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1 Introduction

This essay, written by a statistician and a climate scientist, describes our

view of the gap that exists between current practice in mainstream climate

science, and the practical needs of policymakers charged with exploring pos-

sible interventions in the context of climate change. By ‘mainstream’ we

mean the type of climate science that dominates in universities and research

centres, which we will term ‘academic’ climate science, in contrast to ‘pol-

icy’ climate science; aspects of this distinction will become clearer in what

follows.

In a nutshell, we do not think that academic climate science equips climate

scientists to be as helpful as they might be, when involved in climate policy

assessment. Partly, we attribute this to an over-investment in high resolution

climate simulators, and partly to a culture that is uncomfortable with the

inherently subjective nature of climate uncertainty.
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In section 2 we discuss current practice in academic climate science, in

relation to the needs of policymakers. Section 3 addresses the aparently com-

mon misconception (among climate scientists) that uncertainty is something

‘out there’ to be quantified, much like the strength of meridional overturning

circulation. Section 4, the heart of the essay, addresses the core needs of the

policymaker, and focuses on three strictures for the climate scientist want-

ing to help her: answer the question, own the judgement, and be coherent.

Section 5 concludes with a brief reflection.

We have taken the opportunity in this essay to be a little more polemical

than we might be in an academic paper, and maybe a little more exuberent

in our expressions. We have also ignored the technical details of practical cli-

mate science, something we are both involved in day-to-day, choosing instead

to look at the larger picture. We believe that our observations are valid more

widely than just climate science; for example many of them would apply

with little modification in many areas of natural hazards, and in radiological

or ecotoxicological risk assessment (Rougier et al., 2012). But they seem

most pertinent in climate science, which outstrips the other areas in terms

of funding. For example, the UK’s Natural Environment Research Council

(NERC), whose vision is to “advance knowledge and understanding of the

Earth and its environments to help secure a sustainable future for the planet

and its people”, allocates 40% of its science budget to climate science and

earth system science (NERC Annual Report and Accounts 2010–11, p. 40).

2 Different modes of climate science

For our purposes, the telling feature of climate science is that it gained much

of its momentum in the era before climate change became a pressing soci-

etal concern. Consequently, when policymakers turned to climate science

for advice, they encountered a well-developed academic field whose focus

was more towards explanation than prediction. Explanation, in this context,

is verifying that observable regularities in the climate system are emergent

properties of the basic physics. Largely this is through the interplay between

observation and dynamical climate simulation. As the resolution of climate
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simulators increases, more observed regularities fall into the ‘explained’ cat-

egory. The El Niño Southern Oscillation (ENSO) is getting closer to falling

into this category, for example (Guilyardi et al., 2009).

Thus for investment, the dominant vector in academic climate science has

been to improve the spatial and temporal resolution of the solvers in climate

simulators. Supporting evidence can be found in meteorology. It is argued

that one of the contributory factors to measurable improvements in weather

forecasting over the last thirty years is higher-resolution solvers, although

the quantification of this is confounded by simultaneous improvements in

understanding the physics, in the amount of data available for calibration,

and in techniques for data assimilation (Kalnay, 2002, ch. 1). Setting these

confounders aside, it seems natural to assert that higher resolution solvers

will lead to better climate simulators. And indeed, we would not deny this,

but we would also question whether in fact it is resolution that is limiting

the fidelity of climate simulators.

The reason that we are suspicious of arguments about climate founded

on experiences in meteorology is the presence of biological and chemical pro-

cesses in the earth system that operate on climate policy but not weather

time-scales. We believe that the acknowledgement of biogeochemistry as a

full part of the climate system distinguishes the true climate scientist from

the converted meteorologist. Our lack of understanding of climate’s critical

ecosystems mocks the precision with which we can write down and approx-

imate the Navier-Stokes equations. The problem is, though, that putting

ecosystems into a climate simulator is a huge challenge, and progress is diffi-

cult to quantify. It introduces more uncertain parameters, and, by replacing

prescribed fields with time-evolving fields, it can actually make the perfor-

mance of the simulator worse, until tuning is successfully completed (and

there is no guarantee of success). Newman (2011) provides a short and read-

able account of the difficulties of biology, in comparison to physics.

On the other hand, spending money on higher resolution solvers requires

fewer parameterisations of sub-grid-scale processes, and so reduces the chal-

lenge of tuning. This activity has a well-documented provenance, and a clear

motivation within a coherent science plan. And we cannot resist pointing out
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another immediate benefit: one can show the funder a more realistic looking

ocean simulation (“Now at 0.5◦ resolution!”)—although in fact resolutions as

high as 0.1◦ do not fool experienced oceanographers. But while this push to

higher resolutions is natural for meteorology, with its forecast horizon mea-

sured in days, for climate we fear that it blurs the distinction between what

one can simulate, and what one ought to simulate for policy purposes.

So how might the investment be directed differently? For climate pol-

icy it is necessary to enumerate what might happen under different climate

interventions: do nothing, monetise carbon, regulation for contraction and

convergence, geo-engineering, and so on. And each of these interventions

must be evaluated for a range of scenarios that capture future uncertainty

about technology, economics, and demographics. For each pair of interven-

tion and scenario there is a range of possible outcomes, which represent our

uncertainty about future climate. Uncertainty here is ‘total uncertainty’:

only the intervention and the scenario are specified—the policymaker does

not have the luxury of being able to pick and choose which uncertainties are

incorporated and which are ignored.

Internal variability, part of the natural variability of the climate system,

can be estimated from high-resolution simulators, but it is only a tiny part

of total uncertainty. Over centurial scales, it is negligible compared to our

combined uncertainty of the behaviour of the ice-sheets, and the marine and

terrestrial biosphere. This uncertainty can be assessed with the assistance

of climate simulators, if it is possible to run them repeatedly under differ-

ent configurations of the simulator parameters and modules, where these

configurations attempt to span the range of not-implausible climate system

behaviours. To construct a tableau such as the one in Figure 1 will require

a minimum of 4 × 3 × 100 × 90 models-years of simulation, say 120,000

model-years, including spin-up. The 100 is the number of different simulator

configurations that might be tried, and the 90 is the number of years un-

til 2100. Of course, 100 is woefully small for the number of configurations.

There are more than one hundred uncertain parameters in a high-resolution

climate simulator (Murphy et al., 2004). Admittedly only some of these will

turn out to be important but we cannot rule out interactions among the pa-
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Figure 1: Policy tableau, showing the effect of different possible interventions
under different scenarios. These frequency histograms might in this case
measure simulated global warming by 2100 under different not-implausible
simulator configurations, but more generally they would measures losses,
inferred from simulated distributions for weather in 2100. Please note that
these histograms are completely fictitious!
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rameters. There is a well-developed statistical field for this type of analysis,

see, e.g., Santner et al. (2003).

Note that this is a designed experiment, deliberately constructed to be

informative about uncertainty. It is completely different from assembling an

ad hoc collection of simulator runs, such as the CMIP3 or CMIP5 multimodel

ensembles, in the same way that a carefully stratified sample of 100 people

is far more informative about a population than simply selecting the next

100 people that pass a particular lamp-post. In the absence of designed

experiments, though, climate scientists who want to assess uncertainty will

have to use the ad hoc ensemble. The various types and uses of currently-

available ensembles of climate simulator runs are reviewed in Parker (2010)

and Murphy et al. (2011).

So what is the status of these policy-relevant designed experiments? Cur-

rent ‘IPCC class’ simulators (with a solver resolution of about 1◦) run at

about 100 model-years per month of wall-clock time. So starting now, an

experiment to assess uncertainty in 2100 for policy purposes will be finished

in about 100 years, if it is performed at one research centre. But this might

be reduced to 10 years if the runs were shared out across all centres, or even

less factoring in faster computers and no increase in resolution. Thus these

IPCC class simulators could be very helpful for assessing uncertainty and

supporting policymakers, but this requires a cap on solver resolution, and

careful coordination across research centres. In contrast, the current uncoor-

dinated approach, with its apparent commitment to spending CPU cycles on

a few runs of high-resolution climate simulators, will force climate scientists

in 2020 to base their future climate assessments on ad hoc ensembles.

3 The nature of uncertainty about climate

In this paper we confine our discussion of climate uncertainty quantification

to the assessment of probabilities. There are, of course, several interpreta-

tions of probability. L.J. Savage wrote of “dozens” of different interpretations

of probability Savage (1954, p. 2), and he focused on three main strands: the

Objective (or Frequentist), the Personalistic, and the Necessary. This tripar-
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tite classification is widely accepted among statisticians, and discussed, with

embellishments, in the initial chapters of Walley (1991) and Lad (1996). Not

to be outdone, Hájek (2012) notes that philosophers of probability now have

six leading interpretations of probability.

Of all of these interpretations, however, we contend that only the Per-

sonalistic interpretation can capture the ‘total uncertainty’ inherent in the

assessment of climate policy. Our uncertainty about future climate is pre-

dominantly epistemic uncertainty—the uncertainty that follows from limi-

tations in knowledge and resources. The hallmark of epistemic uncertainty

is that it could, in principle, be reduced with further introspection, or fur-

ther experiments. As one of the key drivers of research investment in cli-

mate science is to reduce uncertainty, this epistemic interpretation of ‘total

uncertainty’ must be uncontentious. It rules out the Objective (classical,

frequency, propensity) interpretation, and leaves us with Personalistic and

Necessary (also termed logical) interpretations.

The Necessary interpretation asserts that there are principles of reason-

ing that extend Boolean logic to uncertainty, and that these principles are in

fact the calculus of probability and Bayesian conditioning. This interpreta-

tion is formally attractive, but invokes additional principles to ‘fill in’ those

initial probabilities that are mandated by conditioning—which are generally

referred to as ‘prior’ probabilities in a Bayesian context. These are to be

based on self-evident properties of the inference, such as symmetries. Exam-

ples are discussed in Jaynes (2003); see, for example, his elegant resolution

of Bertrand’s problem (sec. 12.4.4). However, it is hard to know how one

might discover and apply these properties in an assessment of, say, the max-

imum height of the water in the Thames Estuary in 2100. Thus, starting

with Frank Ramsey, and finding eloquent champions in Bruno de Finetti

and L.J. Savage, among others, the Personalistic interpretation has provided

an operational subjective definition of probability, in terms of betting rates

(see, e.g. Ramsey, 1931; de Finetti, 1964; Savage, 1954; Savage et al., 1962).

De Finetti’s late writings are both subtle and discursive; Lad (1996) attempts

to corral them.

Not everyone will find the Personalistic definition of probability com-
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pelling. But at least it provides a very clear answer to the question “What

do You mean when You state that Pr(A) = p?” A brief answer is that, if

betting for a small amount of money, such as £1, You would be agreeable

to staking up to £p in a gamble to receive £1 if A turns out to be true and

nothing if A turns out to be false. There are other operationalisations as

well, which are very similar but not psychologically equivalent; see, e.g., the

discussion in Goldstein and Wooff (2007, sec. 2.2). Our view is that an op-

erationalisation of Personalistic probability is highly desirable, and a useful

thing to fall back on, but not in itself the yardstick by which all probabilities

are assessed. But, if someone provides a probability p for a proposition A,

it might be a good idea to ask him if he would be prepared to bet £p on A

being true: the answer could be very revealing.

However, many physical scientists seem to be very uncomfortable with

the twin notions that uncertainty is subjective (i.e. it is a property of the

mind), and that probabilities are expressions of personal inclinations to act

in certain ways. At least part of the problem concerns the use of the word

‘subjective’, about which the first author has written before (Rougier, 2007,

sec. 2). This word is clearly inflammatory. We suggest that some scientists

have confused the Mertonian scientific norm of ‘disinterestedness’ with the

notion of ‘objectivity’, and then taken subjectivity to be the antithesis of ob-

jectivity, and thus to be avoided at all costs. L.J. Savage was sensitive to this

confusion and hence favoured ‘Personalistic’. De Finetti strongly favoured

‘subjective’, about which Jeffrey (2004, p. 76, footnote 1) commented on “the

lifelong pleasure that de Finetti found in being seen to give the finger to the

establishment”.

Confusion about ‘subjectivity’ is just a digression, though. What is abun-

dantly clear is that climate scientists are not ready to accept that climate

uncertainties are Personalistic. Their every reference to ‘the uncertainty’

commits an error which the physicist E.T. Jaynes called the ‘mind projec-

tion fallacy’:

an almost universal tendency to disguise epistemological state-

ments by putting them into a grammatical form which suggests

to the unwary an ontological statement. To interpret the first
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kind of statement in the ontological sense is to assert that one’s

own private thoughts and sensations are realities existing exter-

nally in Nature. (Jaynes, 2003, p. 22).

Jaynes is an example of a physicist who embraced the essential subjectivity of

uncertainty: he advocated the Necessary interpretation, plus the additional

principle of maximising Shannon entropy to extend limited judgements to

probabilities. Paris (1994) provides a detailed assessment of the properties

of this entropy-maximising approach, among others.

One very stealthy manifestation of the Mind Projection Fallacy is the

substitution of ‘assumptions’ for ‘judgements’ when discussing uncertainty.

Assumptions typically refer to simplifications we assert about the system

itself. It is perfectly acceptable to assume that, for example, the hydrostatic

approximation holds: this is a statement that actual ocean behaves a lot

like a slightly different ocean that is much simpler to analyse. You cannot

assume, though, that the maximum water level in the Thames Estuary in

2100 has a Gaussian distribution. Instead, You may judge it appropriate to

represent Your uncertainty about the maximum water level with a Gaussian

distribution. This is rather wordy, unfortunately, which is perhaps why it is

so easy to lapse in this way.

Consider the uncertainty assessment guidelines for the forthcoming IPCC

report (Mastrandrea et al., 2010). Nowhere in the guidelines was it thought

necessary to define ‘probability’. Either the authors of the guidelines were

not aware that this concept was amendable to several different interpreta-

tions, or that they were aware of this, and decided against bringing it out

into the open. One can imagine, for example, that an opening statement of

the form “In the context of climate prediction, probability is an expression

of subjective uncertainty and it can be quantified with reference to a sub-

ject’s betting behaviour” would have caused great consternation—so much

the better!

We can hardly suppose that the omission of a definition for the key con-

cept in such an important and high-profile document was made in ignorance.

And yet the mind projection fallacy is in evidence throughout. It looks

as though the authors have deliberately chosen not to acknowledge the es-
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sential subjectivity of climate uncertainty, and to suppress linguistic usage

that would indicate otherwise. This should be termed ‘monster denial’ in

the taxonomy of Curry and Webster (2011). Choosing not to rock the boat

is convenient for academic climate scientists. But it makes life difficult for

policymakers, who are tasked with turning uncertainties into actions. For

policymakers, the meaning of ‘Pr(A) = p’ is of paramount importance, and

they need to know if ten different climate scientists mean it ten different

ways.

4 The risk manager’s point of view

In any discussion of uncertainty and policy it is helpful to label the key players

(Smith, 2010, ch. 1). Conventionally, the person who selects the intervention

is the risk manager, who represents a particular set of stakeholders. These

stakeholders, who are funding the risk manager, and will also fund the in-

tervention that she selects, will appoint an auditor, whom the risk manager

must satisfy. This framework, of a risk manager who must satisfy an au-

ditor, is a simple way to abstract from the complexities of any particular

decision. It emphasises that the risk manager is an agent who must defend

her selection, and this has important consequences for the way in which she

acts.

The risk manager is surely uncertain about future climate, and its impli-

cations. For concreteness, suppose that her concern is about the maximum

height of water in the Thames Estuary in the year 2100. If asked, she might

say, “Really, I’ve no idea, perhaps not lower than today’s value, and not more

than two metres higher.” But she is not obliged to make such an assessment

in isolation: she can consult an expert. Put simply, her expert is someone

whose judgements she accepts as her own (see Lad, 1996, sec. 6.3 for a discus-

sion). So one task of the risk manager is to select her expert, and she must

do this in such a way that the auditor is satisfied with the selection process,

and with the elicitation process. When seen from the other side, it follows

that scientists who want to be involved in climate policy are competing with

each other to be selected as one of the risk manager’s experts. Therefore
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they must demonstrate their grasp of the risk manager’s needs. Likewise, for

climate scientists who are competing for policy-tagged funding.

We highlight the following three risk managers’ needs, as posing particular

challenges for academic climate scientists.

4.1 Answer the question

As already discussed, the risk manager needs an assessment of ‘total un-

certainty’. It can be difficult for the climate scientist to assess his total

uncertainty about future climate because of academic climate science’s focus

on consuming CPU cycles in higher-resolution solvers, rather than designed

replications across alternative not-implausible configurations of simulator pa-

rameters and modules. This leaves the willing-to-engage climate scientist ill-

equipped to answer questions about ranges for future climate values, because

he has nothing other than intuition to guide him on the consequence of the

limitations in our knowledge. Unfortunately, his intuition may be tentative

at best when reasoning about a dynamical system as complex as the climate

system, on centurial timescales.

In this case, the climate scientist may end up specifying very wide inter-

vals which, although honest, do not advance the risk manager because they

swamp any ‘treatment effect’ that might arise from different choices of inter-

vention. This honest climate scientist may well be passed over in favour of

other experts who advertise their smaller uncertainty as a putative measure

of their superior expertise. This type of competition is extensively discussed

in Tetlock (2005), in the context of political and economic forecasting, and

the parallels with climate forecasting seem very strong.

How to make the uncertainties smaller? One way is to qualify them with

conditions. If these conditions are specified in the question, then of course

this is fine. If the risk manager, for example, wants to know about the

height of the water in the Thames Estuary under the ‘Technology bails us

out’ scenario, then in it goes. But everything else is suspect. Sometimes the

qualification is overt, for example one hears “assuming that the simulator is

correct” quite frequently in verbal presentations, or perceives the presenter
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sliding into this mindset. This is so obviously a fallacy that he might as well

have said “assuming that the currency of the US is the jam doughnut”. The

risk manager would be justified in treating such an assessment as meaning-

less. After all, if the climate scientist is not himself prepared to assess the

limitations of the simulator, then what hope is there for the risk manager?

As Tetlock (2005) documents, though, often the qualifications are im-

plicit, and only ever appear at the point where the judgement has been

shown to be wrong, e.g. “Well, of course I was assuming that the simulator

was correct”. The risk manager is not going to be able to winkle out all of

these implicit conditions at the start of the process, but other climate scien-

tists might be able to. Thus the elicitation process must be very carefully

structured to ensure that, by the time that the experts finally deliver their

probabilities, as many as possible of the implicit qualifications have been

exposed and undone. This usually involves a carefully facilitated group elic-

itation, typically extending over several days. Interestingly, Tetlock did not

use group elicitations in his study, but they are standard in environmental

science areas such as natural hazards; see, e.g., Cooke and Goossens (2000),

Aspinall (2010), or Aspinall and Cooke (2012).

Scientists working in climate, and philosophers too we expect, often re-

ceive requests to complete on-line surveys about future climate. These sur-

veys are desperately flawed by responses missing ‘not at random’. But even

were they not, their results ought to be treated with great circumspection,

given the experience in natural hazards of how much difference a careful

group elicitation can make, in comparing experts’ probabilities at the start

and at the finish of the process.

4.2 Own the judgement

This is in fact another type of qualification, where the climate scientist does

not present his own judgement, but someone else’s. A classic example would

be “according to the recent IPCC report”. As far as the climate scientist is

concerned, these qualified uncertainty assessments are consequence-free, and

they ought to be judged by the risk manager as worthless, since nothing is
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staked.

The IPCC reports are valuable sources of information, but no one owns

the judgements in them. Only a very näıve risk manager would take the IPCC

assessment reports as their expert, rather than consulting a climate scientist,

who had read the reports, and also knew about the culture of climate science,

and about the IPCC process. This is not to denigrate the IPCC, but simply

to be appropriately realistic about its sociological and political complexities,

in the face of the very practical needs of the risk manager. These complexities

are well-recognised, and a decision by the risk manager to adopt the IPCC

reports as her expert can hardly be blame-free. As a marketing ploy, the

decision to buy IBM computers was said to be blame-free in the 1970s and

80s: “nobody ever got fired for buying IBM equipment”—how hollow that

sounds now!

The challenge with owning the judgement in climate science is the com-

plexity of the science itself. There are three main avenues for developing

quantitative insights about future climate: (i) computer simulation, (ii) con-

temporary data collected mainly from field stations, ocean sondes, and satel-

lites, but also slightly older data from ships’ log-books, and (iii) palæoclimate

reconstruction from archives such as ice and sediment cores, speliothems,

boreholes, and tree-rings. Each of these is a massive exercise in its own right,

involving large teams of people, large amounts of equipment, and substan-

tial numerical processing. Judgements about future climate at high spatial

and temporal resolution come mainly from computer simulation, but one

must not forget that these simulators have been tuned and critiqued against

contemporary data and, increasingly, palæoclimate reconstructions.

Wherever there is a high degree of scientific complexity, there is a large

opportunity for human error. With computer simulation, an often-overlooked

opportunity for error is the wrapping of the computational core for a specific

task; for example, performing a time-slice experiment for the Mid-Holocene

at a particular combination of simulator parameter values. Whereas the com-

putational core of the simulator is used time and again, and one might hope

that large errors will have been picked up and corrected and committed back

to the repository, the wrapper is often used only once. It tends to be poorly
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documented, often existing as a loose collection of scripts which are passed

around from one scientist to another. It is easy to load the wrong initial-

isation file or boundary file, and also easy to extract the wrong summary

values from the gigabytes of simulator output. ‘Easy’ in this case equates

to ‘if you have done an experiment like this, you will be aware of at least

one mistake that you made, spotted, and corrected’. The correction of this

type of mistake can take weeks of effort, as it is tracked backwards from the

alarming simulator output to its source in the underlying code.

At the other end of the modelling spectrum, there are phenomenological

models of low-dimensional properties of climate and its impacts. See, for

example, Crucifix (2012), who surveys dynamical models of glacial cycles, or

Lorenz et al. (2012), who study the welfare value of reducing uncertainty, no-

tably in the presence of a climate tipping point. There are several advantages

to such models. First, they are small enough to be coded by the scientist

himself, and can be carefully checked for code errors. Thus the scientist can

himself be fairly sure that the interesting result from his simulator is not an

artifact of a mistake in the programming. Second, they are often tractable

enough to permit a formal analysis of their properties. For example, they

might be qualitatively classified by type, or explicitly optimised, or might in-

clude intentional agents who perform sequences of optimisations (such as risk

managers). Third, they are quick enough to execute that they can be run for

millions of model years. Hence the scientist can use replications to assimilate

measurements (including tuning the parameters) and to assess uncertainty,

both within a statistical framework (e.g., using the sequential approach of

Andrieu et al., 2010).

Of course, ‘big modellers’ will be scornful of the limited physics (biology,

chemistry, economics, etc.) that these phenomenological models contain, al-

though they must be somewhat chastened by the inability of their simula-

tors to conclusively outperform simple statistical procedures in tasks such

as ENSO prediction (Barnston et al., 2012). But the real issue is one of

ownership. A single climate scientist cannot own an artifact as complex as

a large-scale climate simulator, and it is very hard for him to make a quan-

titative assessment of the uncertainty that is engendered by its limitations.
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We advocate spending resources of designed experiments to support the cli-

mate scientist in this assessment, but we also note that a scientist can own

a phenomenological model, and the judgements that follow from its use.

4.3 Be coherent

Tetlock (2005, p. 7) has a similar requirement. In this context, ‘coherent’

has a technical meaning, which is to say, ‘don’t make egregious mistakes in

probabilistic reasoning’. This needs to be said, because it is more honour’d

in the breach than the observance.

For example, Gigerenzer (2003) provides a vivid account of how doctors,

who ought to be good at uncertainty assessment, often struggle with even

elementary probability calculations, and how this compromises the notion of

informed consent to medical procedures. As another example, the ‘P -value

fallacy’—inferring that the null hypothesis is false because the P -value is

small—is endemic in applied statistics (see, e.g., Goodman, 1999; Ioannidis,

2005). It is very similar to the Prosecutor’s fallacy in Law (see, e.g., Gigeren-

zer, 2003, ch. 9). These fallacies serve to remind us that people are not very

good when reasoning about uncertainty, and that they can easily be mislead

by fallacious arguments (that violate the probability calculus), sometimes

intentionally.

Tetlock (2005, ch. 4) also notes another aspect of coherence, which is to

appropriately update opinions in the light of new information. He emphasises

the use of Bayes’s Theorem, and demonstrates that his experts did not make

the full adjustment that was indicated by Bayesian conditioning. While

there are psychological explanations for under-adjustment, we would also

note that the probability calculus and Bayesian conditioning is only a model

for reasoning about uncertainty, and not the sine qua non.

Probabilistic inference owes its power to the unreasonable demands of its

axioms, notably the need to quantify an additive (probability) measure on a

sufficiently rich field of propositions. This point was very clearly expressed

by Savage (1954, notably sec. 2.5), in his contrast between the small world

in which one assesses probabilities and performs calculations, and the grand
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world in which one makes choices. He writes “I am unable to formulate

criteria for selecting these small worlds and indeed believe that their selection

may be a matter of judgment and experience about which it is impossible to

enunciate complete and sharply defined general principles . . . On the other

hand it is an operation in which we all necessarily have much experience, and

one in which there is in practice considerable agreement” (pp. 16-17).

A similar point is made by Howson and Urbach (2006, ch. 3), who defend

precise probabilities as a model for reasoning against more complex variants

in terms of “the explanatory and informational dividends obtained from their

use within simplifying models of uncertain inference” (p. 62, original empha-

sis). Howson and Urbach present an instructive analogy with deductive logic,

whose poor representation of implication requires that we use it thoughtfully

when reasoning about propositions that are either true or false (p. 72). Thus

in reasoning about uncertainty, grand world probabilities will be informed by

small world calculations such as Bayesian conditioning, but need not be syn-

onymous with them. The Temporal Sure Preference condition of Goldstein

(1997) provides one way to connect these two worlds (see also Goldstein and

Wooff, 2007, sec. 3.5).

So, for climate scientists, and the risk managers they are hoping to im-

press, the moral of be coherent is that (i) it is very easy to make mistakes

when reasoning about uncertainty, that (ii) strict adherence to the rules of

the probability calculus (and perhaps the assistance of a professional statis-

tician) will minimise these, and that (iii) although probability calculations

are highly informative, no one should be overly impressed by an uncertainty

assessment that is a precise implementation of fully probabilistic Bayesian

conditioning—one would expect this to be simplistic.

5 Reflection

Suppose that you were one of a group of climate scientists, interested in

playing an active role in climate policy, and able to meet the three strictures

outlined in section 4. You have all embraced subjective uncertainty, and have

been summoned, willingly, to a carefully facilitated expert elicitation session.
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After two intense but interesting days your 95% equi-tailed credible interval

for the maximum height of water in the Thames Estuary in 2100 is 0.5m

to 2.75m higher than today. This is wider than your initial interval, as you

came to realise, during the elicitation process, that there were uncertainties

which you had not taken into account.

Suppose that this has recently happened, and you are reflecting on the

process, and wondering what information might have made a large difference

to your uncertainty assessment, and that of your fellow experts. In partic-

ular, you imagine being summoned back in the year 2020, to re-assess your

uncertainties in the light of eight years of climate science progress. Would

you be saying to yourself, “Yes, what I really need is an ad hoc ensemble

of about 30 high-resolution simulator runs, slightly higher than today’s res-

olution.” Let’s hope so, because right now, that’s what you are going to

get.

But we think you’d be saying, “What I need is a designed ensemble,

constructed to explore the range of possible climate outcomes, through sys-

tematically varying those features of the climate simulator that are currently

ill-constrained, such as the simulator parameters, and by trying out alterna-

tive modules with qualitatively different characteristics.” Obviously, you’d

prefer higher resolution to the current resolution, but you don’t see squeez-

ing another 0.25◦ out of the solver as worth sacrificing all the potential for

exploring uncertainty inherent in our limited knowledge of the earth system’s

dynamics, and its critical ecosystems. We’d like to see at least one of the large

climate modelling centres commit to providing this information by 2020, on

their current simulator, operating at a resolution that permits hundreds of

simulator runs per scenario (a resolution of about 2◦, we hazard). Research

funders have the power to make this happen, but for some reason they have

not yet perceived the need.

References

C. Andrieu, A. Doucet, and R. Holenstein, 2010. Particle Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society, Series B, 72(3), 269–
302. With discussion, 302–342.

17



W.P. Aspinall, 2010. A route to more tractable expert advice. Nature, 463,
294–295.

W.P. Aspinall and R.M. Cooke, 2012. Quantifying scientific uncertainty from
expert judgment elicitation. In Rougier et al. (2012), chapter 4. Forthcoming.

A.G. Barnston, M.K. Tippett, M.L. L’Heureux, S. Li, and D.G. DeWitt, 2012. Skill
of real-time seasonal ENSO model predictions during 2002–11: Is our capability
increasing? Bulletin of the American Meteorological Society, 93(5), 631–651.

R.M. Cooke and L.H.J. Goossens, 2000. Procedures guide for structured expert
judgement in accident consequence modelling. Radiation Protection Dosimetry,
90(3), 303–309.

M. Crucifix, 2012. Oscillators and relaxation phonemona in pleistocene climate
theory. Philosophical Transactions of the Royal Society, Series A, 370, 1140–
1165.

J.A. Curry and P.J. Webster, 2011. Climate science and the uncertainty monster.
Bulletin of the American Meteorological Society, 92(12), 1667–1682.

B. de Finetti, 1964. Foresight, its logical laws, its subjective sources. In H. Kyburg
and H. Smokler, editors, Studies in Subjective Probability, pages 93–158. New
York: Wiley. 2nd ed., New York: Krieger, 1980.

G. Gigerenzer, 2003. Reckoning with Risk: Learning to Live with Uncertainty.
Penguin.

M. Goldstein, 1997. Prior inferences for posterior judgements. In M.L.D. Chiara,
K. Doets, D. Mundici, and J. van Benthem, editors, Structures and Norms in
Science. Volume Two of the Tenth International Congress of Logic, Methodol-
ogy and Philosophy of Science, Florence, August 1995, pages 55–71. Dordrecht:
Kluwer.

M. Goldstein and D.A. Wooff, 2007. Bayes Linear Statistics: Theory & Methods.
Chichester, England: John Wiley & Sons.

S. Goodman, 1999. Toward evidence-based medical statistics. 1: The p-value
fallacy. Annals of Internal Medicine, 130, 995–1004.

E. Guilyardi, A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi,
G.J. van Oldenborgh, and T. Stockdale, 2009. Understanding El Niño in Ocean-
Atmosphere General Circulation Models: Progress and challenges. Bulletin of
the American Meteorological Society, 90(3), 325–340.

18
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