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In the following questions, I show marks in square brackets, to give you an idea of
the approximate tariff the question would carry in an exam. In these questions,
the model is the usual {),Q, f}.

1. Define a ‘family of confidence procedures’. What additional property do you

think that ‘nesting’ families of confidence procedures have? [5 marks]

Answer. The function C : Y x [0,1] — 29 is a family of confidence procedures

exactly when C(s; ) is a level 1 — a confidence procedure for every a € [0, 1].

A nesting family would have C(y,«) C C(y; ) for all y € ) whenever o/ < a.
Le., a confidence set with any specific level contains the confidence sets of all

lower levels.

2. Define a ‘family of significance procedures’. Prove that if p is a family of
significance procedures, then supgcq, p(y;0) is a significance procedure for
the null hypothesis Q2 C €. [10 marks]

Answer. The function p : YV x Q — R is a family of significance procedures
exactly when p(e;0) is a significance procedure for the null model Qy = {0} for

every 6 € Q. That is, p(Y;0) is super-uniform under Y ~ f(e; ) for every 6 € Q.

We must show that p(y; Qo) := supgeq, p(y; ) is super-uniform for every 6 € Q.
Now
p(y; Qo) <u = p(y;0) <u forall § € Q.

Hence, by the probability inequality for implication,

Pr{p(Y;Qy) < u;0} < Pr{p(Y;0) <wu;0} forall § € Q

<u p is a family of confidence procedures



showing that p(Y’; ) is super-uniform for all § € Q.

Theorem 1 (The Duality Theorem). Let p be a family of signficance pro-

cedures. Then
Cly; ) = {0 € Q:p(y; 0) > a}

1s a nesting family of confidence procedures. Conversely, let C' be a nesting

family of confidence procedures. Then

p(y; 0) = inf {a 10 & C(y; a)}

15 a family of significance procedures.

Prove the first half of this theorem. [10 marks]

Answer. We must show that if p is a family of significance procedures, then

C(e;a) is a level 1 — « confidence procedure. So, to compute the coverage of C:

Pr{ € C(Y;a);0} = Pr{p(Y;0) > a;0}
=1-Pr{p(Y;0) < «;0}
=1—(a—¢) for some € > 0, because p(Y;0) is
super-uniform

=l—-a+e>1—a

as needed to be shown.
. We proved in the lecture that
p(y;0) = Pr{g(Y) > g(y); 0}

is a family of significance procedures, for any g :  — R. Prove this result

directly in the special case of ¢g(y) = ¢, where c¢ is any constant. [10 marks]

Answer. Let u € [0, 1] be arbitrary. Then

Pr{p(Y;0) < u;0} = Pr{Pr{c > ¢;0} < u;0}

= Pr{l <u;0}
0 0<uxl1
1 uvw=1.



In both branches we have a value less than or equal to u, confirming the theorem.

. If your p-value is small, then the observations are improbable under your
null hypothesis. What information do you need to compute the probability

that your null hypothesis is true, given the observations? [10 marks]

Answer. We can think about this using Bayes’s theorem:

Pr(Y =y | Hp) - Pr(Hp)

Pr(Ho |Y =y) = Pr(Y = y)

If we replace the observables with a significance procedure and a small value u

then we get

Pr{p(Y'; Ho) < u| Ho} - Pr(Ho)
Pr(Y =y)
u - Pr(Hp)
= Pr{p(Y;Ho) <u}

Pr{Hy | p(Y; Hp) <u} =

So we need to know Pr(Hp) and Pr{p(Y;Hy) < u}. This latter term can be
expanded as (Law of Total Probability)

Pr{p(Y: Ho) < u} = Pr{p(Y'; Ho) < ulHo}-Pr(Ho)+Pr{p(Y; Ho) < ul~Ho}-{1~Pr(Hy)}

where =Hy = Q \ Hp. So as well as Pr(Hy) we also need to know the probability

distribution of the p-value for Hy under the complement of Hy in ).

The point is, computing a p-value does not require us to know these quantities,
which we would need to know to assess the probability that Hy were true; hence

a p-value cannot tell us about this.



