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J O U R N A L O F C L I M A T E

Ensemble averaging and mean squared error

JONATHAN ROUGIER∗

School of Mathematics, University of Bristol, UK

ABSTRACT

In fields such as climate science, it is common to compile an ensemble of different simulators for the same
underlying process. It is a striking observation that the ensemble mean often out-performs at least half of the
ensemble members in mean squared error (measured with respect to observations). In fact, as demonstrated
in the most recent IPCC report, the ensemble mean often out-performs all or almost all of the ensemble
members across a range of climate variables. This paper shows that these could be mathematical results
based on convexity and averaging, but with implications for the properties of the current generation of climate
simulators.

1. Introduction

A striking feature of Fig. 9.7 of Ch. 9 of the report of
Working Group 1 to the Fifth Assessment Report of the
IPCC (Flato et al., 2013, p. 766) is that the ensemble mean
consistently outperforms more than half of the individual
simulators on all variables, as shown by the blue rectan-
gles on the lefthand side of Fig. 9.7, in the column la-
belled ‘MMM’. Even more strikingly, the ensemble mean
often outperforms all of the individual simulators (deep
blue rectangles). This paper provides a mathematical ex-
planation of these features.

Section 2 shows that it is a mathematical certainty that
the ensemble mean will have a Mean Squared Error (MSE)
which is no larger than the arithmetic mean of the MSEs
of the individual ensemble members. This result holds for
any convex loss function, of which squared error is but one
example. While this does not imply the same relation for
Root-MSE (RMSE) and the median ensemble member (as
represented in Fig. 9.7), it makes a similar result plausible.

Section 3 establishes a stronger result, concerning the
rank of the ensemble mean MSE among the individual
MSEs (with an identical result for RMSE). This is based
on a simple model of simulator biases, and on an asymp-
totic treatment of the behaviour of MSE in the case where
the number of pixels increases without limit. Section 4
argues that this is a plausible explanation for the stronger
result that the ensemble mean outperforms all of the indi-
vidual simulators. A crucial aspect of this explanation is
that it does not rely on ‘offsetting biases’, which would be

∗Corresponding author address: Jonathan Rougier, School of Math-
ematics, University of Bristol, Bristol BS8 1TW, UK
E-mail: j.c.rougier@bristol.ac.uk

inappropriate for the current generation of climate simula-
tors.

In this paper I exercise my strong preference for ‘sim-
ulator’ over ‘model’ when referring to the code that pro-
duces climate-like outputs (see Rougier et al., 2013). This
allows me to use the word ‘model’ without ambiguity, to
refer to statistical models.

2. Convex loss functions

Let Xi j be the output for simulator i in pixel j, where
there are k simulators and n pixels. I will always use i to
index simulators and j to index pixels, and suppress the
limits on sums, to reduce clutter. Let X j be the ensemble
arithmetic mean for pixel j,

X j :=
1
k ∑i Xi j.

Let Yj be the observation for pixel j. Denote the mean
squared error as Mi for simulator i, and M for the ensemble
mean:

Mi :=
1
n ∑ j(Xi j−Yj)

2, M :=
1
n ∑ j(X j−Yj)

2.

Then we have the following result, that the MSE of the
ensemble mean is never larger than the arithmetic mean of
the MSEs of the individual simulators.

Result 1. M ≤ k−1
∑i Mi.
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Proof.

M =
1
n ∑ j

[
X j−Yj

]2
=

1
n ∑ j

[
1
k ∑i Xi j−Yj

]2

=
1
n ∑ j

[
1
k ∑i (Xi j−Yj)

]2

≤ 1
n ∑ j

1
k ∑i (Xi j−Yj)

2 (∗)

=
1
k ∑i

1
n ∑ j(Xi j−Yj)

2

=
1
k ∑i Mi,

where (∗) follows by Jensen’s inequality.

This result holds for any convex function; replacing x2

with |x| gives the same inequality for Mean Absolute De-
viation (MAD). The result for x2 has previously appeared
in the climate literature in Stephenson and Doblas-Reyes
(2000) and Annan and Hargreaves (2011), but these au-
thors failed to discover that it is the convexity of the loss
function which induces this result.

This result falls short of being an explanation for the
blue rectangles in the MMM column of Fig. 9.7 in two
respects. First, Fig. 9.7 is drawn for Root Mean Squared
Error (RMSE) not MSE, and second, it is drawn with re-
spect to the median of the RMSEs of the ensemble, not the
mean.

A weaker result is available for the RMSE; unfortu-
nately Jensen’s inequality does not help here, because the
square root is a concave function (i.e., it bends the wrong
way to extend the inequality). Let Ri be the RMSE of sim-
ulator i, and define

R̃ :=
1
k ∑i Ri, σ

2
R :=

1
k ∑i(Ri− R̃)2,

the sample mean and sample variance of the RMSEs.
Then, starting from Result 1,

√
M ≤

√
1
k ∑i R2

i =
√

R̃2 +σ2
R = R̃

√
1+

σ2
R

R̃2 .

If the variation in the simulators’ RMSEs is small relative
to their mean, then we would expect the RMSE of the en-
semble mean to be no larger than the mean of the RMSEs
of the individual simulators (although this outcome is not
a mathematical certainty).

Extending the result from the mean to the median is
trickier. A histogram of MSEs will typically be very pos-
itively skewed, and the histogram of RMSEs will remain
positively skewed. Therefore the median and the mean of
the RMSEs will not be similar. Typically the median will

be lower, and therefore the mean being an upper bound
does not imply that the median is an upper bound. But
progress can be made using the result from the next sec-
tion.

3. A simple systematic bias model

Flato et al. (2013, p. 767) and others have commented
on the “notable feature” that M is typically smaller than
any of the individual MSEs. This statement holds equally
for MSE and RMSE, because rankings are preserved under
increasing transformations, such as the square root.

A simple thought experiment suggests that this is indeed
notable. If all of the simulators had MSE ε2, and then we
took pixel j in simulator i and steadily increased its Xi j
value, then the MSE of simulator i and of the ensemble
mean would increase. The rank of M among M1, . . . ,Mk
would be k−1, where the rank is defined as

rank(M,M) := ]
{

i : Mi ≤M
}

(1)

whereM :=(M1, . . . ,Mk), and ]{·} denotes the number of
elements in the set. By Result 1, a rank of k is impossible if
the Mi’s are not identical. So ranks of between 0 and k−1
are attainable, in principle, and ranks that are consistently
small invite an explanation.

A candidate explanation is found in weather forecast
verification, in which it is sometimes found that a high
resolution simulation has a larger MSE than a lower res-
olution simulation, when evaluated on high resolution ob-
servations (see, e.g. Mass et al., 2002). The explanation
is that if the high resolution simulation puts a local fea-
ture such as a peak in slightly the wrong place (in space
or time), then it suffers a ‘double penalty’, while a lower
resolution simulation which does not contain the feature at
all only suffers a single penalty. Following similar reason-
ing, we might argue that the ensemble mean is flatter than
any individual member, and is thus penalized less if the
individual members are putting local features in slightly
wrong places. However, this argument is not compelling
for the IPCC climate simulations, in which the observa-
tions have low resolution, and there is already substantial
averaging in the individual simulator outputs.

I propose a different explanation, in terms of the simu-
lators’ ‘biases’. Suppose each simulator has a systematic
bias µi. Then over a large number of pixels the MSE of
simulator i would be approximately µ2

i plus a constant.
The ensemble mean at each pixel, though, would average
the biases to the value µ̄ := k−1

∑i µi. Then over a large
number of pixels the MSE of the ensemble mean would be
approximately µ̄2 plus a smaller constant (see the proof of
Result 2). This looks to be a promising explanation, but
there is work to be done, to establish the conditions under
which the MSE of the ensemble mean is driven down to-
wards or even below the smallest of the individual MSEs.
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And also to establish that this is not just an ‘offsetting bi-
ases’ argument, which would be inappropriate for climate
simulators (see section 4).

The mathematical challenge is that (M1, . . . ,Mk,M) are
not mutually independent: this difficulty was noted by An-
nan and Hargreaves (2011, p. 4532), who were unable to
go beyond a heuristic explanation. One way to finesse this
difficulty is with asymptotics, i.e. to consider the limit as
the number of pixels increases without bound. This is not
literally possible with climate simulators (which have a
fixed domain), but, as is common practice in Statistics,
asymptotic results serve to illuminate the situation when n
is large (see, e.g., Cox and Hinkley, 1974, ch. 9). Results
established asymptotically can be checked for finite n by
simulation.

An asymptotic approach requires a statistical model of
the joint relationship between the simulator outputs and
the observations. Any results which are proved on the ba-
sis of the model are likely to hold for actual ensembles
which might have been simulated from the model. There-
fore we look to make the model as general as possible; the
approach below is to start with a simple model, and then
to check that the results generalize.

Define Zi j := Xi j−Yj and take as the statistical model

Zi j |µ,σ2 ind∼ N(µi,σ
2) for all i and j, (2)

where µi is the ‘bias’ of simulator i,µ :=(µ1, . . . ,µk), and,
for below, µ̄ is the arithmetic mean of µ. From now on,
treat µ and σ2 as fixed constants, in order to avoid writing
‘ |µ,σ2’ in every probability statement. The following
result shows that, for this model, in the limit as n→ ∞

the rank of M among M1, . . . ,Mk is completely and simply
determined by µ and σ2.

Result 2. For the model given in (2),

lim
n→∞

rank(M,M) = ]
{

i : µ
2
i +σ

2 ≤ µ̄
2 +σ

2/k
}
,

where ‘rank’ was defined in (1).

The asymptotic theory in the following proof can be
found in van der Vaart (1998, ch. 2); references to indi-
vidual results are prefixed by ‘vdV’.

Proof. In terms of Zi j,

Mi =
1
n ∑ j(Xi j−Yj)

2 =
1
n ∑ j Z2

i j.

Eq. (2) and the Weak Law of Large Numbers (WLLN,
vdV 2.16) implies

Mi
P−−−→ E(Z2

i j) = µ
2
i +σ

2, (3)

where ‘ P−−−→’ denotes convergence in probability (vdV,

sec. 2.1). For M,

M =
1
n ∑ j

(
1
k ∑i(Xi j−Yj)

)2

=
1
n ∑ j W

2
j

where Wj := k−1
∑i Zi j. Eq. (2) and the WLLN implies

M P−−−→ E(W 2
j ) = µ̄

2 +σ
2/k.

Each Mi is converging in probability, and M is converging
in probability, and hence (M1, . . . ,Mk,M) is converging in
probability (vdV 2.7). Then the Continuous Mapping The-
orem (vdV 2.3) implies that

Mi

M
P−−−→

E(Z2
i j)

E(W 2
j )

=
µ2

i +σ2

µ̄2 +σ2/k
i = 1, . . . ,k.

This implies that in the limit as n→ ∞

Mi ≤M ⇐⇒ µ
2
i +σ

2 ≤ µ̄
2 +σ

2/k i = 1, . . . ,k,

from which Result 2 follows directly.

The result for ranking under RMSE is identical.

Generalizations. The Normal distribution for Zi j is
unnecessary; all that is required for the WLLN is that
E(Z2

i j) < ∞. Different loss functions, such as Mean Ab-
solute Deviation (MAD), can replace squared loss, pro-
viding that E{|L(Zi j)|}< ∞, where L is the loss function.
The common value of σ2 for all simulators can be relaxed,
at the expense of a slightly more complicated expression
in Result 2. The independence can be relaxed somewhat,
as long as the correlation length across pixels is small rel-
ative to the size of the domain. In particular, neighbour-
ing pixels from the same simulator can have some positive
correlation in their Zi j’s. These generalizations affect the
rate of convergence, and thus the accuracy of the result for
finite n, but they do not affect the limit.

4. Interpretation

Result 2 shows that offsetting biases across the simula-
tors in the ensemble, leading to µ̄ = 0, would suffice to en-
sure that rank = 0 in the limit as n→ ∞. However, offset-
ting biases is an inplausible hypothesis for the current gen-
eration of climate simulators, as has been shown empiri-
cally in the ‘genealogy’ study of Knutti et al. (2013). Sim-
ulators have common biases, which cannot be expected
to offset each other over the entire ensemble to give an
overall mean of approximately zero. Additionally, as a re-
viewer has pointed out, the use of imperfect observations
for Yj introduces another common bias across all simula-
tors.
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FIG. 1. A configuration of biases with |µi| < σ , for which rank = 0 in
the limit as n→ ∞. Here, σ = 1 and k = 13.

Therefore it is interesting that Result 2 can provide
other sufficient conditions for which rank = 0, or very
small.

Result 3. If |µi|< σ for all i, then

lim
k,n→∞

rank(M,M) = 0.

Proof. If |µi| < σ for all i then |µ̄| < σ , and µ̄2 < σ2.
Thus a necessary (but not sufficient) condition for Mi ≤M
in the limit as n→ ∞ is µ2

i < σ2/k, where the righthand
side goes to zero as k→ ∞.

The condition in Result 3 can be summarized as the
simulators’ biases are smaller in absolute size than the
large pixel errors. If individual simulators are tuned more
on their overall bias than their large pixel errors, then we
might expect something similar to this condition to hold.

Result 2 also illustrates when the ensemble mean per-
forms badly. The two situations, good (for the ensem-
ble mean, according to Result 3) and bad, are shown in
Figures 1 and 2, in the limit as n→ ∞. In the first case,
|µi| < σ and rank = 0. In the second case, µi ≥ 0 and
µ̄ > σ . The µi’s larger than σ pull the value of µ̄2 above
σ2, and this allows the small µi’s to pass under the thresh-
old in Result 2, and raise the rank.

There is a reason to distrust the asymptotic result when
n is small. The distribution of Mi is very positively
skewed, so that, for small n, the value of Mi will typically
be less than its expectation, possibly much less. The value
of M will typically be closer to its expectation. Therefore,
the asymptotic rank is likely to be similar to a lower bound
on the finite-n rank.

This can be tested in a stochastic simulation study. In
each simulation, the configuration µ is generated using

µi
iid∼ Unif(−σ/2,σ) i = 1, . . . ,k. (4)
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FIG. 2. Same as Figure 1, except with all of the µi’s increased by σ ; the
asymptotic rank has increased from 0 to 3.

For each configuration, the distribution of rank(M,M) is
computed using the model in (2). I then repeat with all of
the µi’s increased by σ . I set k = 42, the same as Fig. 9.7
in Flato et al. (2013), and n = 22, which is the number of
land regions in Giorgi and Mearns (2002), and much lower
than the typical number of pixels. This small n is used to
challenge the asymptotic nature of Result 2.

The simulation study reveals that the asymptotic ap-
proximation is accurate in the ‘good’ configurations of
Figure 1. For all 30 configurations, the asymptotic value
for the rank of M in M1, . . . ,Mk is 0. In every configu-
ration, the probability of rank = 0 is at least 0.94, and
the median probability across the configurations is 0.99.
Across the configurations, the maximum value for the
largest rank is 3, and the median value for the largest rank
is 1. In summary, under the good configuration of the bi-
ases it is highly probable that the ensemble mean will out-
perform all of the individual simulators.

The outcome for the ‘bad’ configurations (see Figure 2)
is shown in Figure 3. As anticipated, the distribution of the
rank has shifted upwards away from 0 for each configura-
tion, and it is clearer that the asymptotic result provides an
approximate lower bound on the rank. The median rank
for this simulation study is 21, since k = 42. Under the
bias model, the distribution of the rank is located entirely
below the median, for each configuration. Were n to be in-
creased, the distribution of the rank in each configuration
would collapse towards its asymptotic value. The median
asymptotic value across the configurations is rank = 6. In
summary, under the bad configuration of the biases it is
highly probable that the ensemble mean will perform far
better than the median simulator.

Thus the mathematics and the stochastic simulations
show that the simulator biases model provides an expla-
nation for Flato et al.’s “notable feature” of Fig. 9.7: per-
haps it is because for many of the variables the simulators’
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FIG. 3. Simulation study, for when the configuration of µ does not satisfy |µi|< σ , as shown in Figure 2. 30 different configurations of µ are
used, with the boxplots showing the the distribution of the rank of M in M1, . . . ,Mk . The ‘ledge’ for each configuration shows the asymptotic rank,
using Result 2.

biases are smaller in absolute size than the large pixel er-
rors. In this case, the notable feature of Fig. 9.7 is not just
a mathematical artefact, but is telling us something inter-
esting about the current generation of climate simulators.

Finally I would like to end with a caution about how to
report and summarize ensemble model experiments. Dur-
ing the process of tuning the parameters of a climate sim-
ulator, a research group creates an ensemble of simulator
versions with slightly different parameterisations. Result 2
suggests that they may get a lower MSE from the ensem-
ble mean, than from their best-tuned simulator—again, we
cannot assume offsetting biases in this case. If simulators
are judged by the wider community on their MSEs, with
more kudos and funding going to those research groups
with lower MSEs, then the temptation will be to publicize
the output from the ensemble mean rather than the best-
tuned simulator. And yet the ensemble mean is ‘less phys-
ical’ at the pixel scale, since the space of climate states
is not convex: linear combinations of valid climate states
are not necessarily valid climate states. This makes the
ensemble mean less suitable for providing boundary con-
ditions, e.g. for regional downscaling and risk assessment.
So research groups might consider how to certify the out-
puts they publicize, if they do not want to put their simu-
lators in the public domain.
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