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Avalanches: A Statistician’s guide (on two slides)

I Snow is a very complicated substance with both granular and
liquid properties, and some special properties of its own, e.g.
sintering:

(from A Field Guide to Snow Crystals by Edward LaChapelle).

I Both statistical and ‘physical’ modelling approaches are used.

1. The runout of extreme avalanches is mainly a function of
topography =⇒ statistical approach based on regression.

2. But hazard management requires more information, such as
velocity =⇒ a more physical approach.
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Avalanches: A Statistician’s guide (on two slides)

The current view on avalanche modelling (Christophe Ancey):

I “While substantial progress has been achieved over the last 30 years
in terms of physical modeling, the gain in accuracy for land
management and engineering applications appears much more
limited.”

I “A number of problems (such as model calibration and values of
input parameters [in rheological models]) that already existed in the
first generation of models have not been fixed and persist.”

I “There is clear evidence that these parameters are more conceptual
than physical in that they do not represent a physical process, but
combine many different physical processes into a single, simple
mathematical expression.”



Rheological models

I Rheology denotes the closure scheme of the equations of motion, in
terms of a relation between internal forces and deformation of the
flowing snow.
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The Herschel-Bulkley model asserts

stress = τc

[
1 +

(
tc

dv

dz

)α]
α ≥ 1

where τc , tc , and α are parameters.
Simple models also require v0 to be
specified as a parameter.

I Using the HB rheology, the steady state velocity profile of an
avalanche can be solved in closed form, with the general expression

v = HB(z ;ψ, θ, ρ) where z = slope-normal height,

ψ = (v0, τc , tc , α), θ = slope angle, and ρ = snow density.
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Rheological models

Representative HB velocity profile
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Our point in a nutshell

Model calibration, model

criticism, and model choice

are statistical problems.



The source of our experimental data

This is the large chute at Davos:



The source of our experimental data

This is the large chute at Davos:



Experimental data
Expt A (rho = 317)
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Statistical modelling

Let vij denote the measurement at height zij in experiment i , with density
ρi (the angle θ = 32◦ is the same for all experiments).

1. Our starting point is

vij = HB(zij ;ψ, ρi ) + ξ(ρi , zij) + eij eij
ind∼ N(0, σ2

ij)

where ξ is a stochastic process describing the structural error in the
model, and e is measurement error.

2. Write ξ(ρ, z) ≡ ξ̄(ρ) + ξres(ρ, z), and suppose that for each
experiment Var(ξres)� Var(e). Then, to a reasonable accuracy,

vij ≈ HB(zij ;ψ, ρi ) + ξ̄(ρi ) + eij .

3. For any given experiment, ξ̄ is perfectly identified with v0 ∈ ψ.
Therefore this simple representation for structural error is equivalent
to letting v0 vary by density.
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Three (statistical) models

There are physical reasons for thinking that density (and/or the
properties that vary with it) may affect the value of the parameter
ψ.

I The experiments are divided into low-density (A, . . . ,E ) and
high-density (G , . . . , J).

1. Model A ψ is the same for both sets of experiments.

2. Model B v0 ∈ ψ varies by density (effect of structural error?).

3. Model C All four parameters in ψ vary by density.

I Hypothesis tests can be used to contrast these three models.

H0 df p-value

A vs B A 1 5%

B vs C B 3 93%
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Plots of the fitted values
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Plots of the fitted values

Model B
Expt A (rho = 317, llik = −4.1)
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Plots of the fitted values

Model C
Expt A (rho = 317, llik = −4.2)
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Profile likelihood of α, Model B
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To infinity . . . and beyond!

The HB parameter α ∈ [1,∞) seems to want to go to infinity.
This is concerning, physically, and also statistically.

We have a bold solution.

I Define β := 1/α ∈ (0, 1]. Then, extend β’s range to [−1, 1].
Hence α ≡ 1/β does indeed go to infinity and beyond.

I With β < 0, the velocity profile in the shear layer is concave
rather than convex. This is not physical.

I Statistically, though, the inference is much more reliable,
because this becomes a regular problem in which the ‘true’
value of β is well inside an open set.

⇒ It’s up to the measurements whether β is constrained to the
‘physical’ interval (0, 1].
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Profile likelihood of β, Model A

Model A is selected as the best statistical model (same four
parameters for both low- and high-density experiments).
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α >∞!
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Plots of the fitted values (β model)
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Plots of the fitted values (β model)
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Plots of the fitted values (β model)
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Appraisal

I Values of β < 0 are not physical. E.g., they correspond to a
discontinuity in the velocity gradient γ̇ := dv/dz at z = h.

I They also contradict recent results from high-speed video,
which indicates that γ̇(0.01) ≈ 700/s, and γ̇(0.03) ≈ 50/s
(Marius Schaefer, PhD, 2010).

I So the finding that β < 0 is indicative of other modelling
problems:

I The HB model itself, or the treatment of structural error,

I The measurement errors, or the Gaussian assumption,

I The estimated densities, or

I Additional environmental factors unrelated to density.

I Inspection of the log-likelihoods and fitted values suggests
that conflict between experiments C and E may be an issue.



Summary

Model calibration, model criticism, and model choice are
statistical problems.

I Here we have shown how careful implementation of hypothesis
tests and confidence intervals has revealed unexpected features
in the experimental data, and avenues of further investigation.

I Our statistical model accounts explicitly for measurement
errors, but also allowed for structural errors in the physical
model, through the inclusion of a ‘model discrepancy’.

I We have not shown an additional use of the statistical
framework, which is experimental design. We can examine the
value of proposed experiments in terms of their ability to
reduce our uncertainty about parameters such as β (or α).
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