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1 Introduction

This essay, written by a statistician and a climate scientist, describes our
view of the gap that exists between current practice in mainstream climate
science, and the practical needs of policymakers charged with exploring pos-
sible interventions in the context of climate change. By ‘mainstream’ we
mean the type of climate science that dominates in universities and research
centres, which we will term ‘academic’ climate science, in contrast to ‘pol-
icy’ climate science; aspects of this distinction will become clearer in what
follows.

In a nutshell, we do not think that academic climate science equips climate
scientists to be as helpful as they might be, when involved in climate policy
assessment. Partly, we attribute this to an over-investment in high resolution
climate simulators, and partly to a culture that is uncomfortable with the

inherently subjective nature of climate uncertainty.
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In section 2 we discuss current practice in academic climate science, in
relation to the needs of policymakers. Section 3 addresses the aparently com-
mon misconception (among climate scientists) that uncertainty is something
‘out there’ to be quantified, much like the strength of meridional overturning
circulation. Section 4, the heart of the essay, addresses the core needs of the
policymaker, and focuses on three strictures for the climate scientist want-
ing to help her: answer the question, own the judgement, and be coherent.
Section 5 concludes with a brief reflection.

We have taken the opportunity in this essay to be a little more polemical
than we might be in an academic paper, and maybe a little more exuberent
in our expressions. We have also ignored the technical details of practical cli-
mate science, something we are both involved in day-to-day, choosing instead
to look at the larger picture. We believe that our observations are valid more
widely than just climate science; for example many of them would apply
with little modification in many areas of natural hazards, and in radiological
or ecotoxicological risk assessment (Rougier et al., 2012). But they seem
most pertinent in climate science, which outstrips the other areas in terms
of funding. For example, the UK’s Natural Environment Research Council
(NERC), whose vision is to “advance knowledge and understanding of the
Earth and its environments to help secure a sustainable future for the planet
and its people”, allocates 40% of its science budget to climate science and
earth system science (NERC Annual Report and Accounts 2010-11, p. 40).

2 Different modes of climate science

For our purposes, the telling feature of climate science is that it gained much
of its momentum in the era before climate change became a pressing soci-
etal concern. Consequently, when policymakers turned to climate science
for advice, they encountered a well-developed academic field whose focus
was more towards explanation than prediction. Explanation, in this context,
is verifying that observable regularities in the climate system are emergent
properties of the basic physics. Largely this is through the interplay between

observation and dynamical climate simulation. As the resolution of climate



simulators increases, more observed regularities fall into the ‘explained’ cat-
egory. The El Nino Southern Oscillation (ENSO) is getting closer to falling
into this category, for example (Guilyardi et al., 2009).

Thus for investment, the dominant vector in academic climate science has
been to improve the spatial and temporal resolution of the solvers in climate
simulators. Supporting evidence can be found in meteorology. It is argued
that one of the contributory factors to measurable improvements in weather
forecasting over the last thirty years is higher-resolution solvers, although
the quantification of this is confounded by simultaneous improvements in
understanding the physics, in the amount of data available for calibration,
and in techniques for data assimilation (Kalnay, 2002, ch. 1). Setting these
confounders aside, it seems natural to assert that higher resolution solvers
will lead to better climate simulators. And indeed, we would not deny this,
but we would also question whether in fact it is resolution that is limiting
the fidelity of climate simulators.

The reason that we are suspicious of arguments about climate founded
on experiences in meteorology is the presence of biological and chemical pro-
cesses in the earth system that operate on climate policy but not weather
time-scales. We believe that the acknowledgement of biogeochemistry as a
full part of the climate system distinguishes the true climate scientist from
the converted meteorologist. Our lack of understanding of climate’s critical
ecosystems mocks the precision with which we can write down and approx-
imate the Navier-Stokes equations. The problem is, though, that putting
ecosystems into a climate simulator is a huge challenge, and progress is diffi-
cult to quantify. It introduces more uncertain parameters, and, by replacing
prescribed fields with time-evolving fields, it can actually make the perfor-
mance of the simulator worse, until tuning is successfully completed (and
there is no guarantee of success). Newman (2011) provides a short and read-
able account of the difficulties of biology, in comparison to physics.

On the other hand, spending money on higher resolution solvers requires
fewer parameterisations of sub-grid-scale processes, and so reduces the chal-
lenge of tuning. This activity has a well-documented provenance, and a clear

motivation within a coherent science plan. And we cannot resist pointing out



another immediate benefit: one can show the funder a more realistic looking
ocean simulation (“Now at 0.5° resolution!” )—although in fact resolutions as
high as 0.1° do not fool experienced oceanographers. But while this push to
higher resolutions is natural for meteorology, with its forecast horizon mea-
sured in days, for climate we fear that it blurs the distinction between what
one can simulate, and what one ought to simulate for policy purposes.

So how might the investment be directed differently? For climate pol-
icy it is necessary to enumerate what might happen under different climate
interventions: do nothing, monetise carbon, regulation for contraction and
convergence, geo-engineering, and so on. And each of these interventions
must be evaluated for a range of scenarios that capture future uncertainty
about technology, economics, and demographics. For each pair of interven-
tion and scenario there is a range of possible outcomes, which represent our
uncertainty about future climate. Uncertainty here is ‘total uncertainty’:
only the intervention and the scenario are specified—the policymaker does
not have the luxury of being able to pick and choose which uncertainties are
incorporated and which are ignored.

Internal variability, part of the natural variability of the climate system,
can be estimated from high-resolution simulators, but it is only a tiny part
of total uncertainty. Over centurial scales, it is negligible compared to our
combined uncertainty of the behaviour of the ice-sheets, and the marine and
terrestrial biosphere. This uncertainty can be assessed with the assistance
of climate simulators, if it is possible to run them repeatedly under differ-
ent configurations of the simulator parameters and modules, where these
configurations attempt to span the range of not-implausible climate system
behaviours. To construct a tableau such as the one in Figure 1 will require
a minimum of 4 x 3 x 100 x 90 models-years of simulation, say 120,000
model-years, including spin-up. The 100 is the number of different simulator
configurations that might be tried, and the 90 is the number of years un-
til 2100. Of course, 100 is woefully small for the number of configurations.
There are more than one hundred uncertain parameters in a high-resolution
climate simulator (Murphy et al., 2004). Admittedly only some of these will

turn out to be important but we cannot rule out interactions among the pa-
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Figure 1: Policy tableau, showing the effect of different possible interventions
under different scenarios. These frequency histograms might in this case
measure simulated global warming by 2100 under different not-implausible
simulator configurations, but more generally they would measures losses,
inferred from simulated distributions for weather in 2100. Please note that
these histograms are completely fictitious!



rameters. There is a well-developed statistical field for this type of analysis,
see, e.g., Santner et al. (2003).

Note that this is a designed experiment, deliberately constructed to be
informative about uncertainty. It is completely different from assembling an
ad hoc collection of simulator runs, such as the CMIP3 or CMIP5 multimodel
ensembles, in the same way that a carefully stratified sample of 100 people
is far more informative about a population than simply selecting the next
100 people that pass a particular lamp-post. In the absence of designed
experiments, though, climate scientists who want to assess uncertainty will
have to use the ad hoc ensemble. The various types and uses of currently-
available ensembles of climate simulator runs are reviewed in Parker (2010)
and Murphy et al. (2011).

So what is the status of these policy-relevant designed experiments? Cur-
rent ‘IPCC class’ simulators (with a solver resolution of about 1°) run at
about 100 model-years per month of wall-clock time. So starting now, an
experiment to assess uncertainty in 2100 for policy purposes will be finished
in about 100 years, if it is performed at one research centre. But this might
be reduced to 10 years if the runs were shared out across all centres, or even
less factoring in faster computers and no increase in resolution. Thus these
IPCC class simulators could be very helpful for assessing uncertainty and
supporting policymakers, but this requires a cap on solver resolution, and
careful coordination across research centres. In contrast, the current uncoor-
dinated approach, with its apparent commitment to spending CPU cycles on
a few runs of high-resolution climate simulators, will force climate scientists

in 2020 to base their future climate assessments on ad hoc ensembles.

3 The nature of uncertainty about climate

In this paper we confine our discussion of climate uncertainty quantification
to the assessment of probabilities. There are, of course, several interpreta-
tions of probability. L.J. Savage wrote of “dozens” of different interpretations
of probability Savage (1954, p. 2), and he focused on three main strands: the
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tite classification is widely accepted among statisticians, and discussed, with
embellishments, in the initial chapters of Walley (1991) and Lad (1996). Not
to be outdone, Hajek (2012) notes that philosophers of probability now have
six leading interpretations of probability.

Of all of these interpretations, however, we contend that only the Per-
sonalistic interpretation can capture the ‘total uncertainty’ inherent in the
assessment of climate policy. Our uncertainty about future climate is pre-
dominantly epistemic uncertainty—the uncertainty that follows from limi-
tations in knowledge and resources. The hallmark of epistemic uncertainty
is that it could, in principle, be reduced with further introspection, or fur-
ther experiments. As one of the key drivers of research investment in cli-
mate science is to reduce uncertainty, this epistemic interpretation of ‘total
uncertainty’ must be uncontentious. It rules out the Objective (classical,
frequency, propensity) interpretation, and leaves us with Personalistic and
Necessary (also termed logical) interpretations.

The Necessary interpretation asserts that there are principles of reason-
ing that extend Boolean logic to uncertainty, and that these principles are in
fact the calculus of probability and Bayesian conditioning. This interpreta-
tion is formally attractive, but invokes additional principles to ‘fill in’ those
initial probabilities that are mandated by conditioning—which are generally
referred to as ‘prior’ probabilities in a Bayesian context. These are to be
based on self-evident properties of the inference, such as symmetries. Exam-
ples are discussed in Jaynes (2003); see, for example, his elegant resolution
of Bertrand’s problem (sec. 12.4.4). However, it is hard to know how one
might discover and apply these properties in an assessment of, say, the max-
imum height of the water in the Thames Estuary in 2100. Thus, starting
with Frank Ramsey, and finding eloquent champions in Bruno de Finetti
and L.J. Savage, among others, the Personalistic interpretation has provided
an operational subjective definition of probability, in terms of betting rates
(see, e.g. Ramsey, 1931; de Finetti, 1964; Savage, 1954; Savage et al., 1962).
De Finetti’s late writings are both subtle and discursive; Lad (1996) attempts
to corral them.

Not everyone will find the Personalistic definition of probability com-



pelling. But at least it provides a very clear answer to the question “What
do You mean when You state that Pr(A) = p?” A brief answer is that, if
betting for a small amount of money, such as £1, You would be agreeable
to staking up to £p in a gamble to receive £1 if A turns out to be true and
nothing if A turns out to be false. There are other operationalisations as
well, which are very similar but not psychologically equivalent; see, e.g., the
discussion in Goldstein and Wooff (2007, sec. 2.2). Our view is that an op-
erationalisation of Personalistic probability is highly desirable, and a useful
thing to fall back on, but not in itself the yardstick by which all probabilities
are assessed. But, if someone provides a probability p for a proposition A,
it might be a good idea to ask him if he would be prepared to bet £p on A
being true: the answer could be very revealing.

However, many physical scientists seem to be very uncomfortable with
the twin notions that uncertainty is subjective (i.e. it is a property of the
mind), and that probabilities are expressions of personal inclinations to act
in certain ways. At least part of the problem concerns the use of the word
‘subjective’, about which the first author has written before (Rougier, 2007,
sec. 2). This word is clearly inflammatory. We suggest that some scientists
have confused the Mertonian scientific norm of ‘disinterestedness’ with the
notion of ‘objectivity’, and then taken subjectivity to be the antithesis of ob-
jectivity, and thus to be avoided at all costs. L.J. Savage was sensitive to this
confusion and hence favoured ‘Personalistic’. De Finetti strongly favoured
‘subjective’, about which Jeffrey (2004, p. 76, footnote 1) commented on “the
lifelong pleasure that de Finetti found in being seen to give the finger to the
establishment”.

Confusion about ‘subjectivity’ is just a digression, though. What is abun-
dantly clear is that climate scientists are not ready to accept that climate
uncertainties are Personalistic. Their every reference to ‘the uncertainty’
commits an error which the physicist E.T. Jaynes called the ‘mind projec-

tion fallacy’:

an almost universal tendency to disguise epistemological state-
ments by putting them into a grammatical form which suggests

to the unwary an ontological statement. To interpret the first



kind of statement in the ontological sense is to assert that one’s
own private thoughts and sensations are realities existing exter-
nally in Nature. (Jaynes, 2003, p. 22).

Jaynes is an example of a physicist who embraced the essential subjectivity of
uncertainty: he advocated the Necessary interpretation, plus the additional
principle of maximising Shannon entropy to extend limited judgements to
probabilities. Paris (1994) provides a detailed assessment of the properties
of this entropy-maximising approach, among others.

One very stealthy manifestation of the Mind Projection Fallacy is the
substitution of ‘assumptions’ for ‘judgements’ when discussing uncertainty.
Assumptions typically refer to simplifications we assert about the system
itself. It is perfectly acceptable to assume that, for example, the hydrostatic
approximation holds: this is a statement that actual ocean behaves a lot
like a slightly different ocean that is much simpler to analyse. You cannot
assume, though, that the maximum water level in the Thames Estuary in
2100 has a Gaussian distribution. Instead, You may judge it appropriate to
represent Your uncertainty about the maximum water level with a Gaussian
distribution. This is rather wordy, unfortunately, which is perhaps why it is
so easy to lapse in this way.

Consider the uncertainty assessment guidelines for the forthcoming IPCC
report (Mastrandrea et al., 2010). Nowhere in the guidelines was it thought
necessary to define ‘probability’. Either the authors of the guidelines were
not aware that this concept was amendable to several different interpreta-
tions, or that they were aware of this, and decided against bringing it out
into the open. One can imagine, for example, that an opening statement of
the form “In the context of climate prediction, probability is an expression
of subjective uncertainty and it can be quantified with reference to a sub-
ject’s betting behaviour” would have caused great consternation—so much
the better!

We can hardly suppose that the omission of a definition for the key con-
cept in such an important and high-profile document was made in ignorance.
And yet the mind projection fallacy is in evidence throughout. It looks

as though the authors have deliberately chosen not to acknowledge the es-



sential subjectivity of climate uncertainty, and to suppress linguistic usage
that would indicate otherwise. This should be termed ‘monster denial’ in
the taxonomy of Curry and Webster (2011). Choosing not to rock the boat
is convenient for academic climate scientists. But it makes life difficult for
policymakers, who are tasked with turning uncertainties into actions. For
policymakers, the meaning of ‘Pr(A) = p’ is of paramount importance, and
they need to know if ten different climate scientists mean it ten different

ways.

4 The risk manager’s point of view

In any discussion of uncertainty and policy it is helpful to label the key players
(Smith, 2010, ch. 1). Conventionally, the person who selects the intervention
is the risk manager, who represents a particular set of stakeholders. These
stakeholders, who are funding the risk manager, and will also fund the in-
tervention that she selects, will appoint an auditor, whom the risk manager
must satisfy. This framework, of a risk manager who must satisfy an au-
ditor, is a simple way to abstract from the complexities of any particular
decision. It emphasises that the risk manager is an agent who must defend
her selection, and this has important consequences for the way in which she
acts.

The risk manager is surely uncertain about future climate, and its impli-
cations. For concreteness, suppose that her concern is about the maximum
height of water in the Thames Estuary in the year 2100. If asked, she might
say, “Really, I've no idea, perhaps not lower than today’s value, and not more
than two metres higher.” But she is not obliged to make such an assessment
in isolation: she can consult an expert. Put simply, her expert is someone
whose judgements she accepts as her own (see Lad, 1996, sec. 6.3 for a discus-
sion). So one task of the risk manager is to select her expert, and she must
do this in such a way that the auditor is satisfied with the selection process,
and with the elicitation process. When seen from the other side, it follows
that scientists who want to be involved in climate policy are competing with

each other to be selected as one of the risk manager’s experts. Therefore
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they must demonstrate their grasp of the risk manager’s needs. Likewise, for
climate scientists who are competing for policy-tagged funding.
We highlight the following three risk managers’ needs, as posing particular

challenges for academic climate scientists.

4.1 Answer the question

As already discussed, the risk manager needs an assessment of ‘total un-
certainty’. It can be difficult for the climate scientist to assess his total
uncertainty about future climate because of academic climate science’s focus
on consuming CPU cycles in higher-resolution solvers, rather than designed
replications across alternative not-implausible configurations of simulator pa-
rameters and modules. This leaves the willing-to-engage climate scientist ill-
equipped to answer questions about ranges for future climate values, because
he has nothing other than intuition to guide him on the consequence of the
limitations in our knowledge. Unfortunately, his intuition may be tentative
at best when reasoning about a dynamical system as complex as the climate
system, on centurial timescales.

In this case, the climate scientist may end up specifying very wide inter-
vals which, although honest, do not advance the risk manager because they
swamp any ‘treatment effect’ that might arise from different choices of inter-
vention. This honest climate scientist may well be passed over in favour of
other experts who advertise their smaller uncertainty as a putative measure
of their superior expertise. This type of competition is extensively discussed
in Tetlock (2005), in the context of political and economic forecasting, and
the parallels with climate forecasting seem very strong.

How to make the uncertainties smaller? One way is to qualify them with
conditions. If these conditions are specified in the question, then of course
this is fine. If the risk manager, for example, wants to know about the
height of the water in the Thames Estuary under the ‘Technology bails us
out’ scenario, then in it goes. But everything else is suspect. Sometimes the
qualification is overt, for example one hears “assuming that the simulator is

correct” quite frequently in verbal presentations, or perceives the presenter
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sliding into this mindset. This is so obviously a fallacy that he might as well
have said “assuming that the currency of the US is the jam doughnut”. The
risk manager would be justified in treating such an assessment as meaning-
less. After all, if the climate scientist is not himself prepared to assess the
limitations of the simulator, then what hope is there for the risk manager?

As Tetlock (2005) documents, though, often the qualifications are im-
plicit, and only ever appear at the point where the judgement has been
shown to be wrong, e.g. “Well, of course I was assuming that the simulator
was correct”. The risk manager is not going to be able to winkle out all of
these implicit conditions at the start of the process, but other climate scien-
tists might be able to. Thus the elicitation process must be very carefully
structured to ensure that, by the time that the experts finally deliver their
probabilities, as many as possible of the implicit qualifications have been
exposed and undone. This usually involves a carefully facilitated group elic-
itation, typically extending over several days. Interestingly, Tetlock did not
use group elicitations in his study, but they are standard in environmental
science areas such as natural hazards; see, e.g., Cooke and Goossens (2000),
Aspinall (2010), or Aspinall and Cooke (2012).

Scientists working in climate, and philosophers too we expect, often re-
ceive requests to complete on-line surveys about future climate. These sur-
veys are desperately flawed by responses missing ‘not at random’. But even
were they not, their results ought to be treated with great circumspection,
given the experience in natural hazards of how much difference a careful
group elicitation can make, in comparing experts’ probabilities at the start

and at the finish of the process.

4.2 Own the judgement

This is in fact another type of qualification, where the climate scientist does
not present his own judgement, but someone else’s. A classic example would
be “according to the recent IPCC report”. As far as the climate scientist is
concerned, these qualified uncertainty assessments are consequence-free, and

they ought to be judged by the risk manager as worthless, since nothing is
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staked.

The IPCC reports are valuable sources of information, but no one owns
the judgements in them. Only a very naive risk manager would take the IPCC
assessment reports as their expert, rather than consulting a climate scientist,
who had read the reports, and also knew about the culture of climate science,
and about the IPCC process. This is not to denigrate the IPCC, but simply
to be appropriately realistic about its sociological and political complexities,
in the face of the very practical needs of the risk manager. These complexities
are well-recognised, and a decision by the risk manager to adopt the IPCC
reports as her expert can hardly be blame-free. As a marketing ploy, the
decision to buy IBM computers was said to be blame-free in the 1970s and
80s: “nobody ever got fired for buying IBM equipment”—how hollow that
sounds now!

The challenge with owning the judgement in climate science is the com-
plexity of the science itself. There are three main avenues for developing
quantitative insights about future climate: (i) computer simulation, (ii) con-
temporary data collected mainly from field stations, ocean sondes, and satel-
lites, but also slightly older data from ships’ log-books, and (iii) paleeoclimate
reconstruction from archives such as ice and sediment cores, speliothems,
boreholes, and tree-rings. Each of these is a massive exercise in its own right,
involving large teams of people, large amounts of equipment, and substan-
tial numerical processing. Judgements about future climate at high spatial
and temporal resolution come mainly from computer simulation, but one
must not forget that these simulators have been tuned and critiqued against
contemporary data and, increasingly, palacoclimate reconstructions.

Wherever there is a high degree of scientific complexity, there is a large
opportunity for human error. With computer simulation, an often-overlooked
opportunity for error is the wrapping of the computational core for a specific
task; for example, performing a time-slice experiment for the Mid-Holocene
at a particular combination of simulator parameter values. Whereas the com-
putational core of the simulator is used time and again, and one might hope
that large errors will have been picked up and corrected and committed back

to the repository, the wrapper is often used only once. It tends to be poorly
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documented, often existing as a loose collection of scripts which are passed
around from one scientist to another. It is easy to load the wrong initial-
isation file or boundary file, and also easy to extract the wrong summary
values from the gigabytes of simulator output. ‘Easy’ in this case equates
to ‘if you have done an experiment like this, you will be aware of at least
one mistake that you made, spotted, and corrected’. The correction of this
type of mistake can take weeks of effort, as it is tracked backwards from the
alarming simulator output to its source in the underlying code.

At the other end of the modelling spectrum, there are phenomenological
models of low-dimensional properties of climate and its impacts. See, for
example, Crucifix (2012), who surveys dynamical models of glacial cycles, or
Lorenz et al. (2012), who study the welfare value of reducing uncertainty, no-
tably in the presence of a climate tipping point. There are several advantages
to such models. First, they are small enough to be coded by the scientist
himself, and can be carefully checked for code errors. Thus the scientist can
himself be fairly sure that the interesting result from his simulator is not an
artifact of a mistake in the programming. Second, they are often tractable
enough to permit a formal analysis of their properties. For example, they
might be qualitatively classified by type, or explicitly optimised, or might in-
clude intentional agents who perform sequences of optimisations (such as risk
managers). Third, they are quick enough to execute that they can be run for
millions of model years. Hence the scientist can use replications to assimilate
measurements (including tuning the parameters) and to assess uncertainty,
both within a statistical framework (e.g., using the sequential approach of
Andrieu et al., 2010).

Of course, ‘big modellers’ will be scornful of the limited physics (biology,
chemistry, economics, etc.) that these phenomenological models contain, al-
though they must be somewhat chastened by the inability of their simula-
tors to conclusively outperform simple statistical procedures in tasks such
as ENSO prediction (Barnston et al., 2012). But the real issue is one of
ownership. A single climate scientist cannot own an artifact as complex as
a large-scale climate simulator, and it is very hard for him to make a quan-

titative assessment of the uncertainty that is engendered by its limitations.
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We advocate spending resources of designed experiments to support the cli-
mate scientist in this assessment, but we also note that a scientist can own

a phenomenological model, and the judgements that follow from its use.

4.3 Be coherent

Tetlock (2005, p. 7) has a similar requirement. In this context, ‘coherent’
has a technical meaning, which is to say, ‘don’t make egregious mistakes in
probabilistic reasoning’. This needs to be said, because it is more honour’d
in the breach than the observance.

For example, Gigerenzer (2003) provides a vivid account of how doctors,
who ought to be good at uncertainty assessment, often struggle with even
elementary probability calculations, and how this compromises the notion of
informed consent to medical procedures. As another example, the ‘P-value
fallacy’—inferring that the null hypothesis is false because the P-value is
small—is endemic in applied statistics (see, e.g., Goodman, 1999; loannidis,
2005). It is very similar to the Prosecutor’s fallacy in Law (see, e.g., Gigeren-
zer, 2003, ch. 9). These fallacies serve to remind us that people are not very
good when reasoning about uncertainty, and that they can easily be mislead
by fallacious arguments (that violate the probability calculus), sometimes
intentionally.

Tetlock (2005, ch. 4) also notes another aspect of coherence, which is to
appropriately update opinions in the light of new information. He emphasises
the use of Bayes’s Theorem, and demonstrates that his experts did not make
the full adjustment that was indicated by Bayesian conditioning. While
there are psychological explanations for under-adjustment, we would also
note that the probability calculus and Bayesian conditioning is only a model
for reasoning about uncertainty, and not the sine qua non.

Probabilistic inference owes its power to the unreasonable demands of its
axioms, notably the need to quantify an additive (probability) measure on a
sufficiently rich field of propositions. This point was very clearly expressed
by Savage (1954, notably sec. 2.5), in his contrast between the small world

in which one assesses probabilities and performs calculations, and the grand
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world in which one makes choices. He writes “I am unable to formulate
criteria for selecting these small worlds and indeed believe that their selection
may be a matter of judgment and experience about which it is impossible to
enunciate complete and sharply defined general principles ... On the other
hand it is an operation in which we all necessarily have much experience, and
one in which there is in practice considerable agreement” (pp. 16-17).

A similar point is made by Howson and Urbach (2006, ch. 3), who defend
precise probabilities as a model for reasoning against more complex variants
in terms of “the explanatory and informational dividends obtained from their
use within simplifying models of uncertain inference” (p. 62, original empha-
sis). Howson and Urbach present an instructive analogy with deductive logic,
whose poor representation of implication requires that we use it thoughtfully
when reasoning about propositions that are either true or false (p. 72). Thus
in reasoning about uncertainty, grand world probabilities will be informed by
small world calculations such as Bayesian conditioning, but need not be syn-
onymous with them. The Temporal Sure Preference condition of Goldstein
(1997) provides one way to connect these two worlds (see also Goldstein and
Wooff, 2007, sec. 3.5).

So, for climate scientists, and the risk managers they are hoping to im-
press, the moral of be coherent is that (i) it is very easy to make mistakes
when reasoning about uncertainty, that (ii) strict adherence to the rules of
the probability calculus (and perhaps the assistance of a professional statis-
tician) will minimise these, and that (iii) although probability calculations
are highly informative, no one should be overly impressed by an uncertainty
assessment that is a precise implementation of fully probabilistic Bayesian

conditioning—one would expect this to be simplistic.

5 Reflection

Suppose that you were one of a group of climate scientists, interested in
playing an active role in climate policy, and able to meet the three strictures
outlined in section 4. You have all embraced subjective uncertainty, and have

been summoned, willingly, to a carefully facilitated expert elicitation session.
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After two intense but interesting days your 95% equi-tailed credible interval
for the maximum height of water in the Thames Estuary in 2100 is 0.5m
to 2.75m higher than today. This is wider than your initial interval, as you
came to realise, during the elicitation process, that there were uncertainties
which you had not taken into account.

Suppose that this has recently happened, and you are reflecting on the
process, and wondering what information might have made a large difference
to your uncertainty assessment, and that of your fellow experts. In partic-
ular, you imagine being summoned back in the year 2020, to re-assess your
uncertainties in the light of eight years of climate science progress. Would
you be saying to yourself, “Yes, what I really need is an ad hoc ensemble
of about 30 high-resolution simulator runs, slightly higher than today’s res-
olution.” Let’s hope so, because right now, that’s what you are going to
get.

But we think you’d be saying, “What I need is a designed ensemble,
constructed to explore the range of possible climate outcomes, through sys-
tematically varying those features of the climate simulator that are currently
ill-constrained, such as the simulator parameters, and by trying out alterna-

’

tive modules with qualitatively different characteristics.” Obviously, you’d
prefer higher resolution to the current resolution, but you don’t see squeez-
ing another 0.25° out of the solver as worth sacrificing all the potential for
exploring uncertainty inherent in our limited knowledge of the earth system’s
dynamics, and its critical ecosystems. We'd like to see at least one of the large
climate modelling centres commit to providing this information by 2020, on
their current simulator, operating at a resolution that permits hundreds of
simulator runs per scenario (a resolution of about 2°, we hazard). Research
funders have the power to make this happen, but for some reason they have

not yet perceived the need.
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