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Abstract
These notes are an outline of the concepts, terms, and notation used

in the statistical treatment of model-based inference for complex sys-

tems. They are a synthesis of a wide and rapidly-developing litera-

ture, and only the simplest situations are covered. Having said that,

the ‘all-gaussian’ approach that is illustrated here requires only mi-

nor generalisations to be state-of-the-art in current statistical practice.

References are not given, but there is Further Reading at the end.

Please reference these notes as: J.C. Rougier, 2009, Notes on statistical

modelling for complex systems, ver. 0.5, unpublished.
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1 Two types of uncertainty

The process of modelling a complex system involves abstraction, which has

the effect of introducing ambiguity in the precise meaning of model param-

eters and model outputs, even when these things are clearly defined in the
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underlying system. The ambiguity is increased if the model has to be fur-

ther simplified in order to be solved, as is the case for models that start out

as differential equations. While this may or may not affect the qualitative

features of the model, it definitely affects the way in which the outcome of

model evaluations is representative of the system. If model evaluations are

used to make inferences about the system, then this ambiguity is represented

as uncertainty about the system, given a set of evaluations of the model.

Since the word ‘model’ is heavily overloaded, from now on I’ll refer to the

computer code that is evaluated as the ‘simulator’. Furthermore, it is help-

ful to restrict ‘parameters’ to be those quantities that are common to many

different simulators for the same system. Typically these would be the coef-

ficients in the underlying mathematical equations, and would exclude initial

and boundary values, and forcing.

A simple but powerful statistical framework is used to represent the re-

lationship between the simulator and the system. Formally, we identify two

sets of uncertain quantities. First, there are the system values, which we

represent as Y . Y could be a huge collection of quantities; it is represented

as a majuscle letter following the general statistical convention that uncer-

tain quantities are written as majuscule letters, while particular instances

are written as minuscule letters. The second set of uncertain quantities are

the ‘correct’ values of the simulator parameters, which we represent as θ∗. In

statistics, parameters are often represented using θ, but we need to distin-

guish here between an arbitrary parameter value and the ‘correct’ parameter

value, hence the star in the latter case. The issue of whether there is such a

thing as a ‘correct’ parameter value in an imperfect simulator is subtle, but

there is no doubt that almost all of scientific practice using simulators pro-

ceeds on this basis (from now on I’ll drop the scare quotes around ‘correct’).

Now we have two sets of uncertain quantities, that must be probabilis-

tically related, if we think that evaluations of the simulator are informative

about the system. To represent this relationship we would specify the joint

probability distribution function

FY,θ∗(y, θ) , Pr(Y ≤ y, θ∗ ≤ θ)
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where ‘, denotes ‘defined as’. This notation for the distribution function is

unambiguous but also a bit clumsy. Usually, statisticians would write simply

F (y, θ). The distribution function is the primitive concept in probability,

in the sense that every random quantity possess a distribution function, and

every function satisfying the basic properties of a distribution function corre-

sponds to a random quantity.1 If Y and θ∗ are both ‘absolutely continuous’

random quantities, then the distribution function can be differentiated to

give the probability density function (PDF) fY,θ∗(y, θ), shortened to f(y, θ),

with the property that, for any set A in the domain of Y and θ∗

Pr
(
(Y, θ∗) ∈ A

)
=

∫
A

f(y, θ) d(y, θ).

We will treat Y and θ∗ as absolutely continuous from now on, for simplicity.

The PDF of Y and θ∗ can be factorised, using the notion of conditional

probability. If A and B are two uncertain propositions then the conditional

probability of A given B, written Pr(A |B), is defined as

Pr(A |B) ,
Pr(A, B)

Pr(B)
.

Interpretively, Pr(A |B) can be thought of as ‘the probability that A is true

supposing that B were true’.2 It is a hypothetical, because we do not actually

know whether B is true or not. According to the definition of conditional

probability, we can write

f(y, θ) = f(y | θ) f(θ), (1)

where the final term is the shortened form of fθ∗(θ). In words, the PDF

of (Y = y, θ∗ = θ) can be expressed as the product of the PDF of Y = y

supposing that θ∗ = θ, and the PDF of θ∗ = θ.

1If X is a random quantity, then the properties of FX(x) are (i) FX(−∞) = 0,
(ii) FX(∞) = 1, (iii) FX is non-decreasing, and (iv) FX is right-continuous. This final
condition is slightly technical, but not important for us.

2Note that this is an interpretation which serves well in practice. But, fundamentally,
the conditional probability is nothing more or less than its definition.
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The two PDFs on the righthand side represent two different sources of

uncertainty. The marginal PDF f(θ) represents our uncertainty about the

correct value of the simulator parameters. We refer to this as parametric

uncertainty. The conditional PDF f(y | θ) represents our uncertainty about

the system, supposing that we knew (somehow) that the correct value of

the simulator parameters happened to be θ. We refer to this as structural

uncertainty.

Note that the evaluations of the simulator are tucked away inside the

structural uncertainty; this will become clear in section 2.

2 The special case of a deterministic simulator

Most simulators of complex systems are currently deterministic, which is to

say that they return an identical value every time they are evaluated at the

same parameter value. I hope that this will change because I believe we can

get much richer representations of structural error through using stochastic

simulators, especially where the simulator is dynamical. However, in these

notes I stick with the predominant case (with a slight digression at the end

of this section).

We write the simulator as g : θ 7→ y, read as ‘g maps points in the space

containing θ to points in the space containing y’. In fact, g does not have to

map θ into the same space as y. Typically, though, simulators are built to

understand Y , and therefore the value g(θ) will ‘look like’ y.

Now we can construct a hierarchy of simulator quality, starting with the

best. First, there is the perfect simulator. In this case there is no structural

uncertainty, so that

f(y | θ) ∝ δ
(
y − g(θ)

)
(2)

where δ is the Dirac delta function, which is 1 when the argument equals zero,

and zero otherwise. In other words, if we knew the correct parameter, there

would be no further uncertainty, i.e. Y = g(θ∗). Any analysis that chooses

to ignore structural uncertainty is effectively assuming a perfect simulator—

this is a gross mistake for complex systems. It would be compounded by also

4



assuming that there is no parametric uncertainty, which would be to choose

f(θ) ∝ δ(θ − θ0) (3)

for some specified value θ0.

Second, there is the best input approach, in which we choose to treat

g(θ∗) as representing all the information about Y that there is in θ∗. This is

typically a restriction on (1) because g may well be a many-to-one function,

in which case g(θ∗) would contain less information than θ∗. The gaussian

instantiation of the structural error in the best input approach is

f
(
y | θ

)
= φ

(
y; g(θ), Σ

)
(4)

where φ is the multivariate gaussian (or ‘normal’) PDF with specified mean

g(θ) and variance Σ. This is one example from a class of representations of

structural uncertainty in which Y − g(θ∗) is probabilistically independent of

θ∗. The difference Y − g(θ∗) is termed the simulator discrepancy, and Σ is

the discrepancy variance. The gaussian best input approach is currently the

‘state of the art’ in quantifying structural error, and it already involves the

considerable challenge of specifying the discrepancy variance. But ignoring

Σ by setting it to zero is a return to the perfect simulator.

Note that the use of a gaussian PDF in (4) may necessitate a transfor-

mation of some of the components of y and g(θ); e.g. logs of strictly positive

quantities, logits for proportions and so on. Some care has to be taken to

ensure that the variance matrix Σ, which applies on the transformed scale,

is an appropriate measure of structural uncertainty on the original scale.

At the next step of generalisation, we retain the simple gaussian distribu-

tion form of structural uncertainty, but allow Σ to be affected by the value

of θ∗. Thus instead of specifying a discrepancy variance matrix, we specify

a discrepancy variance function, Σ(θ), and write

f
(
y | θ

)
= φ

(
y; g(θ), Σ(θ)

)
(5)

This generalisation provides one way of treating stochastic simulators within
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a deterministic framework. It also shows us how we might derive a plausi-

ble value for Σ in situations where the system itself tightly constrains the

acceptable values of Y . Suppose that our simulator is represented as

h(θ, ω) (6)

where ω is a random vector that we can take to comprise independent stan-

dard gaussian quantities, without loss of generality. This is a stochastic

simulator, because each evaluation at the same θ gets a different realisation

for ω. We can linearise this simulator around E(ω), which is zero, to give

h(θ, ω) ≈ h(θ,0) +∇ωh(θ,0) ω (7)

where ∇ωh is the Jacobian matrix of first derivatives with respect to ω. If we

are happy to assert that Y = h(θ∗, ω), i.e. that uncertainty about ω captures

our structural uncertainty, and happy with the first-order approximation,

then the deterministic simulator is g(θ) = h(θ,0), and the variance function

is Σ(θ) = {∇ωh(θ,0)}{∇ωh(θ,0)}T .

Overall, though, a good entry-level representation of the system uncer-

tainty that follows from model limitations is given by the gaussian best input

approach, which requires, in addition to the simulator itself, a specification

of the discrepancy variance Σ.

3 Simulator calibration

Simulator calibration involves learning about θ∗ on the basis of observations

about the system. This presupposes a functional relationship between the

value θ∗ and the distribution of the observations, which we denote Z when

they are thought of as uncertain (e.g. before being made), and zobs when

they take the specific observed values. Calibration is simplified by making

the plausible choice that the system value Y is statistically sufficient for Z,

so that the joint distribution of Z and Y given θ∗ factorises as

f(z, y | θ) = f(z | y, θ)f(y | θ) = f(z | y)f(y | θ), (8)
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where the first equality is always true and the second embodies the sufficiency

property of Y for Z.3

The situation becomes simpler still if we adopt the gaussian best input

approach, and also choose to model the conditional distribution of Z given

Y as a multivariate gaussian distribution

f(z | y) = φ(z; Hy, T ) (9)

where H is a specified matrix that represents a linear mapping from y to z

(which can account for missing observations, or observations which are the

means of subsets of system values), and T is a specified variance matrix which

represents measurement error. I will refer to the combination of gaussian best

input approach, sufficiency of Y for Z, and gaussian distribution for Z | Y
as the all-gaussian case. In the all-gaussian case we can integrate Y out of

f(z, y | θ), and so find an explicit form for the likelihood function of θ∗,

L(θ) , fZ|θ∗(z
obs | θ) = φ

(
z; Hg(θ), HΣHT + T

)
, (10)

where the definition is general, and the equality shows the form of the

likelihood function in the all-gaussian case.

In general, the likelihood function computes the probability density of

the observations, conditional on the correct value of the simulator parame-

ters. It is effectively a scoring function in which better-fitting values of the

parameters get higher scores. The point about any such scoring function is

that it needs to account for the uncertainty that exists between the simulator

outputs and the observed system values.

In the all-gaussian likelihood function in (10) we treat the discrepancy

variance Σ as specified (likewise T , but this is usually less of a problem). It

is possible to treat Σ as unknown, and to be learnt about along with θ∗, but

this is statistically demanding, unless there are already strong judgements

about Σ. I tend to take a fairly hard line here. If all you care about is your

simulator, then you are not a scientist but an artist. Scientists care about

3One should note here that this is another notational abuse. Statisticians write f(z |y)
to show that f(z | y, θ) = f(z | y, θ′) for all θ and θ′.
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what their simulators can tell us about the system, and they are obliged

to think about how inaccurate their simulators might be. In the gaussian

best input approach, this thinking in quantified in Σ: the diagonal elements

represent the accuracy of the simulator, while the off-diagonal elements rep-

resent the degree to which the simulator will be systematically wrong, over

sets of components of the system vector. It is not straightforward to turn

one’s thinking about simulator inaccuracy into a specification of Σ, and this

is an area where consulting a statistician will definitely help. But even a

crude assessment of Σ is going to be better than setting Σ equal to zero.

A note on computation. The likelihood in the all-gaussian case needs to

be computed carefully. First, find the Choleski decomposition of the variance,

namely the unique upper-triangular matrix Q for which QTQ = HΣHT + T .

This calculation only has to be done once. Then, for each θ, find the vector

w(θ) , Q−T
(
zobs −Hg(θ)

)
(11)

by back-substitution. Finally, compute the log likelihood

`(θ) , log L(θ) =
( n∑

i=1

wi(θ)
2 + n log π + 2

n∑
i=1

log qii

)
/(−2) (12)

where n is the number of observations in zobs, wi(θ) is the ith component

of w(θ), and qii is the ith term on the diagonal of Q. The only term that

involves θ is the one in wi(θ), and so the log-likelihood can be simplified to

`(θ) = c−
n∑

i=1

wi(θ)
2/2 (13)

where c can be neglected.

This representation of the log-likelihood allows us to interpret a common

choice for the cost function when finding a fitted value for θ∗, in the case where

all the simulator outputs are of the same type. Very often the analyst will

minimise the sum of the squared distances between the simulator output and
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the observations, for which H would be the identity matrix. This approach

would be implied by Σ + T being a diagonal matrix, because then Q would

be diagonal, and w(θ) ∝ zobs − g(θ). Effectively, both Σ and T would have

to be diagonal. It is quite plausible that T is diagonal, if all observations

are measured with the same type of (unbiased) instrument. It is also fairly

plausible that all of the diagonal elements of Σ would be the same, if the

simulator quality is judged not to depend on the indexing of the output

vector (e.g. not to depend on the location or time index). But setting all the

off-diagonal elements of Σ to zero represents a judgement that the simulator

is never systematically wrong over a subset of output components. This is

highly implausible for simulators of complex systems, where simulator errors

are expected to persist in similar outputs. What then happens is that the

observations appear more numerous than they actually are, and the likelihood

function is too peaked.

3.1 Maximum likelihood (ML)

The Frequentist approach to inference avoids making probabilistic statements

about θ∗, preferring to locate all of the uncertainty in the sampling behaviour

of Z. Therefore there is no f(θ) beyond basic boundaries for θ∗; instead a

less structured approach is taken in which θ∗ is simply ‘unknown’. This

might be very attractive in situations where it is hard to specify f(θ), but it

has its own complications. Inferences about θ∗ using zobs are judged on their

hypothetical properties under many independent realisations of Z, supposing

that the statistical model underlying the likelihood function is true. This

means that we cannot make probabilistic assertions about θ∗, but we can

make probabilistic assertions about the sampling behaviour of estimates of

θ∗ based on Z. These assertions are typically in the form of confidence sets

(see below).

Point estimation. Sometimes all one wants is a point estimate for θ∗. For

example, one wants a better estimate of θ∗ to plug into the simulator than

that arrived at purely by introspection.
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One approach to finding a point estimate for θ∗ is to maximise the log-

likelihood function, giving

θ̂ML = argmax
θ

`(θ). (14)

Note that this type of estimate presupposes that the simulator g is quite

cheap to evaluate, because the process of numerically maximising ` requires

many evaluations at different candidate values of θ. When the simulator is

expensive to evaluate, we must use an emulator, discussed in section 5.

Model criticism. The value θ̂ML may or may not be a good estimate of

θ∗: just because it gives a maximum does not mean that the resulting simu-

lator evaluation is a good fit to the observations. ‘Model criticism’ assesses

this, but it is always hampered in practice by the fact that we do not know

θ∗. If θ̂ML is to be used as a plug-in value for θ∗, though, it is reasonable to

expect that the statistical model at θ̂ML will do a good job of matching the

observations zobs. Note that this is model criticism: what we are critiquing is

the statistical model for Z, for which the simulator is only a part, albeit an

important one. It is nonsense to ‘validate’ a simulator, since the simulator

must be wrong, and will be discovered to be wrong if the observations are suf-

ficiently informative. If we want to assess the simulator’s performance using

system observations, we must make an explicit allowance for the simulator’s

limitations.

Suppose, for illustration, that we are in the all-gaussian case. If our

statistical model is a good one, and θ̂ML is a good estimate of θ∗, then we

would expect the components of w(θ̂ML) from (11) to be approximately inde-

pendent standard gaussian random quantities. Therefore one diagnostic for

model criticism is a histogram of these quantities, or a QQ plot. Probably

this will look bad; it is, after all, a difficult job to construct a simulator for a

complex system, and then to quantify its structural uncertainty in the form

of a variance matrix. The individual standardised components

zobs
i − [Hg(θ̂ML)]i√

[HΣHT + T ]ii
(15)
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are not independent, but they can show where the mis-fitting is worst. Then

it is probably a good idea to adjust Σ accordingly. This type of informal re-

vision of judgements alarms the purists, who worry about double-counting,

but to me it seems like a perfectly reasonable step, and also a simple approx-

imation to more complicated inferences in which Σ is also learnt from zobs.

This revision of Σ will affect the maximum likelihood value. So a refit

of the θ̂ML might also be a good idea, followed by another round of model

criticism. This process could be iterated, but one iteration is probably about

as much double-counting as the observations can stand.

Parameter uncertainty. The justification of ML as a good way of esti-

mating an uncertain parameter relies mainly on asymptotic results that hold

under certain conditions.4 It is not clear that these conditions will hold in a

simulator of a complex system, and nor is it obvious that asymptotic results

apply. Unfortunately, these same conditions and results are also the basis

for estimating the imprecision of θ̂ML, in the form of confidence sets for θ∗.

Taking the optimistic view, though, the level set{
θ : `(θ) ≥ `(θ̂ML)− kp(1− α)/2

}
(16)

describes an asymptotic 100(1−α)% confidence set for θ∗, where kp(1−α) is

the 1−α quantile of the χ2
p distribution, and p is the number of components

in θ.5

There is an equivalence between confidence sets and hypothesis tests:

the 95% confidence set for θ∗ is also the largest set of null hypotheses that

are not rejected by the observations zobs. Thus this type of confidence set

provides a simple way to test a specific hypothesis about θ∗ against a two-

tailed alternative. By fiddling with α it is also possible to find the p-value

4Most importantly, g must be a smooth function of θ, and θ must be a continuous
parameter defined on an open set.

5Confidence sets. A 100(1 − α)% confidence set has the property that, when many
such sets are considered (over many different experiments), at least 100(1− α)% of them
will contain the correct parameter value, no matter what the correct value might be,
providing that the statistical model is correct in every case. Typically we take α = 5%
and compute the 95% confidence set.
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of this test. A very small p-value would be suggestive, but, bearing in mind

that there are conditions underlying the confidence set that maybe satisfied

only approximately for g and for the amount of information in zobs, it would

be a mistake to over-interpret hypothesis tests (or, indeed, the confidence

sets).

The level set in (16) is a not-necessarily-convex subset of p-dimensional

parameter space, and so it is impossible to visualise beyond p = 2 or 3.

Therefore we need a method for projecting this into a lower-dimensional

subset of the components of θ∗. Caution is needed here, because there are

likely to be strong dependencies among the components of θ∗ if the effect of

one component can be somewhat offset by others; this shows up as a diagonal

ridge in the likelihood function, and a similar feature in the confidence set.

With that caveat in mind, lower-dimensional confidence sets can be found

by the method of profile likelihood. Suppose we wanted to consider just the

first component of θ∗. The profile log-likelihood function is

`(θ1) , sup
θ2,...,θp

`(θ) (17)

i.e. for each value θ1 we find the maximum value of the log-likelihood in the

other p−1 components.6 Asymptotic confidence sets can then be constructed

using the same approach as in (16), i.e.{
θ1 : `(θ1) ≥ `(θ̂ML)− k1(1− α)/2

}
(18)

describes an asymptotic 100(1− α)% confidence set for the first component

of θ∗. In the case α = 5%, we have k1(0.95)/2 ≈ 2, which makes for a useful

rule-of-thumb.

3.2 The Bayesian approach

In the Frequentist approach, probability is taken to be limiting frequency,

and the statistical model that describes the probability distribution of Z

6Or, to put it another way, we project by maximising over the unwanted components.
By construction, supθ1

`(θ1) = `(θ̂ML).
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for a specified value of θ∗ is a description of what might happen if we were

to sample Z in many worlds quite similar to this one. If this seems quite

convoluted, it is because complex systems do not generate the type of inde-

pendent and identically distributed observations under which the Frequentist

approach is more compelling. In the Bayesian approach, probability is a de-

scription of uncertainty, and does not need to be underpinned by the notion

of frequency. Therefore the likelihood function becomes a description of our

uncertainty about Z supposing θ∗ = θ, and we can also describe our para-

metric uncertainty by f(θ).

Bayes’s Theorem allows us to compute the posterior distribution f(θ|zobs)

in a mechanical way from the prior and the likelihood,

f(θ | zobs) ∝ q(θ) , L(θ)× f(θ). (19)

Generic methods for Bayesian updating are now mainly sampling-based (so-

called Monte Carlo methods), and are effective for posterior distributions

known up to a normalising constant (i.e. only the function q in (19) is re-

quired). Therefore the result of a Bayesian calibration is usually not a pos-

terior PDF for θ∗, but a sample from the posterior distribution.

Point estimation. If a point-estimate is required, then the posterior mode

is a good choice,

θ̂B , argmax
θ

f(θ | zobs) ≡ argmax
θ

q(θ), (20)

where ‘≡’ denotes ‘equivalent to’. This can be estimated from the posterior

sample as long as the value of q(θ) is kept for each member of the sample. If

the prior is rectangular (independent components and marginally uniform)

then the posterior mode is equal to the ML estimate, otherwise it takes into

account the additional information present in the prior. In other statistical

situations the posterior mean is advocated, but this can be a risky choice

when the likelihood function has an irregular form, as is often the case for

complex systems. There is always a risk that the posterior mean might
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correspond to a parameter value with low posterior probability density—this

is not what one wants for a plug-in.

Model criticism. For model criticism, the Bayesian plug-in θ̂B can be

assessed in the same way as the ML plug-in, θ̂ML. We expect it to perform

worse in this assessment, because it is less sensitive to the data than θ̂ML,

but it should not do too much worse, unless there is strong information in

the prior that conflicts with the observations. Typically this would involve

probabilistic information about θ∗, e.g. information from previous studies

that some component of θ∗ is more likely to be small than large. In this case,

a large divergence between the two estimates and/or a large difference in the

model criticism diagnostics may reflect that zobs is an unusual realisation of

Z (so we would not want to fit too closely to zobs). As a general rule it is

always a good idea to see how the prior and the likelihood contribute to the

posterior. The situation to avoid is where they do not overlap very much, in

which case the posterior is determined by tail behaviour in L and fθ∗ that

we are less confident about.

Parameter uncertainty. This can be assessed directly from the posterior

sample, using standard descriptive techniques. For example, the posterior

probability that θ∗ falls into the region T is estimated as the proportion of

the sample that fall into T . Note that this is a probability statement directly

about θ∗; such things are not meaningful in the Frequentist approach.

4 Calibrated prediction

Calibrated prediction is making statements about Y on the basis of zobs. We

already have a crude approach to calibrated prediction, which is to plug the

point estimate of θ∗ into the simulator, which then gives a point prediction

for Y . This point estimate may be either ML or Bayesian, so we denote

it as θ̂, and the point prediction is ŷ , g(θ̂). More generally, the distribu-

tion fY |θ∗(y | θ̂) gives a distribution for Y . In the case of the gaussian best

input approach, this distribution is multivariate gaussian with mean ŷ and
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variance Σ.

There are two limitations to this plug-in approach. First, it does not

account for the fact that θ̂ is not an exact estimate of θ∗. Second, it does not

account fully for the impact of zobs on Y . Both of these issues are addressed

in the Bayesian approach to calibrated prediction, which is illustrated here

for the all-gaussian case. There is no equivalent Frequentist approach.

In the Bayesian approach, we start by writing down the density function

that we require, and then we use the probability calculus to render this in

a form that is calculable using the conditional and marginal PDFs that we

have specified. In our case, what we would like is fY |Z(y | zobs), and then the

probability calculus tells us

fY |Z(y | zobs) =

∫
fY |θ∗,Z(y | θ, zobs) fθ∗|Z(θ | zobs) dθ. (21)

Basically, we introduce θ∗ and then integrate it out again, using what is

known as the ‘law of total probability’. The second term in the integrand is

the posterior distribution of θ∗, described this in section 3.2. So we assume

that we have a mechanism for generating a sample of m values from this

distribution, and write the predictive distribution for Y as the approximation

fY |Z(y | zobs) ≈ m−1

m∑
i=1

fY |θ∗,Z(y | θ(i), zobs) (22)

for θ(i) ∼ fθ∗|Z(θ | zobs). This Monte Carlo approximation is based on the

‘weak law of large numbers’: it is consistent (the error goes to zero as m →
∞), and its accuracy can be approximated using confidence intervals from

the gaussian distribution, using the Central Limit Theorem.

Here it is clear that uncertainty about θ∗ is taken into account. The

plug-in approach, in which θ̂ is used in place of θ∗, would collapse the sum

in (22) to a single value, fY |θ∗,Z(y | θ̂, zobs), which is equivalent to replacing

fθ∗|Z(θ | zobs) in (21) with the Dirac function δ(θ∗ − θ̂). This replacement

would be a reasonable approximation only when the calibration distribution

was highly concentrated.
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There remains a problem, however. In general, the PDF f(y | θ, z) is not

directly available, and so (22) is not helpful. The very attractive feature of the

all-gaussian approach is that in this case it is available. In fact, (Y, Z) | θ∗

is multivariate gaussian, and it follows that Y | Z, θ∗ is also multivariate

gaussian. Therefore we can approximate the modal value of fY |Z(y | zobs)

by maximising (22) over y; this would serve as a good point-estimate of Y .

Slightly more complicated techniques can be used to find the probability that

Y lies in any specified set Y .

To show how the Bayesian calibrated prediction approach addresses the

second limitation, suppose for simplicity that the calibration distribution is

highly concentrated around θ̂, and consider, for illustration, the mean of the

distribution fY |θ∗,Z(y | θ̂, zobs). This is

E(Y | θ̂, zobs) = g(θ̂) + ΣHT
(
HΣHT + T

)−1(
zobs −Hg(θ̂)

)
(23)

according to the standard result for multivariate gaussian conditioning. Clearly

this is the plug-in value ŷ = g(θ̂) plus an additional term. This additional

term carries the information from zobs to Y that is not captured by θ̂. So,

for example, if some components of Z are also components of Y , then know-

ing zobs allows us to know Y , modulo measurement error. Likewise, if there

are judged to be systematic mis-predictions in the simulator (represented

by non-zero off-diagonal components in Σ), then knowing how the simulator

mis-predicts Z, as shown in zobs − Hg(θ̂), allows us to correct g(θ̂). From

this point-of-view, the calibrated prediction approach is ‘bias correcting’.

5 Emulators

An emulator is a statistical framework for predicting the simulator output at

untried values of the parameters. An emulator is needed if it is not possible

to evaluate the simulator as much as we would like, usually because the

simulator is slow to evaluate, or the number of parameters is large, or both.

Emulators are also required if the analyst does not have control over the

simulator evaluations, but must use an ensemble of evaluations prepared for

some other purpose. Emulators can be used in both the ML and the Bayesian
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approach. Usually, though, they are constructed on Bayesian principles.

The most popular emulators in statistics are those constructed from Gaus-

sian Processes (GPs). These can efficiently handle large numbers of multi-

variate simulator outputs, and provide a flexible framework for incorporating

extra information about the how the simulator output is expected to change

in response to changes in the parameter value. There are ‘out-of-the-box’

settings for GPs which are widely advocated, but for important problems

I would definitely recommend a hand-crafted emulator with lots of expert

input.

A GP emulator is built from a carefully chosen collection of simulator

evaluations: selecting those evaluations is an exercise in experimental design.

The standard approach, in the absence of information about which simulator

parameters are important, is to use a maximin latin hypercube for the design,

possibly in several stages. The first stage is a screening stage, in which the

important parameters are identified—these are termed the active parameters.

Subsequent stages ensure that the sub-space of the active parameters is well-

spanned, and that evaluations are available at a range of inter-point spacings,

to learn about the different scale lengths of the simulator’s response.

The output from a GP emulator is a mean function, denoted µ(θ), and a

variance function, denoted Υ(θ). At parameter values where the simulator

has been run, the mean function is equal to the actual simulator outcome,

and the variance function is a matrix of zeros. Generally, the mean function

is a point-estimate of what the simulator will return when evaluated at θ,

and the variance function gives the uncertainty.

Other emulation frameworks have also been proposed, but those not based

on GPs have difficulty in incorporating expert judgements, handling large

numbers of outputs, and making realistic appraisals of uncertainty. GP emu-

lators tend to exploit smoothness in the response of the simulator to changes

in the parameters, and so when the simulator response changes abruptly, GP

emulators can struggle (usually by returning large uncertainties). In this case

other approaches such as neural networks or random forests should perform

better, but they have their own problems.

The emulator output is incorporated into the likelihood function. In the
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all-gaussian case with a GP emulator, this becomes

L(θ) = φ
(
z; Hµ(θ), H(Υ(θ) + Σ)HT + T

)
, (24)

i.e. the mean function has replaced the simulator evaluation, and the variance

function has appeared alongside the discrepancy variance. Note that (24) is

a highly convenient representation of the likelihood function which depends

crucially on everything being gaussian, conditional on θ∗. The only slight

complication is that θ now occurs in both the mean and the variance. This

affects the calculation of the log-likelihood, because the Choleski decomposi-

tion is Q(θ)TQ(θ) = H(Υ(θ) + Σ)HT + T , and this must be recomputed for

every θ. The log-likelihood is

`(θ) = c′ −
n∑

i=1

wi(θ)
2/2−

n∑
i=1

log qii(θ) (25)

where w(θ) = Q(θ)−T
(
zobs−Hµ(θ)

)
. This is (13), plus a term that penalises

large variances.7 Otherwise, the inferences proceed as before.

Further reading

General references for probability theory are, roughly in increasing order of

difficulty, Ross (1988), Rice (1994), DeGroot and Schervish (2002), Grimmett

and Stirzaker (2001). The second and third of these also contain second-

year undergraduate level material (UK) in the theory of statistical inference,

necessary to understand the properties of Maximum Likelihood estimators

and the construction of confidence sets. This is also covered in Wasserman

(2004).

The general treatment of model limitations within the ‘best input’ ap-

proach is covered in Goldstein and Rougier (2004) and Goldstein and Rougier

(2009). The second reference introduces the notion of ‘reified modelling’ of

the relationship between the simulator and the system, which extends the

7A little thought indicates the necessity of this penalty term. Otherwise the log
likelihood can be maximised by heading for an area of the parameter space where the
emulator variance is large, because this will minimise the

∑
i wi(θ)2 term.
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best input approach, and allows for multiple simulators of the same system.

The discrepancy Y − g(θ∗) is sometimes referred to as a ‘bias’ term. It has

been an explicit feature of statistical modelling since Craig et al. (1997).

Some authors advocate a detailed approach to specifying the discrepancy

variance Σ (Craig et al., 2001), but the more mainstream approach is to pa-

rameterise it and then to learn the parameters in a fully-Bayesian approach

(Kennedy and O’Hagan, 2001), or using an estimation method such as REML

(see, e.g. Santner et al., 2003).

Calibration is an inverse problem, and there is a huge literature on this,

largely pragmatic but some probabilistic. One entry-point is Tarantola (2005).

The term ‘calibrated prediction’ was coined by Kennedy and O’Hagan (2001),

who provide a fully-Bayesian treatment. Goldstein and Rougier (2006) pro-

vide a review and a Bayes linear treatment (the ‘hat run’ approach), suited

to large and expensive simulators. Craig et al. (1997) provide an alternative

calibration approach in which ‘bad’ choices of θ∗ are ruled out.

The theory and practice of simulation-based inference is covered in Robert

and Casella (1999) or Evans and Swartz (2000); Liu (2001) has a more

application-oriented treatment. Gelman et al. (2003) contains practical ad-

vice, although the type of statistical model is different, being based on notions

of exchangeability which are not so pertinent here.

The use of emulators goes back to Sacks et al. (1989) and Currin et al.

(1991), the latter is the first Bayesian treatment using Gaussian Processes.

Reviews of experimental design and emulator construction are given by Koehler

and Owen (1996, mainly experimental design) and the book by Santner et al.

(2003, lots on emulator construction). O’Hagan (2006) provides an accessible

overview, Rougier et al. (2009a) an application with some ‘emulator philos-

ophy’, and Rougier (2008b) gives the complete treatment for multivariate

outputs. The MUCM consortium (Managing Uncertainty in Complex Mod-

els) is a UK Research Council project to develop the practice of model-based

inference, and is developing a large on-line resource for Gaussian Process emu-

lation and related issues, see http://mucm.group.shef.ac.uk/index.html.

Gaussian Processes are also popular in the machine learning community, and

Rasmussen and Williams (2006) is a very useful reference (freely available on-
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line).

Murphy et al. (2004) is an early exercise in Bayesian climate prediction,

as discussed in Rougier (2004). The all-gaussian approach is described by

Rougier (2007), not including an emulator. Gaussian Process emulators (for

a scalar output) are developed in Rougier and Sexton (2007), Murphy et al.

(2007), and Rougier et al. (2009b); the latter for combining evaluations from

two climate simulators. A fully-Bayesian treatment of a climate simulator

calibration including a Gaussian Process emulator (although it is somewhat

hidden) is given by Sansó et al. (2008), and robustly critiqued by Rougier

(2008a). Non-Gaussian Process emulators have been tried, such as neural

networks (Sanderson et al., 2008a,b).
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