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Principles for Statisical Inference

From Theory of Inference, Jonathan
Rougier, Copyright © University of
Bristol 2017.

This chapter will be a lot clearer if you have recently read Chap-
ter 1. An extremely compressed version follows. As a working
hypothesis, we accept the truth of a statistical model

E :=
{
X, Ω, f

}
(2.1)

where X is the realm of a set of random quantities X, θ is a param-
eter with domain Ω (the ‘parameter space’), and f is a probability
mass function for which f (x; θ) is the probability of X = x under
parameter value θ.1 The true value of the parameter is denoted 1 As is my usual convention, I assume,

without loss of generality, that X is
countable, and that Ω is uncountable.

Θ. Statistical inference is learning about Θ from the value of X,
described in terms of an algorithm involving E and x. Although
Statistics is really about prediction, inference is a crucial step in
prediction, and therefore often taken as a goal in its own right.

Statistical principles guide the way in which we learn about Θ.
They are meant to be either self-evident, or logical implications
of principles which are self-evident. What is really interesting
about Statistics, for both statisticians and philosophers (and real-
world decision makers) is that the logical implications of some self-
evident principles are not at all self-evident, and have turned out
to be inconsistent with prevailing practices. This was a discovery
made in the 1960s. Just as interesting, for sociologists (and real-
world decision makers) is that the then-prevailing practices have
survived the discovery, and continue to be used today.

This chapter is about statistical principles, and their implications
for statistical inference. It demonstrates the power of abstract
reasoning to shape everyday practice.

2.1 Reasoning about inferences

Statistical inferences can be very varied, as a brief look at the ‘Re-
sults’ sections of the papers in an Applied Statistics journal will
reveal. In each paper, the authors have decided on a different inter-
pretation of how to represent the ‘evidence’ from their dataset. On
the surface, it does not seem possible to construct and reason about
statistical principles when the notion of ‘evidence’ is so plastic. It
was the inspiration of Allan Birnbaum (Birnbaum, 1962) to see—
albeit indistinctly at first—that this issue could be side-stepped.
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Over the next two decades, his original notion was refined; key
papers in this process were Birnbaum (1972), Basu (1975), Dawid
(1977), and the book by Berger and Wolpert (1988).

The model E is accepted as a working hypothesis, and so the
existence of the true value Θ is also accepted under the same terms.
How the statistician chooses her statements about the true value Θ
is entirely down to her and her client: as a point or a set in Ω, as a
choice among alternative sets or actions, or maybe as some more
complicated, not ruling out visualizations. Dawid (1977) puts this
well—his formalism is not excessive, for really understanding this
crucial concept. The statistician defines, a priori, a set of possible
‘inferences about Θ’, and her task is to choose an element of this
set based on E and x. Thus the statistician should see herself as
a function ‘Ev’: a mapping from (E, x) into a predefined set of
‘inferences about Θ’, or

(E, x) �
statistician, Ev

// Inference about Θ.

Birnbaum called E the ‘experiment’, x the ‘outcome’, and Ev the
‘evidence’.

Birnbaum’s formalism, of an experiment, an outcome, and an
evidence function, helps us to anticipate how we can construct
statistical principles. First, there can be different experiments with
the same Θ. Second, under some outcomes, we would agree that
it is self-evident that these different experiments provide the same
evidence about Θ. Finally, as will be shown, these self-evident
principles imply other principles. These principles all have the
same form: under such and such conditions, the evidence about Θ
should be the same. Thus they serve only to rule out inferences that
satisfy the conditions but have different evidences. They do not tell
us how to do an inference, only what to avoid.

But if you find the idea of ‘Ev’ too abstract, then replace it in
your mind and your notes with a specific instance of ‘Ev’, such as
the ML estimate or a 95% confidence interval. E.g., everywhere you
see ‘Ev’, read it as ‘ML estimate of Θ’.

2.2 The principle of indifference

Here is our first example of a statistical principle, using the name
conferred by Basu (1975). Recollect that once f (x; θ) has been
defined, f (x; •) is a function of θ, potentially a different function for
each x, and f (• ; θ) is a function of x, potentially a different function
for each θ.2 2 I am using ‘•’ instead of ‘·’ in this

chapter and subsequent ones, be-
cause I like to use ‘·’ to denote scalar
multiplication.

Definition 2.1 (Weak Indifference Principle, WIP). Let E = {X, Ω, f }.
If x, x′ ∈ X satisfy f (x; •) = f (x′; •), then Ev(E, x) = Ev(E, x′).

In my opinion, this is not self-evident, although, at the same
time, is it not obviously wrong.3 But we discover that it is the 3 Birnbaum (1972) thought it was

self-evident.



15

logical implication of two other principles which I accept as self-
evident. These other principles are as follows, using the names
conferred by Dawid (1977).

Definition 2.2 (Distribution Principle, DP). If E = E′, then
Ev(E, x) = Ev(E′, x).

As Dawid (1977) puts it, any information which is not repre-
sented in E is irrelevant. This seems entirely self-evident to me,
once we enter the mathematical realm in which we accept the truth
of our statistical model.

Definition 2.3 (Transformation Principle, TP). Let E = {X, Ω, f }.
Let g : X → Y be bijective, and let Eg be the same experiment
as E but expressed in terms of Y = g(X), rather than X. Then
Ev(E, x) = Ev(Eg, g(x)).

This principle states that inferences should not depend on the
way in which the sample space is labelled, which also seems self-
evident to me; at least, to violate this principle would be bizarre.
But now we have the following result (Basu, 1975; Dawid, 1977).

Theorem 2.1. (DP∧ TP )→ WIP.

Proof. Fix E, and suppose that x, x′ ∈ X satisfy f (x; •) = f (x′; •),
as in the condition of the WIP. Now consider the transformation
g : X → X which switches x for x′, but leaves all of the other
elements of X unchanged. In this case E = Eg. Then

Ev(E, x′) = Ev(Eg, x′) by the DP

= Ev(Eg, g(x))

= Ev(E, x) by the TP,

which is the WIP. WIP

DP

DD

TP

ZZ

So I find, as a matter of logic, I must accept the WIP, or else I
must decide which of the two principles DP and TP are, contrary to
my initial impression, not self-evident at all. This is the pattern of
the next two sections, where either I must accept a principle, or, as
a matter of logic, I must reject one of the principles that implies it.
From now on, I will treat the WIP as self-evident.

2.3 The Likelihood Principle

The new concept in this section is a ‘mixture’ of two experiments.
Suppose I have two experiments,

E1 = {X1, Ω, f1} and E2 = {X2, Ω, f2},

which have the same parameter Θ. Rather than do one experiment
or the other, I imagine that I can choose between them randomly,
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based on known probabilities (p1, p2), where p2 = 1 − p1. The
resulting mixture is denoted E∗ =

{
X∗, Ω, f ∗

}
, where

X∗ =
(
{1} ×X1

)
∪
(
{2} ×X2

)
, (2.2a)

f ∗
(
(i, xi); θ

)
= pi · fi(xi; θ). (2.2b)

E∗ is a mixture experiment.
The famous example of a mixture experiment is the ‘two in-

struments’ (see Cox and Hinkley, 1974, sec. 2.3). There are two
instruments in a laboratory, and one is accurate, the other less so.
The accurate one is more in demand, and typically it is busy 80%
of the time. The inaccurate one is usually free. So, a priori, there is
a probability of p1 = 0.2 of getting the accurate instrument, and
p2 = 0.8 of getting the inaccurate one. Once a measurement is
made, of course, there is no doubt about which of the two instru-
ments was used. The following principle asserts what must be
self-evident to everybody, that inferences should be made according
to which instrument was used, and not according to the a priori
uncertainty. Or, to paraphrase, don’t take into account experiments that
were not performed.

Definition 2.4 (Weak Conditionality Principle, WCP). If E∗ is a
mixture experiment, as defined above, then

Ev
(
E∗, (i, xi)

)
= Ev(Ei, xi).

* * *

Another principle does not seem, at first glance, to have anything
to do with the WCP. This is the Likelihood Principle.4 4 The LP is self-attributed to

G. Barnard, see his comment to
Birnbaum (1962), p. 308. But it is al-
luded to in the statistical writings of
R.A. Fisher, almost appearing in its
modern form in Fisher (1956).

Definition 2.5 (Likelihood Principle, LP). Let E1 and E2 be two
experiments which have the same parameter Θ. If x1 ∈ X1 and
x2 ∈ X2 satisfy

f1(x1; •) = c(x1, x2) · f2(x2; •) (2.3)

for some function c > 0, then Ev(E1, x1) = Ev(E2, x2).

For a given (E, x), the function f (x; •) is termed the ‘likelihood
function’ for θ ∈ Ω. Thus the LP states that if two likelihood
functions for the same parameter have the same shape, then the
evidence is the same—hence the name. As will be discussed in
Section 2.6.3, Frequentist inferences violate the LP. Therefore the
following result was something of the bombshell, when it first
emerged in the 1960s. The following form is due to Birnbaum
(1972) and Basu (1975).5 5 Birnbaum’s original result (Birnbaum,

1962), used a stronger condition than
WIP and a slightly weaker condition
than WCP. Theorem 2.2 is clearer.

Theorem 2.2 (Birnbaum’s Theorem). (WIP∧WCP )↔ LP.

Proof. Both LP → WIP and LP → WCP are straightforward. The
trick is to prove (WIP ∧WCP ) → LP. So let E1 and E2 be two
experiments which have the same parameter, and suppose that
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x1 ∈ X1 and x2 ∈ X2 satisfy f2(x2; •) = c · f1(x1; •), where c > 0 is
some constant which may depend on (x1, x2), as in the condition of
the LP. The value c is known, so consider the mixture experiment
with p1 = c/(1 + c) and p2 = 1/(1 + c). Then

f ∗
(
(1, x1); •

)
=

c
1 + c

· f1(x1; •)

=
1

1 + c
· f2(x2; •)

= f ∗
(
(2, x2); •

)
.

Then the WIP implies that

Ev
(
E∗, (1, x1)

)
= Ev

(
E∗, (2, x2)

)
.

Finally, apply the WCP to each side to infer that

Ev(E1, x1) = Ev(E2, x2),

which is the LP.

LPDD

��

ZZ

��
WIP WCP

DP

DD

TP

ZZ
Again, to be clear about the logic: either I accept the LP, or I

explain which of the two principles, WIP and WCP, I refute. To me,
the WIP is the implication of two principles that are self-evident,
and the WCP is itself self-evident, so I must accept the LP, or else
invoke and justify an ad hoc abandonment of logic.

A simple way to understand the impact of the LP is to see what
it rules out. The following result is used in Section 2.6.3.

Theorem 2.3. If Ev is affected by the allocation of probabilities for out-
comes that do not occur, then Ev does not satisfy the LP.

Proof. Because in this case starting from E =
{
X, Ω, f

}
we could

construct another model E1 =
{
X, Ω, f1

}
where f1(x; •) = f (x; •)

but Ev(E1, x) 6= Ev(E, x), by manipulating the values of f1(x′; θ) for
x′ 6= x. This would violate the LP.

2.4 Stronger forms of the Conditionality Principle

The new concept in this section is ‘ancillarity’. This has several
different definitions in the Statistics literature; mine is close to that
of Cox and Hinkley (1974, sec. 2.2).

Definition 2.6 (Ancillary). X is ancillary in experiment

E =
{
X× Y, Ω1 ×Ω2, fX,Y

}
exactly when fX,Y factorises as

fX,Y(x, y; θ) = fX(x) · fY|X(y | x; θ).

In other words, the marginal distribution of X is completely
specified. Not all families of distributions will factorise in this way,
but when they do, there are new possibilities for inference, based
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around stronger forms of the WCP, such as the CP immediately
below, and the SCP (Definition 2.9).

When X is ancillary, we can consider the conditional experiment

EY|x =
{
Y, Ω, fY|x

}
, (2.4)

where fY|x(y; θ) := fY|X(y | x; θ). This is an experiment where
we condition on X = x, i.e. treat X as known, and treat Y as the
only random quantity. This is an attractive idea, captured in the
following principle.

Definition 2.7 (Conditionality Principle, CP). If X is ancillary in E,
then Ev

(
E, (x, y)

)
= Ev(EY|x, y).

Clearly the CP implies the WCP, with the experiment indicator
I ∈

{
1, 2
}

being ancillary, since p is known. It is almost obvious
that the CP comes for free with the LP. Another way to put this is
that the WIP allows us to ‘upgrade’ the WCP to the CP.

Theorem 2.4. LP→ CP.

Proof. Suppose that X is ancillary in E =
{
X× Y, Ω, fX,Y

}
. Thus

fX,Y(x, y; •) = fX(x) · fY|X(y | x; •) = c(x) · fY|x(y; •),

where c > 0. Then the LP implies that

Ev
(
E, (x, y)

)
= Ev(EY|x, y),

which is the CP.

I am unsure how useful the CP is in practice. Conditioning on
ancillary random quantities is a nice option, but how often do we
contemplate an experiment in which X is ancillary? Much more
common is the weaker condition that the marginal distribution
of X depends on parameters which we are not interested in; such
parameters are termed nuisance parameters. Hence the following
extension.

Definition 2.8 (Auxiliary). X is auxiliary in the experiment

E =
{
X× Y, Ψ×Ω, fX,Y

}
exactly when

fX,Y(x, y; ψ, θ) = fX(x; ψ) · fY|X(y | x; θ)

and ψ is a nuisance parameter.

In other words, the marginal distribution of X depends on
nuisance parameters wich do not occur occur in the conditional
distribution of Y | X. Now this would be a really useful principle:

Definition 2.9 (Strong Conditionality Principle, SCP). If X is auxil-
iary in experiment E, and Evθ denotes the evidence about Θ, then
Evθ

(
E, (x, y)

)
= Ev(EY|x, y).
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Here is a example which will be familiar to all statisticians.
A regression of Yi on Xi appears to make a distinction between
the ‘dependent variable’ Yi and the ‘covariates’ Xi, with only the
former being treated as random. This distinction is insupportable,
given that the roles of Yi and Xi are often interchangeable, and
determined by the hypothèse du jour. What we are actually doing is
asserting that Xi is auxiliary, and then invoking the SCP to treat Xi

as known.
Here is another example. We want to find out about the effect of

Xi on Yi. So we set out to collect some values (Xi, Yi) for a sample
of size m, but only n < m people respond. Undoubtedly, the inclina-
tion to respond varies in the population, and in a way that depends
on (Xi, Yi). If we choose to simply ignore the non-responders and
use the n observations that we have, then what we are actually
doing is asserting that (Xi, Ri) is auxiliary in the joint model of
(Xi, Ri, Yi), where Ri = 0 for non-response, and Ri = 1 for response,
and then invoking the SCP to treat (Xi, Ri) as known. Asserting
that (Xi, Ri) is auxiliary is a powerful and subtle modelling assump-
tion, termed non-informative missingness, and should not be made
without careful reflection. Selection bias is what happens when this
modelling assumption is inappropriate.6 6 See Harford (2014) for selection bias

and Big Data.There are many other similar examples, to suggest that not only
would the SCP be a really useful principle, but in fact it is routinely
applied in practice. So it is important to know how the SCP relates
to the other principles. The SCP is not deducible from the LP
alone. However, it is deducibe with an additional and very famous
principle, due originally to Savage (1954, sec. 2.7), in a different
form.7 7 See Pearl (2016) for an interesting

take on the STP.
Definition 2.10 (Sure Thing Principle, STP). Let

E1 =
{
X1, Ωθ , f1

}
and E2 =

{
X2, Ωψ ×Ωθ , f2

}
i.e. where the parameter of E2 extends that of E1. Let Evθ(• ; ψ)

denote the evidence for Θ, with Ψ = ψ. If

Evθ(E2, x2; ψ) = Ev(E1, x1) for every ψ,

then Evθ(E2, x2) = Ev(E1, x1), where Evθ is the evidence for Θ.

In words, if our inference about Θ in E2 were the same as that
in E1 for every possible value of Ψ, then not knowing Ψ would
be no impediment to inference about Θ. Most people find this
self-evident. This use of the STP to bridge from the CP to the SCP
is similar to the Noninformative Nuisance Parameter Principle
(NNPP) of Berger and Wolpert (1988, p. 41.5): my point here is that
the NNPP is actually the well-known Sure Thing Principle, and
does not need a separate name.

Theorem 2.5. (CP∧ STP )→ SCP.

Proof. Consider the experiment from Definition 2.8. Treat ψ as
known, in which case the parameter is θ, X is ancillary, and the CP
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asserts that

Evθ

(
E, (x, y); ψ

)
= Ev(EY|x, y).

As this equality holds for all ψ, the STP implies that

Evθ

(
E, (x, y)

)
= Ev(EY|x, y),

which is the SCP.

STP

��
LP

�� ��

// CP // SCP

WIP WCP

DP

DD

TP

ZZ
I am happy to accept the STP as self-evident, and since I also

accept the LP (which implies the CP), for me to violate the SCP
would be illogical. The SCP constrains the way in which I link Ev
and Evθ .

2.5 Stopping rules

Consider a sequence of random quantities X1, X2, . . . with marginal
PMFs

fn(x1, . . . , xn; θ) n = 1, 2, . . . ,

where consistency requires that

fn(x1, . . . , xn; θ) = ∑
y1

· · ·∑
ym

fn+m(x1, . . . , xn, y1, . . . ym; θ)

for each n, m ∈ 1, 2, . . . .8 In a sequential experiment, the number of 8 This is Kolmogorov’s consistency
condition.X’s that are observed is not fixed in advanced but depends on the

values seen so far. That is, at time j, the decision to observe Xj+1

can be modelled by a probability pj(x1, . . . , xj). We can assume,
resources being finite, that the experiment must stop at specified
time m, if it has not stopped already, hence pm(x1, . . . , xm) = 0.
Denote the stopping rule as τ := (p1, . . . , pm).

Definition 2.11 (Stopping Rule Principle, SRP). In a sequential ex-
periment Eτ , Ev

(
Eτ , (x1, . . . , xn)

)
does not depend on the stopping

rule τ.

The SRP is nothing short of revolutionary, if it is accepted. It
implies that that the intentions of the experimenter, represented by
τ, are irrelevant for making inferences about Θ, once the observa-
tions (x1, . . . , xn) are available. Thus the statistician could proceed
as though the simplest possible stopping rule were in effect, which
is p1 = · · · = pn−1 = 1 and pn = 0, an experiment with n fixed
in advance. Obviously it would be liberating for the statistician
to put aside the experimenter’s intentions (since they may not be
known and could be highly subjective), but can the SRP possibly be
justified? Indeed it can.

Theorem 2.6. LP→ SRP.

Proof. Let τ be an arbitrary stopping rule, and consider the out-
come (x1, . . . , xn), which I will write as x1:n for convenience. The
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probability of this outcome under τ is

fτ(x1:n; θ)

= f1(x1; θ) ·
n−1

∏
j=1

pj(x1:j) f j+1(xj+1 | x1:j; θ) ·
(
1− pn(x1:n)

)
=

n−1

∏
j=1

pj(x1:j) ·
(
1− pn(x1:n)

)
× f1(x1; θ)

n

∏
j=2

f j(xj | x1:(j−1); θ)

=
n−1

∏
j=1

pj(x1:j) ·
(
1− pn(x1:n)

)
× fn(x1:n; θ).

Now observe that this equation has the form

fτ(x1:n; •) = c(x1:n) · fn(x1:n; •) c > 0. (†)

Thus the LP implies that Ev(Eτ , x1:n) = Ev(En, x1:n) where
En :=

{
Xn, Ω, fn

}
. Since the choice of stopping rule was arbi-

trary, (†) holds for all stopping rules, showing that the choice of
stopping rule is irrelevant.

SRP STP

��
LPCC

��

[[

��

//

OO

CP // SCP

WIP WCP

DP

DD

TP

[[
I think this is one of the most beautiful results in the whole of

Theoretical Statistics.
To illustrate the SRP, consider the following example from

Basu (1975, p. 42). Four different coin-tossing experiments (with
some finite limit on the number of tosses) have the same outcome
x = (T,H,T,T,H,H,T,H,H,H):

E1 Toss the coin exactly 10 times;

E2 Continue tossing until 6 heads appear;

E3 Continue tossing until 3 consecutive heads appear;

E4 Continue tossing until the accumulated number of heads exceeds
that of tails by exactly 2.

One could easily adduce more sequential experiments which gave
the same outcome. According to the SRP, the evidence for the
probability of heads is the same in every case. Once the sequence
of heads and tails is known, the intentions of the original experi-
menter (i.e. the experiment she was doing) are immaterial to infer-
ence about the probability of heads, and the simplest experiment E1

can be used for inference.
The SRP can be strengthened to stopping rules which are un-

known stochastic functions of (x1, . . . , xj), as long as the true value
of the parameter ψ in pj(x1, . . . , xj; ψ) is unrelated to the true value
Θ. This is the Strong Stopping Rule Principle (SSRP).

Theorem 2.7. (LP∧ STP)→ SSRP.

Proof. Repeat the previous proof with a ‘; ψ’ inside pj. Then use the
STP to ignore the presence of ψ in c.
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SRP SSRP STP

��

oo

LPCC

��

[[

��

//

OO CC

CP // SCP

WIP WCP

DP

DD

TP

[[
In the absence of any information about the experimenter’s

intentions, the SSRP is the principle that needs to be invoked.

* * *
The Stopping Rule Principle has become enshrined in our profes-

sion’s collective memory due to this iconic comment from L.J. Sav-
age, one of the great statisticians of the 20th century:

May I digress to say publicly that I learned the stopping rule prin-
ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, I then thought it a scandal that anyone in the profes-
sion could advance an idea so patently wrong, even as today I can
scarcely believe that some people resist an idea so patently right.
(Savage et al., 1962, p. 76)

This comment captures the revolutionary and transformative nature
of the SRP.

2.6 The Likelihood Principle in practice

Now we should pause for breath, and ask the obvious questions: is
the LP vacuuous? Or trivial? In other words, Is there any inferential
approach which respects it? Or do all inferential approaches respect
it? In this section I consider three approaches: likelihood-based
inference, Bayesian inference, and Frequentist inference. The first
two satisfy the LP, and the third does not. I also show that the
first two also satisfy the SCP, which is the best possible result for
conditioning on ancillary random quantities, side-stepping nuisance
parameters, and ignoring stopping rules.

2.6.1 Likelihood-based inference (LBI)

The evidence from (E, x) can be summarised in the likelihood func-
tion:

L : θ 7→ f (x; θ). (2.5)

A small but influential group of statisticians have advocated that
evidence is not merely summarised by L, but is actually derived
entirely from the shape of L; see, for example, Hacking (1965),
Edwards (1992), Royall (1997), and Pawitan (2001). Hence:

Definition 2.12 (Likelihood-based inference, LBI). Let E be an
experiment with outcome x. Under LBI,

Ev(E, x) = I(L)

for some operator I depending on Ev, for which I(L) = I(c(x) · L)
for every c > 0.

The invariance of I to c shows that only the shape of L matters:
its scale does not matter at all.

The main operators for LBI are the Maximum Likelihood Estimator
(MLE)

θ̂ = argsup
θ∈Ω

L(θ) (2.6)
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for point estimation, and Wilks level sets

Ĉk =
{

θ ∈ Ω : log L(θ) ≥ log L(θ̂)− k
}

(2.7)

for set estimation and hypothesis testing, where k may depend on
x. Wilks level sets have the interesting and reassuring property that
they are invariant to bijective transformations of the parameter.9 9 It is insightful to formalize this

notion, and prove it.Both of these operators satisfy I(L) = I(c · L). However, they are
not without their difficulties: the MLE is sometimes undefined and
often ill-behaved (see, e.g., Le Cam, 1990), and it is far from clear
which level set is appropriate, and how this might depend on the
dimension of Ω (i.e. how to choose k in eq. 2.7).

LBI satisfies the LP by construction, so it also satisfies the CP.
To see whether it satisfies the SCP requires a definition of Evθ , the
evidence for Θ in the case where the parameter is (ψ, θ) and ψ is a
nuisance parameter. The standard definition is based on the profile
likelihood,

Lθ : θ 7→ sup
ψ

L(ψ, θ), (2.8)

from which
Evθ(E, x) := I(Lθ). (2.9)

Then we have the following result.

Theorem 2.8. If profile likelihood is used for Evθ , then LBI satisfies the
SCP.

Proof. Under the conditions of Definition 2.9 we have, putting ‘•’
where the θ argument goes,

Ev2{E, (x, y)} = I{sup
ψ

L(ψ, •)}

= I{sup
ψ

fX(x; ψ) · fY|X(y | x; •)} X is auxiliary

= I{c(x) · fY|X(y | x; •)} where c > 0

= I{ fY|X(y | x; •)} property of I

= Ev(EY|x, y),

where EY|x was defined in (2.4).

Therefore, LBI satisfies the SCP and the strong version of the SRP,
which is the best possible outcome. But another caveat: profile like-
lihood inherits all of the same difficulties as Maximum Likelihood,
and some additional ones as well. LBI has attractive theoretical
properties but unattractive practical ones, and for this reason it
has been more favoured by philosophers and physicists than by
practising statisticians.

2.6.2 The Bayesian approach

The Bayesian approach for inference was outlined in Section 1.5.
The Bayesian approach augments the experiment E := {X, Ω, f }
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with a prior probability distribution π on Ω, representing initial
beliefs about Θ. The posterior distribution for Θ is found by condi-
tioning on the outcome x, to give

π∗(θ) ∝ f (x; θ) · π(θ) = L(θ) · π(θ) (2.10)

where L is the Likelihood Function from Section 2.6.1. The missing
multiplicative constant can be inferred, if it is required, from the
normalisation condition

∫
Ω π∗(θ)dθ = 1. By Bayes’s Theorem, it is

1/ p(x). Usually, Ω is uncountable, and π and π∗ are probability
density functions (PDFs).

Bayesian statisticians follow exactly one principle.

Definition 2.13 (Bayesian Conditionalization Principle, BCP). Let E
be an experiment with outcome x. Under the BCP

Ev(E, x) = I(π∗)

for some operator I depending on Ev.

There is a wealth of operators for Bayesian inference. A common
one for a point estimator is the Maxium A Posteriori (MAP) estimator

θ̂∗ = argsup
θ∈Ω

π∗(θ). (2.11)

The MAP estimator does not require the calculation of the multi-
plicative constant 1/ p(x). In a crude sense, it improves on the MLE
from Section 2.6.1 by using the prior distribution π to ‘regularize’
the likelihood function, by downweighting less realistic values. This
is the point of view taken in inverse problems, where Θ is the signal,
x is a set of measurements, f represents the ‘forward model’ from
the signal to the measurements, and π represents beliefs about
regularities in Θ. Inverse problems occur throughout science, and
this Bayesian approach is ubiquitous where the signal has inherent
structure (e.g., the weather, or an image).

A common operator for a Bayesian set estimator is the High
Posterior Density (HPD) region

C∗k :=
{

θ ∈ Ω : log π∗(θ) ≥ k
}

. (2.12)

The value k is usually set according to the probability content of C∗k .
A level-95% HPD will have k which satisfies∫

C∗k
π∗(θ)dθ = 0.95. (2.13)

In contrast to the Wilks level sets in Section 2.6.1, the Bayesian
approach ‘solves’ the problem of how to choose k. HPD regions
are not transformation invariant. Instead, an HPD region is the
smallest set which contains exactly 95% of the posterior probability.
Alternatively, the ‘snug’ region Ĉk satisfying

∫
Ĉk

π∗(θ)dθ = 0.95
is transformation-invariant, but it is typically not the smallest set
estimator which contains exactly 95% of the posterior probability.10 10 I came across ‘snug’ regions in the

Cambridge lecture notes of Prof. Philip
Dawid.
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The two estimators often give similar results, for well-understood
theoretical reasons (see, e.g., van der Vaart, 1998).

It is straightforward to establish that Bayesian inference satisfies
the LP.

Proof. Let E1 := {X1, Ω, f1} and E2 := {X2, Ω, f2} be two experi-
ments with the same parameter. Because this parameter is the same,
the prior distribution is the same; denote it π. Let x1 and x2 be two
outcomes satisfying L1 = c · L2, which is the condition of the LP,
where L1 is the likelihood function for (E1, x1), L2 is the likelihood
function for (E2, x2), and c > 0 may depend on (x1, x2). Then

Ev(E1, x1) = I(π∗1 )

= I

(
L1(•) · π(•)∫
L1(θ) · π(θ)dθ

)
= I

(
c · L1(•) · π(•)

c ·
∫

L1(θ) · π(θ)dθ

)
= I

(
L2(•) · π(•)∫
L2(θ) · π(θ)dθ

)
= I(π∗2 ) = Ev(E2, x2).

Hence BCP also satisfies the CP. What about the SCP in the case
where the parameter is (ψ, θ), ψ is a nuisance parameter, and X is
auxiliary? As for LBI in Section 2.6.1, this requires a definition of
Evθ . In the Bayesian approach there is only one choice, based on the
marginal posterior distribution

π∗θ := θ 7→
∫

ψ
π∗(ψ, θ)dψ, (2.14)

from which
Evθ(E, x) = I(π∗θ ). (2.15)

Then we have the following result.

Theorem 2.9. If π(ψ, θ) = π1(ψ) · π2(θ), then Bayesian inference
satisfies the SCP.

Proof. Under the conditions of Definition 2.9 and the theorem, the
posterior distribution satisfies

π∗(ψ, θ) =
fX(x; ψ) · fY|X(y | x; θ)× π1(ψ) · π2(θ)

p(x, y)

=
fX(x; ψ) · fY|X(y | x; θ)× π1(ψ) · π2(θ)

p(x) · p(y | x)

=
fY|X(y | x; θ) · π2(θ)

p(y | x) × π∗1 (ψ),

where π∗1 is the conditional distribution of Ψ given x. Integrating
out ψ then gives

π∗θ (•) =
∫

ψ
π∗(ψ, •)dψ =

fY|X(y | x; •) · π2(•)

p(y | x) =: π∗Y|x(•),
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which is the posterior distribution for θ treating X as given. Thus

Evθ

(
E, (x, y)

)
= I{π∗θ (•)}
= I{π∗Y|x(•))}

= Ev(EY|x, y).

Therefore, under the mild condition that the prior distribution
factorizes, Bayesian inference satisfies the SCP and the strong
version of the SRP, which is the best possible outcome.

However . . . Bayesian practice is heterogeneous. Two issues are
pertinent. First, the Bayesian statistician does not just magic up a
model f and a prior distribution π. Instead, she iterates through
some different possibilities, modifying her choices using the obser-
vations. The decision to replace a model or a prior distribution may
depend on probabilities of outcomes which did not occur (see the
end of Section 2.3). But this practice does not violate the LP, which
is about what happens while accepting the model and the prior as
true. Statisticians are immune from this criticism while ‘inside’ their
statistical inference. But applied statisticians are obliged to continue
the stages in Section 1.1, in order to demonstrate the relevance of
their mathematical solution for the real-world problem.

Second, the Bayesian statistician faces the additional challenge
of providing a prior distribution. In principle, this prior reflects
beliefs about Θ that exist independently of the outcome, and can be
an opportunity rather than a threat. In practice, though, is hard to
do. Some methods for making default choices for π depend on fX,
notably Jeffreys priors and reference priors (see, e.g., Bernardo and
Smith, 2000, sec. 5.4). These methods violate the LP.

2.6.3 Frequentist inference

LBI and Bayesian inference both have simple representations in
terms of an operator I. Frequentist inference adopts a different
approach, described in Section 1.4, notably Definition 1.1. In a
nutshell, algorithms are certified in terms of their sampling distri-
butions, and selected on the basis of their certification. Theorem 2.3
shows that Frequentist inference does not respect the LP, because
the sampling distribution of the algorithm depends on values for f
other than f (x; •).

The following comments apply to all approaches which violate
the LP, including the Bayesian approach using a reference prior
distribution. However, I will focus on the Frequentist approach
because it is fundamentally opposed to the LP. The two main
difficulties are:

1. To reject the LP is to reject at least one of the WIP and the WCP.
Yet both of these principles seem self-evident. Therefore the
Frequentist statistician is either illogical or obtuse.

2. In their everyday practice, Frequentist statisticians use the (S)CP
and the (S)SRP, which are not self-evident, and whose simplest
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justfication is via the LP and the STP. To deny the LP requires a
different justification.

Alternative justifications for the (S)CP and the (S)SRP have not been
forthcoming.

2.7 Reflections

The statistician takes delivery of an outcome x. Her standard
practice, as mandated by our profession, is to assumes the truth of a
statistical model E, and then turn (E, x) into an inference about the
true value of the parameter Θ. As remarked several times already
(see Chapter 1), this is not the end of her involvement, but it is a
key step, which may be repeated several times, under different
notions of the outcome and different statistical models. This chapter
concerns this key step: how she turns (E, x) into an inference
about Θ.

Whatever inference is required, we assume that the statistician
applies an algorithm to (E, x). In other words, her inference about
Θ is not arbitrary, but transparent and reproducible—this is hardly
controversial, because anything else would be non-scientific. Fol-
lowing Birnbaum, the algorithm is denoted ‘Ev’. The question now
becomes: how does she choose her ‘Ev’?

This chapter does not explain how to choose ‘Ev’; instead it
describes some properties that ‘Ev’ might have. Some of these
properties are self-evident, and to violate them would be hard to
justify to an auditor. These properties are the DP (Definition 2.2),
TP (Definition 2.3), WCP (Definition 2.4), and STP (Definition 2.10).
Other properties are not at all self-evident; the most important of
these are the LP (Definition 2.5), the SCP (Definition 2.9), and the
SSRP (after Definition 2.11). These properties would be extremely
convenient, were it possible to justify them. And it turns out that
they can all be justified as logical deductions from the properties
that are self-evident. This is the essence of Birnbaum’s Theorem
(Theorem 2.2).

For over a century, statisticians have been proposing methods
for selecting algorithms for ‘Ev’, independently of this strand of
research concerning the properties that such algorithms ought to
have (remember that Birbaum’s Theorem was published in 1962).
Crudely, we can label these as ‘likelihood-based inference’ (LBI,
Section 2.6.1), Bayesian inference (Section 2.6.2), and Frequentist
inference (Section 2.6.3). The first and second of these approaches
are compatible with all of the properties given above, but the
third, Frequentist inference, is not. In other words, the practice of
certifying every algorithm according to its sampling distribution,
and then selecting an algorithm according to its certificate, violates
the LP. The two main consequences of this violation are described
in Section 2.6.3.

Now it is important to be clear about one thing. Ultimately, an
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inference is a single element in the space of ‘possible inferences
about Θ’. An inference cannot be evaluated according to whether
or not it satsfies the LP. What is being evaluated in this chapter
is the algorithm, the mechanism by which E and x are turned
into an inference. It is quite possible that statisticians of quite
different persuasions will produce effectively identical inferences
from different algorithms. For example, if asked for a set estimate
of Θ, a Bayesian statistician might produce a 95% High Density
Region, and a Frequentist statistician a 95% confidence set, but
they might be effectively the same set. But it is not the inference
that is the primary concern of the auditor: it is the justification for
the inference, among the uncountable other inferences that might
have been made but weren’t. The auditor checks the ‘why’, before
passing the ‘what’ onto the client.

So the auditor will ask: why do you choose algorithm ‘Ev’? The
Frequentist statistician will reply, “Because it is a 95% confidence
procedure for Θ, and, among the uncountable number of such
procedures, this is a good choice [for some reasons that are then
given].” The Bayesian statistician will reply “Because it is a 95%
High Posterior Density region for Θ for prior distribution π, and
among the uncountable number of prior distributions, π is a good
choice [for some reasons that are then given].” Let’s assume that
the reasons are compelling, in both cases. The auditor has a follow-
up question for the Frequentist but not for the Bayesian: “Why
are you not concerned about violating the Likelihood Principle?”
A well-informed auditor will know the theory of the previous
sections, and the consequences of violating the LP that are given
in Section 2.6.3. For example, violating the LP is either illogical
or obtuse—neither of these properties are desirable in an applied
statistician.

To be frank I do not have a good answer to this question, which
is why I would choose not to violate the LP, in the way that I choose
‘Ev’. However, in the spirit of fair play I will suggest two possibili-
ties.11 11 Another possibility to add to these

two might be “I’m not interested
in principles, I let the data speak
for itself.” This person would suit a
client who wanted an illogical and
unprincipled data analyst; or “reckless
and treacherous”, according to Alfred
Marshall, writing in 1885 (Stigler, 2016,
p. 202). If you are this person, you can
probably charge a lot of money.

First, the Frequentist might reply, “Because this is how we do
things in (say) Experimental Psychology”, i.e. an appeal to current
practice. This answer is contrary to the scientific norm of scepticism,
and may upset the client, who thought he was paying for a scientist.
The counter-argument is that ‘science is what scientists do’, which
is a naturalistic as opposed to normative view of science (see,
e.g., Ziman, 2000). Under the naturalistic view, violating the LP is
scientific as long as it is the standard practice among the soi-disant
scientists in Experimental Psychology. Personally, I don’t think
this excuses these scientists from having a compelling reason for
violating the LP (e.g., explaining why they are neither illogical nor
obtuse). But apparently most Experimental Psychologists disagree
with me, or else they are ignorant of the LP and its implications.

Second, the Frequentist might reply “Because it is important to
me that I control my error rate over the course of my career”, which
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is incompatible with the LP. In other words, the statistician ensures
that, by always using a 95% confidence procedure, the true value
of Θ will be inside at least 95% of her confidence sets, over her
career. This is a very interesting answer, revealing the statistician’s
egocentricity in putting her career error rate before the needs of
her current client. I can just about imagine a client demanding “I
want a statistician who is right at least 95% of the time”. Personally,
though, I would advise a client against this, and favour instead
a statistician who is concerned not with her career error rate, but
rather with the client’s particular problem.
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