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In Statistics we quantify our beliefs about things which we would
like to know in the light of other things which we have measured,
or will measure. This programme is not unique to Statistics: one
distinguishing feature of Statistics is the use of probability to quan-
tify the uncertainty in our beliefs. Within Statistics we tend to
separate Theoretical Statistics, which is the study of algorithms
and their properties, from Applied Statistics, which is the use of
carefully-selected algorithms to quantify beliefs about the real
world. This chapter is about Theoretical Statistics.

If I had to recommend one introductory book about Theoretical
Statistics, it would be Hacking (2001). The two textbooks I find
myself using most regularly are Casella and Berger (2002) and
Schervish (1995). For travelling, Cox (2006) and Cox and Donnelly
(2011) are slim and full of insights; Stigler (2016) likewise. If you
can find it, Savage et al. (1962) is a short and gripping account of
the state of Statistics at a critical transition, in the late 1950s and
early 1960s.1 1 And contains the funniest sentence

ever written in Statistics, contributed
by L.J. Savage.

1.1 Statistical models

This section covers the nature of a statistical model, and some of the
basic conventions for notation.

A statistical model is an artefact to link our beliefs about things
which we can measure to things we would like to know. Denote
the values of the things we can measure as Y, and the values of the
things we would like to know as X. These are random quantities,
indicating that their values, ahead of taking the measurements,
are unknown to us. I will refer to X as the predictands, Y as the
observables, and yobs as the observations; the observations are actual
values.

The convention in Statistics is that random quantities are de-
noted with capital letters, and particular values of those random
quantities with small letters; e.g., x is a particular value that X
could take. This sometimes clashes with another convention that
matrices are shown with capital letters and scalars with small let-
ters. A partial resolution is to use normal letters for scalars, and
bold-face letters for vectors and matrices. However, I have stopped
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adhering to this convention, as it it usually clear what X is from the
context. Therefore both X and Y may be collections of quantities.

I term the set of possible (numerical) values for X the realm of
X, after Lad (1996), and denote it X. This illustrates another con-
vention, common throughout Mathematics, that sets are denoted
with ornate letters. The realm of (X, Y) is denoted X× Y. Where the
realm is a product, then the margins are denoted with subscripts.
So if Z = X× Y, then Z1 = X and Z2 = Y. The most common
example is where X = (X1, . . . , Xm), and the realm of each Xi is X,
so that the realm of X is Xm.

In the definition of a statistical model, ‘artefact’ denotes an object
made by a human, e.g. you or me. There are no statistical models
that don’t originate inside our minds. So there is no arbiter to
determine the ‘true’ statistical model for (X, Y)—we may expect to
disagree about the statistical model for (X, Y), between ourselves,
and even within ourselves from one time-point to another.2 In 2 Some people refer to the unknown

data generating process (DGP) for (X, Y),
but I have never found this to be a
useful concept.

common with all other scientists, statisticians do not require their
models to be true. Statistical models exist to make prediction
feasible (see Section 1.3).

Maybe it would be helpful to say a little more about this. Here is
the usual procedure in ‘public’ Science, sanitised and compressed:

1. Given an interesting question, formulate it as a problem with a
solution.

2. Using experience, imagination, and technical skill, make some
simplifying assumptions to move the problem into the mathemat-
ical domain, and solve it.

3. Contemplate the simplified solution in the light of the assump-
tions, e.g. in terms of robustness. Maybe iterate a few times.

4. Publish your simplified solution (including, of course, all of
your assumptions), and your recommendation for the original
question, if you have one. Prepare for criticism.

MacKay (2009) provides a masterclass in this procedure.3 The statis- 3 Many people have discussed the
“unreasonable effectiveness of mathe-
matics”, to use the phrase of Eugene
Wigner; see https://en.wikipedia.

org/wiki/The_Unreasonable_

Effectiveness_of_Mathematics_

in_the_Natural_Sciences. Or, for a
more nuanced view, Hacking (2014).

tical model represents a statistician’s ‘simplifying assumptions’.
A statistical model takes the form of a family of probability distribu-

tions over X× Y. I will assume, for notational convenience, that X× Y

is countable.4 Dropping Y for a moment, let X = {x(1), x(2), . . . }.

4 Everything in this chapter general-
izes to the case where the realm is
uncountable.

The complete set of probability distributions for X is

P =

�
p ∈ Rk : ∀i pi ≥ 0,

k

∑
i=1

pi = 1

�
, (1.1)

where pi = Pr(X = x(i)), and k = |X|, the number of elements of X.
A family of distributions is a subset of P, say F. In other words, a
statistician creates a statistical model by ruling out many possible
probability distributions.

The particular way in which statisticians specify a subset of all
distributions originates with Ronald Fisher in the 1920s; Stephen
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Stigler calls it “One of Ronald A. Fisher’s subtlest innovations”
(Stigler, 2016, p. 180). The family is denoted by a probability mass
function (PMF) fX , a parameter θ, and a parameter space Ω, such that

F =
�

p ∈ P : ∀i pi = fX(x(i); θ) for some θ ∈ Ω
�

. (1.2)

For obvious reasons, we require that if θ� �= θ��, then

fX(· ; θ�) �= fX(· ; θ��); (1.3)

such models are termed identifiable.5 Taken all together, it is conve- 5 Some more notation. fX is a func-
tion; formally, fX : X× Ω → [0, 1].
Two functions can be compared for
equality: as functions are sets of tuples,
the comparison is for the equality of
two sets. fX(· ; θ) is also a function,
fX(· ; θ) : X → [0, 1] but different for
each value of θ. It is a convention in
Statistics to separate the argument x
from the parameter θ using a semi-
colon.

nient to denote a statistical model for X as the triple

E =
�
X, Ω, fX

�
, (1.4)

termed a parametric model. For example, the Poisson family is

Poisson =
�
N,R+, fX

�
where fX(x; θ) = e−θ θx

x!
,

although it is common in this case to use ‘λ’ rather than ‘θ’ as the
label for the parameter.6 Where X is embedded in a larger set, it 6N denotes the set of natural numbers,

and R+ the set of non-negative real
numbers. Mathematicians are flexible
about whether 0 ∈ N: in our case it is.

is understood that fX(x; ·) = 0 for x �∈ X. This would allow us to
define the Poisson distribution over the realm R, if that turned out
to be convenient.

Most statistical procedures start with the specification of a statis-
tical model for (X, Y),

E =
�
X× Y, Ω, fX,Y

�
. (1.5)

The method by which a statistician chooses F and then E is hard to
codify, although experience and precedent are obviously relevant.
See Davison (2003) for a book-length treatment with many useful
examples. Some procedures start with a more general specification
for fX, termed non-parametric statistical models. The most com-
mon is that fX(x1, . . . , xm) is a symmetric function of (x1, . . . , xm),
termed exchangeable.

1.2 Hierarchies of models

The concept of a statistical model was crystalized in the early
part of the 20th century. At that time, when the notion of a digital
computer was no more than a twinkle in John von Neumann’s
eye, the ‘ fY’ in the model

�
Y, Ω, fY

�
was assumed to be a known

analytic function of y for each θ.7 As such, all sorts of other useful 7 That is, a function which can be
evaluated to any specified precision
using a finite number of operations,
like the Poisson PMF or the Normal
probability density function (PDF).

operations are possible, such as differentiating with respect to θ.
Expressions for the PMFs of specified functions of set of random
quantities are also known analytic functions: sums, differences, and
more general transformations.

This was computationally convenient—in fact it was critical
given the resources of the time—but it severely restricted the mod-
els which could be used in practice, more-or-less to the models
found today at the back of every textbook in Statistics (e.g. Casella
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and Berger, 2002), or simple combinations thereof. Since about the
1950s—the start of the computer age—we have had the ability to
evaluate a much wider set of functions, and to simulate random
quantities on digital computers. As a result, the set of usable statis-
tical models has dramatically increased. In modern Statistics, we
now have the freedom to specify the model that most effectively
represents our beliefs about the set of random quantities of inter-
est. Therefore we need to update our notion of statistical model,
according to the following hierarchy.

A. Models where fY has a known analytic form.

B. Models where fY(y; θ) can be evaluated.

C. Models where Y can be simulated from fY(·; θ).

Between (B) and (C) exist models where fY(y; θ) can be evaluated
up to an unknown constant, which may or may not depend on θ.

To illustrate the difference, consider the Maximum Likelihood
Estimator (MLE) of the ‘true’ value of θ based on Y, defined as

θ̂(y) := sup
θ∈Ω

fY(y; θ). (1.6)

Eq. (1.6) is just a sequence of mathematical symbols, waiting to be
instantiated into an algorithm. If fY has a known analytic form,
i.e. level (A) of the hierarchy, then it may be possible to solve the
first-order conditions,8 8 For simplicity and numerical stability,

these would usually be applied to
log fY not fY .∂

∂θ
fY(y; θ) = 0, (1.7)

uniquely for θ as a function of y (assuming, for simplicity, that Ω
is a convex subset of R) and to show that ∂2

∂θ2 fY(y; θ) is negative at
this solution. In this case we are able to derive an analytic expres-
sion for θ̂. Even if we cannot solve the first order conditions, we
might be able to prove that fY(y; ·) is strictly concave, so that we
know there is a unique maximum. This means that any numerical
maximization of fY(y; ·) is guaranteed to converge to θ̂(y).

But what if we can evaluate fY(y; θ), but do not know its form,
i.e. level (B) of the hierarchy? In this case we can still numerically
maximize fY(y; ·), but we cannot be sure that the maximizer will
converge to θ̂(y): it may converge to a local maximum. So the
algorithm for finding θ̂(y) must have some additional procedures to
ensure that all local maxima are ignored: this is very complicated in
practice, very resource intensive, and there are no guarantees.9 So 9 See, e.g., Nocedal and Wright (2006).

Do not be tempted to make up your
own numerical maximization algo-
rithm.

in practice the Maximum Likelihood algorithm does not necessarily
give the MLE. We must recognise this distinction, and not make
claims for the MLE algorithm which we implement, that are based
on theoretical properties of the MLE.

And what about level (C) of the hierarchy? It is very tricky
indeed to find the MLE in this case, and any algorithm that tries
will be very imperfect. Other estimators of θ would usually be
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preferred. This example illustrates that in Statistics it is the choice
of algorithm that matters. The MLE is a good choice only if (i) you
can prove that it has good properties for your statistical model,10 10 Which is often very unclear; see

Le Cam (1990).and (ii) you can prove that your algorithm for finding the MLE is
in fact guaranteed to find the MLE for your statistical model. If
you have used an algorithm to find the MLE without checking both
(i) and (ii), then your results bear the same relation to Statistics as
Astrology does to Astronomy. Doing Astrology is fine, but not if
your client has paid you to do Astronomy.

1.3 Prediction and inference

The applied statistician proposes a statistical model for (X, Y),

E =
�
X× Y, Ω, fX,Y

�
.

She then turns E and yobs into a prediction for X. Ideally she uses
an algorithm, in the sense that were she given the same statistical
model and same observations again, she would produce the same
prediction.

A statistical prediction is always a probability distribution for X,
although it might be summarised, for example as the expectation
of some specified function of X. From the starting point of the
statistical model E and the value of an observable Y we derive the
predictive model

E∗ =
�
X, Ω, f ∗X

�
(1.8a)

where

f ∗X(·; θ) =
fX,Y(·, y; θ)

fY(y; θ)
(1.8b)

and fY(y; θ) = ∑
x

fX,Y(x, y; θ); (1.8c)

I often write ‘∗’ to indicate a suppressed y argument. Here f ∗X is
the conditional PMF of X given that Y = y, and fY is the marginal
PMF of Y. Both of these depend on the parameter θ. The challenge
for prediction is to reduce the family of distributions E∗ down to a
single distribution; effectively, to ‘get rid of’ θ.

There are two approaches to getting rid of θ: plug in and integrate
out, found in the Frequentist and Bayesian paradigms respectively,
for reasons that will be made clear below. We accept, as our work-
ing hypothesis, that one of the elements of the family F is true. For
a specified statistical model E, this is equivalent to stating that ex-
actly one element in Ω is true: denote this element as Θ.11,12 Then 11 Note that I do not feel the need to

write ‘true’ in scare-quotes. Clearly
there is no such thing as a true value
for θ, because the model is an artefact
(i.e. not true in any defensible sense).
But once we accept, as a working
hypothesis, that one of the elements of
F is true, we do not have to belabour
the point.
12 I am following Schervish (1995)
and using Θ for the true value of θ,
although it is a bit clunky as notation.

f ∗X(·; Θ) is the true predictive PMF for X.
For the plug-in approach we replace Θ with an estimate based

on y, for example the MLE θ̂. In other words, we have an algorithm

y �→ f ∗X
�
· ; θ̂(y)

�
(1.9)
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to derive the predictive distribution for X for any y. The estimator
does not have to be the MLE: different estimators of Θ produce
different algorithms.

For the integrate-out approach we provide a prior distribution
over Ω, denoted π.13 This produces a posterior distribution 13 For simplicity, and almost always

in practice, π is a probability density
function (PDF), given that Ω is almost
always a convex subset of Euclidean
space.

π∗(·) = fY(y; ·)π(·)
p(y)

(1.10a)

where

p(y) =
�

Ω
fY(y; θ)π(θ)dθ (1.10b)

(Bayes’s theorem, of course). Here p(y) is termed the marginal
likelihood of y. Then we integrate out θ according to the posterior
distribution—another algorithm:

y �→
�

Ω
f ∗X(· ; θ)π∗(θ)dθ. (1.11)

Different prior distributions produce different algorithms.
That is prediction in a nutshell. In the plug-in approach, each

estimator for Θ produces a different algorithm. In the integrate-
out approach each prior distribution for Θ produces a different
algorithm. Neither approach works on y alone: both need the statis-
tician to provide an additional input: a point estimator, or a prior
distribution. Frequentists dislike specifying prior distributions,
and therefore favour the plug-in approach. Bayesians like speci-
fying prior distributions, and therefore favour the integrate-out
approach.14 14 We often write ‘Frequentists’ and

‘Bayesians’, and most applied statisti-
cians will tend to favour one approach
or the other. But applied statisticians
are also pragmatic. Although a ‘mostly
Bayesian’ myself, I occasionally pro-
duce confidence sets.

* * *

This outline of prediction illustrates exactly how Statistics has
become so concerned with inference. Inference is learning about
Θ, which is a key part of either approach to prediction: either we
need a point estimator for Θ (plug-in), or we need a posterior dis-
tribution for Θ (integrate-out). It often seems as though Statistics is
mainly about inference, but this is misleading. It is about inference
only insofar as inference is the first part of prediction.

Ideally, algorithms for inference should only be evaluated in
terms of their performance as components of algorithms for predic-
tion. This does not happen in practice: partly because it is much
easier to assess algorithms for inference than for prediction; partly
because of the fairly well-justified belief that algorithms that per-
form well for inference will produce algorithms that perform well
for prediction. I will adhere to this practice, and focus mainly on
inference. But not forgetting that Statistics is mainly about prediction.

1.4 Frequentist procedures

As explained immediately above, I will focus on inference. So
consider a specified statistical model E =

�
Y, Ω, fY

�
, where the
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objective is to learn about the true value Θ ∈ Ω based on the value
of the observables Y.

We have already come across the notion of an algorithm, which
is represented as a function of the value of the observables; in this
section I will denote the algorithm as ‘g’. Thus the domain of g is
always Y. The co-domain of g depends on the type of inference (see
below for examples). The key feature of the Frequentist paradigm is
the following principle.

Definition 1.1 (Certification). For a specified model E and algorithm
g, the sampling distribution of g is

fG(v; θ) = ∑
y:g(y)=v

fY(y; θ). (1.12)

Then:

1. Every algorithm is certified by its sampling distribution, and

2. The choice of algorithm depends on this certification.

This rather abstract principle may not be what you were expect-
ing, based on your previous courses in Statistics, but if you reflect
on the following outline you will see that is the common principle
underlying what you have previously been taught.

Different algorithms are certified in different ways, depending on
their nature. Briefly, point estimators of Θ may be certified by their
Mean Squared Error function. Set estimators of Θ may be certified
by their coverage function. Hypothesis tests for Θ may be certified
by their power function. The definition of each of these certifications
is not important here, although they are easy to look up. What
is important to understand is that in each case an algorithm g is
proposed, fG is inspected, and then a certificate is issued.

Individuals and user communities develop conventions about
what certificates they like their algorithms to possess, and thus they
choose an algorithm according to its certification. They report both
g(yobs) and the certification of g. For example, “(0.73, 0.88) is a 95%
confidence interval for Θ”. In this case g is a set estimator for Θ, it
is certified as ‘level 95%’, and its value is g(yobs) = (0.73, 0.88).

* * *
Certification is extremely challenging. Suppose I possess an

algorithm g : Y → 2Ω for set estimation.15 In order to certify it 15 Notation. 2Ω is the set of all subsets
of Ω, termed the ‘power set’ of Ω.as a confidence procedure for my model E I need to compute its

coverage for every θ ∈ Ω, defined as

coverage(θ;E) = Pr{θ ∈ g(Y); θ} = ∑
v
1θ∈v fG(v; θ), (1.13)

where ‘1a’ is the indicator function of the proposition a, which
is 0 when a is false, and 1 when a is true. Except in special cases,
computing the coverage for every θ ∈ Ω is impossible, given that Ω
is uncountable.16 16 The special cases are a small subset

of models from (A) in the model
hierarchy in Section 1.2, where, for a
particular choice of g, the sampling
distribution of g and the coverage
of g can be expressed as an analytic
function of θ. If you ever wondered
why the Normal linear model is so
common in applied statistics (linear
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So, in general, I cannot know the coverage function of my algo-
rithm g for my model E, and thus I cannot certify it accurately, but
only approximately. Unfortunately, then I have a second challenge.
After much effort, I might (approximately) certify g for my model E
as, say, ‘level 83%’; this means that the coverage is at least 83% for
every θ ∈ Ω. Unfortunately, the convention in my user community
is that confidence procedures should be certified as ‘level 95%’. So
it turns out that my community will not accept g. I have to find a
way to work backwards, from the required certificate, to the choice
of algorithm.

So Frequentist procedures require the solution of an intractable
inverse problem: for specified model E, produce an algorithm g
with the required certificate. Actually, it is even harder than this,
because it turns out that there are an uncountable number of algo-
rithms with the right certificate, but most of them are useless. Most
applied statisticians do not have the expertise or the computing
resources to solve this problem to find a good algorithm with the re-
quired certificate, for their model E. And so Frequentist procedures,
when they are used by applied statisticians, tend to rely on a few
special cases. Where these special cases are not appropriate, applied
statisticians tend to reach for an off-the-shelf algorithm justified
using a theoretical approximation, plus hope.

The empirical evidence collected over the last decade suggests
that the hope has been in vain. Most algorithms (including those
based on the special cases) did not, in fact, have the certificate that
was claimed for them.17 Opinion is divided about whether this is 17 See Madigan et al. (2014) for one

such study or, if you want to delve,
google “crisis reproducibility science”.
There is even a wikipedia page,
https://en.wikipedia.org/wiki/

Replication_crisis, which dates from
Jan 2015.

fraud or merely ignorance. Practically speaking, though, there is
no doubt that Frequentist procedures are not being successfullly
implemented by applied statisticians.

1.5 Bayesian procedures

We continue to treat the model E as given. As explained in the pre-
vious section, Frequentist procedures select algorithms according
to their certificates. By contrast, Bayesian procedures select algo-
rithms mainly according to the prior distribution π (see Section 1.3),
without regard for the algorithm’s certificate.

A Bayesian inference is synonymous with the posterior distribu-
tion π∗, see (1.10). This posterior distribution may be summarized
according to some method, for example to give a point estimate, a
set estimate, do a hypothesis test, and so on. These summary meth-
ods are fairly standard, and do not represent an additional source
of choice for the statistician. For example, a Bayesian algorithm for
choosing a set estimator for Θ would be (i) choose a prior distribu-
tion π, (ii) compute the posterior distribution π∗, and (iii) extract
the 95% High Density Region (HDR).

In principle, we could compute the coverage function of this al-
gorithm, and certify it as a confidence procedure. It is very unlikely
that it would be certified as a ‘level 95%’ confidence procedure,
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because of the influence of the prior distribution.18 A Bayesian 18 Nevertheless, there are theorems
that give conditions on the model and
the prior distribution such that the
posterior 95% HDR is approximately
a level 95% confidence procedure; see,
e.g., Schervish (1995, ch. 7).

statistician would not care, though, because she does not concern
herself with the certificate of her algorithm. When the model is
given, the only thing the Bayesian has to worry about is her prior
distribution.

Bayesians see the prior distribution as an opportunity to con-
struct a richer model for (X, Y) than is possible for Frequentists.
This is most easily illustrated with a hierarchical model, for a
population of quantities that are similar, and a sample from that
population. Hierarchical models have a standard notation:19 19 See, e.g., Lunn et al. (2013) or

Gelman et al. (2014). Each of the f
functions is a PMF or PDF, and the
first argument is suppressed. The i
index in the first three rows indicates
that the components are mutually
independent, and then the f function
shows the marginal distribution for
each i, which may depend on i. In the
third row f does not depend on i, so
that the θi’s are mutually independent
and identically distributed, or ‘IID’.

Yi | Xi, σ2 ∼ f�i (Xi, σ2) i = 1, . . . , n (1.14a)

Xi | θi ∼ fXi (θi) i = 1, . . . , m (1.14b)

θi | ψ ∼ fθ(ψ) i = 1, . . . , m (1.14c)

(σ2, ψ) ∼ f0 . (1.14d)

At the top (first) level is the measurement model for the sample
(Y1, . . . , Yn), where f�i describes the measurement error and σ2

would usually be a scale parameter. At the second level is the
model for the population (X1, . . . , Xm), where n ≤ m, showing
how each element Xi is ‘summarised’ by its own parameter θi. At
the third level is the parameter model, in which the parameters
are allowed to be different from each other. At the bottom (fourth)
level is the ‘hyper-parameter’ model, which describes how much
the parameters can differ, and also provides a PDF for the scale
parameter σ2.

Frequentists would specify their statistical model using just the
top two levels, in terms of the parameter (σ2, θ1, . . . , θm), or, if this
is too many parameters for the n observables, as it usually is, they
will insist that θ1 = · · · = θm = θ, and have just (σ2, θ). The bottom
two levels are the Bayesian’s prior distribution. By adding these
two levels, Bayesians can allow the θi’s to vary, but in a limited way
that can be controlled by their choices for fθ and f0. Usually, f0 is a
‘vague’ PDF selected according to some simple rules.

In a Frequentist model we can count the number of param-
eters, namely 1 + m · dim Ω, or just 1 + dim Ω if the θi’s are
all the same. We can do that in a Bayesian model too, to give
1 + m · dim Ω + dim Ψ, if Ψ is the realm of ψ. Bayesian models
tend to have many more parameters, which makes them more flex-
ible. But there is a second concept in a Bayesian model, which is
the effective number of parameters. This can be a lot lower than the
actual number of parameters, if it turns out that the observations
indicate that the θi’s are all very similar. So in a Bayesian model the
effective number of parameters can depend on the observations. In
this sense, a Bayesian model is more adaptive than a Frequentist
model.20 20 The issue of how to quantify the

effective number of parameters is
quite complicated. Spiegelhalter
et al. (2002) was a controversial
suggestion, and there have been
several developments since then,
summarised in Spiegelhalter et al.
(2014).
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1.6 So who’s right?

We return to the problem of inference, based on the model E =
�
Y, Ω, fY

�
.

Here is the pressing question, from the previous two sections:
should we concern ourselves with the certificate of the algorithm, or
with the choice of the prior distribution?

A Frequentist would say “Don’t you want to know that you will
be right ‘on average’ according to some specified rate?” (like 95%).
And a Bayesian will reply “Why should my rate ‘on average’ matter
to me right now, when I am thinking only of Θ?”21 The Bayesian 21 And if she really wants to twist

the knife she will also mention the
overwhelming evidence that Frequen-
tist statisticians have apparently not
been able to achieve their target rates,
mentioned at the end of Section 1.4.

will point out the advantage of being able to construct hierarchical
models with richer structure. Then the Frequentist will criticise
the ‘subjectivity’ of the Bayesian’s prior distribution. The Bayesian
will reply that the model is also subjective, and so ‘subjectivity’ of
itself cannot be used to criticise only Bayesian procedures. And she
will go on to point out that there is just as much subjectivity in the
Frequentist’s choice of algorithm as there is in the Bayesian’s choice
of prior.

There is no clear winner when two paradigms butt heads. How-
ever, momentum is now on the side of the Bayesians. Back in the
1920s and 1930s, at the dawn of modern Statistics, the Frequentist
paradigm seemed to provide the ‘objectivity’ that was then prized
in science. And computation was so rudimentary that no one
thought beyond the simplest possible models, and their natural al-
gorithms. But then the Frequentist paradigm took a couple of hard
knocks: from Wald’s Complete Class Theorem in 1950 (covered
in Chapter 3), and from Birnbaum’s Theorem and the Likelihood
Principle in the 1960s (covered in Chapter 2). Significance testing
was challenged by Lindley’s paradox; estimator theory by Stein’s
paradox and the Neyman-Scott paradox. Bayesian methods were
much less troubled by these results, and were developed in the
1950s and 1960s by two very influential champions, L.J. Savage and
Dennis Lindey, building on the work of Harold Jeffreys.22 22 With a strong assist from the mav-

erick statistician I.J. Good. The intel-
lectual forebears of the 20th century
Bayesian revival included J.M. Keynes,
F.P. Ramsey, Bruno de Finetti, and
R.T. Cox.

And then in the 1980s, the exponential growth in computer
power and new Monte Carlo methods combined to make the
Bayesian approach much more practical. Additionally, datasets
have got larger and more complicated, favouring the Bayesian
approach with its richer model structure, when incorporating the
prior distribution. Finally, there is now much more interest in
uncertainty in predictions, something that the Bayesian integrate-
out approach handles much better than the Frequentist plug-in
approach (Section 1.3).

However, I would not rule out a partial reversal in due course,
under pressure from Machine Learning (ML). ML is all about
algorithms, which are often developed quite independently of any
statistical model. With modern Big Data (BD), the primary concern
of an algorithm is that it executes in a reasonable amount of time
(see, e.g., Cormen et al., 1990). But it would be natural, when an
ML algorithm might be applied by the same agent thousands of
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times in quite similar situations, to be concerned about its sampling
distribution.23 With BD the certificate can be assessed from a held- 23 For example, if an algorithm is a

binary classifier, to want to know its
‘false positive’ and ‘false negative’
rates.

out subset of the data, without any need for a statistical model—no
need for statisticians at all then! Luckily for us statisticians, there
will always be plenty of applications where ML techniques are less
effective, because the datasets are smaller, or more complicated.
In these applications, I expect Bayesian procedures will come to
dominate.24 24 See Harford (2014) for an interesting

essay about why big is not always
better, and why in many situations we
can expect statisticians to outperform
’data analysts’.


