
Brief Communication Arising re:

“Quantification of modelling uncertainties in a

large ensemble of climate change simulations”

Jonathan Rougier∗

Department of Mathematical Sciences

University of Durham, UK

November 26, 2004

Murphy et al.1,2 compute a probability distribution for climate sensitivity,

using actual climate data and evaluations of a General Circulation Model

(GCM). The purpose of this note is to clarify the inferential method they

have adopted, and to point out some of the choices they have made, which

might be questionable. This should make it easier for other research groups

to duplicate their results, and perhaps to improve on them.

In probabilistic terms the Murphy et al. prediction is a probability dis-

tribution for climate sensitivity conditioned on the observed values for the

the climate data. The starting point for this prediction is a joint distribution
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over the climate data and climate sensitivity, and the purpose of the GCM is

to help construct this joint distribution. To do this it is necessary to provide

a statistical model that describes how the GCM and the climate are related,

or, to put it another way, to show how evaluations of the GCM at different

parameterisations are informative about climate itself.

Denote by z the vector of quantities for which we have climate obser-

vations, and λ the value of climate sensitivity, which we wish to predict.

We can match these quantities with outputs from the GCM, denoted f : let

f1, . . . , fk−1 match the elements of z, and fk match λ. The GCM parameters

are denoted by the p-vector x ∈ X . Therefore fk(x) denotes the climate

sensitivity output of the GCM at the vector of model parameters x.

In order to relate the GCM and the climate vector (z, λ) we may adopt

what is sometimes known in the statistics literature as the ‘best input’ ap-

proach3. This asserts that there is a ‘best input’ x∗ somewhere in X with

the property that the prediction error

ε
4
= (z, λ)− f(x∗) (1)

is an uncertain (i.e. random) quantity that is independent of all other uncer-

tain quantities. The k-vector ε is known as the simulator discrepancy. It is

commonly assumed to have zero mean (unless the simulator is known to be

biased in a certain direction). The variance of ε is a measure of the model’s

imperfection, since if we chose to set Var
(
ε
)

= 0 we would be asserting that

somewhere in X is a choice for which the model output exactly matches the

climate value. Typically we do not believe that our current climate models
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are perfect in this sense, and so we specify a positive Var
(
ε
)
. The value of

x∗ is uncertain, but we have knowledge about it that can be described by a

probability distribution.

In order to make inferences about λ we will want to try candidate values

for x∗ spanning the whole of the model parameter space X . It is not practical

to evaluate the GCM at every candidate value; for this reason Murphy et al.

provide a statistical approximation for the GCM:

fi(x) = µi(x) + δi i = 1, . . . , k (2a)

where δ is an error vector with mean zero. The mean function µ(·) is chosen

to be additive and piecewise linear in the model parameters:

µi(x)
4
= αi +

p∑
j=1

{
1
(
xj ≥ x̄j

)
β+

ij + 1
(
xj < x̄j

)
β−

ij

} (
xj − x̄j

)
, (2b)

where x̄j is the standard value for model parameter j, and 1
(
·
)

is the indicator

function. Values of αi, β+
ij , β−

ij and Var
(
δ
)

are determined from an ensemble

of GCM evaluations. Statisticians would refer to (2) as an emulator of the

GCM, although in practice a more general approach would be adopted4,5,6.

Now it is possible to describe how we estimate the prior predictive dis-

tribution of climate sensitivity. This corresponds to the “Unweighted PDF”

in Murphy et al., Fig. 3, p. 770. The prior predictive distribution is inferred

from the choices we make for the distributions of x∗, δ and ε, since the ‘best
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input’ approach tells us that

λ ≡ µk(x
∗) + δk + εk. (3)

Note that both error components are necessary: δk because (2b) is not a

perfect representation of the GCM, and εk because the GCM is not a perfect

model for the climate. To estimate this distribution we estimate the proba-

bility of λ falling into a interval L for each L ∈ L, where L is a partition of

the real line. There are many ways to do this calculation7,8. The simplest is

based on Monte Carlo integration:

Pr
(
λ ∈ L

)
=

∫
X

Pr
(
λ ∈ L | x∗

)
dF (x∗)

≈ m−1

m∑
v=1

Pr
(
λ ∈ L | x∗ =Xv

)
Xv

iid∼ F, (4)

where F denotes the distribution function of x∗. It is convenient to choose

gaussian distributions for both δ and ε, because in this case

Pr
(
λ ∈ L | x∗

)
=

∫
L

φ
(
λ ; µk(x

∗), σ2
k + τ 2

k

)
dλ (5)

where φ(· ; ·, ·) is the gaussian density function with given mean and variance,

and σ2
i
4
= Var

(
δi

)
and τ 2

i
4
= Var

(
εi

)
, for i = 1, . . . , k. In other words we sample

m sets of values for x∗, namely {X1, . . . , Xm}, compute (5) in each case, and

take the arithmetic mean of the result, for each L ∈ L.

How is this calculation modified if we want the posterior predictive dis-

tribution for λ? This corresponds to the “Weighted PDF” in Murphy et al.,
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Fig. 3, p. 770. In this case we must condition λ on the climate data z̃, where

the tilde denotes the observed value. This gives

Pr
(
λ ∈ L | z = z̃

)
= c

∫
X

Pr
(
z = z̃, λ ∈ L | x∗

)
dF (x∗) (6a)

where c is the reciprocal of Pr
(
z = z̃

)
. It is convenient if z and λ are con-

ditionally independent given x∗, which, in the light of the gaussian choices

made above, means that δk must be uncorrelated with δ1, . . . , δk−1, and sim-

ilarly for ε. In this case

Pr
(
λ ∈ L | z = z̃

)
= c

∫
X

Pr
(
z = z̃ | x∗

)
Pr

(
λ ∈ L | x∗

)
dF (x∗)

≈
m∑

v=1

wv Pr
(
λ ∈ L | x∗ =Xv

)
Xv

iid∼ F, (6b)

where wv ∝ Pr
(
z = z̃ | x∗ =Xv

)
and

∑m
v=1 wv = 1. The new feature in this

estimate is the use of a weighted rather than an arithmetic mean. The weights

are proportional to the likelihood of x∗, i.e. they show how well each x∗ in the

sample explains the observed values of the climate data, z̃. It is convenient to

treat both δ and ε as having uncorrelated components, i.e. choosing diagonal

matrices for both Var
(
δ
)

and Var
(
ε
)
, in which case

Pr
(
z = z̃ | x∗

)
∝ exp

{
−

k−1∑
i=1

(
z̃i − µi(x

∗)
)2

2
(
σ2

i + τ 2
i

) }
. (7)

This allows us to compute the weights straightforwardly, and from these

weights to compute the posterior predictive probabilities Pr
(
λ ∈ L | z = z̃

)
,

for each L ∈ L. Note that if the z̃ are observed with error, then the variance
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of this error can be added to the two variances in the denominator of (7),

on the assumption that the measurement error is additive and gaussian, and

uncorrelated with the other uncertain quantities. Murphy et al. mention

observational errors (p. 771), but choose to set the variances of these errors

to zero.

Murphy et al. do not justify their calculation in probabilistic terms, as

has been done here. For example, they do not explicitly state how they

construct a joint distribution over (z, λ) using evaluations of their GCM.

However, their calculations correspond very closely to those described above.

They sample a model parameter x∗ randomly from some distribution F with

support X , compute the unweighted or weighted mean of Pr
(
λ ∈ L | x∗

)
us-

ing a gaussian density function as in (5), and their weighting function—which

they refer to as a likelihood—looks very similar to (7). Therefore it would be

very surprising indeed if Murphy et al. had adopted a different set of choices

to the ‘convenient’ ones described above: the ‘best input’ approach, simple

Monte Carlo integration, and both δ and ε gaussian with uncorrelated com-

ponents. Perhaps Murphy et al. could confirm that they had adopted these

choices; or, if not, they need to describe a different probabilistic framework

linking together their GCM evaluations and (z, λ) in such a way that their

calculations lead to well-defined probability distributions.

We now assume that Murphy et al. concur with the probabilistic frame-

work described above, and interpret their actions in this light. For the dis-

tribution of x∗ ∈ X they choose independent and uniformly distributed com-

ponents with given ranges. The τ 2
i values in the likelihood are set according

to the GCM’s natural variability, as revealed on p. 3 of the supplementary
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information. The fi for i = 1, . . . , k − 1 are 20 year means, and these are

scaled by single year natural variabilities, indicating that τ 2
i is approximately

twenty times the natural variance of model output i. There is, however, one

major difference. In their likelihood, Murphy et al. appear to have ignored

the contribution of the emulator error δi in (7), i.e. they have set σ2
i = 0

for i = 1, . . . , k − 1. This would only be appropriate if they believed that

σ2
i � τ 2

i for all i = 1, . . . , k − 1. It is also important to note that in their

sampling of λ they appear to have ignored the contribution of the model

discrepancy εk in (3), i.e. they have set τ 2
k = 0 in (5). This means that they

have computed a predictive distribution for their GCM’s climate sensitivity,

rather than ‘true’ climate sensitivity, which is not quite as stated in their

introductory paragraph.

Finally, some brief remarks on how statisticians might have approached

the inference differently. As already stated, the treatment of the emulator

can be substantially improved: there is no need, for example, for the mean

function to be restricted to being additive and piecewise linear. Second, the

simple Monte Carlo estimators of (4) and (6b) are seldom used, because there

are alternatives with dramatically better performance: importance sampling

with a carefully tuned proposal distribution and variance reduction meth-

ods, for example, or Markov chain Monte Carlo. Third, the estimate of the

diagonal of Var
(
ε
)

seems inappropriate. The discrepancy is a property of

the relationship between the model and the underlying system, while the

natural variability is purely a model property. Natural variability is a com-

ponent of our uncertainty, but it is more likely to feature in Var
(
δ
)
, since it

stops us from accurately predicting f(x′) using f(x), even when x′ is in the
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neighbourhood of x. Therefore there is something missing if we just scale

up natural variability to estimate the variance of the discrepancy. Fourth,

it is unlikely that either Var
(
δ
)

or Var
(
ε
)

have zeros off-diagonal, and there

are simple ways in which we might check this. Finally, the distributional

choices themselves seem a little arbitrary, which is a concern since they are

the basis for the range of 2.4–5.4◦C for climate sensitivity that is quoted as

the main finding. A different shape for the distribution of x∗ or a different

way of assessing Var
(
ε
)

might be expected to make a substantial difference

to this finding, and so a sensitivity analysis would be appropriate.

Broadly speaking, however, Murphy et al. is a very welcome addition to

the climate literature, showing how we may make probabilistic assessments

of climate quantities by combining climate data and evaluations of a GCM.

Hopefully the authors will shortly produce a sensitivity analysis for their dis-

tributional choices, and perhaps investigate suggestions from the statistical

literature referenced below.
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