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This chapter is a continuation of Chapter 3, and the same condi-
tions hold; re-read the introduction to Chapter 3 if necessary. As
usual, the model is

�
Y, Ω, f

�
.

In this chapter we have the tricky situation in which a specified
function g : Y× Ω → R becomes a random quantity when Y is
a random quantity. Then the distribution of g(Y, θ) depends on
the value in Ω controlling the distribution of Y, which need not be
the same value as θ in the argument. However, in this chapter the
value in Ω controlling the distribution of Y will always be the same
value as θ. Hence the random quantity g(Y, θ) has the distribution
induced by Y ∼ f (• ; θ).

4.1 Confidence procedures and confidence sets

A confidence procedure is a special type of decision rule for the
problem of set estimation. Hence it is a function of the form
C : Y → 2Ω, where 2Ω is the set of all sets of Ω.1 1 In this chapter I am using ‘C’ for a

confidence procedure, rather than ‘δ’
for a decision rule.Definition 4.1 (Confidence procedure). C : Y → 2Ω is a level-(1 − α)

confidence procedure exactly when

Pr{θ ∈ C(Y); θ} ≥ 1 − α for all θ ∈ Ω.

If the probability equals (1 − α) for all θ, then C is an exact level-
(1 − α) confidence procedure.2 2 Exact is a special case. But when it

necessary to emphasize that C is not
exact, the term ‘conservative’ is used.The value Pr{θ ∈ C(Y); θ} is termed the coverage of C at θ. Thus

a 95% confidence procedure has coverage of at least 95% for all θ,
and an exact 95% confidence procedure has coverage of exactly 95%
for all θ. The coverage of a confidence procedure is determined
by its sampling distribution. Thus the decision to use, say, a 95%
confidence procedure for inference about Θ violates the Likelihood
Principle, according to Theorem 2.3 (see also Section 2.6.3).

Decision rules for set estimators were discussed in Section 3.6.
A 95% confidence procedure is not a Bayes Rule for the loss func-
tion in (3.7). Nevertheless, confidence procedures can satisfy the
condition that they are level sets of the likelihood function; i.e.

C(y) =
�

θ ∈ Ω : f (y; θ) ≥ g(y)
�

(4.1)
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for some g. I term this the level set property (LSP). Recollect that the
LSP is akin to a necessary condition for C to be an admissible set
estimator under the loss function in (3.7), by Theorem 3.5.

The diameter of C(y) can grow rapidly with its coverage.3 In 3 The diameter of a set in a metric
space such as Euclidean space is the
maximum of the distance between two
points in the set.

fact, the relation must be extrememly convex when coverage is
nearly one, because, in the case where Ω = R, the diameter at cover-
age = 1 is unbounded. So an increase in the coverage from, say 95%
to 99%, could correspond to a doubling or more of the diameter
of the confidence procedure. For this reason, exact confidence pro-
cedures are highly valued, because a conservative 95% confidence
procedure can deliver sets that are much larger than an exact one.

But, immediately a note of caution. It seems obvious that exact
confidence procedures should be preferred to conservative ones,
but this is easily exposed as a mistake. Suppose that Ω = R.
Then the following procedure is an exact level-(1 − α) confidence
procedure for θ. First, draw a random variable U with a standard
uniform distribution.4 Then set 4 See footnote 6.

C(y) :=




R U ≤ 1 − α

{0} otherwise.
(†)

This is an exact level-(1 − α) confidence procedure for θ, but also a
meaningless one because it does not depend on y. If it is objected
that this procedure is invalid because it includes an auxiliary ran-
dom variable, then this rules out the method of generating approxi-
mately exact confidence procedures using bootstrap calibration (??).
And if it is objected that confidence procedures must depend on y,
then (†) could easily be adapted so that y is the seed of a numerical
random number generator for U. So something else is wrong with
(†). In fact, it lacks the LSP (see above, (4.1)).

It is helpful to distinguish between the confidence procedure
C, which is a function of y, and the result when C is evaluated at
the observations yobs, which is a set in Ω. I like the terms used
in Morey et al. (2016), which I will also adapt to p-values in Sec-
tion 4.4.

Definition 4.2 (Confidence set). C(yobs) is a level-(1 − α) confidence
set exactly when C is a level-(1 − α) confidence procedure.

So a confidence procedure is a function, and a confidence set
is a set. If Ω ⊂ R and C(yobs) is convex, i.e. an interval, then
a confidence set (interval) is represented by a lower and upper
value. We should write, for example, “using procedure C, the 95%
confidence interval for θ is [0.55, 0.74]”, inserting “exact” if the
confidence procedure C is exact.

4.2 Families of confidence procedures

The challenge with confidence procedures is to construct one with
a specified level (look back to Section 1.4). One could propose an
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arbitrary C : Y → 2Ω, and then laboriously compute the coverage
for every θ ∈ Ω. At that point one would know the level of C as a
confidence procedure, but it is unlikely to be 95%; adjusting C and
iterating this procedure many times until the minimum coverage
was equal to 95% would be exceedingly tedious. So we need to
go backwards: start with the level, e.g. 95%, then construct a C
guaranteed to have this level.

Define a family of confidence procedures as C : Y× [0, 1] → 2Ω, where
C(·; α) is a level-(1 − α) confidence procedure for each α. If we start
with a family of confidence procedures for a specified model, then
we can compute a confidence set for any level we choose.

One class of families of confidence procedures has a natural and
convenient form. The key concept is stochastic dominance. Let X and
Y be two scalar random quantities. Then X stochastically dominates
Y exactly when

Pr(X ≤ v) ≤ Pr(Y ≤ v) for all v ∈ R.

Visually, the distribution function for X is never to the left of the
distribution function for Y.5 Although it is not in general use, I 5 Recollect that the distribu-

tion function of X has the form
F(x) := Pr(X ≤ x) for x ∈ R.

define the following term.

Definition 4.3 (Super-uniform). The random quantity X is super-
uniform exactly when it stochastically dominates a standard uni-
form random quantity.6 6 A standard uniform random quantity

being one with distribution function
F(u) = max{0, min{u, 1}}.In other words, X is super-uniform exactly when Pr(X ≤ u) ≤ u

for all 0 ≤ u ≤ 1. Note that if X is super-uniform then its support
is bounded below by 0, but not necessarily bounded above by 1.
Now here is a representation theorem for families of confidence
procedures.7 7 Look back to ‘New notation’ at the

start of the Chapter for the definition
of g(Y; θ).Theorem 4.1 (Families of Confidence Procedures, FCP). Let

g : Y× Ω → R. Then

C(y; α) :=
�

θ ∈ Ω : g(y, θ) > α
�

(4.2)

is a family of level-(1 − α) confidence procedures if and only if g(Y, θ) is
super-uniform for all θ ∈ Ω. C is exact if and only if g(Y, θ) is uniform
for all θ.

Proof.
(⇐). Let g(Y, θ) be super-uniform for all θ. Then, for arbitrary θ,

Pr{θ ∈ C(Y; α); θ} = Pr{g(Y, θ) > α; θ}
= 1 − Pr{g(Y, θ) ≤ α; θ}
= 1 − (≤ α) ≥ 1 − α

as required. For the case where g(Y, θ) is uniform, the inequality is
replaced by an equality.

(⇒). This is basically the same argument in reverse. Let C(·; α)

defined in (4.2) be a level-(1 − α) confidence procedure. Then, for
arbtrary θ,

Pr{g(Y, θ) > α; θ} ≥ 1 − α.
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Hence Pr{g(Y, θ) ≤ α; θ} ≤ α, showing that g(Y, θ) is super-uniform
as required. Again, if C(·; α) is exact, then the inequality is replaced
by a equality, and g(Y, θ) is uniform.

Families of confidence procedures have the very intuitive nesting
property, that

α < α� =⇒ C(y; α) ⊃ C(y; α�). (4.3)

In other words, higher-level confidence sets are always supersets
of lower-level confidence sets from the same family. This has some-
times been used as part of the definition of a family of confidence
procedures (see, e.g., Cox and Hinkley, 1974, ch. 7), but I prefer to
see it as a consequence of a construction such as (4.2).

It is interesting, and highly gratifying, that it is possible to con-
struct families of confidence procedures with the LSP (eq. 4.1). Here
is a result that has pedagogic value,8 because it can be used to gen- 8 This means that you may not want

to use these confidence procedures in
practice!

erate an uncountable number of families of confidence procedures,
each with the LSP.

Theorem 4.2. Let h be any PMF for Y. Then

C(y; α) :=
�

θ ∈ Ω : f (y; θ) > α · h(y)
�

(4.4)

is a family of confidence procedures, with the LSP.

Proof. Define g(y, θ) := f (y; θ)
�

h(y), which may be ∞. Then the
result follows immediately from Theorem 4.1 because g(Y, θ) is
super-uniform for each θ:

Pr{ f (Y; θ)
�

h(Y) ≤ u; θ} = Pr{h(Y)
�

f (Y; θ) ≥ 1/u; θ}

≤ E{h(Y)
�

f (Y; θ); θ}
1/u

Markov’s inequality

≤ 1
1/u

= u.

For the final inequality, let Y(θ) :=
�

y ∈ Y : f (y; θ) > 0
�

. Then

E{h(Y)
�

f (Y; θ); θ} = ∑
y∈Y(θ)

h(y)
f (y; θ)

· f (y; θ)

= ∑
y∈Y(θ)

h(y) ≤ 1,

because h is a probability mass function.

Among the interesting choices for h, one possibility is h = f (• ; ω),
for some ω ∈ Ω. Note that with this choice, the confidence set of
(4.4) always contains ω. So we know that we can construct a level-
(1 − α) confidence procedure whose confidence sets will always
contain ω, for any ω ∈ Ω.

This is another illustration of the fact that the definition of a con-
fidence procedure given in Definition 4.1 is too broad to be useful.
But now we see that insisting on the LSP is not enough to resolve
the issue. Two statisticians can both construct 95% confidence sets
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for θ which satisfy the LSP, using different families of confidence
procedures. Yet the first statistician may reject the null hypothesis
that H0 : Θ = ω (see Section 3.7), and the second statistician may
fail to reject it, for any ω ∈ Ω.

Actually, the situation is not as grim as it seems. Markov’s
inequality is very slack, and so the coverage of the family of confi-
dence procedures defined in Theorem 4.2 is likely to be much larger
than (1 − α), e.g. much larger than 95%. Remembering the com-
ment about the rapid increase in the diameter of the confidence set
as the coverage increases, from Section 4.1, a more likely outcome is
that C(y; 0.05) is large for many different choices of h, in which case
no one rejects the null hypothesis.

All in all, it would be much better to use an exact family of
confidence procedures which satisfy the LSP, if one existed. And,
for perhaps the most popular model in the whole of Statistics,
this is the case. This is the Linear Model; you will recognise it as
the Normal or Gaussian model, usually in the form of a linear
regression. I do not cover it here; see, e.g., Wood (2017, ch. 1). This
model is a very special case, and it is unfortunate that so many
people who are learning statistics have their intuition shaped by it.

4.3 Marginalisation

Suppose that g : θ �→ φ is some specified function, and we would
like a confidence procedure for φ. If C is a level-(1 − α) confidence
procedure for φ then it must have φ-coverage of at least (1 − α)

for all θ ∈ Ω. The most common situation is where Ω ⊂ Rp, and
g extracts a single component of θ: for example, θ = (µ, σ2) and
g(θ) = µ. So I call the following result the Confidence Procedure
Marginalisation Theorem.

Theorem 4.3 (Confidence Procedure Marginalisation, CPM). Suppose
that g : θ �→ φ, and that C is a level-(1 − α) procedure for θ. Then gC is a
level-(1 − α) confidence procedure for φ.9 9 gC :=

�
φ : φ = g(θ) for some θ ∈ C

�
.

Proof. Follows immediately from the fact that θ ∈ C(y) implies that
φ ∈ gC(y) for all y, and hence

Pr{θ ∈ C(Y); θ} ≤ Pr{φ ∈ gC(Y); θ}

for all θ ∈ Ω. So if C has θ-coverage of at least (1 − α), then gC has
φ-coverage of at least (1 − α) as well.

This result shows that we can derive level-(1 − α) confidence
procedures for functions of θ directly from level-(1 − α) confidence
procedures for θ. But it also shows that the coverage of such de-
rived procedures will typically be more than (1 − α), even if the
original confidence procedure is exact.
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4.4 P-values

There is a general theory for p-values, also known as significance lev-
els, which is outlined in Section 4.4.2, and critiqued in Section 4.4.3.
But first I want to focus on p-values as used in Hypothesis Tests,
which is a very common situation. In this section I will take it for
granted that a family of good confidence procedures has been
selected.

4.4.1 P-values and confidence sets

Hypothesis Tests (HTs) were discussed in Section 3.7. In a binary
HT the parameter space is partitioned as

Ω = {H0, H1},

where often H0 is a very small set, commonly degenerate. We
‘reject’ H0 at a significance level of α exactly when a level-(1 − α)

confidence set C(yobs; α) does not intersect H0. Otherwise we ‘fail
to reject’ H0 at a significance level of α, in the common case where
H0 is degenerate.

In practice, then, a hypothesis test with a significance level of
5% (or any other specified value) returns one bit of information,
‘reject’, or ’fail to reject’. We do not know whether the decision was
borderline or nearly conclusive; i.e. whether, for rejection, H0 and
C(yobs; 0.05) were close, or well-separated. We can increase the
amount of information if C is a family of confidence procedures, in
the following way.

Definition 4.4 (P-value, confidence set). Let C(· ; α) be a family of
confidence procedures. The p-value of H0 is the smallest value α for
which C(yobs; α) does not intersect H0.

The picture for determining the p-value is to dial up the value
of α from 0 and shrink the set C(yobs; α), until it is just clear of
H0. Of course we do not have to do this in practice. From the
Representation Theorem (Theorem 4.1) we take C(yobs; α) to be
synonymous with a function g : Y× Ω → R. Then C(yobs; α) does
not intersect with H0 if and only if

∀θ ∈ H0 : g(yobs, θ) ≤ α.

Thus the p-value is computed as

p(yobs; H0) := max
θ∈H0

g(yobs, θ), (4.5)

for a specified family of confidence procedures (represented by the
choice of g). Here is an interesting and suggestive result.10 This will 10 Recollect the definition of ‘super-

uniform’ from Definition 4.3.be the basis for the generalisation in Section 4.4.2.

Theorem 4.4. Under Definition 4.4 and (4.5), p(Y; H0) is super-uniform
for all θ ∈ H0.
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Proof. p(y; H0) ≤ u implies that g(y, θ) ≤ u for all θ ∈ H0. Hence

Pr{p(Y; H0) ≤ u; θ} ≤ Pr{g(Y, θ) ≤ u; θ}

for all θ ∈ H0, where the final inequality follows because g(Y, θ) is
super-uniform for all θ ∈ Ω, from Theorem 4.1.

If interest concerns H0, then p(yobs; H0) definitely returns more
information than a hypothesis test at any fixed significance level,
because p(yobs; H0) ≤ α implies ‘reject H0’ at significance level α,
and p(yobs; H0) > α implies ‘fail to reject H0’ at signficance level α.
But a p-value of, say, 0.045 would indicate a borderline ‘reject H0’ at
α = 0.05, and a p-value of 0.001 would indicate nearly conclusive
‘reject H0’ at α = 0.05. So the following conclusion is rock-solid:

• When performing a HT, a p-value is more informative than a
simple ‘reject H0’ or ‘fail to reject H0’ at a specified significance
level (such as 0.05).

4.4.2 The general theory of p-values

Theorem 4.4 suggests a more general definition of a p-value, which
does not just apply to hypothesis tests for parametric models, but
which holds much more generally, for any PMF or model for Y. In
the following f0 is any null model for Y, including as a special case
f0 = f (• ; θ0) for some specified θ0 ∈ Ω.

Definition 4.5 (Significance procedure). p : Y → R is a significance
procedure for f0 exactly when p(Y) is super-uniform under f0. If
pt(Y) is uniform under Y ∼ f0, then p is an exact significance
procedure for f0. The value pt(yobs) is a significance level or p-value
for f0 exactly when p is a significance procedure for f0.

This definition can be extended to a set of PMFs for Y by requir-
ing that p is a significance procedure for every element in the set;
this is consistent with the definition of p(y; H0) in Section 4.4.1. The
usual extension would be to take the maximum of the p-values over
the set.11 11 Although Berger and Boos (1994)

have an interesting suggestion for
parametric models.

For any specified f , there are a lot of significance procedures for
H0 : Y ∼ f . An uncountable number, actually, because every test
statistic t : Y → R induces a significance procedure. See Section 4.5 for
the probability theory which underpins the following result.

Theorem 4.5. Let t : Y → R. Define

pt(y; f0) := Pr
�

t(Y) ≥ t(y); f0
�

.

Then pt(Y; f0) is super-uniform under Y ∼ f0. That is, pt(· ; f0) is a
significance procedure for H0 : Y ∼ f0. If the distribution function of t(Y)
is continuous, then pt(· ; f0) is an exact significance procedure for H0.

Proof.

pt(y; f0) = Pr{t(Y) ≥ t(y); f0} = Pr{−t(Y) ≤ −t(y); f0} =: G(−t(y))
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where G is the distribution function of −t(Y) under Y ∼ f0. Then

pt(Y; f0) = G(−t(Y))

which is super-uniform under Y ∼ f0 according to the Probability
Integral Transform (see Section 4.5, notably Theorem 4.7). The
PIT also covers the case where the distribution function of t(Y) is
continuous, in which case pt(· ; f0) is uniform under Y ∼ f0.

Like confidence procedures, significance procedures suffer
from being too broadly defined. Every test statistic induces a
significance procedure. This includes, for example, t(y) = c for
some specified constant c; but clearly a p-value based on this test
statistic is useless.12 So some additional criteria are required to 12 It is a good exercise to check that

t(y) = c does indeed induce a super-
uniform pt(Y; f0) for every f0.

separate out good from poor significance procedures. The most
pertinent criterion is:

• select a test statistic for which t(Y) which will tend to be larger
for decision-relevant departures from H0.

This will ensure that pt(Y; f0) will tend to be smaller under decision-
relevant departures from H0. Thus p-values offer a ‘halfway house’
in which an alterntive to H0 is contemplated, but not stated explic-
itly.

Here is an example. Suppose that there are two sets of observa-

tions, characterised as Y iid∼ f0 and Z iid∼ f1, for unspecified PMFs
f0 and f1. A common question is whether Y and Z have the same
PMF, so we make this the null hypothesis:

H0 : f0 = f1.

Under H0, (Y , Z) iid∼ f0. Every test statistic t(y, z) induces a sig-
nificance procedure. A few different options for the test statistic
are:

1. The sum of the ranks of y in the ordered set of (y, z). This will
tend to be larger if f0 stochastically dominates f1.

2. As above, but with z instead of y.

3. The maximum rank of y in the ordered set of (y, z). This will
tend to be larger if the righthand tail of f0 is longer than that of
f1.

4. As above, but with z instead of y.

5. The difference between the maximum and minimum ranks of y
in the ordered set of (y, z). This will tend to be larger if f0 and f1

have the same location, but f0 is more dispersed than f1.

6. As above, but with z instead of y.

7. And so on . . .
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There is no ‘portmanteau’ test statistic to examine H0, and in my
view H0 should always be replaced by a much more specific null
hypothesis which suggests a specific test statistic. For example,

H0 : f1 stochastically dominates f0.

In this case (2.) above is a useful test statistic. It is implemented as
the Wilcoxon rank sum test (in its one-sided variant).

4.4.3 Being realistic about significance procedures

Section 4.4.1 made the case for reporting a HT in terms of a p-value.
But what can be said about the more general use of p-values to
‘score’ the hypothesis H0 : Y ∼ f0? Let’s look at the logic. As Fisher
himself stated, in reference to a very small p-value,

The force with which such a conclusion is supported is logically
that of the simple disjunction: Either an exceptionally rare chance
has occurred, or the theory of random distribution [i.e. the null
hypothesis] is not true. (Fisher, 1956, p. 39).

Fisher encourages us to accept that rare events seldom happen,
and we should therefore conclude with him that a very small p-
value strongly suggests that H0 is not true. This is uncontroversial,
although how small ‘very small’ should be is more mysterious;
Cowles and Davis (1982) discuss the origin of the α = 0.05 conven-
tion.

But what would he have written if the p-value had turned out
to be large? The p-value is only useful if we conclude something
different in this case, namely that H0 is not rejected. But this is
where Fisher would run into difficulties, because H0 is an artefact:
f0 is a distribution chosen from among a small set of candidates
for our convenience. So we know a priori that H0 is false: nature is
more complex than we can envisage or represent. Fisher’s logical
disjunction is trivial because the second proposition is always true
(i.e. H0 is always false). So either we confirm what we already know
(small p-value, H0 is false) or we fail to confirm what we already
know (large p-value, but H0 is still false). In the latter case, all that
we have found out is that our choice of test statistic is not powerful
enough to tell us what we already know to be true.

This is not how people who use p-values want to interpret them.
They want a large p-value to mean “No reason to reject H0”, so
that when the p-value is small, they can “Reject H0”. They do not
want it to mean “My test statistic is not powerful enough to tell
me what I already know to be true, namely that H0 is false.” But
unfortunately that is what it means.

Statisticians have been warning about misinterpreting p-values
for nearly 60 years (dating from Lindley, 1957). They continue to
do so in fields which use statistical methods to examine hypotheses,
indicating that the message has yet to sink in. So there is now a
huge literature on this topic. A good place to start is Wasserstein
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and Lazar (2016) and then Greenland and Poole (2013), and then
work backwards.

4.5 The Probability Integral Transform

Here is a very elegant and useful piece of probability theory. Let
X be a scalar random quantity with realm X and distribution
function F(x) := Pr(X ≤ x). By convention, F is defined for all
x ∈ R. By construction, limx↓−∞ F(x) = 0, limx↑∞ F(x) = 1, F is
non-decreasing, and F is continuous from the right, i.e.

lim
x�↓x

F(x�) = F(x).

Define the quantile function

F−(u) := inf
�

x ∈ R : F(x) ≥ u
�

. (4.6)

The following result is a cornerstone of generating random quanti-
ties with easy-to-evaluate quantile functions.

Theorem 4.6 (Probability Integral Transform, PIT). Let U have a
standard uniform distribution. If F− is the quantile function of X, then
F−(U) and X have the same distribution.

Proof. Let F be the distribution function of X. We must show that

F−(u) ≤ x ⇐⇒ u ≤ F(x) (†)

because then

Pr{F−(U) ≤ x} = Pr{U ≤ F(x)} = F(x)

as required. So stare at Figure 4.1 for a while.

Values for x0

1

••

•

F•

x

F(x)
u

F−(u)

u�

F−(u�)

Figure 4.1: Figure for the proof of
Theorem 4.6. The distribution function
F is non-decreasing and continuous
from the right. The quantile function
F− is defined in (4.6).

It is easy to check that

u ≤ F(x) =⇒ F−(u) ≤ x,

which is one half of (†). It is also easy to check that

u� > F(x) =⇒ F−(u�) > x.
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Taking the contrapositive of this second implication gives

F−(u�) ≤ x =⇒ u� ≤ F(x),

which is the other half of (†).

Theorem 4.6 is the basis for the following result; recollect the
definition of a super-uniform random quantity from Definition 4.3.
This result is used in Theorem 4.5.

Theorem 4.7. If F is the distribution function of X, then F(X) has a
super-uniform distribution. If F is continuous then F(X) has a uniform
distribution.

Proof. Check from Figure 4.1 that F(F−(u)) ≥ u. Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} from Theorem 4.6

≤ Pr{U ≤ u}
= u.

In the case where F is continuous, it is strictly increasing except on
sets which have probability zero. Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} = Pr{U ≤ u} = u,

as required.
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37(1):1–71. With discussion. 14, 15, 16, 21

Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer-Verlag New York, Inc., NY, USA, second edition. 34

Berger, J. and Boos, D. (1994). P values maximized over a con-
fidence set for the nuisance parameter. Journal of the American
Statistical Association, 89:1012–1016. 51

Berger, J. and Wolpert, R. (1988). The Likelihood Principle. Institute of
Mathematical Statistics, Hayward CA, USA, second edition. Avail-
able online, http://projecteuclid.org/euclid.lnms/1215466210.
14, 19

Bernardo, J. and Smith, A. (2000). Bayesian Theory. John Wiley &
Sons Ltd, Chichester, UK. (paperback edition, first published 1994).
26

Birnbaum, A. (1962). On the foundations of statistical inference.
Journal of the American Statistical Association, 57:269–306. 13, 16

Birnbaum, A. (1972). More concepts of statistical evidence. Journal
of the American Statistical Association, 67:858–861. 14, 16

Casella, G. and Berger, R. (2002). Statistical Inference. Pacific Grove,
CA: Duxbury, 2nd edition. 1, 3

Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to
Algorithms. The MIT Press, Cambridge, MA. 10

Cowles, M. and Davis, C. (1982). On the origins of the .05 level of
statistical significance. American Psychologist, 37(5):553–558. 53

Cox, D. (2006). Principles of Statistical Inference. Cambridge
University Press, Cambridge, UK. 1

Cox, D. and Donnelly, C. (2011). Principles of Applied Statistics.
Cambridge University Press, Cambridge, UK. 1



58

Cox, D. and Hinkley, D. (1974). Theoretical Statistics. Chapman and
Hall, London, UK. 16, 17, 48

Davison, A. (2003). Statistical Models. Cambridge University Press,
Cambridge, UK. 3

Dawid, A. (1977). Conformity of inference patterns. In Barra,
J. et al., editors, Recent Developments in Statistcs. North-Holland
Publishing Company, Amsterdam. 14, 15

Edwards, A. (1992). Likelihood. The Johns Hopkins University Press,
Baltimore, USA, expanded edition. 22

Edwards, W., Lindman, H., and Savage, L. (1963). Bayesian
statistical inference for psychological research. Psychological Review,
70(3):193–242. 44

Efron, B. and Morris, C. (1977). Stein’s paradox in statistics.
Scientific American, 236(5):119–127. Available at http://statweb.
stanford.edu/~ckirby/brad/other/Article1977.pdf. 40

Ferguson, T. (1967). Mathematical Statistics: A Decision Theoretic
Approach. Academic Press, London, UK. 34, 36

Fisher, R. (1956). Statistical Methods and Scientific Inference. Edin-
burgh and London: Oliver and Boyd. 16, 53

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and
Rubin, D. (2014). Bayesian Data Analysis. Chapman and Hall/CRC,
Boca Raton FL, USA, 3rd edition. Online resources at http:
//www.stat.columbia.edu/~gelman/book/. 9

Ghosh, M. and Meeden, G. (1997). Bayesian Methods for Finite
Population Sampling. Chapman & Hall, London, UK. 34

Greenland, S. and Poole, C. (2013). Living with P values: Resurrect-
ing a Bayesian perspective on frequentist statistics. Epidemiology,
24(1):62–68. With discussion and rejoinder, pp. 69–78. 54

Hacking, I. (1965). The Logic of Statistical Inference. Cambridge
University Press, Cambridge, UK. 22

Hacking, I. (2001). An Introduction to Probability and Inductive Logic.
Cambridge University Press, Cambridge, UK. 1

Hacking, I. (2014). Why is there a Philosophy of Mathematics at all?
Cambridge University Press, Cambridge, UK. 2

Harford, T. (2014). Big data: Are we making a big mistake?
Financial Times Magazine. Published online Mar 28, 2014. Available
at http://on.ft.com/P0PVBF. 11, 19

Lad, F. (1996). Operational Subjective Statistical Methods. New York:
John Wiley & Sons. 2

Le Cam, L. (1990). Maximum likelihood: An introduction. Interna-
tional Statistical Review, 58(2):153–171. 5, 23



59

Lindley, D. (1957). A statistical paradox. Biometrika, 44:187–192. See
also Bartlett (1957). 53

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D.
(2013). The BUGS Book: A Practical introduction to Bayesian Analysis.
CRC Press, Boca Raton FL, USA. 9

MacKay, D. (2009). Sustainable Energy – Without the Hot Air. UIT
Cambridge Ltd, Cambridge, UK. available online, at http://www.
withouthotair.com/. 2

Madigan, D., Strang, P., Berlin, J., Schuemie, M., Overhage, J.,
Suchard, M., Dumouchel, B., Hartzema, A., and Ryan, P. (2014).
A systematic statistical approach to evaluating evidence from
observational studies. Annual Review of Statistics and Its Application,
1:11–39. 8

Milner, K. and Rougier, J. (2014). How to weigh a donkey in the
Kenyan countryside. Significance, 11(4):40–43. 38

Morey, R., Hoekstra, R., Rouder, J., Lee, M., and Wagenmakers, E.-
J. (2016). The fallacy of placing confidence in confidence intervals.
Psychonomic Bullentin & Review, 23(1):103–123. 46

Nocedal, J. and Wright, S. (2006). Numerical Optimization. New York:
Springer, 2nd edition. 4

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference
Using Likelihood. Oxford: Clarendon Press. 22

Pearl, J. (2016). The Sure-Thing Principle. Journal of Causal Inference,
4(1):81–86. 19

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. Chap-
man & Hall/CRC Press, Boca Raton FL, USA. 22

Samworth, R. (2012). Stein’s paradox. Eureka, 62:38–41. Available
online at http://www.statslab.cam.ac.uk/~rjs57/SteinParadox.
pdf. Careful readers will spot a typo in the maths. 40

Savage, L. (1954). The Foundations of Statistics. Dover, New York,
revised 1972 edition. 19

Savage, L. et al. (1962). The Foundations of Statistical Inference.
Methuen, London, UK. 1, 22

Schervish, M. (1995). Theory of Statistics. Springer, New York NY,
USA. Corrected 2nd printing, 1997. 1, 5, 9, 34, 36

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002).
Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society, Series B, 64(4):583–616. With discussion,
pp. 616–639. 9



60

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2014).
The deviance information criterion: 12 years on. Journal of the Royal
Statistical Society, Series B, 76(3):485–493. 9

Stigler, S. (2016). The Seven Pillars of Statistical Wisdom. Harvard
University Press, Cambridge MA, USA. 1, 3, 28

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University
Press, Cambridge, UK. 25

Wasserstein, R. and Lazar, N. (2016). The ASA’s statement on
p-values: context, process, and purpose. The American Statistician,
70(2):129–133. 53

Wood, S. (2017). Generalized Linear Models: An Introduction with R.
CRC Press, Boca Raton FL, USA, 2nd edition. 49

Ziman, J. (2000). Real Science: What it is, and what it means. Cam-
bridge University Press, Cambridge, UK. 28


