HW4, Theory of Inference 2016/7

Jonathan Rougier School of Mathematics University of Bristol UK

In the following questions, I show marks in square brackets, to give you an idea of the approximate tariff the question would carry in an exam.

- 1. We proved the Complete Class Theorem for the special case where Ω is finite. Prove the 'if' branch without this constraint. I.e., prove that a decision rule δ is admissible if it is a Bayes rule for some positive prior distribution π . Hint: use proof by contradiction. [10 marks]
- 2. Consider the model $\mathcal{E} = \{y \in \mathbb{N}, \lambda \in \mathbb{R}_{++}, f\}$, where f is the Poisson probability mass function (and $\mathbb{N} = \{0, 1, ...\}$). Let the prior for Λ be Gamma(a, b), where a is the 'shape' parameter and b is the 'rate' parameter.¹ Derive the Bayes rule for the point estimate for Λ under quadratic loss. [10 marks]

In an exam you would be given the Poisson PMF and the Gamma PDF.

- 3. For the loss function given in eq. (3.7a) in the handout, confirm the Bayes rule for the two extreme cases $\kappa \downarrow 0$ and $\kappa \to \infty$. [10 marks]
- 4. Prove the result in eq. (3.8) in the handout. [10 marks]
- 5. Prove that for hypothesis testing, the Bayes rule for the zero-one loss function is to select the hypothesis with the largest posterior probability. [10 marks]
- 6. Consider a 2D parameter space partitioned into two non-degenerate hypotheses, $\Omega = \Omega_0 \cup \Omega_1$. On a single figure, sketch three set estimates: $\delta_1(y^{\text{obs}})$ accepts H_0 , $\delta_2(y^{\text{obs}})$ rejects H_0 , and $\delta_3(y^{\text{obs}})$ is undecided about H_0 . Redraw your picture for the case where Ω_0 is composite degenerate. [10 marks]

¹Remember that ' Λ ' is capital ' λ '.