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Two different approaches

The current approach (deterministic model):

Observations: yt−1 yt+1
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Learning

The initial state x0 and the model parameters θ are jointly
estimated by minimising the sum of squared deviations between
the observations and the model output (‘maximum likelihood’).

Not expected to perform well.
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Learning

The joint distribution of the state trajectory x0, x1, . . . and the
model parameters θ is updated by the observations {yt}. The
result is represented as a set of samples of (x0, x1, . . . , θ).

Hard to do: call a statistician!



Structural error on the time-step



Why is it so important to ‘noise up’ the model?

Statisticians are often grumpy. What’s the pay-off?

I If we are interested in quantifying uncertainty, then, for our
analysis to be defensible, the uncertainty must be sourced
correctly.

I In environmental science, the dominant source of uncertainty
is structural limitations in the model, and this uncertainty
lives in the propagation of the state vector from xt−1 to xt .

I We cannot simply add on some uncertainty to the solution of
a deterministic model, because non-linearities in the model
imply that deterministic and stochastic solutions have
fundamentally different characters.
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Illustration: the van der Pol oscillator

Has a ‘slow’ response x and a ‘fast’ response ẋ , related by

ẍ + ẋ + (α− x2)x = σx ξ

where ξ is white noise. Here θ = (α, σ); we’ll take α = 1.

As a model for glacial cycles



Illustration: the van der Pol oscillator

Has a ‘slow’ response x and a ‘fast’ response ẋ , related by
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The next few steps

Everyone (not just modellers) needs to understand about the
limitations of models, and the effect that these limitations have on
inference. Here are some steps in the right direction:

1. Increase the measurement uncertainty to incorporate aspects
of ’representation uncertainty’ and ’structural uncertainty’

2a. Thin the observations where they occur with high density (in
space/time), to account for systematic structural error

2b. (Or) Incorporate an auto-regressive process between the
model output and the observations

3. Report ML-based confidence sets for the parameters; use
these for hypothesis tests

And, some time soon,

4. Call in a statistician and noise up your model!
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