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Abstract

The large-eruption rates of stratovolcanoes are modelled exchange-

ably, in order to derive an informative prior distribution as an input

into a subsequent volcano-by-volcano hazard assessment. Derivation

and implementation of the likelihood function is not straightforward,

necessitating a detailed code verification. Analysis of the LaMEVE

database suggests that most of the world’s stratovolcanoes are cur-

rently capable of producing large eruptions, but that the current large-

eruption rate of active volcanoes with no recent record of eruptions is

low, about 1.2 /kyr. The model is checked via a visual ‘Turing test’,

and the paper concludes with some reflections on code verification and

computation methods.

1 Introduction

Large explosive volcanic eruptions pose a major threat to human populations

worldwide, as well as to economic performance; see, e.g., Sparks et al. (2013).

For our purposes, we define ‘large’ to be a magnitude of at least 4, following

the definition of Mason et al. (2004), which is

magnitude = log10(mass in kg)− 7.
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Magnitude 4 (‘M4’) corresponds to 100 million tonnes of ejected matter. See

Simkin (1993) for background information about volcanoes, and Cashman

and Sparks (2013) for a recent review of volcano physics. This paper focuses

on stratovolcanoes, which are conical volcanoes capable of both explosive and

effusive eruptions—Mt Fuji outside Tokyo is an iconic stratovolcano. There

have been 56 large stratovolcano eruptions since 1900CE, globally.

We are currently engaged in a screening exercise to assess individual stra-

tovolcanoes in terms of their return period curves for large eruptions, which

is the first step in assessing the threat they pose. As part of this work we

would like an informative prior distribution for the eruption rate of a specific

volcano. We do not treat all volcanoes as having the same rate. Instead, we

treat these rates as a priori exchangeable, modelled as an independent and

identically distributed (IID) sample from some population distribution which

is itself uncertain. Describing this population distribution is the objective of

our analysis in this paper. More details are given in section 4.1.

The LaMEVE database (see section 4.3) contains 263 stratovolcanoes.

Volcanologists (e.g. the co-authors of this paper) believe that many of these

volcanoes are not currently capable of producing a large explosive eruption

without a change of state, i.e. they are ‘inactive’. Such a qualitative dis-

tinction between inactive and active volcanoes implies that the proportion of

inactive volcanoes (i.e. volcanoes with rate zero) need not be almost the same

as the proportion of active volcanoes with a very low rate such as 0.001 /yr.

This is in contrast to rates further up the scale, where the proportion of vol-

canoes with a given rate is believed to be a smooth function of the rate. If λi

is the current large-eruption rate for volcano i, then this discontinuity can be

represented by an ‘lump’ of probability in the distribution for λi, at λi = 0;

see (1). This lump introduces a complication to what might otherwise be a

standard statistical problem, since it takes the model for eruptions outside

the standard conjugate framework.

It is natural to model the number of large eruptions as a homogeneous

Poisson process with rate λi, over a modest time-interval such as a few cen-

turies (modest in geological time). As described above, the λi’s are modelled

as IID from some population, expressed as a family of distributions with a
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finite number of uncertain parameters. Without the lump of probability at

zero, the natural choice would be the Gamma distribution with shape param-

eter α and rate parameter β. Integrating out the λi’s implies an IID Negative

Binomial model for the number of large eruptions given (α, β). Then a pos-

terior distribution for (α, β) can easily be derived as a function of a prior

distribution and the observations. Possibly this posterior distribution could

be effectively summarised in terms of the maximum likelihood estimate.

However, the lump of probability at zero is incompatible with a Gamma

distribution: we need a more sophisticated distribution for the λi’s. But this

introduces the potential difficulty that the λi’s cannot be integrated out in

a closed-form expression. In this case they would be nuisance parameters:

there are 263 of them, compared to just a handful of ‘interesting’ (to us)

population parameters. Computationally, this would be very challenging.

There is a second complication too. The record of eruptions is incom-

plete, even going back for a modest time-interval such as 400 years (see,

e.g., Simkin and Seibert, 1994; Brown et al., 2014). The model must allow

for under-recording in the database. Ideally the under-recording rate would

vary by volcano; but, given the general scarcity of large eruptions, we must

be satisfied with the approximation of a single value common to all volcanoes.

Happily, there is a convenient conjugate form for the under-recording, if the

eruptions themselves are a homogeneous Poisson process. If the recording

process is IID Bernoulli with probability π, then the process for recorded

eruptions is Poisson with rate πλi. As will be shown below, this model can

easily be extended to different recording rates in different periods. So in fact

under-recording is not a major complication, accepting this simple model of

the same recording rate for all volcanoes.

Section 2 describes our model for the number of large eruptions of the

world’s stratovolcanoes, and shows that it has the very attractive feature

of having a closed-form integrated likelihood for the population parameters

of interest. As this derivation is moderately complicated, and the resulting

function likewise, section 3 considers code verification: something that is not

usually included in published papers and which, we suspect, is not done as

often as it ought to be. Section 4 describes our analysis: section 4.1 clarifies

3



our research objective; section 4.2 describes our prior beliefs; section 4.3

presents the dataset and our posterior inference; section 4.4 gives model

diagnostics; and section 4.5 describes the computation. Section 5 summarises

our findings, and reflects on two unusual but complementary features of our

analysis.

2 The model and the integrated likelihood

Consider a specified stratovolcano, volcano i, with large-eruption rate λi. We

can model an lump of probability at zero in the prior distribution of λi by

introducing a latent variable Ai, where Ai = 0 if the volcano is ‘inactive’, and

Ai = 1 if the volcano is ‘active’; an inactive volcano is currently incapable of

producing an M4+ eruption without a change of state. We treat Ai as IID

Bernoulli with probability θ. If Ai = 1, then the volcano has rate γi, where

γi is IID Gamma with shape α and rate β. Then λi = Ai γi, and

Pr(λi ≤ v) = (1− θ) + F (v;α, β) · θ (1)

for v ≥ 0 and zero otherwise, where F (· ;α, β) is the distribution function

of a Gamma distribution. This gives a three-parameter distribution for λi,

with θ controlling the size of the lump of probability at zero.

For later reference here is the Directed Acyclic Graph (DAG) of the com-

plete model. For simplicity of presentation (and without loss of generality—

see below), assume that there are just two time-periods, 1600–1799CE with

length ∆1 = 200, and 1800–2010CE with length ∆2 = 211. The recording

probability is π1 in the first period and π2 in the second, with π := (π1, π2).

The data for each volcano compriseX i = (Xi1, Xi2), where Xij is the number

of large eruptions for volcano i in period j. The total number of volcanoes

is n = 263.
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i = 1, . . . , n

α, β

θ Ai γi

π1

π2

λi = Aiγi

Xi1 Xi2

(2)

This DAG shows π, θ, and (α, β) as mutually independent: we discuss the

prior distribution of these four population parameters in section 4.2. This

model is only tractable if our choices of marginal and conditional distributions

permit the Ai’s and the γi’s to be integrated out in a closed-form expression.

Interestingly, perhaps surprisingly, this can be done, even allowing for the

recording rate to vary through time.

The key distinction is between volcanoes with no recorded eruptions,

xi = 0, which may or may not be active, and volcanoes with at least one

recorded eruption, which must be active in our model. Let there be nz

volcanoes with xi = 0, and assume for convenience that they are indexed

from 1 to nz. Let γ := (γ1, . . . , γn). Summing over the latent Ai’s gives

L(θ, π,γ) =
∑

a∈{0,1}n

n∏
i=1

p(xi; ai, π, γi) p(ai; θ)

=
∑

a∈{0,1}nz

nz∏
i=1

p
(
0; ai, π, γi

)
p(ai; θ)

n∏
i=nz+1

{
p(xi; 1, π, γi) p(1; θ)

}
= θn−nz

n∏
i=nz+1

p(xi; 1, π, γi)
∑

a∈{0,1}nz

nz∏
i=1

p
(
0; ai, π, γi

)
p(ai; θ).

(3)
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The second equality follows because all the terms in the sum with ai = 0 for

i > nz are zero.

Now integrate out γi from p(xi; ai, π, γi) with respect to the Gamma

prior distribution, for each i. To avoid clutter, drop the i subscript on

xi = (xi1, xi2) and γi, and write s := x1 + x2. For the non-zero xi’s, the

Poisson process model implies that

p(x; 1, π, γ) = Poi(x1; ∆1π1γ) · Poi(x2; ∆2π2γ)

= e−(∆1π1+∆2π2)γ γs

x1!x2!
(∆1π1)x1(∆2π2)x2 , (4)

where ‘Poi’ denotes the Poisson Probability Mass Function (PMF). The

Gamma prior distribution for γi implies that

p(x; 1, π, γ) p(γ;α, β) =
βα

Γ(α)

(∆1π1)x1(∆2π2)x2

x1!x2!
γs+α−1 e−(∆1π1+∆2π2+β)γ.

(5)

Integrating out γ then gives

p(x; 1, π, α, β) =
βα

Γ(α)

(∆1π1)x1(∆2π2)x2

x1!x2!

(
(∆1π1 + ∆2π2 + β)s+α

Γ(s+ α)

)−1

. (6)

For the zero xi’s, take s = x1 = x2 = 0 and then, for a = 1,

p
(
0; 1, π, α, β

)
=

(
β

∆1π1 + ∆2π2 + β

)α
. (7)

Obviously p(0; 0, . . . ) = 1, which can also be verified from (7) using the

equivalence {a = 0} ∼ {a = 1,∆1 = ∆2 = 0}.
Finally, integrate γ out of (3) using the above results to give

L(θ, π, α, β) = θn−nz

n∏
i=nz+1

p(xi; 1, π, α, β)

×
∑

a∈{0,1}nz

nz∏
i=1

p(0; ai, π, α, β) p(ai; θ). (8)
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The sum simplifies because the summand is invariant to permutations of a,

implying that there are only nz + 1 distinct values. Letting na denote the

number of 1’s in a, and using that p(0; 0, . . . ) = 1,

∑
a∈{0,1}nz

nz∏
i=1

p(0; ai, π, α, β) p(ai; θ)

=
nz∑
na=0

(
nz
na

)
(1− θ)nz−na

(
β

∆1π1 + ∆2π2 + β

)αna

θna

=
nz∑
na=0

Bin(na;nz, θ)

(
β

∆1π1 + ∆2π2 + β

)αna

, (9)

where ‘Bin’ denotes the Binomial PMF. Together, (8), (6), and (9) define a

closed-form expression for the integrated likelihood of (θ, π, α, β), which is

nearly costless to evaluate.

The general case where the total interval ∆ is divided up into k periods

∆1, . . . ,∆k, each with its own recording rate πj, can be inferred directly.

In this paper, we just use two periods: 1600–1799CE and 1800–2010CE,

with recording rates π = (π1, 0.9). Our beliefs about the recording rate over

the last four centuries are fairly limited. We believe the recording rate in the

C20th to have been nearly 1, and close to 1 in the C19th. We believe it to

be substantially lower than this in the C17th and C18th. These beliefs are

partly shaped by the frequency of recorded large eruptions in the database.

One simple measure of under-recording is to compare the mid-point of the

whole period (1805CE) with the date that divides set of of eruptions into

two halves. These should be roughly the same under the hypothesis that

eruption rates and recording rates are stable, but in fact the two-halves date

is much later: 1856CE. We attribute this to a lower rate of recording in the

first half of the period. In fact, a very crude calculation based on the above

dates suggests that the recording rate for 1600-1799CE is about half of that

for 1800-2010CE.

The results of Coles and Sparks (2006), Deligne et al. (2010), and Furlan

(2010) are also relevant. All three of these papers impose parametric forms

on the global recording rate as a function of time and magnitude. Furlan’s
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analysis allows for a step-change in the recording rate, consistent with our

beliefs that it has been nearly one for at least the last century. But she

estimates the timing of this step-change to be prior to 1600CE, which is

at odds with the analysis above. Therefore we have settled on the simple

model of having an uncertain recording rate π1 ≤ 0.9 for 1600–1799CE, and

a recording rate of π2 = 0.9 thereafter. We also tried two other plausible

models for the recording rate through time, and the results were effectively

unchanged.

3 Code verification

When implementing an inference based on the likelihood function given in

section 2, three questions arise:

1. Have I done the maths correctly?

2. Have I coded the log-likelihood function correctly?

3. Are other approximations that I have made acceptable?

Together, these questions comprise ‘code verification’. They are appropriate

for any computation, but are particularly germane for modern statistical

inferences with complex models and posterior approximations. As long as

it is possible to sample from the model, there is a simple approach to code

verification which ought to be applied routinely in statistical computation.

The approach is described in Cook et al. (2006), but we outline it here,

for clarity. Let f(· ; θ) be a model for some observables Y , and suppose

it is possible to simulate from this model for any θ ∈ Ω. Specify a prior

distribution over Ω, say pΘ. If the objective is a posterior distribution for Θ

then this ought to be the actual prior; for verifying the likelihood function

anything that is cheap to simulate from and evaluate is fine. Choose a score

function S. Then follow this algorithm:

• For i = 1, . . . ,m:

1. Sample θ ∼ pΘ(·).
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2. Sample y ∼ f(· ; θ).

3. Evaluate p∗Θ := pΘ|Y (· | y).

4. Set si ← S(θ, p∗Θ).

On completion, analyse the scores s1, . . . , sm according to their distribution

under the null hypothesis that the code is correct.

Consider one iteration of the loop. The values (θ, y) are simulated from

the joint distribution of (Θ, Y ), for which

p(θ, y) = pΘ(θ) f(y; θ) = p(y) p(θ | y).

Since y is also a simulation from the marginal distribution p(y), the value

θ ought to be compatible with the posterior distribution of Θ for this y.

Simulating (θ, y) in steps 1 and 2 involves simulating from the model, while

evaluating the posterior distribution in step 3 involves evaluating the likeli-

hood function. So if the simulation and the likelihood function derive from

the same model, then the simulated θ will be compatible with the evaluated

posterior distribution. This compatibility is assessed by the score function,

in step 4.

Cook et al. (2006) suggested using the relative rank of θ in a Monte

Carlo simulation from the posterior distribution as the score function S, and

then visualising the histogram of scores, which should be uniform under the

null hypothesis, according to the Probability Integral Transform (Casella

and Berger, 2002, sec. 2.2). (Where θ is a vector, do this for each margin.)

Rather than simulate from the posterior distribution, we have represented

it on a finite grid (see section 4.5), and hence we use the score function

S(θ, p∗Θ) = Pr∗(Θ ≤ θ) applied to each margin. Cook et al. suggest measuring

uniformity of the scores using the p-value for the test statistic

m∑
i=1

(
Φ−1(si)

)2
,

where Φ−1 is the standard Normal quantile function, which should be χ2
m

under the null hypothesis. This statistic is designed to emphasise departures
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from uniformity at the two extremes, which Cook et al. claim is sometimes

a hallmark of code errors. Below, we will simply use the p-value of the

Kolmogorov-Smirnoff test, which we find to be a helpful statistic when in-

specting a QQ plot. We do a separate assessment of power (see below and

the Appendix).

As a multi-parameter assessment, we check the coverage of credible sets of

different levels, using S(θ, p∗Θ) = 1 if θ is in our level-ν posterior credible set

for p∗Θ, and zero otherwise. We used ‘snug’ credible sets defined as level sets

of the log-likelihood function. Under the null hypothesis, s1, . . . , sm should

behave like a random sample from a Bernoulli distribution with parameter ν.

Other approximations, e.g. representing the posterior distribution on a

finite grid, are also tested at the same time. The presence of approxima-

tions introduces the usual conundrum of p-values, which is that the p-value

ought to be small, if the sample size m is large enough. An advantage of

using the coverage of credible sets is that we can monitor the coverage for

increasing sample size, assessed using, e.g., a 95% confidence interval, and

satisfy ourselves that the coverage is about right up until the point where

the confidence interval is acceptably narrow.

Figures 1 and 2 show these two code verification diagnostics, using the

prior distribution described in section 4.2, and using m = 200 iterations.

Initially we had m = 100 but we decided, on inspecting the results (notably

the width of the 95% confidence intervals in Figure 2), that more power

would be helpful. Both Figures appear to be satisfactory, and we are happy

to report that our code verified first time. In order to assess the power,

we then made an ‘error’ in the likelihood function, replacing every α with

α×1.1. This is a tiny error on the scale of the prior distribution for α, which

ranges from 0.25 to 100 (see section 4.2). Even so, the verification diagnostics

indicated a problem (shown in the Appendix).

We should finish this section on a note of caution. Satisfying the code

verification test is a necessary but not sufficient condition for code validity,

and the power calculation is suggestive but not conclusive. What we are

claiming in this section is that if there is a lurking error in the code, then it

is a small one which, we hope, will not substantially affect the results.
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Figure 1: Code verification. Each panel shows the QQ plot for the scores of
one of the four parameters. These should be approximately straight lines if
there are no errors. The p-values are for the Kolmogorov-Smirnoff test.
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4 Results

4.1 Our target inference

Ultimately, we want an informative prior distribution for the large-eruption

rate of a specified active stratovolcano. Imagine an additional active volcano,

not in the database, say volcano number n + 1. Write the dataset for the n

volcanoes in the database as

D :=
{
X1, . . . ,Xn

}
.

The posterior distribution p(γn+1 |D) provides the informative prior distribu-

tion we seek. Moreover, because there are so many volcanoes in the database,

the effect of removing one active volcano from D will have little impact on

the posterior distribution of γn+1. Therefore this posterior distribution can

also be used as an informative prior for one of the active volcanoes in the

database, or for a small fraction of them. Thus we wish to compute

F ∗γ (v) := Pr(γn+1 ≤ v |D)

=

∫∫
F (v;α, β) p∗(α, β) dα dβ (10)

for values v ≥ 0, where F (· ;α, β) is the Gamma distribution function, and

an asterisk indicates conditioning on D.

Ideally, the marginal posterior distribution p∗(α, β) would be highly con-

centrated, in which case the approximation

F ∗γ (v) ≈ F (v; α̂, β̂) (11)

would be extremely convenient, where the hats denote maximum likelihood

estimates based on D. But it is clear a priori that this will not be the case,

because of a lack of identifiability in the likelihood function.

Set aside the issue of under-recording. There are at least two ways of

getting lots of volcanoes with no large eruptions over the given period, as is

the case in the database. First, most volcanoes might be active, but the rates
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of the active volcanoes might be very low, so that the probability of an active

volcano having no eruptions is high. This would correspond to a large θ and

a small α/β (focusing on the expectation of γi, for simplicity). Second, most

volcanoes might be inactive, but the rates of the active volcanoes might be

much larger. This would correspond to a small θ and a much larger α/β. Of

course there is also a spectrum of possibilities between these two extremes.

The observations on their own cannot distinguish easily between points on

the spectrum because even active volcanoes have only a handful of large

eruptions in 400 years. Therefore there will be a ridge in the log-likelihood

connecting the points in this spectrum, and the maximum likelihood estimate

is unlikely to be a useful estimate, because it does not represent the centre

of concentration.

Under-recording adds to the lack of identifiability, because a smaller π1

can partially compensate for a larger α/β.

This identification problem does not pose any particular challenges for

our inference, which is simply a posterior expectation. But it means that we

cannot provide a simple closed-form approximation for the function F ∗γ , such

as (11). We know, a priori, that our F ∗γ will be a non-degenerate mixture of

Gamma distributions. So instead we must find a tractable approximation to

F ∗γ , one that is, ideally, easy both to sample from and to evaluate. This is

given below in Table 2.

4.2 Our choice of prior distribution

There are four population parameters: two probabilities π1 (the recording

rate for 1600–1799CE) and θ (the probability of being active), and the two

parameters of the Gamma distribution for γi, the shape α and the rate β;

see (2). In addition to the identification problem discussed in section 4.1,

note that this inference is data-poor: the entire dataset is given below in

Table 1. Undoubtedly we will need to provide an informative prior distribu-

tion, which represents, at least minimally, our beliefs about large eruptions

of stratovolcanoes. This incisive comment from I.J. Good is apposite:

When a statistician selects a [prior] distribution, he ought to make
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some effort to use the one that corresponds to his own judge-

ment, whether the distribution is physical or intuitive. Since the

selection is to some extent arbitrary, the statistician will have an

opportunity to cheat. The more honest he tries to be, the more

arbitrary and complicated his choice will look, and the more he

will open the door to accusations of cheating. There is also the

danger of unconscious cheating (wishful thinking). For this reason

there is much to be said for minimizing arbitrariness, for compro-

mising between philosophy and politics, between the ideal and

the expedient. One method of making such a compromise is to

restrict the class of [prior] distributions to a class with a small

number of parameters. (Good, 1965, p. 16)

We will implement this suggestion by using only uniform distributions for

the four population parameters, although, as discussed immediately below,

the mutual independence which facilitates this choice requires a careful repa-

rameterisation.

We will treat π1, θ, and (α, β) as mutually independent in the prior

distribution. We will take the prior distribution of π1 to be U(0, 0.9), as we

have very limited beliefs about the average recording rate in the period 1600–

1799CE. Furthermore, such quantitative beliefs as we have are ‘contaminated’

by our exposure to previous empirical work using a similar dataset (see the

end of section 2). We also take the prior distribution of θ to be U(0, 1), again

reflecting very limited beliefs.

The prior for (α, β) is more complicated. We have beliefs about γi, con-

cerning its expectation, µ say, and its coefficient of variation, κ say (defined

as the standard deviation divided by the expectation). This parameterisation

is chosen because our beliefs about µ and κ are largely independent. But this

independence does not translate to independence for α and β. Therefore we

transform to the new parameters (µ, κ) with

α =
1

κ2
and β =

1

µκ2
=
α

µ
(12)
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according to the Gamma distribution properties

E(γi;α, β) =
α

β
and Var(γi;α, β) =

α

β2
.

We treat µ and κ as independent in the prior distribution, and represent

our beliefs as µ ∼ U(0.001, 0.01) /yr and κ ∼ U(0.1, 2). The limits for µ

represent our belief that the return period for large eruptions is likely to be

between 100 yr and 1000 yr, which is broadly consistent with the assessment

of long-term global magma production in White et al. (2006). The limits

for κ represent that this is a weakly-held belief. A back-of-the-envelope

calculation, taking the lower limits as approximately zero in both cases, gives

E(γi) ≈
0.01

2
=

1

2
· 10−2

Var(γi) ≈
0.012

3

22

3
+

0.012

12
=

19

36
· 10−4 ≈ 1

2
· 10−4.

Hence the coefficient of variation of γi is approximately
√

2, showing that this

is a diffuse prior for γi; more diffuse, for example, than the Exponential dis-

tribution (which has coefficient of variation 1). The actual prior distribution

for γi implied by these choices is shown as a dashed line in Figure 4.

4.3 Data and posterior distribution

The Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database is

an open-access database which represents the most complete record of M4+

eruptions; see Crosweller et al. (2012) and Brown et al. (2014). The download

for this paper was made on 20 Oct 2014. We use all of the volcanoes in this

database that are classified as stratovolcanoes, 263 in total. The complete

dataset used in our analysis is shown in Table 1.

Our model was described in section 2 and our prior distribution in sec-

tion 4.2. The code was verified in section 3, using our prior distribution.

All calculations were performed in the statistical computing environment R

(R Core Team, 2013), and the data and code are freely available at XXXX.

Grid-based methods were used to assess the posterior distribution of the
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Table 1: Observed frequency of M4+ eruptions for stratovolcanoes, extracted
from the LaMEVE database. Value nij indicates the number of volcanoes
with i recorded eruptions in 1600–1799CE and j recorded eruptions in 1800–
2010CE.

Values for j

0 1 2 3 4 5 Sum

0 182 30 10 2 0 0 224

1 20 5 3 1 0 1 30

2 2 1 2 2 1 0 8
i

3 0 0 0 0 0 0 0

4 0 0 1 0 0 0 1

5 0 0 0 0 0 0 0

Sum 204 36 16 5 1 1 263

population parameters, and functions of them: see section 4.5 for further

details.

Figure 3 shows the posterior margins for the four population parameters.

Clearly the data are highly informative with respect to our prior distribution.

The recording rate for the period 1600–1799CE is less than 0.9; the posterior

range is about (0.3, 0.8) and the posterior expectation is E∗(π1) = 0.53. This

result is consistent with the finding in Coles and Sparks (2006), and contra-

dicts that of Furlan (2010), who finds that the recording rate is effectively 1

from about 1600CE. Interestingly, this result is also consistent with our very

crude calculation that π1 ≈ 0.9/2 (see the end of section 2).

The posterior distribution for θ has been pulled towards 1; the probability

that volcano n+ 1 is active is E∗(θ) = 0.79. This distribution function is ap-

proximately quadratic, and so its density function is approximately triangular

on the interval (0.4, 1.0). The posterior distribution for γn+1, F ∗γ from (10),

is given in Figure 4. This has been pulled towards zero and concentrated,

with an expectation of E∗(γn+1) = E∗(µ) = 0.0024 /yr and an effective upper

bound of about 0.02 /yr. Table 2 gives some posterior quantiles of γn+1, from
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Figure 3: Distribution functions for the posterior margins of the four pop-
ulation parameters. The prior margins are uniform on the horizontal range
(i.e. the prior distribution functions are diagonal straight lines). The re-
stricted horizontal range of the curves shows the effect of range refinement
(see section 4.5).
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Figure 4: Prior and posterior distribution functions for γn+1, see (10). Quan-
tiles are given in Table 2.
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Table 2: Posterior quantiles of F ∗γ , see (10) and the solid line in Figure 4.
The units of γn+1 are /kyr and the units of 1/γn+1 are kyr.

Prob. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

γn+1 0.00 0.19 0.38 0.65 1.02 1.50 2.10 2.89 3.99 5.95 7.99 13.22 21.91

1/γn+1 ∞ 5.21 2.61 1.55 0.98 0.67 0.48 0.35 0.25 0.17 0.13 0.08 0.05

which approximate density and quantile functions can easily be constructed,

using linear or spline interpolation.

4.4 Model checking

Model checking is mandatory whenever statisticians make tractable para-

metric choices for marginal or conditional distributions. Volcanologists are

certainly going to be appropriately sceptical about our choice of Uniform,

Gamma, Bernoulli, and Poisson distributions, and the exchangeable frame-

work which knits them into a joint distribution for eruptions over a large set

of volcanoes; see (2).

For our model checking, we use a version of the posterior predictive ap-

proach, as proposed by Rubin (1984). Imagine a replicated version of the

dataset, Drep, which represents an entirely new set of n volcanoes. The ac-

tual dataset D is visualised among the members of a random sample taken

from Drep |D. This is a statistical ‘Turing test’, in which the model competes

with the actual dataset to ‘fool’ us, the experts, and in so doing establishes

whether it is a reasonable representation of our beliefs. This Turing test

interpetation of model checking was discussed by McWilliams (2007), in the

context of climate modelling.
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The algorithm for generating one replication is:

1. Sample (π, θ, µ, κ) from the posterior distribution.

2. Compute α and β from (12).

3. For i = 1, . . . , n:

(a) Sample Ai ∼ Ber(θ) and γi ∼ Ga(α, β).

(b) Set λi = Ai γi.

(c) Sample Xrep
i1 ∼ Poi(∆1π1λi) and Xrep

i2 ∼ Poi(∆2π2 · 0.9 · λi).

4. Set Drep =
⋃n
i=1{(X

rep
i1 , Xrep

i2 )}.

Technically, the samples in step 3c are from Poisson processes, not from the

Poisson distribution.

After k replications, the dataset is D,Drep
1 , . . . ,Drep

k . This combined

dataset is too complicated to visualise in its entirety, and so we select a

summary visualisation for each element. We prefer visual model checking,

rather than a more numerical approach based on a test statistic. A visual

approach is more accessible and more convincing, being similar to the model-

development approach used widely in earth and environmental sciences. As

our summary, we choose the recorded large-eruption sequence of the volcano

with the largest number of recorded eruptions over the period 1600–2010CE

(crudely, the ‘most-active’ volcano), which is easy to visualise on a line, al-

lowing us to put a visual summary of all k + 1 datasets on the same page,

for an easy comparison.

Figure 5 shows the result, using k = 9 replications. There is no apparent

discrepancy between the eruption sequence of the actual most-active volcano

(Kelut, in Indonesia) and the most active volcano from a replicated dataset.

This outcome does not indicate that volcanoes follow homogeneous Poisson

processes, as per our model, but, more prosaically, that we do not have

sufficiently rich dataset for large eruptions to distinguish a homogeneous

Poisson process from a more complicated process.
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Figure 5: ‘Turing test’ for model checking. The recorded eruption sequence
of the actual most-active volcano (Kelut), and the most-active volcano from
a replicated dataset, for nine replications. Under the null hypothesis that the
model adequately reflects our beliefs, there should be no apparent discrep-
ancy between the first sequence and the other nine. The vertical dotted lines
indicate the periods 1600–1799CE and 1800–2010CE, where the first period
has a recording rate of π1 and the second period has a recording rate of 0.9;
from the dataset, E∗(π1) = 0.53.
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Figure 5 demonstrates a feature of homogeneous Poisson processes which

often catches people out: they can appear ‘clustered’, especially conditional

on there being a large number of events.

4.5 Computation

It is easy to get carried away with Monte Carlo methods, but for problems

with only a small number of population parameters, finite grids are more

efficient (there is further discussion at the end of section 5). In the simplest

case a regular finite grid represents the midpoint integration rule. There

are better rules than this (see, e.g., Smith et al., 1987, for a review), but

they come with a higher price, in terms of complexity of implementation.

Where the parameters are mutually independent in the prior distribution, a

non-uniform marginal prior distribution can be incorporated as non-regular

spacing, using a change of variables; but in this paper the parameters are

mutually independent (after a suitable transformation) and marginally uni-

form. A generalisation can be used when the parameters are not mutually

independent; this is sometimes termed Rosenblatt’s transformation (Mardia

et al., 1979, sec.2.4).

The main downside with grids is that the likelihood can be highly concen-

trated with respect to the bounding box of the prior distribution, implying

that most of the gridpoints contribute nothing to computing posterior expec-

tations. This can be addressed by an initial grid refinement based on level

sets of the log-likelihood function. For this purpose, quasi-random sequences

are ideal. If
{
t1, t2, . . .

}
is a quasi-random sequence and ˆ̀ is the largest

log-likelihood in the sequence, then all points in the sequence satisfying

`(ti) ≥ ˆ̀− χ−2
p (0.999)/2

are kept, where χ−2
p is the quantile function of the χ2

p distribution, and p is

the number of parameters. The revised bounding box is the smallest box

that contains all of the kept points. A similar approach is used in Rue et al.

(2009) and Scheel et al. (2011).

In the application in this paper (four parameters), 104 evaluations were
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used in the quasi-random sequence (a Sobol sequence), and these reduced the

volume of the bounding box by between 50% and 95%, assessed over many

simulations of the parameters and dataset. Fifteen points per parameter

were used in the grid. As shown in section 3, code verification appeared to be

satisfactory, suggesting that the grid refinement step and 15-point quadrature

rule were not introducing an appreciable inaccuracy in the computation.

Computing on grids and space-filling designs has got much faster with

modern multiple-core CPUs. Because every gridpoint can be evaluated in

parallel, the mclapply and mcmapply functions in the R package parallel

provide a painless and effective upgrade on a single computer, subject to

some restrictions (notably on Windows machines). The package parallel

is now in the R base. If X is a matrix of parameter values, e.g. the result

of as.matrix(expand.grid(...)), then the log-likelihood function can be

evaluated over X using

grid <- lapply(1L:nrow(X), function(i) X[i, ])

gridllik <- mclapply(X = grid, FUN = llik, ...)

gridllik <- unlist(gridllik)

where ‘...’ indicates additional arguments to llik. The first line is slightly

clunky but it preserves the column names of X in the names of each element of

grid, which might be used in llik(par, ...); there might be a small speed-

up from using mclapply here too. Experienced R programmers in search of

more speed are likely to be rather more creative, in an application-dependent

way, but there is much to be said for the transparency of the above code.

5 Summary and discussion

These results have met our research objective, of deriving an informative

prior distribution for the rate of M4+ eruptions of an active stratovolcano.

The model is presented in section 2; in it, the current large-eruption rates

of active stratovolcanoes are treated as exchangeable. The model allows for

the recording rate in the database to vary with time. In our treatment we

have adopted a simple implementation, with an uncertain recording rate over
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the period 1600–1799CE, and a recording rate of 0.9 since then. Our results

are presented in section 4.3, with the target distribution shown as the solid

line in Figure 4 and summarised, for numerical purposes, in Table 2. Model

checking is via a posterior predictive ‘Turing test’, described in section 4.4

and shown in Figure 5.

Some calculations can put our results in perspective. There are 263 stra-

tovolcanoes in the LaMEVE database. Of these, 81 have a recorded large

eruption since 1600CE, and are definitely active according to our criterion

(see Table 1). We have found that E∗(θ) = 0.79. Crudely, then, about

0.79 × 263 ≈ 208 volcanoes are active, and, subtracting the 81 which we

know are active, this leaves about 127 which are active but have no recorded

large eruptions since 1600CE.

Now consider one such stratovolcano. Direct calculation using the pos-

terior probabilities shows that the number of large eruptions of such a vol-

cano over one year is well approximated by a Poisson distribution with rate

0.00123 /yr. So, over the next decade, the probability that at least one large

eruption will be to a stratovolcano with no recent history of large eruptions

is approximately

1− exp(−127× 0.00123× 10) ≈ 0.79,

i.e. odds of about four to one. This seems like a fair bet to us. Indeed, in the

decade 2001–2010CE there were seven large eruptions, of which four were

at volcanoes with no recorded large eruptions since 1600CE: Ruang (2002,

mag. 4.0), Reventador (2002, 4.6), Kasatochi (2008, 4.0), and Eyjafjallajökull

(2010, 4.0). Note that these are ‘large’ eruptions (M4+); Eyjafjallajökull, for

example, also erupted in 1612 and 1821, but at what were judged to be less

than M4.

This forecast is based entirely on the information in one database. Lo-

cal knowledge could be used to refine this forecast, since an inspection of

each volcano would reveal much more information about its current state.

Sakurajima, for example, has had several large eruptions in the last one hun-

dred years, and we treat it as active. But it recently changed state from
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‘closed-conduit’ to ‘open-conduit’, making large eruptions much less likely.

For our purposes, though, our crude characterisation of volcanoes suffices,

because we will be incorporating local information at the next stage of our

volcano-by-volcano risk assessment.

Finally, there are two complementary features of our analysis which are

unusual for a typical modern Bayesian statistical application: our detailed

code verification (section 3 and the Appendix) and our use of a grid-based

method rather than Monte Carlo (MC) (section 4.5). We regard code verifi-

cation as a crucial part of any meaningful statistical analysis, which should

be insisted on by collaborators and stakeholders. The Cook et al. (2006)

verification approach that we have adopted involves many iterations of the

inferential calculation, and is not feasible if this calculation takes more than

a few seconds. Grid-based methods can meet this requirement, taking full

advantage of the features of modern computers, such as CPUs with multiple

cores, and large memories.

For a finite budget of CPU cycles, both MC and grid-based methods

are approximations. Whether an approximation is accurate can be settled

through code verification. In this paper we are able to confirm that our

combination of grid refinement and a 15-point quadrature rule is accurate.

This involved 200 iterations of the inferential calculation, plus another 200

to assess the power of our test. In reality, of course, we have done twenty

or thirty times as many iterations, while the code was being developed and

refined, and the calculations replicated on different computers. This would

have been impractical for an MC method taking, say, a few minutes per

iteration.
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Figure 6: Same as Figure 1, except with a small code error.

Appendix

Here is a simple assessment of the statistical power of the code verification.

A small error is introduced into the code, namely that the value of α in

the likelihood function is 10% too large (see the end of section 3). The two

Figures duplicate Figures 1 and 2, but with this error. Figure 6 is alarming,

while Figure 7 is marginal. Clearly, this code verification test has useful

power, against this type of error.
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Figure 7: Same as Figure 2, except with a small code error.
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