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In the following questions, I show marks in square brackets, to give you an idea

of the approximate tariff the question would carry in an exam.

Here are some questions about certification of algorithms for point-estimation.

Note below that certification is always for an algorithm and a model. You do not

need to hand in Q2d.

1. Consider the model in which X1, . . . , Xm are IID, which we express as

Em =
{
Xm,Ω, f

}
where f(x; θ) =

∏m
i=1 f1(xi; θ) for some f1.

(a) Show that that if m(θ) is the expectation of X1 (i.e. of each Xi), then

θ̃π(x) =
1

n

n∑
j=1

xπj (1)

is an unbiased estimator of m(θ) in Em, where π = (π1, . . . , πn) is any

size-n subset of {1, . . . ,m}. Hint: take π = (1, . . . , n), without loss of

generality. [10 marks]

Answer. θ̃π is an unbiased estimator of m(θ) exactly when E{θ̃π(X); θ} =

m(θ) for all θ ∈ Ω. Take the hint, and let π = (1, . . . , n). Then, for arbitrary

1



θ ∈ Ω,

E{θ̃π(X); θ} =
1

n

n∑
j=1

E(Xj ; θ) linearity of expectation

=
1

n

n∑
j=1

m(θ) X’s are IID

= m(θ).

This holds for all θ, since the choice of θ was arbitrary. It holds for any π

because in the IID model, E(Xi; θ) = m(θ) for all i = 1, . . . ,m.

(b) Show that, for any fixed π,

s2π(x) =
1

n− 1

n∑
j=1

{
xπj − θ̃π(x)

}2
is an unbiased estimator of the variance of X1 for Em. [10 marks]

Answer. This is a classic result. Again, let π = (1, . . . , n), so that

s2π(x) =
1

n− 1

∑
j

(xj − x̄)2,

where x̄ = θ̃(x) = (x1 + · · ·+ xn)/n. Now consider the ‘obvious’ estimator,

t2(x) =
1

n

∑
j

(xj − x̄)2 =
1

n

∑
j
x2j − x̄2,

after expanding out the square. We have

E(X2
j ; θ) = Var(Xj ; θ) + E(Xj ; θ)

2 = σ2(θ) +m(θ)2,

where σ2(θ) := Var(X1; θ); here we have used that the X’s are IID. Likewise,

E(X̄2; θ) = Var(X̄; θ)− E(X̄; θ)2 = σ2(θ)/n+m(θ)2,

using that the X’s are IID and uncorrelated. Hence

E{t2(X); θ} = σ2(θ) +m(θ)2 − {σ2(θ)/n+m(θ)2}

= (1− 1/n)σ2(θ) =
n− 1

n
σ2(θ).

Hence, by the linearity of expectation, {n/(n− 1)} t2(x) = s2(x) is an unbi-

ased estimator of σ2(θ) under Em.
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(c) Show that
√
s2π is not an unbiased estimator of the standard deviation

of X1 for Em. Hint: Jensen’s inequality. [10 marks]

Answer. Jensen’s inequality states that if g is a convex function, then

E{g(X)} ≥ g(E{X}). A stronger version states that if g is strictly convex

and Var(X) > 0, then E{g(X)} > g(E{X}). −
√

(·) is a convex function

(because
√

(·) is a concave function). Ignoring the trivial case, so that

σ2(θ) > 0 for some θ ∈ Ω (I am dropping the π subscript),

E{−
√
s2(X); θ} > −

√
E{s2(X); θ} = −

√
σ2(θ),

for some θ ∈ Ω. Hence E{
√
s2π(X); θ} <

√
σ2(θ), showing that

√
s2(x)

is not an unbiased estimator of
√
σ2(θ) even though s2(x) is an unbiased

estimator of σ2(θ) for Em. This is the basic problem with unbiasedness

as a certification: it does not extend to non-linear functions of unbiased

estimators. Another problem is that unbiased estimators may not exist.

2. Consider the model E = {X ,Ω, f}. Point estimators of scalar functions of

θ are often certified by their Mean Squared Error (MSE) function. If ĝ is a

point estimator of g(θ) ∈ R, then

MSEĝ(θ) := E[{ĝ(X)− g(θ)}2; θ]

is the MSE of ĝ.

(a) Express MSEĝ as an explicit equation involving the components of E ,

and ĝ and θ. [5 marks]

Answer. Working directly from the definition,

MSEĝ(θ) =
∑
x∈X

{
ĝ(x)− g(θ)

}2 · f(x; θ).

(b) Show that

MSEĝ(θ) = Varĝ(θ) + biasĝ(θ)
2,

giving exact definitions for the two functions on the righthand side.

Hint: consider introducing the quantity ḡ(θ) = E{ĝ(X); θ}. [10 marks]

3



Answer.Taking the hint,

MSEĝ(θ) = E[{ĝ(X)− ḡ(θ) + ḡ(θ)− g(θ)}2; θ]

= E[{ĝ(X)− ḡ(θ)}2; θ] + E[{ḡ(θ)− g(θ)}2; θ] + cross product term

= Varĝ(θ) + biasĝ(θ)
2 + cross product term

according to the usual definitions. So we have to show that the cross product

term is zero for all θ ∈ Ω:

E[{ĝ(X)− ḡ(θ)} {ḡ(θ)− g(θ)}; θ] = {ḡ(θ)− g(θ)} × E[{ĝ(X)− ḡ(θ); θ}

= {ḡ(θ)− g(θ)} × [E{ĝ(X); θ} − ḡ(θ)]

= {ḡ(θ)− g(θ)} × 0 = 0.

(c) Compute the MSE of the estimator θ̃ in (1). [10 marks]

Answer. The bias is zero, as we have already shown, so

MSEθ̃(θ) = Varθ̃(θ)

= E[{θ̃(X)− θ}2; θ]

= Var{θ̃(X); θ}

= σ2(θ)/n,

where σ2(θ) = Var(X1; θ), as above.

(d) (Not examinable.) Let Em be the IID model. An estimator ĝm of g(θ)

is certified as consistent for Em exactly when

∀θ ∈ Ω, ∀ε > 0 lim
m→∞

Pr
{
|ĝm(X1:m)− g(θ)| ≥ ε; θ

}
= 0.

Show that ĝm is consistent if and only if, for all θ ∈ Ω, ĝm converges to

a point in Ω and its bias converges to zero.

Answer.

This result is not provable without a clear definition of ‘converge to a point’.

Here is what we will assume (the ‘if’ branch):

(i) Asymptotic unbiased:

∀θ : lim
m→∞

|E{ĝm(X1:n); θ} − g(θ)| = 0.
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(ii) Converge to a point:

∀θ,∃g∞, ∀ε > 0 : lim
m→∞

Pr{|ĝm(X1:m)− g∞| ≥ ε; θ} = 0.

(ii) implies that limm→∞ E{ĝm(X1:m); θ} = g∞, because if a distribution

collapses to a point, then that point must be the expectation. (i) then

implies that g∞ = g(θ). Substituting back into (ii) then gives

∀θ,∀ε > 0 : lim
m→∞

Pr{|ĝm(X1:m)− g(θ)| ≥ ε; θ} = 0,

as required.

I don’t think the converse is true. Apparently, you cannot believe everything

you read on Wikipedia.
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