of available decision rules, to include
rules selected randomly from the pure rules according to proba-
bilities w = (w1, w2, . . . ). This is because a rule δi might not be
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dominated by a pure rule but it might be dominated by a ran-
domised rule; see Figure 3.1. Let Pr(I = i) = wi. Then the risk of
randomised rule w is

Rwj = E
�

L(δI(Y), θj); θj
�
= ∑ i Rij · wi,

by the Law of Iterated Expectation (LIE). The set of all rules, pure
and randomised, is termed the risk set, and it is the convex hull of
{R1, R2, . . . }. Every point in the risk set is an attainable risk, for a
suitable choice of w. See Panel (b) of Figure 3.4. From now on, we
can refer to ‘risks’ rather than ‘rules’.

Figure 3.1: Rule B is not dominated
by either A or δ, but it is dominated
by some randomised rules based on
A and δ, notably those with risks that
lie in the facet between A and δ within
the dashed lines.

Now consider the subset of the risk set which is admissible. A
risk is dominated if there is another risk in its ‘southwest’ quadrant.
So the only admissible risks in the risk set are on the southwest
boundary, shown in Panel (c) of Figure 3.4. So we have identified
the set of admissible risks: the pure risks on the southwest bound-
ary, and the randomised risks which lie on the facets between the
pure risks.

Now I show that this set of admissible risks is identical to the
set of risks for Bayes rules for some positive prior probability. Fix
π = (π1, 1 − π1) with 0 < π1 < 1, and consider the set of risks with
a specified Bayes risk a, i.e. the values (r1, r2) for which

a = E{L(δ(Y), Θ)} defn of Bayes risk

= E
�

E{L(δ(Y), Θ) | Θ}
�

by the LIE

= E{R(δ, Θ)} defn of risk function

=
k

∑
j=1

R(δ, θj) · πj Ω finite

= r1 · π1 + r2 · (1 − π1) for k = 2.

On the panels in Figure 3.4, this is a straight line with equation

r2 =
a

1 − π1
+

−π1

1 − π1
r1.

This line may pass below the risk set, in which case there is no
attainable risk which has Bayes risk of a. So increase a until the
line just touches the risk set, at risk B(π) with Bayes risk b; see
Panel (d) in Figure 3.4. B(π) is the attainable risk which achieves
the minimum Bayes risk for π, i.e. it is the risk of the Bayes rule for
π. Varying π in the open interval (0, 1) and repeating the exercise
shows that the set of admissible risks and the set of risks for Bayes
rules with positive prior probability are identical.

This proof generalises to any finite k according to the Supporting
Hyperplane Theorem; see, e.g., Ferguson (1967, ch. 2) or Schervish
(1995, ch. 3).
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Figure 3.4. Blackboard proof of Theorem 3.3, with Ω = {θ1, θ2}. Panel (a). The risks for a set of pure
decision rules. Panel (b). The risk set: the convex hull of the pure risks, showing all risks that are
attainable using randomised rules. Panel (c). The set of admissible risks is shown with a thick line.
Panel (d). The dashed line ‘BRa’ shows the set of risks which have Bayes risk a, for fixed probabilities
π = (π1, 1 − π1), where 0 < π1 < 1. None of the risks on BRa are attainable. By increasing the Bayes
risk to b, admissible pure risk B(π) becomes attainable. B(π) is the Bayes rule for π. Changing π

changes the gradient of the dashed line, but it always just touches the set of attainable risks on the set of
admissible risks.
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3.5 Point estimation

For point estimation the action space is A = Ω, and the loss func-
tion L(a, θ) represents the (negative) consequence of choosing a as
a point estimate of Θ, when in fact Θ = θ. A point estimate of Θ is
often termed a point prediction, or just ‘prediction’.

There will be situations where a function L : Ω × Ω → R is
fairly easy to specify. Fox example, consider the Netflix challenge.4 4 See https://en.wikipedia.org/

wiki/Netflix_Prize.Netflix wants to make a prediction a ∈ Ω = {1, 2, 3, 4, 5} for a
film that a client has not seen yet, but who will rate the film as Θ.
Netflix suffers a reputational loss (which may lead to revenue loss)
when a recommended film is rated below 5 by the client. But in fact
Netflix will only recommend films that it predicts will be 5’s, and
so its loss function is something like

L(a, θ) =





� · (5 − a) a = 1, 2, 3, 4

a − θ a = 5

where �, which is a small positive value, is there to reflect that
Netflix wants to make recommendations. In the Netflix challenge,
the actual loss function was L(a, θ) = (a − θ)2, which either goes to
show that the people at Netflix are not very bright or, perhaps more
likely, that the entire challenge was in fact a marketing exercise.

In many cases, however, specifying the loss function presents
a challenge. Hence the need for a generic loss function which is
acceptable over a wide range of situations. A natural choice in the
very common case where Ω is a convex subset of Rd is a convex loss
function,

L(a, θ) = h(a − θ) (3.4)

where h : Rd → R is a smooth non-negative convex function
with h(0) = 0. This type of loss function asserts that small errors
are much more tolerable than large ones. One possible further
restriction would be that h is an even function.5 This would assert 5 I.e. h(x) = h(−x).

that under-prediction incurs the same loss as over-prediction. There
are many situations where an even function is not appropriate, but
in these cases a generic loss function should be replaced by a more
specific one.6 6 See, e.g., Milner and Rougier (2014),

on predicting the weights of donkeys.Proceeding further along the same lines, an even, differentiable
and strictly convex loss function can be approximated by a quadratic
loss function,

h(x) ∝ xTQ x (3.5)

where Q is a symmetric positive-definite d × d matrix. This follows
directly from a Taylor series expansion of h around 0:

h(x) = 0 + 0 + 1
2 xT∇2h(0) x + 0 + O(�x�4)

where the first 0 is because h(0) = 0, the second 0 is because
∇h(0) = 0 since h is minimized at x = 0, and the third 0 is because
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h is an even function. ∇2h is the hessian matrix of second deriva-
tives, and it is symmetric by construction, and positive definite at
x = 0, if h is strictly convex and minimized at 0.

In the absence of anything more specific the quadratic loss
function is the generic loss function for point estimation. Hence the
following result is widely applicable.

Theorem 3.4. Under a quadratic loss function, the Bayes rule for point
estimation is the conditional expectation

δ∗(y) = E(Θ | Y = y).

A Bayes rule for a point estimation is known as a Bayes estima-
tor. Note that although the matrix Q is involved in defining the
quadratic loss function in (3.5), it does not influence the Bayes es-
timator. Thus the Bayes estimator is the same for an uncountably
large class of loss functions. Depending on your point of view, this
is either its most attractive or its most disturbing feature.

Proof. Here is a proof that does not involve differentiation. The BRT
(Theorem 3.1) asserts that

δ∗(y) = argmin
a∈Ω

E{L(a, Θ) | Y = y}. (3.6)

So let ψ(y) := E(Θ | Y = y). For simplicity, treat θ as a scalar. Then

L(a, θ) ∝ (a − θ)2

= (a − ψ(y) + ψ(y)− θ)2

= (a − ψ(y))2 + 2(a − ψ(y))(ψ(y)− θ) + (ψ(y)− θ)2.

Take expectations conditional on Y = y to get

E{L(a, Θ) | Y = y} ∝ (a − ψ(y))2 + E{(ψ(y)− θ)2 | Y = y}, (†)

where the cross-product term is zero. Only the first term contains a,
and this term is minimized over a by setting a = ψ(y), as was to be
shown.

The extension to vector θ with loss function (3.5) is straight-
forward, but involves more ink. It is crucial that Q in (3.5) is
positive definite, because otherwise the first term in (†), which
becomes (a − ψ(y))TQ (a − ψ(y)), is not minimized if and only if
a = ψ(y).

Now apply the CCT (Theorem 3.3) to this result. For quadratic
loss, a point estimator for θ is admissible if and only if it is the
conditional expectation with respect to some positive prior distribu-
tion π.7 Among the casualties of this conclusion is the Maximum 7 This is under the conditions of

Theorem 3.3, or with appropriate
extensions of them in the non-finite
cases.

Likelihood Estimator (MLE),

θ̂(y) := arg max
θ∈Ω

f (y; θ).

Stein’s paradox showed that under quadratic loss, the MLE is not
always admissible in the case of a Multinormal distribution with
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known variance, by producing an estimator which dominated it.
This result caused such consternation when first published that it
might be termed ‘Stein’s bombshell’. See Efron and Morris (1977)
for more details, and Samworth (2012) for an accessible proof. Persi
Diaconis thought this was such a powerful result that he focused on
it for his brief article on Mathematical Statistics in the The Princeton
Companion to Mathematics (Ed. T. Gowers, 2008, 1056 pages). Never-
theless, the MLE is still the dominant point estimator in large areas
of applied statistics, even though its admissibility under quadratic
loss is questionable.

3.6 Set estimation

For set estimation the action space is A = 2Ω, and the loss function
L(a, θ) represents the (negative) consequences of choosing a ⊂ Ω as
a set estimate of Θ, when the true value of Θ is θ.

There are two contradictory requirements for set estimators of Θ.
We want the sets to be small, but we also want them to contain Θ.
There is a simple way to represent these two requirements as a loss
function, which is to use

L(a, θ) = |a|+ κ · (1 − 1θ∈a) for some κ > 0 (3.7a)

where |a| is the volume of a.8 The value of κ controls the trade-off 8 Technically, Lebesgue measure, if Ω is
a convex subset of Rd.between the two requirements. If κ ↓ 0 then the Bayes rule is the

empty set, for all y. If κ ↑ ∞ then the Bayes rule is Ω, for all y. For
κ in-between, the Bayes rule will depend on beliefs about Y and the
value y. Theorem 3.5 below continues to hold for the much more
general set of loss functions

L(a, θ) = g(|a|) + h(1 − 1θ∈a) (3.7b)

where g is non-decreasing and h is strictly increasing. This is a
large set of loss functions, which should satisfy most clients who do
not have a specific loss function already in mind.

For point estimators there was a simple characterisation of
the Bayes rule for quadratic loss functions (Theorem 3.4). For
set estimators the situation is not so simple. However, for loss
functions of the form (3.7) there is a simple necessary condition for
a rule to be a Bayes rule. A set a ⊂ Ω is a level set of the posterior
distribution exactly when a =

�
θ : p(θ | y) ≥ k

�
for some k.

Theorem 3.5. If δ∗ : Y → 2Ω is a Bayes rule for the loss function in
(3.7a), then it is a level set of the posterior distribution.

Proof. The proof is by contradiction. For fixed y, I show that if a is
not a level set of the posterior distribution, then there is an a� �= a
which has a smaller expected loss; hence δ∗(y) �= a according to the
Bayes Rule theorem (BRT, Theorem 3.1).

First, note that

E{L(a, Θ) | Y = y} = |a|+ κ · Pr(Θ �∈ a | Y = y). (†)
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Now suppose that a is not a level set of p(θ | y). In that case
there is a θ ∈ a and a θ� �∈ a for which p(θ� | y) > p(θ | y). Let
a� = a ∪ dθ� \ dθ.9 Then |a�| = |a|, but 9 Here, dθ is the tiny region of Ω

around θ, and dθ� is the tiny region of
Ω around θ�, for which |dθ| = |dθ�|.Pr(Θ �∈ a� | Y = y) < Pr(Θ �∈ a | Y = y).

Thus
E{L(a�, Θ) | Y = y} < E{L(a, Θ) | Y = y}

from (†), showing that δ∗(y) �= a.

Now relate this result to the CCT (Theorem 3.3). First, Theo-
rem 3.5 asserts that δ being a level set of the posterior distribution is
necessary (but not sufficient) for δ to be a Bayes rule for loss func-
tions of the form (3.7). Second, the CCT asserts that being a Bayes
rule is necessary (but not sufficient) for δ to be admissible.10 So be- 10 Necessary but not sufficient because

being a Bayes rule AND having a
positive prior distribution is equivalent
to being admissible by the CCT, so
being a Bayes rule without a condition
on the prior distribution is necessary
but not sufficient. As before, terms
and conditions apply in the non-finite
cases.

ing a level set of a posterior distribution for some prior distribution
π (which is not allowed to depend on y) is a necessary condition for
being admissible under (3.7).

Now no one actually has (3.7) as their loss function; κ is a very
inaccessible quantity. Eq. (3.7) is a generic loss function designed to
help understand the features of a useful set estimator. Bayesian set
estimators are usually level 95% high posterior density (HPD) regions.
This is the level set of the posterior distribution which contains 95%
of the posterior probability; other levels are also used.11 So HPD 11 HPD regions have the useful prop-

erty of being nested for different
levels.

regions satisfy the necessary condition for being a set estimator for
the generic loss function (3.7).

Frequentist set estimators achieve a similar outcome if they are
level sets of the likelihood function L(•) ∝ f (y; •), because the
posterior distribution is proportional to the likelihood function
under a uniform prior distribution.12 Frequentists do not need to 12 Or an almost-uniform prior dis-

tribution, in the case where Ω is
unbounded, because the prior distribu-
tion will have to taper or be truncated
in order to integrate to 1 over Ω.

actually adopt a unform prior distribution: they only need to point
out that the uniform prior distribution justifies the admissibility of
their ‘level-sets of L’ estimator, via the CCT.

3.7 Hypothesis tests

For hypothesis tests, the action space is a partition of Ω, denoted

H :=
�

H0, H1, . . . , Hd
�

.

Each element of H is termed a hypothesis; it is traditional to number
the hypotheses from zero, where H0 is termed the null hypothesis.
The loss function L(Hi, θ) represents the (negative) consequences
of choosing element Hi, when the true value of Θ is θ. It would be
usual for the loss function to satisfy

θ ∈ Hi =⇒ L(Hi, θ) = min
i�

L(Hi� , θ)

on the grounds that an incorrect choice of element should never
incur a smaller loss than the correct choice.
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There is one case where we have a complete theory of Bayes/ad-
missible rules. Let Ω = {θ0, θ1}, with Hi = {θi}, for which the loss
function will have the form

L θ0 θ1

H0 0 �1

H1 �0 0

with �0, �1 > 0. Then it is straightforward to show that the Bayes
rule for choosing between H0 and H1 has the form

f (y; θ0)

f (y; θ1)





< c choose H1

= c toss a coin

> c choose H0

(3.8)

where c = (π1/π0) · (�1/�0). Thus the CCT states that a decision
rule is admissible if and only if it has the form in (3.8) for some
c > 0. This is effectively the Neyman-Pearson lemma, although it is
usually expressed (and proved) differently.

In situations more complicated than this, it is extremely chal-
lenging and time-consuming to specify a loss function. And yet
statisticians would still like to choose between hypotheses, in de-
cision problems whose outcome does not seem to justify the effort
required to specify the loss function.13 13 Just to be clear, important decisions

should not be based on cut-price
procedures: an important decision
warrants the effort required to specify
a loss function.

There is a generic loss function for hypothesis tests, but it is
hardly defensible. The 0-1 (’zero-one’) loss function is

L(Hi, θ) = 1 − 1θ∈Hi ,

i.e., zero if θ is in Hi, and one if it is not. Its Bayes rule is to select
the hypothesis with the largest conditional probability. It is hard
to think of a reason why the 0-1 loss function would approximate
a wide range of actual loss functions, unlike in the cases of generic
loss functions for point estimation and set estimation. This is not
to say that it is wrong to select the hypothesis with the largest
conditional probability; only that the 0-1 loss function does not
provide a very compelling reason.

* * *

There is another approach which has proved much more popular.
In fact, it is the dominant approach to hypothesis testing. This is to
co-opt the theory of set estimators, for which there is a defensible
generic loss function (see Section 3.6). The statistician can use her
set estimator δ : Y → 2Ω to make at least some distinctions between
the members of H, on the basis of the value of the observable, yobs:

• ‘Accept’ Hi exactly when δ(yobs) ⊂ Hi,

• ‘Reject’ Hi exactly when δ(yobs) ∩ Hi = ∅,

• ‘Undecided’ about Hi otherwise.
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Note that these three terms are given in scare quotes, to indicate
that they acquire a technical meaning in this context. We do not use
the scare quotes in practice, but we always bear in mind that we
are not “accepting Hi” in the vernacular sense, but simply asserting
that δ(yobs) ⊂ Hi for our particular choice of δ.

In order to see how this approach plays out, we need to dis-
tinguish three types of hypothesis. The traditional distinction is
between simple hypotheses, where Hi = {θi}, a single element of
Ω, and composite hypotheses, where Hi comprises more than a sin-
gle element of Ω. Within composite hypotheses, though, we have
degenerate hypotheses, which have zero volume, and non-degenerate
hypotheses, which have positive volume; simple hypotheses always
have zero volume. So here is the picture:

Simple

��
Hypotheses

��

��

Degenerate (zero volume)

Composite

��

��
Non-degenerate (positive volume).

Obviously, it is effectively impossible to put a set inside a degen-
erate hypothesis, and so it is effectively impossible to accept a
degenerate hypothesis using a set estimator—it is only possible
reject it, or to be undecided.

To illustrate, suppose that the model is

E =
�
R, (µ, σ2) ∈ R×R++, f

�

where f is the Normal probability density function. H1 : {µ = 0, σ2 = 1}
would be a simple hypothesis; H2 : {µ = 0} would be a composite
degenerate hypothesis, and H3 : {µ > 0} would be a composite non-
degenerate hypothesis. It is possible to reject or be undecided about
all three hypotheses, but it is only possible to accept H3. Some
statistics teachers seem to be confused about this, asserting that “it
is never possible to accept the null hypothesis”, or similar. This is
not true in general, but it is true in the special case where the null
hypothesis is degenerate (as is often the case in practice).

This set-estimator approach to hypothesis testing seems quite
clear-cut, but we must end on two cautions. First, the statistician
has not solved the decision problem of choosing an element of
H. She has solved a different problem. Based on a set estimator,
she may reject H0 on the basis of yobs, but that does not mean she
should proceed as though H0 is false. This would require her to
solve the correct decision problem, for which she would have to
supply a loss function.

Second, in many situations, a hypothesis test is only superficially
the right approach: attractive because of its simplicity, but limited
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for the same reason. For example, suppose that H0 : {µ ≤ 0} and
H1 : {µ > 0}, where a positive value of µ indicates that a new type
of drug does more good than harm. One could accept H1 and yet
the set estimate could be pressed close up against the line µ = 0
without touching it, or one could be undecided about H1 and yet
most of the set estimate could be much larger than µ = 0, with
only a small tail crossing over. It is excessively crude to reduce a
set estimate to a discrete choice between elements of H, and for this
reason many statisticians have never done a hypothesis test.14 This 14 Including me, since I became a

proper statistician.is not a new revelation. Over fifty years ago, Edwards et al. (1963,
p. 213) wrote

No aspect of classical statistics has been so popular with psycholo-
gists and other scientists as hypothesis testing, though some classical
statisticians agree with us that the topic has been overemphasized.
A statistician of great experience told us, “I don’t know much about
tests, because I have never had occasion to use one.”

Plus ça change, as they say.


