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A little background

Reductionist models
Implement physical principles at the micro-scale (e.g. symmetry or
conservation, continuity). The correct macro-scale behaviour of
the state vector is expected to emerge as a consequence of the
correct physical principles being implemented.

Phenomenological models

Implement observed macro-scale regularities directly into the
evolution equations of a highly aggregated state vector. The
choice of equation structure is more subjective, since many
different structures can be consistent with the same regularities.



Visualising the glacial cycle
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Saltzman & Maasch’s 1991 model (SM91)

dI ′

dt
= −a1

[
kµµ′ + kθθ

′ + kRR ′(t)
]
− KI I

′

dµ′

dt
= b1µ

′ − b2(µ
′)2 − b3(µ

′)3 − bθθ
′

dθ′

dt
= −cI I

′ − Kθθ
′

where

I Ice volume, 1018 kg
µ CO2, ppmv
θ Deep ocean temp., ◦C
R(t) Solar forcing, W/m2.

Primes indicate variables centered around the
tectonic mean. The coefficients a1, b1, b2, b3,
bθ, and cI are ‘tunable’.



SM91’s coefficient choices
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A little dynamical systems theory
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To start with, set
R ′(t) = 0. Write
x ′ = (I ′, µ′, θ′). Solving
dx ′/dt = 0 gives three
fixed points. At the
SM91 parameters, these
are all unstable. This
means that the state
vector is periodic.

Adding orbital forcing
perturbs these fixed
points through time and
makes the state vector
follow a much more
interesting trajectory.



‘Noising up’ the SM91 model

A. Deterministic propagation, known parameters
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We treat the SM91
model as the drift term in
a stochastic differential
equation with Itô form
(conditional on Ψ)

dX (t) = f
(
X (t), t,Ψ) dt

+ Σ1/2dW (t)

where Ψ = (a1, . . . , cI ),
and W (t) is a vector of
independent Brownian
motions.

We choose π(Ψ) and Σ
so that the sample paths
of X (t) look ‘about
right’.



‘Noising up’ the SM91 model (cont)

Fixing the parameters Ψ at the SM91 values, here we can see the
effect of orbital forcing on the model dynamics, and the additional
effect of stochastic propagation, in CO2 / Ice volume space.
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Particle filters in one slide
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Particle filters in one slide
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Particle filters in one slide
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Validation: predicting beyond −126 kyr
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We initialise the model at
−450 kyr, and then run
forward until −126 kyr,
simultaneously learning
about Ψ and the state
vector, using a particle
filter. Our training data
is CO2 from the Vostok
ice-core. Then we predict
forwards, presented as
samples selected from the
posterior distribution.
The fit to the Benthic
stack data (ice volume
proxy) is remarkable. But
CO2 is slow in responding
to the deglaciation. The
predictability horizon is
about 50 kyr.



Ruddiman’s hypothesis, predicting beyond −8 kyr
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Training on CO2 up to
−8 kyr. Ruddiman claims
that after this time
human activity (mainly
rice cultivation in Asia)
perturbed the climate
and delayed the inception
of the next glaciation.
But according to our
analysis, it seems as
though this is not due for
another 50 kyr.



Beyond ‘proof of concept’

This work is preliminary. The main issues we need to address more
carefully are (thinking more widely about phenomenological models
represented as dynamical systems):

I A generalisation to endogenous (i.e. state-dependent)
deposition rates or their equivalent, to account for
dating/timing uncertainty;

I More transparent approaches for choosing π(Ψ) and Σ, which
are sensitive to the dynamical aspects of the model;

I A far more sophisticated learning framework (almost certainly
a hybrid particle filter / MCMC);

I Techniques for parallelising the code, notably load-balancing
on clusters.

All of these bits are ‘sort of’ in place, but the challenge is to
combine them together.


