Assessing Model Limitations

Jonathan Rougier

Department of Mathematics University of Bristol, UK

Bristol, Thu 13 May 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Illustration: the Greenland ice-sheet

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The current approach (deterministic model):

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The current approach (deterministic model):

Learning

The initial state x_0 and the model parameters θ are jointly estimated by minimising the sum of squared deviations between the observations and the model output ('maximum likelihood').

Not expected to perform well.

The *statistical* approach (*stochastic* model):

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The *statistical* approach (*stochastic* model):

Learning

The joint distribution of the state trajectory x_0, x_1, \ldots and the model parameters θ is updated by the observations $\{y_t\}$. The result is represented as a set of samples of $(x_0, x_1, \ldots, \theta)$.

Hard to do: call a statistician!

Structural error on the time-step

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Statisticians are often grumpy. What's the pay-off?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Statisticians are often grumpy. What's the pay-off?

If we are interested in quantifying uncertainty, then, for our analysis to be defensible, the uncertainty must be sourced correctly.

Statisticians are often grumpy. What's the pay-off?

- If we are interested in quantifying uncertainty, then, for our analysis to be defensible, the uncertainty must be sourced correctly.
- In environmental science, the dominant source of uncertainty is structural limitations in the model, and this uncertainty lives in the propagation of the state vector from x_{t-1} to x_t.

Statisticians are often grumpy. What's the pay-off?

- If we are interested in quantifying uncertainty, then, for our analysis to be defensible, the uncertainty must be sourced correctly.
- In environmental science, the dominant source of uncertainty is structural limitations in the model, and this uncertainty lives in the propagation of the state vector from x_{t-1} to x_t.
- We cannot simply add on some uncertainty to the solution of a deterministic model, because non-linearities in the model imply that deterministic and stochastic solutions have fundamentally different characters.

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \xi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \,\xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

イロト イ押ト イヨト イヨト

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \,\xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \,\xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

(日)、

Has a 'slow' response x and a 'fast' response \dot{x} , related by

$$\ddot{x} + \dot{x} + (\alpha - x^2)x = \sigma x \xi$$

where ξ is white noise. Here $\theta = (\alpha, \sigma)$; we'll take $\alpha = 1$.

As a model for glacial cycles

イロト イ押ト イヨト イヨト

Everyone (not just modellers) needs to understand about the limitations of models, and the effect that these limitations have on inference. Here are some steps in the right direction:

1. Increase the measurement uncertainty to incorporate aspects of 'representation uncertainty' and 'structural uncertainty'

Everyone (not just modellers) needs to understand about the limitations of models, and the effect that these limitations have on inference. Here are some steps in the right direction:

- 1. Increase the measurement uncertainty to incorporate aspects of 'representation uncertainty' and 'structural uncertainty'
- 2a. Thin the observations where they occur with high density (in space/time), to account for systematic structural error

2b. (Or) Incorporate an auto-regressive process between the model output and the observations

Everyone (not just modellers) needs to understand about the limitations of models, and the effect that these limitations have on inference. Here are some steps in the right direction:

- 1. Increase the measurement uncertainty to incorporate aspects of 'representation uncertainty' and 'structural uncertainty'
- 2a. Thin the observations where they occur with high density (in space/time), to account for systematic structural error
- 2b. (Or) Incorporate an auto-regressive process between the model output and the observations
 - 3. Report ML-based confidence sets for the parameters; use these for hypothesis tests

Everyone (not just modellers) needs to understand about the limitations of models, and the effect that these limitations have on inference. Here are some steps in the right direction:

- 1. Increase the measurement uncertainty to incorporate aspects of 'representation uncertainty' and 'structural uncertainty'
- 2a. Thin the observations where they occur with high density (in space/time), to account for systematic structural error
- 2b. (Or) Incorporate an auto-regressive process between the model output and the observations
 - 3. Report ML-based confidence sets for the parameters; use these for hypothesis tests

And, some time soon,

4. Call in a statistician and noise up your model!