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In the following questions, I show marks in square brackets, to give you an idea

of the approximate tariff the question would carry in an exam.

1. Prove that LP→WIP, and that LP→WCP. [10 marks]

You should use this question to practice writing really clear and compelling

proofs.

Answer. The LP asserts that if E and E ′ are two experiments with the same

parameter, and if f(x; •) = c(x, x′) · f ′(x′; •), then Ev(E , x) = Ev(E ′, x′).

(a) LP → WIP. The WIP states that if f(x; •) = f(x′; •) in an experiment

E , then Ev(E , x) = Ev(E , x′). Letting E ′ = E , the condition of the WIP

satisfies the condition of the LP with c(x, x′) = 1, and hence the LP implies

the WIP.

(b) LP→WCP. The WCP states that if E1 and E2 are two experiments with the

same parameter, and E∗ is a mixture experiment with known probabilities

(p1, p2) where p2 = (1 − p1), then Ev(E∗, (i, xi)) = Ev(Ei, xi). For the

mixture experiment we have

f∗((i, xi); θ) = pi · fi(xi; θ) for all θ ∈ Ω,

which satisfies the condition of the LP with c((i, xi), xi) = pi. Hence the LP

implies that Ev(E∗, (i, xi)) = Ev(Ei, xi), which is the WCP.

2. A Traffic Inspector sits outside the Bristol Royal Infirmary, on a road known

to have a very high level of pollution. In one hour she records 423 passing

cars (excluding vans and lorries), noting for each car the number of empty

seats.
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(a) Write down a model for this experiment, bearing in mind that the num-

ber of cars seen in an hour (N) is itself a random quantity. [10 marks]

Answer. There can be from 0 to 4 empty seats in a car, so let Xi be the

number of cars with i empty seats, i = 0, . . . , 4. Let N be the number of

cars. So if y = (n, x0, . . . , x4), the sample space for the experiment is

Y =

{
(n, x0, . . . , x4) ∈ N6 :

4∑
i=0

xi = n

}
,

where N = {0, 1, . . . }. We can let N be Poisson, with rate λ > 0, so

p(n;λ) = e−λλn/n!.

Then using a Multinomial model with probabilities θ = (θ0, . . . , θ4),

p(x | n; θ) =
n!

x0! · · ·x4!

4∏
i=0

(θi)
xi .

where the first term is the multinomial coefficient. These two choices would

be standard. Hence the parameter space is

Ω = R++ ×
{
θ ∈ R5 : θi ≥ 0,

∑
i
θi = 1

}
,

and the model is

fN,X(n, x;λ, θ) = p(n;λ) · p(x | n; θ).

(b) State what is meant by an ‘ancillary’ random quantity, and discuss

whether N is ancillary. [10 marks]

Answer. N would be ancillary for the model with parameter (λ, θ) if the

model factorised as

p(n, x;λ, θ) = p(n) · p(x | n;λ, θ),

so that all the parameters were in the conditional probability distribution

(the fact that X |N does not depend on λ is immaterial). So N is not ancil-

lary, because its distribution depends on λ, which is part of the parameter.

However, if λ were known then N would be ancillary, and if we accept the

Sure Thing Principle (STP, which we do accept as being self-evident), then

we can treat N as though it were ancillary. In this case we can base our
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inference about θ around the conditional distribution p(x | n; θ), treating N

as though it were known and not random. Technically, this is the Strong

Conditionality Principle (SCP).

(c) State the Conditionality Principle (CP), and show that it is implied by

the Likelihood Principle (LP). [10 marks]

Answer. I will state the CP in the context of the question. The CP asserts

that if N is ancillary (i.e. λ is known), then the evidence about Θ from the

full experiment with (N,X) is the same as the evidence about Θ from the

conditional experiment with X | (N = n). To prove this, suppose that N is

ancillary, in which case

fN,X(n, x; θ) = fN (n) · fX|N (x | n; θ) for all θ.

This satisfies the condition of the LP with c((n, x), x) = fN (n), where the

lefthand side is the full experiment, and the righthand side is the conditional

experiment.

(d) Treating N as ancillary, how does the Traffic Inspector analyse her

results, if she adopts the CP? [10 marks]

Answer. Her model becomes the conditional model

E =
{
x ∈ X , θ ∈ Ω, fX

}
, (1)

where fX(x; θ) = fX|N (x |423; θ). She will need to specify the set of possible

inferences about Θ, namely A, and the consequences of choosing a when

Θ = θ, represented as the loss function L(a, θ). She will want her Ev to

obey the LP, because otherwise it would be difficult for her to justify the

use of the CP. If she wants her Ev to obey the LP then she can let Ev be the

Bayes rule for some prior distribution π: we have proved that such decision

rules always obey the LP. So she will need a prior distribution over Ω. The

Dirichlet distribution is the standard distribution in this case, for which she

will have to choose concentration parameters, see https://en.wikipedia.

org/wiki/Dirichlet_distribution. These concentration parameters can

reflect her beliefs about Θ, or they can be ‘vague’. Unless she has very

strong beliefs about Θ, with N = 423 she can choose vague concentration

parameters, because her choice is unlikely to make any difference to her

inference.

In this answer, I have said rather more than is needed in an exam. You do
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not need to know about the Dirichlet distribution. But the need to make

sure that Ev respects the LP is important, given that the CP has been used

to simplify the inference.

3. This question on stopping rules is from David MacKay’s Information The-

ory, Inference, and Learning Algorithms (CUP, 2003), sec. 37.2. It is not

the kind of question I would set in an exam, except for the last part. You

will need to use R to compute the probabilities.

In an expensive laboratory, Dr Bloggs tosses a coin twelve times and the

result is HHHTHHHHTHHT. He is interested to know whether Θ, the prob-

ability of tails (T) is not equal to 0.5.

(a) Dr Bloggs consults a Frequentist statistician, who tells him that he

needs to compute a P -value, namely Pr(R ≤ 3;n = 12, θ = 0.5), where

R is the number of tails. Give the formula for this P -value, and show

that it is equal to 0.07.

Answer. R is a Binomial random quantity, with

Pr(R = r;n, θ) =

(
n

r

)
θr · (1− θ)n−r.

So

Pr(R ≤ 3;n = 12, θ = 0.5) =
3∑
r=0

(
12

r

)(
1

2

)n
= 0.07299805

using the R command pbinom(3, 12, 0.5).

(b) Dr Bloggs is vexed; the P -value is not below the threshold of 0.05, which

is what he needs to publish in the prestigious Journal of Experimental

Coin Psychology. But when he talks to his statistician he discovers

that the statistician failed to account for his (Dr Bloggs’s) stopping

rule. Dr Bloggs had decided to toss the coin until 3 tails had appeared.

In that case, says the statistician, N , the sample size, is the random

quantity, and we need to compute Pr(N ≥ 12; r = 3, θ = 0.5). Give

the formula for Pr(N = n; r, θ), and show that the P -value is equal to

0.03.

Hint: To get r tails on the nth toss, we need to get exactly r − 1 tails

in n− 1 tosses, and then a tail on the nth toss.
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Answer. Taking the hint,

Pr(N = n; r, θ) = Pr(R = r − 1;n− 1, θ) · θ.

Hence

Pr(N ≥ 12; r = 3, θ = 0.5) = 1−
11∑
n=3

Pr(N = n; r = 3, θ = 0.5)

= 1−
11∑
n=3

Pr(R = 2;n− 1, 0.5) · 0.5

= 1−
11∑
n=3

(
n− 1

2

)(
1

2

)n
= 0.03271484

using the R command 1 - sum(choose(3:11 - 1, 2) * (1/2)^(3:11)).

(c) Dr Bloggs is delighted, and writes up his result without delay, with

the respectably low P -value of 0.03. What does the Stopping Rule

Principle (SRP) say about this experiment? What do we infer about

the Frequentist practice of using P -values for inference? What would

a Bayesian statistician do in this situation? [15 marks]

Answer. The SRP states that the Dr Bloggs’s inference about Θ should be

invariant to his stopping rule; i.e. he should have made the same inference

about Θ whether he did 12 trials regardless of the outcome, or whether he

kept tossing the coin until he got 3 tails.

Clearly, though, Dr Bloggs’s inference about Θ, presented in the form of a

P -value for the simple hypothesis Θ = 0.5, depends on the stopping rule,

because he got one P -value for one stopping rule, and another P -value for

another stopping rule (what he claims was his actual stopping rule). So Dr

Bloggs’s inference has violated the SRP.

The SRP is implied by the LP, and so by violating the SRP, Dr Bloggs’s

inference about Θ violates the LP. In general, all inference based on P -values

violates the LP, because a P -value is a Frequentist construction, certified

according to its sampling distribution (we will cover this in the lectures).

A Bayesian statistician would base her inference about Θ on the posterior

distribution, which requires her to specify a prior distribution for Θ. Usu-

ally, this would be a Beta distribution (for convenience). Depending on the
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inference she wanted to do, she would select a Bayes rule for her loss func-

tion. I reckon she might want a set estimator for Θ (to see whether 0.5 is

inside it), in which case she might choose the 95% high posterior density

region for Θ, which satisfies the necessary condition for set estimators to be

Bayes rules according to the standard loss function.

I’ve said a bit more in this last paragraph than would be expected in an

exam.
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