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In the following questions, I show marks in square brackets, to give you an idea

of the approximate tariff the question would carry in an exam.

1. We proved the Complete Class Theorem for the special case where Ω is finite.

Prove the ‘if’ branch without this constraint. I.e., prove that a decision rule

δ is admissible if it is a Bayes rule for some positive prior distribution π.

Hint: use proof by contradiction. [10 marks]

Answer. The rule δ is admissible exactly when it is not dominated by any other

rule. Suppose that δ is not admissible (‘inadmissible’); i.e. there is some other

rule δ′ which dominates δ, so that

R(δ′, θ) ≤ R(δ, θ) for all θ ∈ Ω,

with strict inequality for at least one θ ∈ Ω. Recollect that R is the risk function,

R(δ, θ) := E{L(δ(Y ), θ); θ} =
∑

y
L(δ(y), θ) · f(y; θ).

We must show that δ cannot be a Bayes rule if it is dominated by δ′. Computing

the Bayes loss:

E{L(δ(Y ),Θ)} =

∫ ∑
y
L(δ(y), θ) · p(y, θ) dθ

=

∫ ∑
y
L(δ(y), θ) · f(y; θ)π(θ) dθ

=

∫
R(δ, θ)π(θ) dθ

>

∫
R(δ′, θ)π(θ) dθ provided that π > 0

= E{L(δ′(Y ),Θ)} reversing the steps,
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showing that δ cannot be a Bayes rule because δ′ has smaller expected loss. We

have proved that if δ is inadmissible it is not a Bayes rule. So have also proved

the contrapositive that if δ is a Bayes rule then it is not inadmissible, i.e. it is

admissible.

2. Consider the model E =
{
y ∈ N, λ ∈ R++, f

}
, where f is the Poisson proba-

bility mass function (andN = {0, 1, . . . }). Let the prior for Λ be Gamma(a, b),

where a is the ‘shape’ parameter and b is the ‘rate’ parameter.1 Derive the

Bayes rule for the point estimate for Λ under quadratic loss. [10 marks]

In an exam you would be given the Poisson PMF and the Gamma PDF.

Answer. For the Poisson model, f(y;λ) ∝ e−λλy. For the Gamma prior dis-

tribution for Λ, π(λ) ∝ λa−1 e−bλ. for parameters a, b > 0. The Bayes rule for

point estimation under a quadratic loss function is the posterior expectation for

Λ. Therefore we need to find the posterior distribution for Λ, and then compute

its expectation. By Bayes’s theorem, the posterior distribution has kernel

π∗(λ) ∝ f(y;λ) · π(λ)

∝ e−λλy · λa−1 e−bλ

= λa+y−1e−(b+1)λ

which is the kernel of a Gamma(a+y, b+ 1) distribution. The expectation of this

distribution is (a+ y)/(b+ 1), hence

δ∗(y) =
a+ y

b+ 1

is the Bayes rule for point estimation under quadratic loss, for a Gamma(a, b)

prior distribution.

3. For the loss function given in eq. (3.7a) in the handout, confirm the Bayes

rule for the two extreme cases κ ↓ 0 and κ→∞. [10 marks]

Answer. The loss function is

L(a, θ) = |a|+ κ · (1− 1θ∈a),

and hence

E{L(a,Θ) | Y = y} = |a|+ κ · {1− Pr(Θ ∈ a | Y = y)}.
1Remember that ‘Λ’ is capital ‘λ’.
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According to the Bayes rule theorem, a Bayes rule will minimise this expression

over a ∈ A = 2Ω. Let a be fixed. κ ↓ 0 diminishes the second term relative to the

first. Thus in the limit the Bayes rule minimises the first term, |a|, which leads

to a = ∅. On the other hand, κ → ∞ diminishes the first term relative to the

second. Thus in the limit the Bayes rule minimises the second term, which leads

to a = Ω.

4. Prove the result in eq. (3.8) in the handout. [10 marks]

5. Prove that for hypothesis testing, the Bayes rule for the zero-one loss func-

tion is to select the hypothesis with the largest posterior probability. [10 marks]

6. Consider a 2D parameter space partitioned into two non-degenerate hy-

potheses, Ω = Ω0∪Ω1. On a single figure, sketch three set estimates: δ1(yobs)

accepts H0, δ2(yobs) rejects H0, and δ3(yobs) is undecided about H0. Redraw

your picture for the case where Ω0 is composite degenerate. [10 marks]
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