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Abstract

Projections of future climate are determined by a wide array of
detailed and imperfectly understood physical processes. While en-
sembles of global climate model (GCM) simulations can be run to
sample the resulting uncertainties, statistical tools are needed to sup-
plement these simulations, and hence provide a more comprehensive
picture of how interactions between different processes influence the
response of climate. We illustrate this by combining ensembles from
two different experiments to study the response of climate sensitiv-
ity in the HadSM3 climate model to 31 model-parameters. We use
a Bayesian statistical framework based around linked emulators. Ex-
pert judgements are required to quantify the relationship between the
two emulators, and these are validated by detailed diagnostics. Using
our emulator, we identify the entrainment rate coefficient of the con-
vection scheme as the most important single parameter; find that this
interacts strongly with three of the large scale cloud parameters, Ct,
Cw (land), and Rhcrit; and represent these interactions visually.

KEYWORDS: Bayesian, emulator, diagnostics, convection, large-scale
cloud
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1. Introduction

HadSM3 comprises the HadAM3 atmospheric general circulation model (Pope
et al. 2000) coupled to a simple non-dynamic mixed layer ocean, a standard set-
up for the simulation of the equilibrium response to doubled CO2. HadSM3 is
one of a number of such climate models, developed at different institutions world-
wide, and used to investigate global and regional characteristics of the response of
climate processes to increases in greenhouse gases. These models contain differ-
ent choices of horizontal and vertical resolution, different numerical integration
schemes, and different parameterisations of sub-grid-scale processes. Therefore,
they simulate differently the response of global climate sensitivity, and of the
regional and global feedback processes which determine it (Webb et al. 2006).
Results from such a multi-model ensemble provide insights into these feedback
processes: for example analysis of the latest generation of models suggests that
feedbacks associated with low cloud provide the largest contribution to uncer-
tainty in climate sensitivity (Bony and Dufresne 2005; Webb et al. 2006). How-
ever, detailed analysis is limited by the small number of ensemble members, and
their status as an ‘ensemble of opportunity’, lacking a systematic approach to the
sampling of modelling uncertainties (Tebaldi and Knutti 2007).

An alternative approach is that of the ‘perturbed physics’ ensemble (PPE),
in which simulations are designed to sample variations in parameters controlling
the simulation of key climate processes, within a single model. To date, most
published PPE studies have focused on HadSM3 and HadCM3, the related con-
figuration in which HadAM3 is coupled to a three-dimensional dynamic ocean
component (Murphy et al. 2004; Stainforth et al. 2005; Collins et al. 2006; Harris
et al. 2006) (though see also Annan et al. 2005). The advantage of the perturbed
physics approach is that it supports a more systematic exploration of modelling
uncertainties, in which variations in simulated responses can, in principle, be
traced back to particular processes. Their limitation is that they do not explore
‘structural’ modelling uncertainties, such as the choice of resolution, or of alter-
native approaches for parameterising sub-grid-scale processes. However, results
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indicate that the spread of global and large-scale regional climate responses is
similar to that found in multi-model ensembles (Collins et al. 2006; Webb et al.
2006), suggesting that both approaches provide a useful means of exploring the
range of simulated climate responses in the current generation of climate models.

In the case of PPEs, the basic approach involves defining a space X of pos-
sible model variants, by asking experts to specify prior distributions for poorly-
constrained parameters controlling key climate system processes. Then an ensem-
ble of simulations is run to span or sample that space. The results can be used to
understand and quantify simulated responses (Webb et al. 2006), or to construct
probabilistic estimates of the response using Bayesian techniques in which loca-
tions in X are weighted according to their relative likelihood, quantified through
comparison of simulations of historical climate against a set of observations. Mur-
phy et al. (2004) give an early example of this type of approach. Rougier (2007b)
describes a more comprehensive Bayesian framework, including the effects of
structural differences between the model used for the PPE and the real world,
which cannot be resolved by varying the parameters. Murphy et al. (2007) de-
scribe a method for applying this statistical framework in practice, with the aim
of providing probabilistic predictions of 21st century climate.

A key requirement of this approach, for the purposes of both understanding
the model response and constructing probabilistic predictions, is to be able to
estimate the climate model’s response at any location in X , in order to explore
model behaviour across the entire parameter space, rather than at the subset of
locations at which we have run the climate model. We would like to be able to ask
the question “What happens when we evaluate the model at x?”, where x is any
point in X . In this way we could, for example, track the response of the model as
we changed one of the parameters, or varied several simultaneously.

In this paper we focus on one particular response, HadSM3’s climate sen-
sitivity: the equilibrium change in globally averaged surface temperature fol-
lowing a doubling of the atmospheric concentration of CO2. This represents
a standard benchmark for the response of climate to increases in greenhouse
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gases. Thus HadSM3 can be thought of as a function that maps the parameter
vector x into a climate sensitivity value g(x). In our ensemble we have a col-
lection of inputs X = {x1, . . . , xn} and a corresponding collection of outputs,
y = {g(x1), . . . , g(xn)}. A Bayesian statistical framework termed an ‘emulator’
allows us to predict g(x) at any x, based on the ensemble and on our judgements
about the model. Crucially, this prediction takes the form of a distribution, so that
we get not just a point estimate, such as the mean, but also a measure of uncer-
tainty, such as the standard deviation. This uncertainty has two parts. First, there
is the irreducible uncertainty from the model’s internal variability. Second, there
is the uncertainty that arises from not having evaluated the model at or near to
x, termed ‘code uncertainty’ (O’Hagan 2006). Constructing emulators is part of
the statistical field of Computer Experiments (see, e.g., Koehler and Owen 1996;
Santner et al. 2003). The Bayesian treatment of emulators was initiated by Currin
et al. (1991), and continues to develop: current practice is reviewed in O’Hagan
(2006) and discussed in Rougier and Sexton (2007).

In this paper we construct an emulator for HadSM3’s climate sensitivity as
a function of 31 model parameters. This would seem an impossible task given
that our ensemble contains only 281 evaluations. But since we quantify our un-
certainty, we can show, below, that a large amount of information about HadSM3
can be extracted. Partly, this is because many of the parameters are not impor-
tant determinants of climate sensitivity (we would not expect this to be true for
other types of model output). But also, we use additional information and expert
judgements to augment our ensemble. The additional information comes from a
second ensemble of HadSM3 simulations, and the expert judgement concerns the
relationship between the two ensembles. As our judgements are subjective, we
pay close attention to diagnostic information.

Using our emulator we are able to identify the main parameters for determin-
ing climate sensitivity, and also to investigate a complex interaction between four
parameters controlling some key aspects of the parameterisation of large-scale
clouds and convection. In section 2 we describe the two experiments that generate
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our two ensembles. Section 3 describes the process of building an emulator for
HadSM3’s climate sensitivity. Section 4 uses the resulting emulator to investigate
the response to the model parameters, both singly and in combination. Section 5
concludes with a summary of our findings and a discussion of our approach.

2. Two experiments on HadSM3

Two recent high-profile experiments have attempted to quantify our uncertainty
about the climate sensitivity in a CO2 doubling experiment using HadSM3. This
section outlines these two experiments, and the resulting ensembles of evalua-
tions. Details of the two experiments can be found in the original papers and their
Supplementary Information; here we summarise those aspects that are relevant for
our statistical analysis.

2a. The QUMP experiment

In the Quantifying Uncertainty in Model Predictions (QUMP) experiment of Mur-
phy et al. (2004), thirty-one model parameters were identified as being potentially
important, out of a possible 100 or more candidates. These thirty-one will be re-
ferred to as variables, and they are described in Table 1, which also gives the short
names by which they will be identified in this paper. Thirteen of the variables are
factors, i.e. variables that take values in a discrete set. Most of the factors have
2 levels, but two have 3 levels (GWST and NFSL) and one has 4 levels (FRF).
Of the eighteen continuous variables, four are contingent on the setting of cer-
tain factors; for example, the value of RHCV only affects climate sensitivity when
RHC is ‘off’; these contingent variables are the reason that Murphy et al. (2004)
count twenty-nine rather than thirty-one variables in their description (they did
not include CAPE and ANV).

We denote a particular choice for the values of the variables as x. The climate
sensitivity at x was computed in a three-phase experiment. The first phase was
a 25-year calibration run in which sea surface temperatures (SSTs) are continu-
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ously restored to prescribed values from a historical climatology. The heat fluxes
required to achieve this were averaged to provide heat convergence fields intended
to represent the effects of ocean heat transport (not simulated explicitly in the
mixed layer ocean of HadSM3), and also to offset errors in simulated atmosphere-
ocean fluxes. These heat convergences (which vary with position and season, but
not from year to year) were then prescribed in phases two and three, consisting of
a control simulation with pre-industrial CO2, and a run with doubled CO2, both
run to equilibrium. The heat convergences should ensure that multi-year averages
of SST in the control simulations remain close to observed climatology, subject to
the assumption that internal climate variability in SST (suppressed during the first
phase, but not in phases two and three) does not give rise to non-linear feedbacks
which could cause SSTs to drift.

Climate sensitivity, or g(x), was defined as the difference in global mean tem-
perature between the second and third phases. The choice of variables in the orig-
inal experiment targeted the areas of model physics thought to be influential for a
wide range of global and regional aspects of historical climate, and of the forced
response to external changes in radiative forcing. The initial evaluations in the en-
semble consisted of single parameter perturbations, augmented by a small number
of multi-parameter perturbations. Since that original experiment, we have access
to a further 231 evaluations, all multi-parameter perturbations. The first 128 of
these are described in Webb et al. (2006), and were chosen to span a wide range
of climate sensitivities, subject to the additional constraints of achieving credible
simulations of present day climate, and sampling the parameter space as widely
as possible. Additional simulations were chosen to populate regions of the param-
eter space thought likely to be influenced by important interactions. These can be
added directly to the original ensemble, to give the 297 evaluations.

A small minority of these evaluations produced control simulations of SST
significantly cooler than the historical values used to deduce the heat convergence
fields. The cooling results from the absence of a dynamical representation of
ocean heat transport in HadSM3 (excluded to make the simulations of climate
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Table 1: Description of the QUMP variables. Comparable to Mur-

phy et al. (2004), Supplementary Information, Table 2. Each pa-

rameter controls a key aspect of one of the schemes for the pa-

rameterisation of sub-grid-scale processes in HadSM3 (large scale

cloud, convection, sea-ice, etc). Values in parentheses indicate

‘low’, ‘intermediate’ and ‘high’ values of continuous variables.

Values not in parentheses indicate levels of discrete variables, or

factors. Bold values indicate the standard setting. Variables with

short names followed by ‘†’ are also used in CPNET.

Parameter / Property Values Label Only when

Large-scale cloud

Vf1 (ms−1) (0.5, 1, 2) VF1†
Ct (×10−4 s−1) (0.5, 1, 4) CT†
Cw (land, ×10−4 kg m−3) (1, 2, 10) CW†
Flow-dependent Rhcrit Off, On RHC

Rhcrit (0.6, 0.7, 0.9) RHCV† RHC ‘Off’

Cloud fraction at saturation (%) (0.5, 0.7, 0.8) CFS†
Vertical gradient of cloud water Off, On VGCW

Convection

Entrainment rate coefficient (0.6, 3, 9) ENT†
CAPE closure Off, On CAPE

CAPE closure time-scale (hrs) (1, 2, 4) CAPEV CAPE ‘On’

Convective anvils Off, On ANV

Convective anvils, shape (1, 2, 3) ANVS ANV ‘On’

Convective anvils, updraught (0.1, 0.5, 1) ANVU ANV ‘On’

Sea ice

Sea ice albedo (at 0 ◦C) (0.50, 0.57, 0.65) SIA

Ocean-ice diffusion (×10−4 m2 s−1) (0.25, 1.00, 3.75) OID

Radiation

(continued . . . )
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Table 1: QUMP variables (continued)

Parameter / Property Values Label Only when

Ice particle size (µm) (25, 30, 40) IPS

Non-spherical ice particles Off, On NSIP

Shortwave water vapour continuum

absorption

Off, On SWV

Sulphur cycle Off, On SCYC

Dynamics

Order of diffusion operator 4, 6 ODD

Diffusion e-folding time (hrs) (6, 12, 24) DDTS

Starting level, gravity wave drag 3, 4, 5 GWST

Surface gravity wave wavelength (×104 m) (1, 1.5, 2) GWWL

Land surface

Surface-canopy energy exchange Off, On SCEE

Forest-roughness lengths 1, 2, 3, 4 FRF

Dependence of stomatal conductance on CO2 Off, On STOM

Number of forest soil levels for

evapotranspiration (grass)

1, 2, 3 NFSL

Boundary layer

Charnock constant (×10−3) (12, 16, 20) CHAR

Free convective roughness length over sea

(×10−4 m)

(2, 13, 50) FCRL

Boundary layer flux profile, G0 (5, 10, 20) BLFP

Asymptotic neutral mixing length, λ (×10−2) (5, 15, 50) ANML
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sensitivity computationally feasible, and also because changes in ocean circula-
tion are not likely to be a major determinant of climate sensitivity (e.g., Senior
and Mitchell 2000; Boer and Yu 2003). For example, situations can arise in which
variability in simulated atmosphere-ocean heat fluxes cause negative anomalies
in SST, which then increase boundary layer stability and hence low cloud cover,
thus providing a positive feedback leading to further cooling of SST. If the local
prescribed heat convergence also happens to be negative in the relevant region (for
example because the model simulates too little low cloud on average), then a rapid
cooling of local SST can then occur, the effects of which then spread to other re-
gions. In models with a dynamical ocean component the initial positive feedback
from local surface exchanges would be offset by a negative feedback from changes
in ocean heat transport, but the latter process is missing in atmosphere-mixed layer
ocean models. We find 16 model variants in which global mean SST in the control
simulation cools in this way. The absence of interactive ocean heat transport in
HadSM3 therefore prevents us from being able to obtain credible estimates of cli-
mate sensitivity by direct simulation in these 16 experiments, so we exclude them
from our analysis. The 281 evaluations that remain provide estimates of sensitiv-
ity free from non-physical side-effects of the experimental design. This is demon-
strated, for example, by the result that a close relationship is found between the
equilibrium surface warming found in 128 of these evaluations, and the transient
climate response obtained using corresponding parameter settings in simulations
with a dynamical three dimensional ocean component (Collins et al. 2006; Harris
et al. 2006). We rely on our emulator, trained on the 281 reliable evaluations,
to supply estimates of climate sensitivity for other locations in model parameter
space, including those 16 locations for which cooling HadAM3 simulations were
excluded.

2b. The CPNET experiment

Here we focus on the differences between QUMP and the climateprediction.net

(CPNET) experiment of Stainforth et al. (2005). This experiment varied six of the
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continuous variables, used in the parameterisation of large-scale clouds and con-
vection. The ensemble comprises a factorial design with five variables at three
levels (VF1, CT, CW, RHCV, ENT; RHC was always Off) and one at two levels
(CFS). All the other variables in Table 1 are set to the value used in the standard
published version of HadAM3. Hereafter these are referred to as the ‘standard
values’, although note that a number of these values are set to an extreme of the
expert-specified ranges (Murphy et al. 2004, Supplementary Information). This
reflects the practice of tuning climate model parameters to improve the overall
simulation of a range of climate variables by adjusting error balances between
different physical processes. Each choice for the variables was evaluated with a
number of different initial conditions, introducing a structured source of uncer-
tainty that is not present in the QUMP experiment. On analysing the CPNET
ensemble, we find that the choice of initial condition does not appear to be pre-
dictively important, and so we pool the evaluations across the initial conditions; a
similar approach was used in the Stainforth et al. (2005) experiment, where dif-
ferent initial conditions for the same x were averaged, to reduce variability.

The CPNET experiment adopted a Public Resource Distributed Computing
(PRDC) approach, performing thousands of evaluations using spare cycles on vol-
unteers’ home and office computers. Within this approach it was not feasible to
integrate HadSM3 to equilibrium twice. Instead, three phases of fifteen years each
were used. The third phase in particular was too short to establish equilibrium, and
so in Stainforth et al. (2005) an exponential curve was fitted to global mean tem-
perature in this phase, and then extrapolated to its horizontal asymptote to give a
point value for climate sensitivity.

In our sample from the CPNET experiment we have a total of 35 × 21 = 486

distinguishable evaluations (in terms of the x values), and 2377 evaluations overall
(accounting for variations in the initial conditions). Many of these produced un-
stable or non-physical responses, particularly cooling (as described in section 2a).
We choose to omit these from the CPNET ensemble in the same way as Stainforth
et al. (2005).
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Comparing these two experiments, we judge there to be sufficient differences
that it is not possible to combine the two ensembles directly, or indirectly by
reweighting one or the other; in fact they are two different but related experiments.
In other words, the relationship between the CPNET climate sensitivity and the
six CPNET variables is not simply a noisier version of the QUMP relationship
with the same variables, but it is actually a different relationship, affected by the
transient behaviour of the HadSM3 model. This informs our statistical modelling
choices in section 3c.

2c. Outline of our approach

The two experiments outlined in this section have different but complementary
strengths. The QUMP experiment has a conventional definition for climate sensi-
tivity, and includes a large number of variables. The CPNET experiment, on the
other hand, has a more detailed analysis over six of the most important variables
(the CPNET project has subsequently explored many more variables, allowing for
a more extensive analysis in the future). Our intention is to combine the ensem-
bles from these two experiments into an emulator for QUMP climate sensitivity
defined over the full set of thirty-one variables.

As already described, an emulator is a probability distribution function for
g(x). There are many ways of specifying such a function. In a Bayesian statistical
approach we probabilistically condition our beliefs about g(·) on the evaluations
in the ensemble. Therefore a Bayesian emulator combines two sources of infor-
mation: prior judgements about g(·), and data from evaluations in the ensemble
(y; X). The main stages of our approach are summarised in Figure 1. Each of the
two experiments requires a different emulator, because of the different definitions
of climate sensitivity. For the CPNET emulator we have plentiful information
from the CPNET ensemble, which comprises 421 evaluations in a six-dimensional
space. Therefore we start with only vague prior information, because we are con-
tent to let the information from the ensemble dominate. For the QUMP emulator,
on the other hand, we have only limited information in the ensemble (281 evalu-
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Figure 1: The main stages of our approach for combining information from the
CPNET and QUMP ensembles into an emulator for QUMP climate sensitivity.
Starting with value prior beliefs, we create the CPNET emulator using the CPNET
ensemble. Then we use our judgements about the similarities of CPNET and
QUMP to construct a QUMP prior emulator. Finally, we update this emulator
with the QUMP ensemble, to construct the QUMP emulator.
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ations in a 31-dimensional space). Therefore we combine this with detailed prior
information taken from the CPNET emulator, and from our judgement concerning
the similarity of the CPNET and QUMP definitions of climate sensitivity. Figure 1
also shows two diagnostic loops: wherever we have data, we can investigate the
propriety of our choices and, to a limited extent, we can modify those choices.
These are discussed in more detail in sections 3d and 3e.

Kennedy and O’Hagan (2000) have proposed a different approach, designed
to combine ensembles from the same model solved at different resolutions. How-
ever, it is not easily applicable here, due to the complexities of the model param-
eters, as discussed in section 3a.

3. Emulating HadSM3’s climate sensitivity

In this section we describe our approach for emulating HadSM3’s climate sensi-
tivity, as outlined in Figure 1. Section 3a outlines a simple emulation framework,
based on the Bayesian treatment of the Gaussian Linear Model. Section 3b de-
tails the choices we make within this framework, to emulate CPNET’s measure of
climate sensitivity. Section 3c describes how we quantify our judgements about
the relationship between the CPNET and QUMP experiments, in terms of the re-
lationship between the CPNET and QUMP emulators. Section 3d introduces the
QUMP ensemble, which is used to generate diagnostic information about the sta-
tistical choices we have made, before being assimilated into the QUMP emulator
in section 3e. In section 4 we will use the QUMP emulator to investigate the
response of HadSM3 to its 31 variables.

3a. A general Bayesian emulator

We describe here a simple Bayesian treatment of the emulator. The emulator is
written

g(x) = h(x)Tβ + u(x) (1)
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where g(x) is the climate sensitivity of HadSM3, or some monotonic transfor-
mation of the same, termed the response; h(·) is a known vector-valued function
of the variables, collectively termed the regressors (k in total); β is an unknown
k-vector of (regression) coefficients, and u(x) is a scalar random field, termed the
residual. Within the regressors we would expect to include non-linear functions
of the variables, such as xi

2 or xi×xj . We must use our judgement, in conjunction
with the data where possible, to make choices for the transformation of g(·) and
the components of h(·): statistical model choice is a subtle balancing-act between
fidelity, efficiency and ‘interpretability’—much the same is true of building cli-
mate models. The challenge becomes greater as the number of components in x

goes up, because the range of possible terms for inclusion among the regressors
becomes much larger, and it becomes difficult to contrast alternative choices in
terms of standard diagnostics like residual behaviour.

For our given choice for the response and the regressors, we make the fol-
lowing additional choices. First, u(x) has zero mean and a constant unknown
variance, σ2; second, u(x) and u(x′) are uncorrelated when x 6= x′; third, β,
u(x), and σ2 have a Normal-Inverse-Gamma (NIG) distribution, which may be
summarised as

β ⊥⊥ u(x) | σ2 (2a)

β | σ2 ∼ Nk(m, σ2V ) (2b)

u(x) | σ2 ∼ N1(0, σ
2) (2c)

σ2 ∼ IG(a, d) (2d)

where ‘⊥⊥’ denotes probabilistically independent, ‘|’ denotes conditional upon,
Nk(·) denotes the k-dimensional Gaussian distribution, and IG(·) the scalar In-
verse Gamma distribution; we must specify the collection {a, d, m, V }, termed
the ‘hyperparameters’. With these distributional choices the emulator for g(x)

has a Student-t distribution, where both the mean and the scale will depend on
x. We have outlined here the standard Bayesian treatment of the Gaussian Linear
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Model; full details may be found in O’Hagan and Forster (2004, ch. 11).
At this point our statistical choices have been made for tractability and trans-

parency. The NIG approach is a standard framework for emulation, see, e.g.,
Rougier (2007a) for a full description, and Rougier et al. (2007) for an example;
however, it has some undesirable features (see, e.g., the second half of O’Hagan
and Forster 2004, ch. 11). But we have made one unusual choice, which is to treat
the residual as having zero correlation length, i.e. to set Cov

(
u(x), u(x′)

)
= 0

for x 6= x′. The residual accounts for internal variability, for which a zero (or
near-zero) correlation length is quite appropriate. However, it also accounts for
systematic effects excluded from the regressors, and these have a positive correla-
tion length. Overall, therefore, we have understated the correlation length of the
residual: the implications are discussed further in section 4. We have a compelling
reason for making this choice, which is that Statisticians have yet to develop flexi-
ble covariance structures for u(x) which can be specified over a collection of both
continuous variables and factors. This is an active area of research; see, e.g., Han
et al. (2007) and Qian et al. (2007). An alternative strategy would be to build
a different emulator over the continuous variables for each factor combination;
however, our ensembles are not large enough to allow this, because there are 13

factors giving rise to 210 × 32 × 41 = 36864 factor combinations. As long as
the residual does not play a large part in the emulator, our understatement of the
residual correlation length is unlikely to be predictively important. In our emu-
lators of QUMP climate sensitivity we find that the regression R2 is at least 90%

and typically more than 95%, depending on the precise choices we make for the
transformation of the response and the regressors. The corresponding R2 values
for CPNET are lower (70–90%), but we are less concerned about the residual be-
haviour in the CPNET emulator, because the CPNET ensemble is less intensively
used. In the light of this choice we place strong reliance on diagnostics, discussed
in sections 3d and 3e.

To summarise this section, the challenge of building an emulator for g(·) us-
ing the ensemble (y; X) has been restructured to (i) choosing a transformation for
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climate sensitivity and a collection of regressors h(·), and, conditional on these
choices, (ii) specifying the hyperparameters {a, d, m, V } in the NIG prior for
{β, u(x), σ2}.

3b. Building the CPNET emulator

As explained in section 2c, and illustrated in Figure 1, we are going to sim-
plify the construction of our CPNET emulator by adopting vague prior beliefs,
which in terms of the framework from section 3a are vague prior beliefs about
{β, u(x), σ2}, as summarised in the hyperparameters {a, d, m, V }. The standard
non-informative prior has a = 0, d = −k where k is the number of regressor
functions in h(·), m = 0, and V −1 = 0 (O’Hagan and Forster 2004, sec. 11.17–
11.19). In this case the posterior distribution for β | σ2 has the usual Ordinary
Least Squares (OLS) form, although the interpretation is a little different, being
Bayesian rather than Frequentist. When we refer to, say, a 95% CI we are re-
ferring to a 95% ‘Credible Interval’: an interval defined by the 2.5th and 97.5th
percentiles of the distribution (O’Hagan and Forster 2004, sec. 2.51).

With this prior, we deploy exactly the same techniques that would be used in
a standard analysis to fit an OLS regression (see, e.g., Draper and Smith 1998). In
particular, we choose the transformation of y and the regressors together, and we
use the residuals for diagnostic information. The QUMP authors, who explicitly
construct an emulator for their analysis, choose the transformation 1/y, based on
their view that this function would be likely to have a simpler additive structure in
terms of the variables. This would only be a reasonable transformation if negative
values for climate sensitivity were judged highly unlikely at any x, because oth-
erwise it would introduce an extreme discontinuity at zero. We subscribe to this
view, but we will investigate a wider range of possible power-transformations, in-
cluding the logarithm, using the Box and Cox (1964) approach (see, e.g., Draper
and Smith 1998, sec. 13.2).

For the regressors, the QUMP authors chose linear additive terms for the fac-
tors and piecewise linear terms for the continuous variables. We will replace the
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piecewise linear terms with quadratics—which requires the same number of re-
gression coefficients—as there is no compelling reason to think that HadSM3 has
a discontinuous first derivative at the standard setting of its variables. We also
choose to take logarithms of some of the strictly positive continuous variables,
namely those for which the intervals in Table 1 have strong positive skewness;
this slightly improves the fit of the emulator and reduces the role of the squared
terms, making it easier to interpret the emulator coefficients (given below in Ta-
ble 2). The variables transformed in this way are VF1, CT, CW, ENT, DDTS,
FCRL, BLFP and ANML; only the first four of these are relevant for the CPNET
experiment.

We would like our emulator to include interactions among the variables. In
the initial QUMP ensemble it was not possible to estimate interactions from the
single-parameter perturbations, but they were found to be influential in CPNET.
Our general strategy regarding interactions is to treat variables within different pa-
rameterisation schemes as non-interacting (these schemes are shown in Table 1),
but to include interactions between variables within each scheme. Our starting
point is to include all two-way interactions in the five CPNET variables in the
‘Large-scale cloud’ block, giving a total of

1 + 6 + (6− 1)︸ ︷︷ ︸
linear and quad.

+ 5× 4/2︸ ︷︷ ︸
two-way int.

= 22

regression coefficients. The 6 − 1 is for the quadratic terms: we cannot estimate
a quadratic for CFS because it only has two levels in the CPNET ensemble. For
the same reason we cannot estimate cubic or higher effects in any of the variables.
A statistician would not have recommended this type of design for the CPNET
experiment, or, indeed, recommended single-parameter perturbations for the ini-
tial stage of the QUMP experiment, although it must be borne in mind that these
types of ensemble study attempt to fulfil a number of different and not necessarily
compatible objectives.

Based on this regression, the Box-Cox approach indicates that log(y) is a good
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Transformation of the response
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Figure 2: Box-Cox plot to select an appropriate transformation for the response:
the high likelihood values are concentrated around the logarithm (the vertical
dashed lines indicate an approximate 95% confidence interval).
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choice for the transformation of the response; the typical diagnostic for this ap-
proach is shown in Figure 2.

We do not want to rule out the possibility of higher-order interactions as well.
There are too many of these to include them all up to a given order, and so we
use forward stepwise regression based on the Akaike Information Criterion (AIC)
(see, e.g. Draper and Smith 1998, ch. 15) to identify the most important terms
among all possible two-, three- and four-way interactions, including interactions
between ENT and the ‘Large-scale cloud’ variables. We do not have strong a pri-

ori views about the presence or absence of interactions among these six variables,
and so this simple and fairly standard technique seems adequate; had we stronger
views we could have adopted a Bayesian hierarchical approach (see, e.g., Chip-
man et al. 1997). We find fifteen further interactions, namely (in order of accep-
tance) RHCV:ENT, CT:ENT, CW:ENT, CFS:ENT, CT:CW:ENT, CT:CW:CFS,
CT:CW:RHCV, CW:RHCV:ENT, CT:RHCV:ENT, CT:CFS:ENT, VF1:ENT, VF1:RHCV:ENT,
VF1:CW:ENT, VF1:CT:CW, and VF1:CT:ENT. We include these higher-order
interactions in h(·), but we do not include any others. This gives a total of 37

regressor functions in h(·), including the intercept.
As they may be of independent interest, the regression coefficients for our

CPNET emulator are given in Table 2, along with their standard deviations. The
six variables have been re-scaled to lie in the closed interval [−1, 1], according to
the minimum and maximum values given in Table 1; this range was chosen rather
than, say, the original units or [0, 1], because it makes the linear and quadratic
functions orthogonal with respect to a uniform weighting function. There are
some influential two-way interactions (particularly involving ENT), and the three-
way interactions tend to be the same size as the typical two-way interactions.
There is strong evidence here for the importance of interactions in determin-
ing HadSM3’s climate sensitivity, supporting the conclusions of Stainforth et al.
(2005).
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Table 2: Coefficients from the CPNET emulator (×103). VF1, CT and CW are in
logarithms, and all variables are standardised to the interval [−1, 1]. Linear terms
are shown as A, interactions as A:B or A:B:C, and quadratic terms as A:A. The
response is log(climate sensitivity) and the R2 is 0.87.

Regressor Mean St. dev. Regressor Mean St. dev.
(Intercept) 1147.8 30.4 CW:RHCV −78.7 12.2

VF1 −158.7 11.5 CW:CFS −17.2 13.9

CT 283.1 13.0 RHCV:CFS 21.6 13.9

CW −142.3 12.2 RHCV:ENT −92.2 13.3

RHCV 70.5 12.1 CT:ENT −138.5 15.3

CFS −166.0 12.8 CW:ENT 86.3 12.8

ENT −149.0 13.1 CFS:ENT 85.0 14.7

VF1:VF1 46.6 15.9 VF1:ENT −28.4 12.8

CT:CT −88.6 18.8 CT:CW:ENT −78.6 13.9

CW:CW −66.5 22.8 CT:CW:CFS −45.0 16.3

RHCV:RHCV −4.8 17.8 CT:CW:RHCV 48.0 13.5

ENT:ENT 239.0 16.3 CW:RHCV:ENT 42.8 15.2

VF1:CT −21.8 11.8 CT:RHCV:ENT −35.7 14.4

VF1:CW 25.6 11.4 CT:CFS:ENT −52.1 17.6

VF1:RHCV −27.6 11.5 VF1:RHCV:ENT 61.1 14.5

VF1:CFS 3.0 13.8 VF1:CW:ENT −35.5 14.2

CT:CW 56.8 13.8 VF1:CT:CW −24.6 13.2

CT:RHCV 84.8 12.2 VF1:CT:ENT −23.9 14.0

CT:CFS 25.4 15.0

21



3c. Linking the two emulators

Having built an emulator for CPNET climate sensitivity, we turn now to using
this emulator as prior information for our emulator for QUMP climate sensitivity.
First, we must choose a collection of regressors for the QUMP emulator: these
will be a superset of the regressors for the CPNET emulator, as QUMP has 25

additional variables. Then we must use our judgement about the relationship be-
tween the CPNET and QUMP experiments to map the CPNET hyperparameters,
which we here denote {a0, d0, m0, V 0}, to the QUMP prior hyperparameters,
{a, d, m, V }. In sections 3d and 3e we introduce the QUMP ensemble, to gen-
erate diagnostics for our statistical choices, and to update the QUMP ensemble
hyperparameters to their final values, {a∗, d∗, m∗, V ∗}.

The regressors. For our QUMP emulator regressors, we start with all those re-
gressors in the CPNET emulator (37 in number) plus the missing quadratic term
in CFS. We add all the factors from the QUMP study, and linear and quadratic
terms for the new continuous variables. We would also like to include some ad-
ditional two-way interactions. As outlined in section 3b, we choose to include all
two-way interactions within each parameterisation scheme, but we do not include
any interactions between processes, bar those between ENT and the ‘Large Scale
Cloud’ variables from the CPNET emulator. Taken together this gives

37+1+10× 1 + 2× 2 + 1× 3︸ ︷︷ ︸
QUMP factors

+ 12× 2︸ ︷︷ ︸
new cont. vars

+ 10 + 12 + 1 + 6 + 9 + 17 + 6︸ ︷︷ ︸
new interactions

= 140

coefficients. Not all interactions are possible; e.g. RHC:RHCV is not possible be-
cause RHCV is only effective when RHC is ‘Off’. The physical process ‘Dynamics’
has 9 interactions because GWST is a three-level factor; likewise ‘Land Surface’
has 17 interactions because FRF is a four-level factor and NFSL is a three-level
factor.
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Linking matched coefficients. When constructing our prior for the QUMP emula-
tor coefficients we distinguish between matched coefficients and new coefficients.
The matched coefficients have a direct counterpart in the CPNET emulator. For
example, the coefficients on ENT and ENT:ENT in the QUMP emulator match
to corresponding coefficients in the CPNET emulator, but the coefficient on IPS
in the QUMP emulator is a new coefficient, because IPS was not varied in the
CPNET study, so that it does not feature in the CPNET emulator.

We can express the extent to which we think that CPNET climate sensitivity
and QUMP climate sensitivity are the same by specifying the degree to which
the matched QUMP emulator coefficients are likely to deviate from their counter-
parts in the CPNET emulator. To quantify the relation between individual pairs of
matched coefficients we use the general framework

βi − ci = (1 + ωi) (β0
i − ci) + (ry/ri) νi (3)

where β0
i and βi are matched coefficients in the CPNET and QUMP emulators,

respectively. Our uncertainty about βi is induced by our uncertainty about β0
i , and

by the choices we make for the various terms on the righthand side of (3). Two of
these terms are straightforward: ry is the typical scale of the transformed response,
and ri the typical scale of the regressor (ranges in both cases). These are included
so that we can treat both ωi and νi as scale-free, remembering that the units of β0

i

and βi are ‘response units per regressor units’. This makes it reasonable to use the
same choices to link-up all the matched coefficients, if we so choose. The third
term, ci is a centering term for the two coefficients; for this application we will
choose ci = 0 for all coefficients, but in other applications a non-zero value might
be preferred (see, e.g. Goldstein and Rougier 2007).

The two Greek terms in (3), ωi and νi, represent independent mean-zero un-
certain quantities, for which we must specify standard deviations. We will want to
set Sd(νi) small, so just for the moment we treat νi as zero. In this case we have

βi ≈ (1 + ωi)β
0
i (4)
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and Sd(ωi) controls the probability that βi has a different sign to β0
i . Setting

Sd(ωi) small relative to 1 would be akin to stating that βi and β0
i were very similar.

For example, setting Sd(ωi) = 1/4 would state that a change of sign in going
from β0

i to βi was judged to be a four-standard-deviation event; crudely, to have
a probability of less than 3% if ωi is unimodal (Pukelsheim 1994), we term this
‘very unlikely’. This is the value that we will choose for all matched coefficients.
The second Greek term, νi, is included to ensure that βi can be uncertain even
when β0

i is zero or small. We judge that a small value is appropriate here, and
we choose Sd(νi) = 1/20 for all matched coefficients. With this value it is very
unlikely that regressor i will explain more than one-fifth of the range of the QUMP
emulator response in the case where β0

i = 0. It is not easy to choose values for
these two standard deviations (or the others below), and to some extent we must
be guided by diagnostics.

The unmatched coefficients. The unmatched coefficients are QUMP emulator re-
gression coefficients that do not appear in the CPNET emulator. For these coef-
ficients we use a framework similar to (3), namely

βi = (ry/ri) νi . (5)

This is just a way of assigning an uncertainty to each unmatched βi in terms of the
scale-free quantity Sd(νi). We have to decide how much of the response range we
believe these additional regressor terms can explain. Our choice is Sd(νi) = 1/16

for all the new coefficients, so that it is very unlikely that a single regressor can
explain more than a quarter of the range of the response.

The residual. We judge that the residual variance for the QUMP prior emula-
tor will be less than that of the CPNET emulator, because the recorded value of
climate sensitivity in the CPNET study includes an extra source of uncertainty,
namely the asymptotic approximation to the equilibrium value. Therefore, for σ2

in the QUMP prior emulator we choose a mean value half of that from the CPNET
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emulator, which can be inferred from {a0, d0}, and choose a standard deviation
equal to the mean, to preserve a large amount of uncertainty. We translate these
two values into values for hyperparameters a and d by matching the mean and
variance of the Inverse Gamma distribution.

Completing the calculation. Once we have computed {a, d}, we can use these
two values along with the values {a0, d0, m0, V 0}, the frameworks (3) and (5),
and our choices for the standard deviations of the ωi and νi to compute the hyper-
parameters m and V in the QUMP emulator, by matching the mean and variance
of the multivariate Student-t distribution.

3d. Prior diagnostics

In constructing our QUMP prior emulator we have used the CPNET ensemble in
two ways. We have used it indirectly, to select the transformation of the response
and to identify important interactions in the large-scale cloud parameters and the
entrainment rate coefficient. We have also used it directly, to choose the prior
hyperparameters of the matched coefficients. In the latter we have assigned spe-
cific values to quite imprecisely defined quantities. In an ideal world we would
arrive at such values through introspection, but in practice it is impossible in a
detailed analysis not to incorporate some trial-and-error. For example: originally,
we had larger values for Sd(ωi) and Sd(νi), because at that stage we were screen-
ing out fewer of the drifters. These choices were broadly satisfactory in terms of
the diagnostics described below. Now we have decided to screen out more of the
drifters (see sections 2a and 2b), we modify our choices, but we cannot escape
the knowledge of how our previous choices performed. Statistical purists would
regard this as a form of double-counting (the data influencing the prior), but a
more pragmatic view is that simple revisions of this kind, taking care to avoid
‘over-fitting’, tend to approximate an informal type of higher-order learning that
we have chosen not to include in the formal analysis.

Our main diagnostic is to use our QUMP prior emulator to predict the evalu-
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ations in the QUMP ensemble. Each individual prediction, taken marginally, has
a Student-t distribution. In Figure 3 we show all 281 predictions, in terms of their
median and 95% CI, and we also show the actual value in each case. The predic-
tions are ordered by the median, which allows us to confirm that our assessment
of the hyperparameters has some predictive power; i.e. that our predictions are
not insensitive to the values for x. We can also confirm that there is no apparent
systematic mis-prediction, with respect to the response. This diagnostic suggests
that we have over-stated uncertainty, as all 281 values are well within the 95% CI
that we predict. We could impose constraints on Var

(
g(x)

)
, and use these to mod-

ify our statistical modelling of NIG hyperparameters such as V . However, we are
comfortable with the general principles we have adopted in setting the QUMP
prior emulator, and we prefer to leave things as they are, rather than to invite the
suspicion that we have in any way over-tuned our prior.

Note that the cluster of similar evaluations on the lefthand side of the bottom
panel of Figure 3 corresponds to the evaluations with single-variable perturbations
in the unmatched variables of the QUMP experiment. The CPNET ensemble
contains no information about these, and so, according to our statistical choices,
they are all predicted the same way. The reason that most of the dots in this
cluster are near the median is that most of the unmatched QUMP variables are not
important for climate sensitivity (particularly the factors), and so varying them
makes little difference. Note, however, that variables which have only a secondary
impact on climate sensitivity can still have a primary influence on other aspects of
the simulated climate response (see, e.g., Betts et al. 2007).

3e. Posterior diagnostics

We also consider a second set of diagnostics, that investigate the posterior predic-
tive properties of the QUMP emulator. One such diagnostic is broadly comparable
with the univariate prior prediction given in Figure 3: the leave-one-out diagnostic
(see, e.g., Rougier et al. 2007). In this case we update the emulator with all but
one evaluation from the QUMP ensemble, and then predict that evaluation. We
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Figure 3: Prior prediction diagnostic showing, for each simulation in the QUMP
ensemble, the prior median and 95% CI, along with the actual value of the re-
sponse (dot). The evaluations are ordered by the median.
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can do this with all 281 evaluations; the result is shown in Figure 4. Because 280

is almost the same as 281, the width of the intervals in Figure 4 is a good guide to
the amount of uncertainty we will have in our QUMP emulator. By comparing the
widths in Figures 3 and 4 we can quantify the contribution of the QUMP emulator
in reducing our uncertainty about HadSM3. On the log scale this uncertainty has
been reduced by more than 50%.

In all, 13 of the 281 actual values for log(climate sensitivity) lie outside the
95% CI of the posterior prediction. In terms of the binomial model, the probability
of observing 13 or fewer successes out of 281 independent trials with p = 0.05 is
0.46, i.e. not unusual and therefore supportive of our statistical modelling choices;
this is only suggestive, however, as our trials are not independent, because the
predictions are correlated across the ensemble members.

A sterner diagnostic is to consider the multivariate behaviour of a collection of
predictions, taking this correlation into account. For this purpose we select every
third evaluation, and update using the others (‘leave-93-out’). The joint distribu-
tion of all 93 prediction errors after updating should be multivariate Student-t—if
our statistical choices are reasonable—so that we can transform the prediction er-
rors to 93 uncorrelated standard Student-t quantities. Figure 5 show the result as
a Quantile-Quantile plot (QQ-plot), and a histogram with the standard Student-t
density overlaid. Here it is clear from the QQ-plot in particular that there is some
mis-fitting, but the differences appear to be relatively minor. These diagnostics
appear to be broadly supportive of our statistical choices.

4. Investigating main effects and interactions

As an illustration of the utility of our emulator, now represented in terms of the up-
dated hyperparameters {a∗, d∗, m∗, V ∗}, we investigate the response of HadSM3’s
climate sensitivity to the 31 variables. Figure 6 shows the effect of each contin-
uous variable in turn, with all of the other variables being set to their standard
values. At each specified value on the horizontal axis we show the median, and
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Figure 4: Posterior prediction ‘leave-one-out’ diagnostic showing, for each sim-
ulation in the QUMP ensemble, the posterior median and 95% CI after updating
with the other 280 evaluations. The evaluations have the same ordering as in Fig-
ure 3.
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Figure 6: The effect on climate sensitivity of each of the continuous variables,
where in each panel all other variables are set to their standard values. The line
shows the median, the two envelopes show the pointwise 50% and 95% credi-
ble intervals. The dots show actual values from the initial stage of the QUMP
experiment.
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in Figure 6.
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two envelopes showing the 50% and 95% CIs. Where we have them, we have also
shown the values from the corresponding members of the QUMP ensemble, as
dots. A similar figure for the factors is shown in Figure 7.

As simple diagnostics, these two figures confirm that our predictions are well-
calibrated (although this is not as strict a test as leave-one-out, as the predicted
values are included in the emulator). They indicate that the large-scale cloud
parameters plus the entrainment coefficient are the important variables (lefthand
column of Figure 6). In particular, climate sensitivity is highly sensitive to low
values of the entrainment coefficient. Any analysis that accounts for uncertainty in
the ‘correct’ value of entrainment will be sensitive to the choice of distribution: for
example, uniform in entrainment and uniform in the reciprocal of entrainment on
the full range given in Table 1 will give quite different results (Rougier and Sexton
2007), although our current work suggests that the difference is diminished when
ENT is calibrated using historical climate, which tends to rule out low values.

At this point we can clarify the practical implication of having a correlation
length of zero in the emulator residual, u(x), discussed in section 3a. Ideally, our
emulator should interpolate the values in the ensemble to within the uncertainty
due to internal variability, roughly ±0.2 ◦C. By inspection the width is typically
more like ±0.8 ◦C. We cannot easily reduce this uncertainty by doing further
evaluations of HadSM3, as it represents a limitation of the Statistics, not of the
data. Note, however, that this noise, while comparable in size to the main effects
of each variable, is much less than the combined effect of several variables, as we
now illustrate.

We examine the effect of interactions between the large-scale cloud variables
and entrainment, in determining HadSM3’s climate sensitivity. We look at the
response of climate sensitivity to ENT under different settings for RHC and RHCV,
CT, and CW. The result is shown in Figure 8: this figure can only be constructed
with an emulator. The black line in the lefthand panel is identical to the median
line in the ENT panel of Figure 6. As a sanity-check we can see that the red lines
lie below the blue lines for each line style (CT’s main effect is positive, as shown
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Figure 8: Interaction between entrainment (ENT) and three large-scale cloud vari-
ables. Each line shows the median response of climate sensitivity to ENT. For the
black line the variables CT and CW are at their standard settings. Four other lines
are shown. The colours red and blue indicate low and high values of CT, the line
styles dashed and dotted indicate low and high values of CW. The shaded envelope
indicates the pointwise 50% CI for each line (n.b. 50% not 95%). In the lefthand
panel, RHC is On; in the righthand panel, RHC is Off, and RHCV = 0.9. The black
line in the lefthand panel is identical to the line in the ENT panel of Figure 6.
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in Figure 6), and the dashed lines lie above the dotted lines for each colour (CW’s
main effect is negative).

A detailed investigation of these interactions is beyond the scope of this paper,
however they appear qualitatively consistent with our understanding of the main
physical effects of the relevant variables, which we now summarise.

The effect of reducing ENT is to reduce mixing between air in ascending con-
vective plumes and the surrounding environment, hence increasing the efficiency
of convective moisture transport and precipitation. In the control simulation with
pre-industrial CO2, for example, setting ENT = 0.6 (with all other variables kept
at their standard values) results in a global balance between precipitation and
evaporation being achieved with substantially lower values of cloud and mois-
ture throughout much of the troposphere. In particular, relative humidity values
in ENT = 0.6 are much lower in the tropics. The response to doubled CO2 in
ENT = 0.6 shows large increases in tropical relative humidity between 300hPa
and 850hPa. This is accompanied by a much weaker negative feedback in the
clear-sky component of long wave radiation (−1.3 Wm−2K−1) than is typically
seen in other QUMP simulations, or in simulations with other climate models
(values generally range from −1.7 Wm−2K−1 to −2.0 Wm−2K−1, see Webb et al.
2006). The difference probably arises mainly from a stronger contribution from
water vapour to the clear-sky feedback in ENT = 0.6, compared with typical sim-
ulated responses showing much smaller changes in relative humidity (e.g. Soden
and Held 2006). If the clear-sky feedback in ENT = 0.6 was altered to a more
typical value, the climate sensitivity would be reduced from 7.0◦C to ∼4◦C.

In QUMP simulations, a major determinant of variations in climate sensitiv-
ity across parameter space (in addition to the impact of ENT on clear-sky fluxes)
arises from variations in the contribution of a negative feedback associated with
increases in the extent and thickness of low cloud in regions characterised by sta-
ble boundary layers (Webb et al. 2006). This feedback tends to be more prevalent
in model variants whose control simulations contain relatively high levels of low
cloud cover, accompanied by relatively cool and moist boundary layers. The ef-
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fect of increasing CW and reducing CT is to inhibit the conversion of cloud water
droplets to rain, and therefore favours these characteristics, hence reducing cli-
mate sensitivity. We examined a QUMP simulation with low CT, high CW and low
ENT, finding that this did not show the large clear-sky feedback discussed above,
consistent with the lack of sensitivity to ENT in the dotted red curve of Figure 8
(left panel). This suggests that the negative low cloud feedback in relatively stable
regions is able to exert a strong remote influence on surface temperature changes
in regions of tropical deep convection, limiting these to a level small enough to
avoid triggering the enhanced water vapour feedback seen in model variants with
less low cloud in their control simulations (the other curves in Figure 8, left panel).
When CT and CW are perturbed to high and low values respectively, the nega-
tive low cloud feedback tends to be weaker, hence increasing climate sensitivity.
The impact on sensitivity is larger when ENT is smaller (compare blue and black
curves in Figure 8, left panel), and is consistent with the standard assumption
that individual climate change feedbacks add linearly and independently, and that
their effect on the planetary radiation budget scales with the temperature response,
implying an inverse relationship with climate sensitivity.

The impact of variables such as CT and CW, which affect the model simula-
tion once cloud is present, is likely to be modulated by variables which affect
the ease with which cloud can be formed in the first place. In this regard a key
variable is Rhcrit, the threshold value of relative humidity for cloud formation (see
Table 1). When the switch RHC is Off, Rhcrit takes fixed values prescribed on each
model level, and we perturb the value used above the bottom three levels (RHCV).
Increasing RHCV reduces the amount of low cloud, and we find that the effect
of CT and CW on climate sensitivity (at intermediate and high values of ENT) is
smaller for RHCV = 0.9 (shown in Figure 8, right panel) than for lower values of
RHCV = 0.75 (not shown). When RHC = On the model determines Rhcrit dynam-
ically, based on the local variance of cloud water. This has the effect of reducing
Rhcrit during episodes of enhanced variability, making it easier to form cloud dur-
ing the passage of simulated synoptic storms (Cusak et al. 1998). At high values
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of ENT, the variation of climate sensitivity with CT and CW when RHC = On is
therefore larger than for RHC = Off (cf left and right panels of Figure 8), and is
in fact very similar to that found with RHC = Off, RHCV = 0.75 (not shown).

A more thorough analysis is needed to confirm the physical mechanisms sug-
gested above. However, this discussion illustrates that the availability of a skilful
emulator, within the framework of a perturbed physics ensemble in which partic-
ular climate feedbacks can be traced back to specific variables, provides potential
to improve our understanding of how detailed physical processes can combine
to give rise to different values of climate sensitivity. Given such understanding,
it may be possible to develop metrics capable of narrowing the uncertainty in
climate sensitivity, and perhaps also regional aspects of climate change, by con-
fronting these processes with relevant observations.

5. Summary

We have constructed an emulator that allows us to predict HadSM3’s climate sen-
sitivity at any choice of values for the 31 model parameters varied in the QUMP
experiment. This emulator is a statistical framework that allows us to quantify the
uncertainty in our predictions. Due to the complexity of the model, and in partic-
ular the combination of both continuous and discrete parameters, we are obliged
to compromise in our statistical framework, which leaves us with an irreducible
uncertainty of a little under 2 ◦C in our 95% CIs. This ‘noise’, however, is smaller
than the ‘signal’ coming from varying the parameters, and we are able to identify
important sources of variation in the climate sensitivity of HadSM3, which are the
large-scale cloud parameters and the entrainment rate coefficient, and investigate
the interaction between these parameters, which is complex.

We constructed our emulator from two ensembles. These came from the
same underlying model, but in different treatments. The first ensemble, from
the CPNET experiment, comprised a large number of relatively quick evaluations
over just six of the model parameters. The second ensemble, from the QUMP
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experiment, comprised a much smaller number of more time-consuming evalua-
tions, over thirty-one model parameters. Evaluating a model in different configu-
rations is a natural way to increase the efficiency of an experiment, although more
typically the difference in configurations is in the resolution of the solver (Craig
et al. 1997; Kennedy and O’Hagan 2000). Ideally the two versions would be run
interactively, and statistical tools would be used to choose, sequentially, which
version to run and at what value of the model parameters to run it. In our case,
were we to run both experiments again, we might have used the emulator from the
CPNET ensemble to identify the presence of important high-order interactions,
and then designed the QUMP ensemble to learn more about these; this type of
sequential approach is discussed further in Rougier and Sexton (2007).

Any such approach, that uses the same model (or similar models) in multiple
configurations requires a method for assimilating both ensembles into an infer-
ence. This will inevitably require judgements about how similar the configura-
tions are. We have chosen to make our judgements explicit, adopting a Bayesian
statistical approach which obliges us to quantify that similarity, in terms of the
relationship between the emulators for each configuration. Our statistical frame-
work links common coefficients in the two emulators, using a simple parametric
relationship (eq. 3) that reduces the quantification to specifying a handful of val-
ues. This relationship reduces the burden on the expert, but it is undoubtedly
simplistic. It could easily be generalised, for example by applying a different
relationship within each parameterisation scheme.

Throughout the paper we have exercised our judgement to create the best emu-
lator that we can, subject to various constraints such as transparency and tractabil-
ity; we favour these constraints because they allow our approach to be more easily
replicated. Where we make choices we have stated them clearly and we have
backed them up with diagnostic information. But we do not claim that these
choices are uniquely acceptable across the whole spectrum of climate experts,
and consequently our results are very much our results. There is no single best
emulator for HadSM3. We have provided a framework within which it is possible
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to work out a number of different choices, and illustrated one particular choice,
namely our own.
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