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Abstract

An ‘embedding model’ for a simple hypothesis justifies the choice of

test statistic when computing a p -value. Under this embedding model,

the p -value is bounded above by every Bayes factor. The nature of the

bound suggests that the p -value is typically much much smaller than

any reasonable Bayes factor.
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This is a brief contribution to the ongoing discussion about the evidential

import of a small p -value (Wasserstein and Lazar, 2016, this Journal). Let

X ∈ X be a set of observables, and H0 : X ∼ f0 be a simple hypothesis.

A ‘significance procedure’ for H0 is any statistic p0 : X → R such that
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p0(X) under H0 stochastically dominates a uniform distribution. If p0 is a

significance procedure for H0, then p0(xobs) is a ‘p -value’, where xobs are the

observations of X. The usual way to construct a significance procedure is to

propose a test statistic t : X→ R. Then

p0(x) := Pr0{t(X) ≥ t(x)} (1)

is a significance procedure according to the Probability Integral Transform,

where Pr0 is the probability under H0. For more on these definitions, see

Casella and Berger (2002, sec. 8.3). I find the distinction between a ‘procedure’

and a ‘value’, which I took from Morey et al. (2016), to be very useful in

practice.

Clearly there are an uncountable number of significance procedures for H0,

one for each choice of t. Presumably most of them are not very informative for

the question of interest. Therefore we do the analyst the courtesy of assuming

that for her p -value, the test statistic t was carefully chosen to reflect the

question of interest. From this viewpoint, we can propose an embedding

model for X in which t is an unambiguously good choice for testing H0 versus

‘not H0’, as was originally suggested by David Cox, in Savage et al. (1962,

p. 84) and Cox (1977). Cox suggested the exponentially-tilted null model,

f(x; θ) =
f0(x) · eθ·t(x)

MT (θ)
, θ ≥ 0, (2)

where MT is the Moment Generating Function of t(X) under H0. This model

has a Monotone Likelihood Ratio in t(x), and hence the test statistic t is
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Uniformly Most Powerful in testing H0 : θ = 0 versus H1 : θ > 0 (e.g. Casella

and Berger, 2002, sec. 8.3).

This is a ‘sufficient’ argument for the embedding model; i.e. were (2) the

model, then t would be the analyst’s unambiguous choice of test statistic for

H0 versus ‘not H0’. But it is also hard to imagine a simpler way to create an

embedding model out of just f0 and t, and this might be a more practical

justification for (2). However, the following argument generalizes from (2)

to a large and appropriate class of embedding models, as shown below in

Theorem 1.

Consider the Bayes factor for H0 versus H1,

B01(x) :=
f0(x)∫∞

0 f(x; θ)π(θ) dθ
, (3)

where π is some prior distribution on θ ∈ (0,∞). Adopting the approach

originally proposed by L.J. Savage (Edwards et al., 1963, p. 228), the Bayes

factor can be bounded below over the set of all possible priors,

B01(x)� inf
π

f0(x)∫∞
0 f(x; θ)π(θ) dθ

= inf
θ>0

f0(x)

f(x; θ)
, (4)

where I have written ‘�’ for ‘much greater than’, which seems justified, given

that the infimum happens at a prior which is a delta function, and which

would never be chosen in practice. But then, from (2),

inf
θ>0

f0(x)

f(x; θ)
= inf

θ>0
e−θ·t(x)MT (θ)� Pr0{t(X) ≥ t(x)} = p0(x) (5)

according to Chernoff’s inequality (e.g. Whittle, 2000, ch. 15). I have
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written ‘�’ again, because Chernoff’s inequality is an application of Markov’s

inequality, which is typically very generous, although there is a caveat for

IID X’s arising from Extreme Value Theory, (e.g. Whittle, 2000, ch. 18).

Putting (4) and (5) together,

p0(x)� · · · � B01(x), (6)

typically, from whence the title of this note.

How small is ‘much much smaller’? Consider the canonical statistical

model, first analysed in this context by Edwards et al. (1963, p. 228). Let

the null model be X ∼ N(0, σ2) for known σ, and let the test statistic be

t(x) = x/σ. Then the embedding model from (2) is X ∼ N(θ, σ2) and

B01(x) ≥ exp
{
−1

2(x/σ)2
}
. (7)

Figure 1 plots the p-value and the lower bound for B01. Also shown are some

specific values: the lower bound on B01(x) when p0(x) = 0.05, and the value

of p0(x) corresponding to a lower bound of B01(x) ≥ 10−3/2 ≈ 0.032, which

is the boundary between ‘strong’ and ‘very strong’ evidence against H0 in

the scheme of Harold Jeffreys (Jeffreys, 1961, Appendix B). In this example,

a p -value at the conventional threshold of 0.05 would correspond to a lower

bound for the Bayes factor within the embedding model of 0.259, or more

than five times larger. From the other direction, the necessary condition for

satisfying Jeffreys’s boundary is p0(x) < 0.004. All in all, the conventional

threshold for rejecting H0 of p0(x) < 0.05 seems positively reckless, with a
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Figure 1: The set of possible values for the p -value and Bayes factor, for
the null model X ∼ N(0, σ2) and the test statistic t(x) = x/σ, under the
embedding model (2).

value one tenth the size being more appropriate. Johnson (2013) recommends

similar thresholds (0.005 and 0.001), but with different reasoning.

A similar result to (6) holds for a much more general class of embedding

models, based on f0 and t. Here is the exact result.

Theorem 1. Let f0 and t be given. Let the set of embedding models be

f(x; θ) ∝ f0(x) · g
(
t(x), θ

)
, θ ≥ 0 (8)

for some non-negative g for which g(· , θ) is increasing, and g(· , 0) = 1. Then

p0(x) ≤ B01(x).
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Proof.

p0(x) = Pr0{t(X) ≥ t(x)}

= Pr0{g(t(X), θ) ≥ g(t(x), θ)} g(· , θ) increasing

≤ E0{g(t(X), θ)}
g(t(x), θ)

g ≥ 0, Markov’s inequality

≤ inf
θ>0

E0{g(t(X), θ)}
g(t(x), θ)

holds for all θ

= inf
θ>0

f0(x)

f(x; θ)
by (8)

≤ B01(x) by (4).

Thus (6) gains additional support from being true over a large class of

embedding models. Eq. (8) identifies t(X) as a sufficient statistic for θ in the

embedding model, according to the Fisher-Neyman Factorization Theorem

(e.g. Casella and Berger, 2002, sec. 6.2); the other conditions on g are trivial.

Hence the following précis of Theorem 1, which blurs the distinction between

the technical and the vernacular meaning of ‘sufficient’, but which is easy to

grasp.

If the statistic t is sufficient to assess departures from the null

model f0, then the p-value is typically much much smaller than

the Bayes factor. And if t is not sufficient to assess departures

from f0, then it would be foolish to assess f0 on the basis of the

p-value alone.

In this form, Theorem 1 serves as a complement to Lindley’s paradox

(Lindley, 1957). In its most primitive form, Lindley’s paradox states that if H0
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and H1 are two simple hypotheses, then it is possible that B01(x) ≥ 1/p0(x)

for some x ∈ X; i.e. the p-value for H0 may be very small while the Bayes fac-

tor for H0 versus H1 may be very large. Theorem 1 states that p0(x) ≤ B01(x)

for all x ∈ X, whenever H1 is chosen in a sensible way. Both results have

the same implication, which is to impugn the use of a p-value for ‘rejecting’

H0 (Wasserstein and Lazar, 2016, points 3 and 6). Lindley’s paradox says

that if you use a fixed threshold, you can sometimes be spectacularly wrong.

Theorem 1 says that the threshold p0(x) < 0.05 provides little evidence

against H0, in the class of embedding models that are consistent with the

test statistic.
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