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Abstract

We provide a statistical interpretation of current practice in climate mod-

elling. This includes: definitions for weather and climate; clarifying the

relationship between simulator output and simulator climate; distinguishing

between a climate simulator and a statistical climate model; statistical inter-

pretation of the ubiquitous practice of anomaly correction, and a substantial

generalisation (the ‘best parameter’ approach); interpreting simulator/data

comparisons as posterior predictive checking, and a simple adjustment to

allow for double-counting. We also discuss statistical approaches to simula-

tor tuning, assessing parametric uncertainty, and responding to unrealistic

outputs. We finish with a more general discussion of larger themes.

Keywords: Climate modelling, tuning, history matching, anomaly

model, best parameter model, model criticism
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1 Introduction

Our purpose in this review is to interpret current practice in climate mod-

elling in the light of statistical inferences about past and future weather.

In this way, we hope to emphasise the common ground between our two

communities, and to clarify climate modelling practices which may not, at

first sight, seem particularly statistical. From this starting-point we can then

suggest some relatively simple enhancements, and identify some larger issues.

Naturally, we have had to simplify many practices in climate modelling, but

not—we hope—to the extent that they are unrecognisable.

1.1 Weather and climate

We define ‘weather’ to be measurable aspects of our ambient atmosphere,

notably temperature, precipitation, and wind-speed. Hence weather is an

objective property of the world. We define a climate to be a subjective

distribution for weather, represented as a multivariate space-time stochastic

process. ‘Distribution of weather’ is uncontentious, but we believe that much

confusion has arisen from attempts to treat climate as an objective property

of the world, rather than something associated with a person, and reflect-

ing his disposition to make bets—to adopt a common operationalisation of

subjective probability, which we shall use throughout this review to treat

all of the uncertainties within a common framework. Thus we write ‘your

climate’ rather than ‘the climate’; this seems to be the minimal change that

is effective in emphasising the subjective viewpoint.

This subjective definition of climate is not one that many climate sci-

entists will recognise, and so we take a moment to evaluate it. First, one

standard definition of ‘climate’ is ‘average weather’, often represented as a

thirty-year arithmetic mean. Under this type of definition (which may be

extended to a much richer summary), climate is an objective property of the

world, being simply a known function of weather. Thus one could bet on

climate, rather than, as we would have it, climate being the bet one makes

on weather. And then we would need a word for ‘distribution of climate’,

because climate has become synonymous with summaries of weather. So we
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have chosen to identify weather with its summaries, and reserve climate for

‘distribution of weather’.

What about the subjective element? Climate modellers may not be happy

about statisticians telling them that the distribution of weather is subjective.

They may, for example, point to the histogram of recent past weather as a

distribution of weather which is objective. But a histogram is not a distribu-

tion. If you make the subjective judgement of temporal exchangeability then

the histogram of, say, 1980–2009 weather approximates your distribution of

2010 weather, albeit in a rather lumpy fashion. This is because probabilistic

updating of an exchangeable sequence implies convergence to the histogram.

So climate modellers who shared the judgement of exchangeability would

roughly agree on the distribution of weather in 2010. But this argument

is self-defeating, since subjectivity is necessary to turn the histogram into

a distribution. It also highlights a common mistake, which is to confuse

agreement with non-subjectivity.

The key point is that any probability for a unique event is unavoidably

subjective; see, for example, Hacking (2001). The weather event ‘there is at

least one year of severe drought in England in 2020–2029’ is a unique event,

about which we cannot be certain before 2020, and may not be certain until

2030. At the moment, you may describe your assessment of this event prob-

abilistically (it is an implication of your climate), but there is no reason to

expect you to agree with anyone else. Your information, knowledge, and

disposition are yours alone. Of course, a shared judgement of temporal ex-

changeability extending from 1980 to 2039 would be sufficient for agreement,

but this is not a defensible judgement for a well-informed climate modeller,

who is aware of the changes that are currently occurring in the earth system.1

Finally, our definition of climate seems to be consistent with current prac-

tice in climate modelling, as we will describe in more detail in the following

sections. A ‘climate simulator’ is just that, a device for generating a fam-

ily of distributions for weather. Insofar as the simulator is the outcome of

1Exactly the same considerations apply to the weather of the past. Agreement about
the climate of the recent past follows from the convergence of exchangeable judgements
on the histogram. But where there is no histogram, for example for palaeo-weather, there
is no particular reason for agreement.
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many judgements, its distribution is subjective. Climate modellers do not

accept one of the simulator’s climates as their own, but make a subjective

adjustment reflecting their judgement about the simulator’s limitations. So

we find that the practice of climate modellers is inherently subjective, and

that defining climate to be a subjective distribution for weather is reasonable

not just from a foundational point of view, but also from a naturalistic one.

Just to be absolutely clear, we use the word ‘subjective’ to indicate only

that by our definition climate may vary from one person to another. When

judgements are subjective it behoves policymakers and the general public to

exercise care when selecting their experts, to ensure that they are qualified

and representative. In the case of future weather, it is climate scientists

who are the experts, not statisticians like ourselves, and not journalists or

bloggers. There is a huge body of climate science which is widely accepted

within the climate science community, and this includes that the net effect

of human activity since 1750 has been one of warming (Solomon et al., 2007,

Summary for policymakers) and that multiple lines of evidence attribute the

observed warming to human activity (Hegerl et al., 2007). These conclusions

from the IPCC Fourth Assessment Report will shortly be reaffirmed in the

Fifth Assessment Report (the IPCC AR5, to be finalised in 2014).

1.2 Climate simulators and their uses

The earth can be represented as a forced system, driven by variations in

insolation, by volcanism and other tectonic processes, and by human activity

(Peixoto and Oort, 1992). A climate simulator in its most primitive form

is a function that maps forcings into weather, after which statistical post-

processing of the weather can be used to produce a climate; this is discussed

in more detail in section 2.1. We prefer the term ‘climate simulator’ for

the function that does the mapping, reserving ‘model’ for its use in the

statistical sense of a framework designed to simplify the process of specifying

your climate (Rougier et al., 2013). But because the word ‘model’ is heavily

overloaded, we will write either ‘statistical climate model’, or ‘XXX model’,
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where XXX is the name we give to a particular statistical model.2

In our sense, statistical climate models will typically encompass climate

simulators. This is because the effect of forcing on the earth system has

strong constraints that are induced by basic physical principles such as con-

servation and continuity. The qualitative effects of these constraints can be

inferred for a simplified earth; for example, the large-scale atmospheric organ-

isation known as Hadley Cells (see, e.g., Ahrens, 2000, chapter 11). However,

a quantitative description on a realistic earth is less amenable to intuition,

and must be computed. Thus quantitative statistical climate models are con-

structed in two stages: (i) develop a climate simulator which represents the

physics, and (ii) propose a statistical model which represents your assessment

of the simulator’s limitations. Climate simulators are discussed in section 2,

and statistical climate models in section 3.

Our distinction between ‘climate simulator’ and ‘statistical climate model’

is not widely made in climate science, but it exists implicitly, because cli-

mate modellers do indeed use statistical models to adjust a simulator’s cli-

mate. The ubiquitous model is that, for a quantity such as temperature,

the simulator’s climate is acceptable only up to an unknown fixed offset (the

‘simulator bias’), which in practice is estimated and plugged-in. This is the

statistical interpretation of ‘anomaly correcting’, in which, as a matter of

course, a simulator’s temperatures are vertically shifted so that the simula-

tor mean temperatures over the period 1980–1999 exactly match the mean of

observed temperatures over the same period; see Figures 4 and 5 in Guttorp

(2014, chapter ??? of this volume). Statisticians will immediately see the

opportunities for generalising such a model. For example, the offset might

be a spatial-temporal process; offsets from different types of output might be

correlated; rather than plugging-in, the offset field might be integrated out,

and so on.

2The term ‘statistical climate model’ is also used for a class of statistical-dynamical
simulators, in which a separation of scale argument is used to model the large-scale effects
directly, and to relegate the small-scale effects to a statistical ensemble; see Hasselmann
(1976) for an outline of this approach, and Petoukhov et al. (2000) for a description of the
CLIMBER-2 statistical-dynamical simulator. We do not consider this type of simulator
here.
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We make this point right at the start of this review, to stress that encom-

passing a climate simulator within a statistical climate model is not simply

a statistician’s conceit. Rather, it is something that already happens, but

which, with statistical insight, could be generalised rather easily. It is cru-

cial to appreciate that statistical judgements are necessary to move from

climate simulator output to your climate, and these judgements must change

as climate simulators evolve.

One role for climate simulators is hypothesis testing and predicting. Hy-

pothesis testing is well-illustrated by ‘detection and attribution’ (D&A). In

D&A, hypotheses compete to explain features such as the spatial-temporal

structure of the warming trend in C20th weather. Hypothesis A is that

this trend is simply a realisation of the weather’s natural variability. Hy-

pothesis B adds solar functions and volcanism. Hypothesis C adds human

activities. These hypotheses are statements about the forcing. To compute

your likelihood ratio for, say, B versus C you require your climate for a hypo-

thetical earth without humans, as well as your climate for the actual earth.

An earth without humans can be implemented in a simulator by fixing the

forcing from atmospheric greenhouse gases in the industrial period to be the

same as that before the industrial period. Hypothesis tests for D&A are

discussed in Rougier (2008a) and reviewed in Hegerl and Zwiers (2011); for

reasons of space, they will not be covered further here.

For predicting, policy interest is in future weather. In current practice the

future is represented in terms of scenarios for future forcing, which themselves

arise from scenarios for population, economics, technology, and policy inter-

ventions.3 Again, climate simulators provide the means of considering and

comparing various hypothetical futures. They provide a platform for what-if

intervention studies, such as geo-engineering (e.g. Irvine et al., 2011), and for

driving regional simulations for climate impact studies (Parry et al., 2007).

Climate prediction is the main focus of this review, discussed in sections 3

and 4.

3Williamson and Goldstein (2012) describe an adaptive approach to simulator-based
policy assessment, which avoids the use of scenarios.

6



2 Climate simulators

In this review we focus on large climate simulators, the state-of-the-art sim-

ulators that are run at the main climate research centres. The earth system

comprises many interacting sub-systems, most notably the atmosphere, hy-

drosphere, cryosphere, lithosphere, and biosphere, and the same is true of

large climate simulators. Ahrens (2000) provides an introduction to weather

(the companion volume Stull, 2000, is also helpful), with a more mathemat-

ical treatment in Peixoto and Oort (1992). McGuffie and Henderson-Sellers

(2005) provide an introduction to climate modelling; Arakawa (1997) is a

technical treatment outlining the mathematical issues involved in solving the

underlying equations; Watanabe et al. (2010) describes some of the pragmatic

choices that were made in constructing the MIROC5 simulator.

2.1 The simulator as a dynamical system

We will not consider the precise form of the laws governing the behaviour

and interactions of the simulator modules, beyond observing that the laws

of the earth’s sub-systems are not all known, and that they are not currently

solvable at a scale sufficient to resolve all of the interesting processes. Instead,

we focus on the nature of a climate simulator, which is a forced non-linear

dynamical system (see, e.g., McWilliams, 2007, who also provides a useful

overview of the challenges of climate modelling). Therefore, for a particular

set of forcings (suppressed in the notation), we consider a climate simulator

to be a deterministic function of time

xt = ϕ(t;x0, θ) such that ϕ(t0;x0, θ) = x0 for all θ,

where x0 is the initial climate state at time t0.
4 The parameters θ represent

coefficients within the simulator code which are imperfectly known, or which

are too abstract to have an operational meaning; some are found standing-in

4Here, we are simplifying by not distinguishing between the full state vector, and the
function of the state vector of interest to us, which would usually be a lower-dimensional
summary. Once we dispense with the initial condition, it suffices to treat xt as the sum-
mary.
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for processes that are filtered out by the solver (sub-grid-scale processes).

Murphy et al. (2004) provide a list of about 30 of such parameters, while

remarking that there are more than one hundred in a typical large-scale

simulator; we return to this in sections 2.2 and 2.3.

The initial value x0 must be supplied in order for the simulator to run,

but it presents a major problem in practice, being very high-dimensional,

and largely unknown, even in the case where time t0 is contemporary—the

difficulty is compounded if t0 represents an historical initialisation date such

as 1850. The tendency in climate science has not been to specify x0 directly.

Instead, the simulator, whose trajectories are chaotic, is treated as ergodic.

A very long ‘control run’ is made from a specified x̂0 at a preferred set

of parameter values (which we will denote θ̃ below) and with constant or

periodic forcing; for example, the forcing of the year 1850 might be repeated

again and again. For an ergodic simulator, time averages converge to the

stationary measure, and hence an x0 for 1850, or a sequence of them, can be

sampled from the control run after an interval of ‘spin-up’ to forget x̂0.

In this review we will not consider x0 any further, but focus instead on the

role of θ, the simulator parameters. For simplicity we will focus on the expec-

tation and variance of the simulator’s climate, although other features (for

example, skewness and extremes) will also be important for climate impact

assessment. Figure 1 summarises the exposition of the next few paragraphs.

These paragraphs represent a somewhat idealised interpretation of current

practice, suggesting an opportunity for increased statistical sophistication,

should climate modellers desire.

We write the simulator output at time t as xt = ϕ(t; θ), and the full set of

simulator outputs as x := (x1, x2, . . . ); note that xt might itself represent a

large collection of quantities, such as surface temperature, precipitation, and

windspeed at every location on a 2◦ grid. The physics in the simulator sug-

gests that for each t there will be strong relationships among the components

of xt, and that these relationships will be somewhat consistent across t. The

chaotic nature of the simulator suggests that x will look like a realisation of

a multivariate stochastic process, even when the forcing is smooth in time.

For these two reasons, it is uncommon to work with x directly. Instead, a
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Figure 1: Schematic of a climate simulator. The inputs are forcing,
f := (f1, f2, . . . ), parameter values θ, and an initial value x0. The simulator
is run to produce outputs x := (x1, x2, . . . ). Using statistical time-series
modelling, these are summarised in terms of an expectation and a vari-
ance which together represent the simulator’s climate, collectively denoted
K(θ) :=

〈
µ(θ),Σ(θ)

〉
. The forcing ought to be included in the arguments of

K, but is suppressed for simplicity; the argument x0 is also suppressed but
in fact K ought to be nearly invariant to perturbations in x0, if the simulator
is ergodic.
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dimensionally-reduced summary is used.

Let x be arranged as a matrix

X =


xT
1

xT
2
...


with Singular Value Decomposition

X − 1x̄T = UDV T

where 1 is the vector of ones, and x̄ is the vector of column means (Golub and

Van Loan, 1996, chapter 2, describe the SVD and its properties). In climate

modelling, the columns of W := UD are known as the Empirical Orthogonal

Functions (EOFs, see, e.g., von Storch and Zwiers, 1999, chapter 13); they

are a bit like Principal Components, except that the rows of X are not

exchangeable—for this reason it is best not to confuse them. In this form

the simulator output can be written

xt = x̄+ V wt t = 1, 2, . . . , (1)

where wT
t is one row of W . In practice, both V and wt would be reduced

from their full size to just the first k components, where k is determined

empirically. In this case it would be sensible to rescale the columns of X to

be dimensionless before taking its decomposition, or else to apply dimensional

reduction separately to each type of output.

Following dimensional reduction, the second step is to fit a time-series

model to w := (w1, w2 . . . ). A simple choice would be to model the compo-

nents of wt independently, given that UTU = I and D is diagonal, and to use

a trend-plus-ARIMA-residual model for each component (see, e.g., Chatfield,

2004, chapter 4), including a seasonal component if the frequency is higher

than annual. It would also be legitimate and helpful to include current and

historical values of the forcing as covariates, in which case the trend may

be unnecessary. The time-series model for w can then be used to infer the
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Figure 2: The set of simulator trajectories, and the tube which summarises
the simulator’s climate at parameter value θ.

second-order structure of x for given θ from (1), which we write here as

x ∼
〈
µ(θ),Σ(θ)

〉
,

where µt(θ) := E(xt; θ) and Σtt′(θ) := Cov(xt, xt′ ; θ). Technically both µ

and Σ should have hats, to indicate that the parameters of the process for w

have been estimated and then plugged-in. Additional simulator runs with the

same θ but different initial conditions can be used to improve the estimates

of µ(θ) and Σ(θ).

The tuple K(θ) :=
〈
µ(θ),Σ(θ)

〉
is synonymous with the climate of the

simulator ϕ(·; θ), at least to second order. K(θ) describes an ellipse in the

product space of time and the state, but for visualisation purposes much is

gained by simplifying this to an elliptical tube in time, i.e. as a sequence

{µt(θ),Σtt(θ)}, which suppresses the temporal properties encoded in the co-

variances Σtt′(θ); see Figure 2. The mean function µt(θ) can be used where
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a deterministic treatment of the simulator is required: typically it would be

similar to a spatially and temporally smoothed version of the raw output.

Σtt(θ) is termed the ‘internal variability’ of the simulator output at time t.

If the time series model for the residual of w is stationary, then Σtt(θ) is

invariant to t, and the tube has the same shape all the way along.

In the special case of a ‘time-slice experiment’, the forcing is constant or

periodic, and the simulator is run until its output stabilises. Typically the

mean of the final thirty years of the run is used, which suppresses the internal

variability to the point where it can be ignored. Time-slice experiments are

used to summarise the climate of different epochs (e.g. the pre-industrial

era, the Last Glacial Maximum) and to compute hypothetical quantities

such as ‘equilibrium climate sensitivity’. They are also used for tuning (see

sections 2.2 and 2.3).

For reasons of computational scale it is sensible to perform inferences in

the feature space W = (X−1x̄T )V rather than the original space, but in this

article we will stay with the original space, for simplicity. Rather than take

x̄ and V from the actual run, they may instead be taken from the control

run; in this case w might be modelled with a multivariate time-series model.

2.2 Tuning

‘Tuning’ is the activity of choosing a preferred value for θ, which we are de-

noting as θ̃. The major constraint of tuning is the slow integration time of

the simulator. Large-scale simulators can typically compute about one hun-

dred simulator-years per calendar month. To tune to a long time-series, such

as a century of regional temperature and precipitation, would additionally

require a spin-up for each new choice of parameter values, which could easily

require another hundred simulator-years. And so an iterative process with

this target would move at about one cycle for every two calendar months,

which is hopeless when there are hundreds of uncertain parameters. There-

fore climate simulators are, in general, not extensively tuned to reproduce

the large-scale features of C20th weather, especially as tuning generally hap-

pens in the shadow of a looming IPCC deadline. Therefore C20th weather
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can be used to assess climate model adequacy (see section 4).

This observation should be tempered, though, in the light of the sequen-

tial development of simulators within a research group. Many of the decisions

made when up-versioning a climate simulator are based on increased com-

puter power, or better physical understanding; but some will be based on the

failure of the current version of the simulator to reproduce C20th weather.5

Valdes (2011) notes that climate simulators are currently too stable to repli-

cate historical abrupt weather transitions. This might be symptomatic of

over-tuning, the Holocene (our current epoch) being unusually stable. One

solution is also to tune on previous epochs with different forcing: the diffi-

culty here is that the forcings are much more uncertain, and the histogram

of weather must be inferred from proxy measurements (see, e.g. Jones et al.,

2009).

There are two camps regarding tuning strategies: (i) that the modules of

the climate simulator should be tuned separately, so as to avoid compensatory

‘mis-tuning’; (ii) that climate is an emergent property of the interactions of

its sub-processes, and so tuning should happen jointly. Typically something

of a compromise is reached. Gent et al. (2011, section 3) summarises the pro-

cedure for CCSM4.6 First, the modules of the simulator (atmosphere, ocean,

land, sea-ice) were each separately tuned to reproduce current behaviour.

Danabasoglu et al. (2008) illustrate the combination of physical and empiri-

cal reasoning that is used to tune one aspect of the ocean module.7 Module

tuning uses both time-slice experiments (to check for long-run stability), and

also transient runs, where the fluxes from the other modules are replaced by

observations.

Module tuning takes care of most of the parameters. Then Gent et al.

coupled the modules together into a climate simulator, and the simulator as

a whole was tuned on a small number of parameters and a small number of

5The genealogy of climate simulators is highly instructive; see Masson and Knutti
(2011) and Knutti et al. (2013).

6This is an open-source climate simulator, which makes it rather unusual, as typically
climate simulators are proprietary to climate modelling groups. CCSM4 has now been
subsumed within CESM1, see http://www.cesm.ucar.edu/models/ccsm4.0/.

7Tuning involves much more than just adjusting parameters; often the parameter set
itself is changed as chunks of code are swapped.
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targets. A cloud parameter was adjusted to achieve a satisfactory radiation

balance at the top of the atmosphere, and sea-ice albedo parameters were

adjusted to give satisfactory sea-ice thicknesses in the Arctic.

Gent et al. also summarise the diagnostic evaluation of CCSM4 at the

tuned value θ̃, using observed C20th weather. Crucially, this evaluation

is not just in terms of mean fields, e.g. for temperature and precipitation,

although these get checked first, but also in terms of the statistical properties

of variability (e.g. the histogram of precipitation) and recurrent events (e.g.

the El Niño Southern Oscillation, ENSO). In other words, the purpose of

tuning the simulator is not simply to get µ(θ̃) about right, but also to get

key features of Σ(θ̃) about right as well.

In our experience, the procedure for CCSM4 is unusually ascetic, with

most modelling groups tuning jointly on a larger set of parameters and a

larger set of targets. Mauritsen (2012) provides a detailed description of the

process of tuning the MPI-ESM simulator. Public descriptions of the practice

of tuning a large climate simulator are a recent phenomenon.

2.3 History matching

Statisticians have lots of tools to help with the process of tuning a climate

simulator. Here we outline an exploratory approach termed ‘history match-

ing’ (HM), which is much less demanding of expert judgement than fully-

probabilistic conditioning.8 HM is designed to rule out bad choices for the

parameter values. ‘Not ruled out’ values—for which the simulator outputs

are consistent with historical observations—do not necessarily have similar

simulator outputs under different forcing (such as in future projections); the

intention of HM, in contrast to tuning, is to preserve this source of climate

uncertainty. HM originated in hydrocarbon reservoir modelling, and is ex-

tensively used commercially. It was given its original statistical formulation

in Craig et al. (1997). Vernon et al. (2010) provides a detailed description

of HM for a galaxy simulator; Gladstone et al. (2012) for the Pine Island

glacier; Edwards et al. (2011, termed ‘pre-calibration’) for an intermediate

8Sansó et al. (2008) and Tokmakian and Challenor (2013) provide examples of fully-
probabilistic calibration.
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complexity climate simulator; and McNeall et al. (2013) for an ice-sheet sim-

ulator.

As an illustration, we will take just a single target for tuning, the top of

the atmosphere (TOA) mean radiation balance in an 1850 time-slice experi-

ment, with any value θ with an imbalance outside the range (−0.1, 0.1) W/m2

being deemed unacceptable as a candidate for the preferred value (see, e.g.,

Gent et al., 2011, p. 4977). The width of this target interval should include

a component for ‘tolerability’ (large discrepancies being tolerable for some

targets but not for others), and also for measurement error; see, e.g., Ver-

non et al. (2010, section 3.5). HM inverts this constraint to rule out regions

of the parameter space. To proceed efficiently it exploits the property that

the simulator output for the target is a smooth deterministic function of the

parameters. So in this case the simulator output would be, say, a 30-year

mean of the radiation imbalance from the end of the run, denoted as µ̄(θ),

and internal variability can be neglected.

The simulator is treated as an unknown smooth deterministic function

of the parameters (or a subset of them), represented by a statistical model

termed an emulator.9 An emulator is a sophisticated response surface, typ-

ically containing both regressors for global effects, and a stochastic process

for local effects. A catalogue of carefully-chosen runs at different points in

the parameter space is used to update the emulator, and the result is an

expectation and a standard deviation for µ̄(θ) at any θ. Note that µ̄(θ) is

a random quantity even though θ is specified, if the simulator has not been

run at θ. In the special case where the simulator has been run at θ, to give a

value v say, then the smoothness of the emulator ensures that E{µ̄(θ)} = v

and Sd{µ̄(θ)} = 0. There are various strategies for choosing the set of runs,

but a popular initial choice is a latin hypercube. Santner et al. (2003) or

Forrester et al. (2008) provide more details about emulation and experimen-

tal design. Rougier (2008b) develops an emulator for multivariate outputs,

such as a spatial field (see Rougier et al., 2009a, for an illustration).

Based on the emulator, any point in the parameter space can be scored,

9Emulators are only required for expensive simulators: Gladstone et al. (2012), for
example, use the simulator directly in the HM procedure.
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according to whether the predicted value overlaps with the target. Thus a

particular choice θ might be deemed unacceptable as a candidate for the

preferred value if

(
−0.1, 0.1

)
∩
(

E{µ̄(θ)} ± 3× Sd{µ̄(θ)}
)

= ∅.

Any θ for which the intersection is not empty is ‘Not Ruled Out Yet’. Vernon

et al. (2010) give a detailed description of the process of HM with an emula-

tor, and how it can proceed in successive waves, allowing more and more of

the parameter space to be ruled out through additional runs of the simulator

and refittings of the emulator. Vernon et al. also discuss HM with multi-

ple targets, and low-dimensional visualisations of an ‘implausibility’ measure

defined on the parameter space.

Fast approximate simulators (FAS). The emulation approach is par-

ticularly powerful for simulators for which there are fast approximations. For

climate simulators, these would typically be simulators with lower resolution,

with prognostic variables replaced by diagnostic variables (effectively, remov-

ing feedback from some of the state variables), or with shorter spin-ups. In

order to exploit this approach, it must be relatively easy to run the simulator

in ‘fast’ mode, and this is something that must be designed in from the start.

For example, emulators can include arbitrary smooth functions of the

parameters as regressors, and the FAS could be one such. In this way an

emulator can be thought of as a statistical approach to correcting an FAS.

After having built the emulator, which requires paired runs of both the full

simulator and the FAS, the parameter space can then be explored at the

speed of the FAS. Intuitively, if the FAS is a poor approximation that is

difficult to correct, then not much of the parameter space will be ruled out,

because Sd{µ̄(θ)} will tend to be large.

In practice, a more sophisticated use of emulators is possible, linking simu-

lators through the coefficients in their emulators, see Cumming and Goldstein

(2009). In climate science, Rougier et al. (2009b) use a FAS to provide prior

information for the HadSM3 climate simulator, and Williamson et al. (2012)

16



link the low-resolution FAMOUS climate simulator with the high-resolution

HadCM3 simulator.

3 Statistical climate models

In this section an important transition is made, from the climate simulator,

thought of as a function of the parameters θ, to your climate. In passing

from one to the other we pass into the realm of subjective judgements, as

explained in section 1.1. If this subjectivity is not obvious, it must be due

to the widespread acceptance of conventional judgements. And, indeed, the

‘anomaly model’ described in section 3.1 is exactly this: a conventional judge-

ment for passing from a simulator’s climate to your climate, which conceals

the essential subjectivity of this step.

Conventions can be supremely useful, of course. For example, symmetry-

breaking conventions, such as agreeing to drive on the lefthand side (in the

UK). Conventional simplifications, on the other hand, must continually be

reappraised as our understanding and our tools develop. Thus many of the

conventional simplifications in climate modelling have now been relaxed, and

parts of the earth system previously ignored or treated as diagnostic have

become prognostic (e.g. the sulphur cycle, vegetation). The anomaly model is

a conventional simplification of judgements which goes back to the very start

of climate modelling, and the time has come to relax it too. For example,

the ‘best parameter’ model that we discuss in section 3.2 is a useful first step

in this direction.

In this section we contrast two different approaches to inferences about

future weather under particular future forcings, termed climate projections.

The time domain is divided into the Past (t ∈ P), for which there are obser-

vations, and the Future (t ∈ F), for which we would like to make a projection.

For the time being we treat the past forcing as known (but see section 4.2);

the future forcing is specified by the projection scenario. For concreteness,

P might be the period 1850–2013 and F the period 2014–2100, and the sim-

ulator output might be annual global mean temperature. The time-period

P does not have to be contiguous with that of F, and for simplicity we take
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ΣPF(θ) = 0 for each θ.10

Let Y = [YP, YF] be the weather, and let

zobs = YP ⊕ e

be the statistical model for past weather observations, where e is measure-

ment error with expectation zero and known variance matrix E, and ‘⊕’

indicates the addition of uncorrelated components.11 Then the objective is

to make inferences about YF based on zobs, and on runs of the simulator.

We restrict ourselves to the single simulator run at the preferred parameter

value θ̃, represented in terms of the simulator’s climate K(θ̃) =
〈
µ(θ̃),Σ(θ̃)

〉
.

Section 3.3 discusses the important issue of alternative choices for θ.

3.1 The anomaly model

Our statistical interpretation of climate modellers’ current behaviour is that

they take a classically Frequentist approach to climate inference, proposing

a strongly parametric statistical model linking the climate simulator and

their climate, estimating the parameters of this statistical model, and then

plugging-in the estimated values to make probabilistic projections.

We will term the climate modellers’ current statistical model the ‘anomaly

model’. It asserts the existence of parameters (θ∗, α∗) with the property that

Y | θ∗, α∗ ∼
〈
µ(θ∗) + α∗1,Σ(θ∗)

〉
(2)

where α∗ is a scalar anomaly correction. This statistical model asserts that

K(θ∗) adequately represents your climate, except for an unknown translation.

10In practice, a much more detailed set of outputs would be used—generalising the
approach described below is straightforward. Where P and F are contiguous, ΣPF(θ) ≈ 0
is implied by short (say, not more than a decade) correlation lengths in the residual
component of the time-series model for w. Again, generalising is straightforward.

11We are skipping over the nature of these observations. Many weather observations
start out as indirect measurements, e.g. from weather satellites, which measure radiances at
different wavelengths, which are then processed (‘inverted’) to give temperatures. Common
sources of uncertainty in the forward relationship from temperature to radiance would
induce systematic errors in the observations; see section 4.2. But it would be unusual for
the weather and the measurement error to be correlated.
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Eq. (2) is the simplest version, and can easily be generalised to allow the

anomaly correction to have multiple components, which depend on the type

of weather output, and possibly the spatial location. Some outputs may

need to be transformed in order that an additive shift is appropriate (e.g.

precipitation, which is non-negative on its natural scale).

The tuned value θ̃ is taken to be an estimate of θ∗, and α∗ is then esti-

mated as

α̃ = (np)
−1
∑
t∈P

(
zobst − µt(θ̃)

)
(3)

in the simplest version, where np is the number of time points in the period

P. Thus the anomaly correction is a function of zobs, even if θ̃ is not. The

projection is then found by plugging-in the estimate (θ̃, α̃) for the unknown

(θ∗, α∗), to give

YF ∼
〈
µF(θ̃) + α̃1,ΣFF(θ̃)

〉
. (4)

This is a rather long-winded way of saying “Having found, by other means,

a preferred value for θ, translate the simulator climate so that it matches,

on average, the historical observations”.12 But we emphasise that the para-

metric model in (2) is a subjective assessment of the relationship between

the simulator’s climate and your climate, notwithstanding the aura of objec-

tivity that arises from the apparent absence of any explicit quantification of

uncertainty. This is discussed further in section 3.2.

3.2 The ‘best parameter’ model

The anomaly model of section 3.1 is rather simple. The statistical field of

computer experiments has developed a richer set of models for simulator-

based inference for complex systems (see, e.g., Kennedy and O’Hagan, 2001;

Craig et al., 2001; Goldstein and Rougier, 2004, 2006), for which Rougier

(2007) provides an illustration in climate science. These are based around

a ‘best parameter’ statistical model, which in this context asserts that there

exists a θ∗ such that K(θ∗) is second-order sufficient for your climate. This

12In fact, as mentioned in section 1, the convention is to match the means over the
period 1980–1999, rather than the whole of P, as P might differ from one experiment to
another.
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model can be written as

Y | θ∗, ε ∼
〈
µ(θ∗) + ε,Σ(θ∗)

〉
where ε is an additive ‘discrepancy’, probabilistically independent of θ∗, with

E(ε) = m and Var(ε) = T , both m and T being specified. We write ‘dis-

crepancy’ instead of ‘anomaly correction’ because ε is a random vector, not

a scalar shift. It is common to take m = 0, because known translations can

be incorporated directly into the simulator, and we will do this from now on.

Integrating out ε gives

Y | θ∗ ∼
〈
µ(θ∗),Σ(θ∗) + T

〉
.

The discrepancy variance T captures your remaining uncertainty about

climate, were you able to run the simulator at its best parameter. First, you

would not expect K(θ∗) to be in quite the right place, and so there ought to

be a term that provides for translations, like the anomaly correction. Second,

K(θ∗) is typically under-dispersive with respect to your climate, due to the

limited resolution of the solver, which acts as a filter.13 Thus, in the simplest

version of the Best Parameter model

ε = α∗1⊕ ε2 implying T = σ2
111T + T2 (5)

where α∗ ∼
〈
0, σ2

1

〉
, and T2 := Var(ε2) might be as simple as the diagonal

matrix σ2
2I. But T also has the capacity to encode changes in the shape of

K(θ∗), to give a richer and more appropriate description of the simulator’s

discrepancies at different time points.

In this model, the projection is made by updating using the historical

observations, giving

YF | θ∗, zobs ∼
〈
µF|P(θ∗),ΣF|P(θ∗)

〉
13This is not the only source of under-dispersion: there are also simplifications in the

modelling of processes such as sea-ice and vegetation, reflecting both computational con-
straints and lack of knowledge.
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where, taking ΣPF = 0 and suppressing θ∗ (which is an argument for all

terms of the form µ or Σ)

µF|P := µF + TFP(ΣPP + TPP + E)†(zobs − µP)

ΣF|P := ΣFF + TFF − TFP(ΣPP + TPP + E)†TPF.

These are the usual second-order updating equations (Goldstein and Wooff,

2007; Rougier et al., 2013), where † denotes the Moore-Penrose inverse.14

For a plug-in projection, θ∗ can be replaced by its estimate θ̃.

Interestingly, this best parameter model includes the anomaly model as

a special case. We illustrate in the simplest version, given in (5). If

σ2
111T � T2 and σ2

111T � ΣPP + E, (6)

then (ΣPP + TPP + E)† ≈ T †PP = n−2p σ−21 11T . Simple arithmetic then shows

that the projection is the same as in the anomaly model: µF|P = µF + α̃1

and ΣF|P = ΣFF, where α̃ was defined in (3). The assertions in (6) state

that your concern for the mis-location of the simulator’s climate dominates

all other uncertainties. A climate modeller who did not believe (6) would

regard the anomaly-corrected projection (4) as over-fitted. This modeller

would attribute part of the systematic difference between zobs and µP(θ∗) to

internal variability, and so adjust the location of the simulator climate by

less, and decrease the projection uncertainty by less.

Compared to the anomaly model, the best parameter model allows much

more flexibility for the discrepancy, including that it is a stochastic process.

For example, α∗t = ρα∗t−1 + ηt, with α∗0 ∼
〈
0, σ2

1

〉
and η a sequence of uncor-

related innovations with ηt ∼
〈
0, (1 − ρ2)σ2

1

〉
, for which the anomaly model

is the special case of ρ = 1. This model for α∗t allows the anomaly to be

both uncertain and time-varying, with the value ρ controlling the temporal

correlation length. The main difficulty for climate modellers is that it seems

more acceptable to specify ρ = 1 rather than choose a value for ρ less than

one. Likewise, it seems more acceptable to specify σ2 = 0 after (5) rather

14They are also the conditioning expressions for the multivariate Gaussian distribution.
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than choose a value greater than zero.15 While there are much more detailed

judgements that can be represented in T , if the starting-point is the anomaly

model, then ρ < 1 and σ2 > 0 are very simple extensions.

Sexton et al. (2012) is the one study in climate modelling which has

explicitly included a full discrepancy variance. They use an approach based

on an ensemble of simulators from different modelling groups, generating

one realisation of the discrepancy per simulator, and estimating T from the

result. The small number of simulators in their ensemble would produce

a severely rank-deficient value for T , but Sexton et al. perform the entire

inference in the much lower-dimension feature space (see section 2.1). While

hesitant to endorse this particular approach, our view is that any approach

that helps climate modellers to propose a T which adjusts both the location

and the dispersion of the simulator’s climate is welcome, provided that the

results are not inconsistent with the modellers’ judgements.

3.3 Uncertainty about the best parameter

The projections in section 3.1 and 3.2 were both made for a specific parameter

value, the preferred value θ̃, thought of as a plug-in point-estimate for θ∗. The

fact that θ̃ is not θ∗, and that θ∗ remains uncertain, is a concern in climate

modelling, and there have been several experiments to assess the sensitivity

of simulator output to parameter perturbations, reviewed by Murphy et al.

(2011). So far, though, there has been no attempt to quantify the effect of

parameter uncertainty on climate projections, for the current generation of

climate simulators.

Formally, this quantification is straightforward: K(θ) denotes the expec-

tation and variance conditional on θ∗ = θ, and so integrating out θ∗ gives

K∗ =
〈

E[µ(θ∗)],E[Σ(θ∗)] + Var[µ(θ∗)]
〉
. (7)

The expectations and variance can be replaced by finite approximations. In

15Boundary values such as ρ = 1 and σ2 = 0 give the appearance of objectivity, but are
of course just as subjective as any other values, and less defensible than many. Box (1980,
p. 384) commented on “the curious idea that an outright assumption does not count as a
prior belief”.
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the simplest case these would be from an ensemble of runs sampled from

the prior distribution for θ∗ (Rougier, 2007), but much more sophisticated

approaches are possible using emulators (Craig et al., 2001; Rougier and

Sexton, 2007; Rougier et al., 2009b). The expectation in K∗ will not be

the same as µ(θ̃), even in the case where θ̃ is the prior expectation of θ∗,

because µ is a non-linear function, perhaps extremely so in some parts of the

parameter space (McWilliams, 2007). And Σ(θ̃) will typically understate the

variance in K∗, because of missing the Var[µ(θ∗)] term.

However, there is a computational price to pay for exploring the effect

of uncertainty in θ∗, because today’s climate simulators are about as large

as computing resources will allow, and there are no spare CPU cycles for

replication. So running different candidate values for θ∗ is only possible

by reducing the simulator’s resolution.16 Halving the resolution of today’s

simulators would allow about ten low-resolution simulator runs instead of

one high-resolution simulator run, putting aside concerns about spinning-up.

In their choices, climate modellers currently reveal a strong preference

for one high-res run, rather than, say, ten low-res ones.17 This reluctance

to use low-res runs for assessing projection uncertainty has implications for

the statistical model. The replacement of θ∗ by the plug-in point estimate

θ̃ could be compensated by increasing the variance of the discrepancy in

the best parameter model, i.e. letting T2 in (5) represent Var[µ(θ∗)]. But

this would require an explicit departure from the anomaly model, for which

T2 ≈ 0. So climate modellers find themselves in a statistical impasse. As

we perceive it, the choice to do one high-res run instead of a set of low-res

runs is incompatible with the use of the anomaly model to link the climate

simulator and actual climate, unless one is prepared to defend the judgement

16Or by other approaches to speeding up the simulator, as discussed in section 2.3; but
here we focus on resolution.

17It is not for us to speculate on why this is so. But as (statistical) modellers ourselves,
we are familiar with the vexed issue of ‘realism’. After a successful ‘up-versioning’, today’s
climate simulator looks appreciably more realistic than before. For example, Gent et al.
(2011, section 5d) document the improvement of CCSM4 over CCSM3 in representing
ENSO. ENSO is an important feature of the earth system, and a milestone for climate
simulation, and it must be painful for climate modellers who have finally achieved this
milestone to then reduce resolution and lose it again. Salt (2008) provides an interesting
reflection on modelling culture.
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that Var[µ(θ∗)] ≈ 0, i.e. that perturbing the parameters has a negligible effect

on the expectation of the simulator’s climate.

We also believe that the reluctance to perform low-res runs is misplaced.

Crudely, today’s low-res simulator ‘ϕlow’ is the previous IPCC report’s state-

of-the-art simulator. At the time of the previous report, perturbations of

ϕlow were thought to be informative about your climate. Today perturba-

tions of ϕhigh are thought to be informative about your climate. Accepting

the premise—which is not disputed—that climate simulators are currently

much more like each other than any one climate simulator is like your climate,

you must accept that perturbations in ϕlow are informative about perturba-

tions in ϕhigh. Statistical models for sequences of simulators are discussed

in Goldstein and Rougier (2009), and statistical models for a collection of

climate simulators of roughly equal fidelity are discussed in Rougier et al.

(2013).

We hope that by the time of the sixth IPCC report (around about 2020),

climate modellers will be exploring the limitations of the tuning process, and

quantifying the effect of parametric uncertainty. Ideally this would take the

form of carefully designed experiments combining runs of low- and high-res

simulators, which we believe is the most efficient way to exploit a fixed budget

of CPU cycles (Cumming and Goldstein, 2009).

4 Model criticism

Model criticism, also termed ‘model validation’ by engineers, attempts to

evaluate whether the statistical climate model is adequate for its purpose.

4.1 Computing residuals

There is a lot of informal model criticism in current climate modelling, but,

at first glance, very little formal statistical model criticism. Informal model

criticism tends to proceed by comparing zobs with the anomaly-corrected

simulator output µP(θ̃) + α̃1, and seeing whether the differences are large

relative to the standard deviations in ΣPP(θ̃) +E; see the statement in Ran-

dall et al. (2007, section 8.1.2.3). Interestingly, under the anomaly model
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this approach is precisely the posterior predictive checking (PPC) approach

originally proposed by Rubin (1984), and advocated by Gelman et al. (2003,

chapter 6).

In the PPC approach, one notionally replicates the observations, which

in our case gives rise to the second-order Directed Acyclic Graph (DAG)

ϕ(P; θ∗) // yP
//

!!

zobs

zrep

where zrep are the notionally replicated observations. Then zobs is evaluated

with respect to the expectation and variance of zrep |zobs. Under the anomaly

model, now thought of as a special case of the best parameter model as

discussed in section 3.2,

yP | θ∗, zobs ∼
〈
µP(θ∗) + α̃1,ΣPP(θ∗)

〉
and the result then follows by taking zrep = yP ⊕ erep where erep is uncorre-

lated with e but has the same expectation and variance, and plugging-in θ̃

for θ∗.

Gelman et al. advocate using graphical summaries of zobs in the distri-

bution of zrep | zobs; in climate these might be plots of rescaled prediction

errors,

rt :=
zobst −

(
µt(θ̃) + α̃

)√
Σtt(θ̃) + Ett

t ∈ P, (8)

which can also be very effective if zobs is a spatial map. These residuals are

not standardised to have variance one when the model is adequate, due to

the double-counting of zobs, which is used to estimate α̃. The adjustment

is straightforward. If H := I − (np)
−111T , termed the ‘centering matrix’

(Mardia et al., 1979, chapter 1) then

zobs −
(
µP(θ̃) + α̃1

)
= H

(
zobs − µP(θ̃)

)
,
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and so, letting V := ΣPP(θ̃) + E, the denominator of the residuals in (8)

should be not
√
Vtt, but

√
(HVH)tt. Slight modifications to H would be

required for different anomaly conventions (see footnote 12).

Multivariate information including covariances can be harder to visualise;

Bastos and O’Hagan (2009) give a simple approach based on the pivoted

Choleski decomposition of the predictive variance.

4.2 Diagnostic warnings

How should the climate modeller respond to a subset of diagnostics that are

large in absolute size?18 Suppose, for example, that many of the standardised

precipitation residuals are larger than 3 in absolute size, in a region such as

western Europe, where precipitation changes are an important feature of

climate change impact. There are several options:

1. Acknowledge that the simulator does not yet ‘do’ precipitation, and

request a more powerful computer, hoping that higher resolution will

reduce the residuals.

2. Acknowledge that the simulator has been badly tuned, and restart

the tuning process, hoping that a better choice for θ̃ will reduce the

residuals.

3. Acknowledge that the anomaly model is a rather simplistic representa-

tion of judgements about the simulator and your climate, hoping that

a better specification for the discrepancy variance T will reduce the

residuals.19

In all three options the climate modeller should decline to make projections

for precipitation, given the failure of his model. Instead, he should wait for

18We can also imagine situations where some linear combinations of the residuals are
surprisingly small, because the climate model has failed to respect physical constraints.
However, at the moment climate modellers are mainly concerned with residuals which are
too large.

19A more sophisticated variant of this option is to use statistical downscaling to adjust
the simulator climate; see Maraun et al. (2010).
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his new computer, or for the simulator to be re-tuned, or while he refines his

judgements about T .

We would strongly recommend exploring option 3 first! Once T is explic-

itly specified, the climate modeller can compute prior predictive residuals

r′t :=
zobst − µt(θ̃)√

Σtt(θ̃) + Ttt + Ett

t ∈ P (9)

(Box, 1980). These are standardised to have expectation zero and variance

one when the model is adequate.

The idea that T might be adjusted retrospectively to improve the residuals

r′ needs to be clearly motivated. First, at a pragmatic level, the climate

modeller might have decided to use the ‘objective’ anomaly model if he can,

despite it not being a defensible representation of his judgements. So large

residuals under the anomaly model indicate that T is an area of the inference

where he must make an additional effort.

Second his adjustment ought to be to the whole of T , not just to the

submatrix TPP. He might, for example, reflect on whether ρ = 1 and σ2 = 0

were really appropriate choices (see section 3.2). Setting ρ < 1 and/or σ2 > 0

will increase both the historical uncertainty about z, and the projection un-

certainty about YF. It is self-evident that a failure of the simulator to match

historical observations increases uncertainty about climate projections. Ad-

justing the whole of T in order to improve the residuals in P is a simple

implementation of this.

Third, from its position in (9) it is clear that T can take on some of the

burden of specifying ΣPP(θ̃) and E. Both of these are challenging. ΣPP(θ̃) is

expressed for a specified forcing, yet C20th forcing is not well-known (Forster

et al., 2007). So some of the increase in T might reflect your assessment of

uncertainty in the forcing. For E, Guttorp (2014, chapter ??? of this volume)

describes some of the issues with climate observations. Statisticians will ap-

preciate that common uncontrolled sources of variation in the collection and

processing of instrumental readings introduce non-zero off-diagonal elements

into the observation error variance E; no attempt has been made, so far, to
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tackle this. So, again, some of the covariances in T might reflect common

sources of variation in the observations.

Finally, we note that there are conceptual difficulties in the best param-

eter model, particularly in specifying judgements which are coherent for a

sequence of simulators. Goldstein and Rougier (2009) introduce a more gen-

eral approach, termed ‘reified modelling’. Thus although modifying T might

be the incremental response to poor residuals, the reified modelling approach

might turn out to be a better representation of a climate modeller’s actual

judgements.

5 Summary and prospects

There are two issues which should engage statisticians working in climate

research. (i) Given where we are, what is the pragmatic statistical analysis

which will best complement/enhance current climate practice? (ii) Given an

ideal position, what is the analysis that we would like to carry out, to best

inform us about future weather?

This review has been largely concerned with aspects of the first issue. We

briefly summarise the main sources of uncertainty that we have identified,

for a given climate projection:

1. Input uncertainty, which is not knowing the historical and future bound-

ary conditions;

2. Parametric and structural uncertainty, which arise from limitations in

the climate simulator (and subsume other uncertainties such as the

effect of code errors and numerical noise);

3. Observational error, including common components which induce co-

variances in the observation error variance;

4. Code uncertainty, which is being unable to run the simulator at any

desired parameter setting.

These sources of uncertainty are all familiar to statisticians, but not routinely

addressed in climate projections. We hope that our review has identified
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some simple extensions of current practice, and also the opportunity for

more detailed treatment, where judgements allow.

We now turn to the second issue. Changes in weather over the present

century have the capacity to threaten literally hundreds of millions of people.

To give just one peril, Nicholls (2011) discusses the effect of sea-level rise:

currently, over 200 million people are vulnerable to flooding during extreme

storms, and the probability of a catastrophe will increase as sea-levels con-

tinue to rise through the century. Among the huge uncertainties affecting the

risk of flooding are the behaviour of the Greenland and West Antarctic ice-

sheets, the intensification of tropical and extra-tropical storms, and changes

to surge propagation (ibid., p. 147–148). Our society’s response to this peril,

and others like it, might come to be seen as one of the defining features of

political and social activity for the current century.

Addressing the original four uncertainties is clearly already a large chal-

lenge for climate modellers. But when we consider the impact of the weather,

we have to allow for additional uncertainties, principally:

5. downscaling uncertainty, which maps from the large grid-cell of global

climate simulators to the small grid-cell that is necessary to evaluate

losses, taking account of local topography and bathymetry;

6. loss uncertainty, which is valuing the harm and damage caused by

climate-related hazards;

7. decision uncertainty, which is the uncertain consequence of an inter-

vention, which depends on social and economic factors.

All of these are single-simulator concerns, and so we must add:

8. multi-simulator uncertainty, accounting for the sequence of simulators

within each research group, and the different simulators across research

groups.

Now a full uncertainty assessment for climate policy appears doubly daunt-

ing. However, that is the wrong way to look at the problem. The really
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daunting task is to make and successfully implement a climate policy with-

out doing a careful uncertainty analysis.

While it is true that these sources of uncertainty are challenging to assess,

they are no more challenging than other parts of climate modelling (doing

the basic science, formulating mathematical models, constructing simulators

that run efficiently on super-computers, designing satellite missions to collect

observations, and so on). The difference is that the climate modelling chal-

lenges are addressed by well established communities. If climate policy is a

genuine concern, then scientifically-leading countries such as the UK need to

develop a similar community of climate statisticians, working alongside the

other communities, and funded at a sufficient level, with the same access to

computing facilities.

In this case we would hope to see rapid development along the lines out-

lined in this review. This would include the replacement of tuning with

history matching, the incorporation of parametric uncertainty into projec-

tions, and the use of fast approximate simulators in experimental design and

emulation.

In a few years we would hope to see a gradual acceptance among climate

modellers that the distribution of weather is subjective, and that current ap-

proaches based on suppressing that subjectivity using boundary choices for

statistical parameters, as in the anomaly model, are indefensible. We will

need creative approaches to specifying the discrepancy variance matrix. Fol-

lowing on from this, we hope for the development of more powerful statistical

modelling approaches for linking multiple simulators, in order to put climate

policy at the heart of the inference (our own suggestion is reified modelling,

see Goldstein and Rougier, 2009).

Within the decade, we look for the development of new statistical tech-

niques which modularise inference for future weather impacts in the same

way that climate modelling itself is modularised. We expect these to be

based on dynamical graphical models, where the main challenge is the very

high level of interconnectivity between the vertices. These developments in

statistical methodology would be widely applicable, useful for any complex

systems wherever uncertainty about real world consequences is informed by
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families of computer simulators.

Finally, we address the political dimension of the issues that we have

discussed. It would be relatively straightforward to consider what perils we

should protect against, and to what degree, were we to know precisely what

the future held in store. However, our world is far too complex to offer such

certainty. A common line of argument is that the element of subjectivity in-

volved in climate projections justifies taking a ‘wait and see’ attitude towards

actions for climate change mitigation and adaptation. This argument has a

potentially paralysing effect on informed discussion over climate policy, and

it is understandable that scientists, concerned that such arguments will be

used to discount the utility of their assessment, may be tempted to downplay

the uncertainty associated with their projections.

This is doubly unfortunate. First, downplaying or ‘objectifying’ uncer-

tainty makes much valuable and informative work in climate science an easy

target for groups with a vested interest in preserving the status quo (see, for

example, Oreskes and Conway, 2010). Second, this suppression of uncertainty

masks much of the case for taking action now, because climate projections

are by no means worst-case scenarios. Rather, they are located near the

centre of a range of possible future climates, all of which ought to be con-

sidered in order to develop appropriate climate policies. Such policies will,

inevitably, be constructed in a context of uncertainty, and this uncertainty

can only be assessed in terms of expert judgements, based on a synthesis of

all the available evidence.

That there is some disagreement between scientists studying climate is

natural and inevitable. However, as mentioned in the Introduction, the broad

lines of the argument for human-induced climate change are clear (and we

should not forget that this is just one of the perils we face, see Rockström

et al., 2009). Rational choice of action in complex problems requires careful

consideration of both uncertainties and consequences. Analysis of the most

careful and detailed climate projections that are possible within current com-

putational constraints consistently suggests the potential for human activity

to lead to disastrous real world consequences. The case for acting now is
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not diminished by a plurality of expert judgements about probabilities and

consequences.
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Glossary

These definitions are by necessity very crude. In some cases more detail is

given in the text; in most, it would be advisable to consult a standard source

such as the IPCC glossary or the WMO glossary. Statistical definitions

introduced or clarified in this paper are indicated with asterisks.

Anomaly model∗ A statistical climate model in which the dominant limi-

tation of the simulator is mis-location of your climate.

Best parameter model∗ A generalisation of the anomaly model, in which

the limitations of the simulator involve the location, size, and shape of

your climate.

Climate∗ your distribution for weather, represented as a multivariate spatial-

temporal process (inherently subjective).

Climate simulator∗ Computer code which maps forcing into weather, given

also an initial condition and parameter values.

Climate sensitivity The difference in equilibrium global mean tempera-

ture between two time-slice experiments, one with forcing using pre-

industrial levels of CO2, and a second with forcing using double CO2.

Control run A long time-slice experiment, typically with pre-industrial forc-

ing.
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Detection and attribution (D&A) Examining the role of anthropogenic

effects in C20th weather patterns.

Discrepancy∗ In the best parameter model, the uncertain additive differ-

ence between the simulator output at its best parameterisation and

your climate.

Emulator∗ Statistical model for a simulator, allowing prediction of the sim-

ulator output at untried values of the parameters.

Forcing Boundary conditions for the simulator, usually implemented in

terms of radiation (solar forcing and greenhouse gas forcing) and optical

depth (aerosol forcing).

GCM, AO-GCM, ESM Acronyms for large climate simulators: General

Circulation (or Global Climate) Model, Atmosphere-Ocean GCM, Earth

System Model.

Grid-scale The horizontal length of a spatial grid-cell in a finite difference

approximation to the underlying partial differential equations. About

100 km for current large climate simulators.

History Matching∗ Statistical approach for ruling out poor choices of the

simulator parameters.

Internal variability The inherent variability of the weather within a cli-

mate simulator.

Over-fitting∗ A consequence of using the anomaly model, resulting in too-

small projection uncertainties.

Over-tuning∗ Tuning which emphasises a match with the histogram of

C20th weather.

Parameters Adjustable coefficients in the simulator which represent sub-

grid-scale processes and incompletely understood processes.

Projection A climate prediction along a specified scenario.
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Scenario A future described by specified forcing, representative of trends in

population, economics, technology, and policy interventions.

Spin-up A time-slice experiment in which the simulator ‘forgets’ its initial

condition.

Statistical climate model∗ A statistical framework designed to simplify

the process of specifying your climate.

Sub-grid-scale processes Processes in the mathematical model with length-

scales comparable to or smaller than the grid-scale of the simulator.

Time slice experiment Experiment where the simulator is given constant

or periodic forcing, and run at least until its output stabilises.

Tuning Choosing a preferred value for the simulator’s parameters.

Weather Measurable aspects of the ambient atmosphere, notably temper-

ature, precipitation, and wind-speed.
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