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ABSTRACT. The role of surfactants in stabilizing the formation of bubbles in foams is
studied using a phase-field model The analysis is centered on a van der Walls-Cahn-
Hilliard-type energy with an added term accounting for the interplay between the pres-
ence of a surfactant density and the creation of interfaces. In particular, it is concluded
that the surfactant segregates to the interfaces, and that the prescription of the dis-
tribution of surfactant will dictate the locus of interfaces, what is in agreement with
experimentation.
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1. INTRODUCTION

In this paper we use a phase-field model in an attempt to explain the role of surfactants in
stabilizing, and possibly encouraging, the formation of bubbles in foams. Ultimately, the goal is to
treat solid foams (e.g. oxides such as AL203) and metallic foams with important applications in
industry such as the manufacturing of lightweight sandwich structures in automotive industry, and
in biotechnology, for example in the making of highly porous scaffolds for bone tissue engineering.
Most research has focused on aqueous foams (shampoo, dishwasher detergent, beer, soap froth,
etc.), with some incursions into polymeric foams, but the realm of solid foams has been virtually
untouched by a rigorous mathematical treatment. In solid foams anisotropy plays a very important
role in determining the polyhedral shapes in cellular packing, and an important analytical and
geometrical challenge is to explain the different sizes of clusters in cellular packing.

The applicability of foams depends in a crucial way on their wetness. It is well known that
very little liquid is contained on the faces of the bubbles and most of it migrates to the edges of
the lattice, i.e. regions between three touching bubbles (Plateau borders in liquid foams, struts in
solid foams), and the junctions of four channels (nodes in liquid foams, joints in solid foams). It
is, therefore, of the utmost interest to understand the mechanism per which surfactants (such as
soap) induce the formation of interfaces.

Here we adopt the (commonly agreed) viewpoint that formation of bubbles is intrinsically related
to phase transitions phenomena, and that solid foams and liquid foams share many topological and
geometrical properties, due in part to the fact that solid foams typically evolve in the fluid state
as gas bubbles, expanding and deforming under the influence of viscous forces, surface tension,
surfactants, etc. (see [18]). This is conform with the model proposed by R. Perkins, R. Sekerka,
J. Warren, and S. Langer [23] which is a modification of van der Waals-Cahn-Hilliard’s model for
fluid-fluid phase transitions, with an added term that accounts for the influence of the surfactant
in preventing coalescence of bubbles and in encouraging the formation of interfaces. Precisely, let
Q C RN be a domain, and let u : 2 — R be a phase (order) parameter, where u = 1 corresponds
to the liquid (water) phase and u = 0 to the gas (argon) phase. Another parameter of the model
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is the density p : Q — [0, +00) of the surfactant. The volume of the surfactant is given apriori and
fixed, and the total amount of bulk material is preserved, i.e.,

(L.1) /Qp(a:)dac:a and/ﬂu:ﬁ

for some a, 8 > 0 with 8 < |2]. The energy of the system is given by

(1.2) Ge(u,p) == %/ﬂf(u)dz—}-s/ﬂ|Vu|2d:c+a(s)/ﬂ(p—|Vu|)2dx,

where €, a(e) > 0 are small parameters, and the double-well potential f : R — [0,400), with
{f =0} = {0, 1}, drives the system to the two phases.

We want to study the stable configurations of the physical system, which correspond to (local)
minimizers of the energy. Since ¢ is a small parameter, it is a usual procedure to study the
problem as € — 0, investigate the properties of the limiting system and then transfer those back
to the original system with ¢ small enough. The right mathematical tool for this is De Giorgi’s
I'-convergence (see [11]).

The asymptotic behavior of the model depends on the parameter a(e) and we expect the phys-
ically relevant case to emerge when a(e) = O(g). Indeed, if a(e) < € then the surfactant energy
term a(e) [,(p — |[Vu|)?® does not have any influence on the limiting problem, and as ¢ — 0 we
obtain the well known Cahn-Hilliard model which leads to perimeter minimization. Therefore, the
influence of the surfactant is absent, contrary to what we seek with this model. If ¢ < a(e) then it
may be shown that the energy becomes degenerate if the volume of the surfactant is smaller than
the jump in the order parameter, i.e. the amount of the surfactant is not enough to promote the
creation of interfaces and the energy to create a jump is infinite. Again, this goes against our aim,
as we expect that even a small amount of the surfactant should influence the interfacial energy.
This is exactly what happens when a(e) =e¢.

In this case we may split the energy into two terms: the Cahn-Hilliard energy

L[yt [ vudn, [u=s

E/Q(p— |Vu|)? de, /Qp(m) dz = «

The Cahn-Hilliard energy is responsible for the formation of the interfaces and the surfactant energy
term “promotes” them, in that it favors the creation of interfaces there where the surfactant is
present. Indeed, if we had only the Cahn-Hilliard energy term, then it is a well known result (see
[21]) that as € — 0 the problem reduces to the minimization of the perimeter of the jump set of
u, and minimizers locally have a hyperbolic tangent profile. Combining this with the surfactant
energy to obtain the total energy of the system, leads to a compromise as the Cahn-Hilliard energy
term penalizes the formation of multiple interfaces while the surfactant term favors the occurrence
of interfaces there where p is present, or, better, p = |Vu].

and the surfactant energy

To recall briefly this history, the analysis of the asymptotic behavior of singular perturbed
energies

L) = /Q %f(u) +¢|Vul? da

where f is a nonnegative potential with {f = 0} = {0, 1}, was first studied by Modica and Mortola
[20] and subsequently it was applied by Modica [21] to the van der Waals-Cahn-Hilliard theory of
fluid-fluid phase transitions to solve an optimal design” problem proposed by Gurtin [15]. It was
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shown in [20], [21] that {I.} T converges (with respect to L) to

I(u) = (2/0 Vi(s) ds) HNY(Sy) ifue BV(2;{0,1}),
400 otherwise,

and thus in the limit as ¢ — 0 partitions with minimal interfacial area and given volume fraction
B are selected. Generalizations were obtained by Bouchitté [6] and by Owen and Sternberg [22]
for the coupled problem. Sternberg [25] and Kohn and Sternberg [19] undertook the study of local
minimizers. The vector-valued setting, where u : Q@ — R, Q c RY, d,N > 1, was considered
in Fonseca and Tartar [13] and Barroso and Fonseca [5], still in the two-well setting. This was
generalized to the case of multiple wells by Baldo [4]. Higher order variants were addressed by
Fonseca and Mategazza [12], Conti, Fonseca and Leoni [9], and current work by Conti and Schweizer
[10] extends the latter to the case where f vanishes on two rank-one connected copies of the set
of rotations in RY and exploits notions related to geometric rigidity (for related issues within the
realm of the Eikonal equation we refer to [2], [3], [17], etc.).

The main analytical goal of this paper is to identify the asymptotic behavior of equilibria. Pre-
cisely, if (ue, pe) minimizes G, then can we establish that {(ue, pc)} converges to some macroscopic
state (u,p), and, if yes, what characterizes (u,p), e.g. does (u,p) minimize a new, macroscopic
(relaxed) energy?

Relaxing the ambiance space of p to include nonnegative bounded Radon measures p, where
u = pdz for an integrable surfactant energy density p, in Theorem 2.1 we show that when a(e) = ¢
the asymptotic problem (1.1), (1.2) in the limit as € — 0 becomes

s T N=1 iy ;
(1.3) F(u“u) = ‘/‘Su¢ (d’HNl |_Su( )> dH fue BV(Q, {0’1})

+oo otherwise.

where ¢ is a non-increasing, convex surface energy density determined by (1.2). More precisely ¢
is strictly decreasing in (0,1) and it is easy to calculate that

(1.4) #(0) = 2\/5/0 \ f(s)ds, o(y) = 2/0 vV f(s)ds forvy >1.

Based on results from I'-convergence theory we conclude that minimizers (uc, pc) of G, subject
to (1.1), converge (up to a subsequence) to a minimizer (u, 1) of F', subject to the constraints (see
the discussion at the end of Section 4)

(1.5) u()=a and /Qu =g.

A direct inspection of the energy (1.3) allows us to conclude that:
(i) the macroscopic energy F is only sensitive to the restriction of x to the interface S, and we
interpret this fact by saying that the surfactant segregates to the interface;
(ii) if we have a prescribed distribution of the surfactant (say, in 1D pu = ¥a;d,,) then the interfaces
will be created exactly on the support of u (resp. at the concentration points z;);
(iii) the macroscopic energy F' will remain unchanged if the density of the surfactant density u on
the interface S,, ,md%a exceeds 1. Indeed, in view of (1.4) the energy is impervious to adding
more surfactant and the system reaches saturation;
(iv) the decreasing character of the surface energy density ¢ in the interval (0, 1) shows that below
the saturation threshold the addition of an arbitrarily small amount of surfactant lowers the surface
tension, in agreement with experimentation.

We expect the model to explain also how the presence of surfactant influences the metastability
of multiple interfaces configurations. This expectation is supported by the observation that the
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lower and the upper bounds for the persistence time of metastable configurations for the Cahn-
Hilliard energy depend on the surface tension constant o := (2 fol VI(s) ds) in a monotone way

(see [8], [14], [7], etc.). Although we expect that the I'-convergence result obtained in this paper
will play a crucial role in the analysis of metastability (as in [7] and [14]), we leave the dynamical
aspects of the theory for future investigation.

The paper is organized as follows: In Section 2 we state the central theorem of this work,
Theorem 2.1, and Section 3 is dedicated to the case where N = 1 — for expository reasons we
start with the proof of Theorem 2.1 in the one-dimensional case where it is possible to present the
key ideas in a more transparent way without invoking the heavier technical machinery required
in the multidimensional setting. Here we highlight the detailed description of the optimal profile,
and Theorem 3.6 where we prove that ¢ is convex. This is by no means a necessary condition for
lowersemicontinuity of F' in the scalar case, but it turns out to be an important ingredient in the
proof of the higher order dimensional case. Section 4 is devoted to the N-dimensional setting, and,
finally, in Section 5 we offer a discussion on the role of the surfactant in the stability of the system.

2. STATEMENT OF THE MAIN RESULT

Let Q C RN be an open bounded Lipschitz domain and consider the family of functionals
1
(2.1) Ge(u,p) == E/ f(u)dx + E/ |Vu|? dz + afe) / (p — |Vu|)* dz
Q Q Q

where €, a(e) > 0, f is a double-well potential, that is f € C(R;[0,00)) and f vanishes only at 0 and
1. We will work in the ambiance space X (2) := L*(2) x M, () endowed with the convergence
71 X T2 where 71 denotes the strong convergence in L!(£2), while 7, denotes the weak*-convergence
in the space of nonnegative bounded Radon measures M (). Extend the functionals G, to the
whole space X by setting for every (u,pu) € X

Ge(u,p) ifue HY(Q) and p = pdz,

400 otherwise.

(2.2) F. (u, ) = {

When p = pdz, with an obvious abuse of notation we will often write F¢(u, p) instead of F¢(u, u).
We are interested in the asymptotic behavior of the functionals (2.2) as € — 0. Our main result
is stated in the following theorem.

Theorem 2.1. Let g, \, 0. Then there erists a non-increasing convezr function ¢ : [0,+00) —
[0,+00] such that, up to a (not relabeled) subsequence, the family {F._} T'-converges with respect
to the 11 X T2 convergence in X(Q2) to a functional F of the form

dp N-1 )
(2.3) F(u,p) := /Su ¢ (M(ﬂﬂ)) dH™ ™", ifue BV(9;{0,1})
+00 otherwise,

for every (u, u) € X(Q). Moreover, the energy density ¢ depends on the asymptotic behavior of the
subsequence a(e,) according to the following formulas:

(i) if a(en) = ce + o(en), with ¢ > 0, then for every v > 0

+oo +oo
(2.4)  ¢(y) :=inf {/ f(u)dz + / min{cA? + |«'|?, (1 + ¢)|v/|*} dz = (u,\) € A('y)} ,

—00 —00
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where A(7) is the class of admissible pairs for v defined as

A7) :== {(u, A) € HE (R) x (—00,0] : . lim u(t) =0, lim wu(t) =1,

——00 t——+o0
+oo
(2.5) / max{\ + [v|,0} dz < 'y} ;

(ii) #f a(en) = o(ey,) then
1
o) =2 [ ViG)ds
(iii) #f a(en) = O(1) and e, /a(ey) — O then
or) {2 Iy Vi) ds i v=1, |
400 otherwise;
(iv) if a(en) is bounded away from O then
1 o
o7) {2f0 VIG)ds ify=1,
+0o0 otherwise.

Remark 2.2 (Compactness). Assume that the double-well potential f satisfies the following growth
condition

1
7(s) > Cls| -
for some C > 0. Then a comparison with the well known Modica-Mortola functional shows imme-
diately that every sequence {(un,pn)} such that

sup/ Ppndx < 00 and sup F._ (un, pn) < 00
n JOQ n

is relatively compact with respect to the T X Ty-convergence of X () (see [13]).
We will mostly focus on the case (i) of Theorem 2.1, which is the most interesting from both
the physical and the mathematical viewpoints.

3. THE 1-D CASE

As we already mentioned in the previous section, we will focus on case (i) of Theorem 2.1 and
leave the (easier) proofs for the other regimes to the interested reader.

We may assume without loss of generality that ¢ = 1 and a(e) = €, and thus the family of
functionals we are going to study reads

1

g/f(u)dz—i-s/|u'|2d:c+6/(p—|u'|)2dx if u € HY(I) and p = pdz,
J J J

+o0

otherwise,

Fe(u,p;J) :==

for any J C I open subset of I, with I C R bounded open interval, and for all (u,u) € X(I). We
will show that I'(X (I))-lim, ,o+ F, = F, with F defined as

Y d(u({=z}) ifue BV(I{0,1}),
F(u,p) = < zes,
400 otherwise,

where ¢ is given by

(3.1) é(v) :inf{/+oo f(u)d.r+/+oomin{)\2+|u'|2,2|u'|2}d.r: (u, \) GA(W)},

— 00 — 00

with A(y) as in (2.5).
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3.1. Preliminary Lemmas. If I C R is an open interval then for every (u,\) € HL (I) X R we
denote

(3.2) B(u, A T) = / fu)da + / min{A\2 + /|2, 2]u/|?} da.
I I
By (3.1) we clearly have

(3-3) ¢(7) :== inf{E(u, ;R) : (u,A) € A()}-

As it will be shown in Theorem 3.5, the infimum in the previous formula is attained.
We start by collecting some simple facts which will be used repeatedly in the sequel.

Remark 3.1. (i) If y > 1 then

(3.4) b(7) =2 / VI() ds.

Indeed, if u € H (R) is non-decreasing and satisfies lim;—, oo u(t) = 0, limy— 400 u(t) = 1,
then (u,0) € A(v). Therefore

3(7v)

IN

+oo “+o0
inf {/ f(u)dz + / [o/|*dz : u € H} . (R), u non-decreasing,

— 00 — 00

t_l}l_noo u(t) =0 and t_l)lgloo u(t) =1 }

= 2/:mds,

where the last equality is well-known, and follows from the solution of the standard Modica-
Mortola optimal profile problem, (see [20,21]). Since the opposite inequality is trivial, (3.4)
follows.

Similarly if v = 0 then (u, A) € A(0) entails |A| > |¢| a.e., and thus

“+oo “+oo
#(0) inf {/ f(u)dz —1—/ 21u/|*dz : u € HE (R), v’ € L™(R),

t_l}r_noo u(t) =0 and 1thm u(t) =1 }

—+00
= 2\/5/0 v f(s)ds,

where again the last equality follows from the solution of the standard Modica-Mortola
optimal profile problem.
(ii) The minimization problem in (3.3) is equivalent to
¢(7) = min{E(u, 5 R) : (u,A) € A(7)},

where

Ay) := {(u, A) € HE (R) x (—00,0]: lim u(t) =0, lim wu(t) =1,

t——o0 t—+o0
“+o00
/ max{\ + |[¢/|,0} dz = min{~, 1} } .

Indeed, if v < 1, if (u,A) € A(y) and if fj:: max{A + |v/[,0} dz < min{~, 1}, then nec-
essarily A < 0 and thus we may find X' € (A, 0] such that fj:: max{\ + |[v/|,0}dz =
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min{v,1} and E(u, \;R) < E(u, \;R). If v > 1 then, as shown in (i), the unique mini-
mizing pair is given by (u,0) where u is the solution of the Modica-Mortola optimal profile
problem, and clearly satisfies fj:; |v'|dz = 1.

(iii) For all A <0 and w > 0 the following identities hold:

(3.5) min{\? + w?, 2w?} = w? + min{\?, w?} = w? + (max{\ + w,0} — w)>.
Thus for every (u, A) € A(y) we have

(3.6) E(u,)\;I):/If(u) dw+/1|u'|2da:+/1(max{)\+|u'|,0}—|u'|)2dx.

We now state and prove some auxiliary results which will be needed in the proof of the Theorem
2.1.

Lemma 3.2. Let (Y,u) be a measure space, with p a non-atomic and positive measure, and let
g:Y — [0,+00) be a non-zero function belonging to L*(Y,u) N L*(Y,pu). Then for any fized
0 <~ < [y gdp the problem

(3.7) min{/y(v—g)Qdur UZQ/yvd,u,:*y}

admits a unique (modulo p-a.e. equivalence) solution u given by u := max{\ + g,0}, where X is
the unique (non-positive) constant such that

(3.8) /Y max{A+g,0} dp = .

Proof. If y = fY g dp then trivially the function g itself is the unique minimizer and A = 0.
Assume now that v < fY gdu and consider the “relaxed” problem

(3.9) min{/y(v—g)Zdu: v>0,/yvdp<7}.

Step 1. We show that if u minimizes (3.9) then u = max{A + g,0} with A <0.
The existence and uniqueness of the solution to (3.9) are an immediate consequence of the
Projection Theorem in Hilbert Spaces after observing that the problem can be recast as

min{||v — gl|z2(v,p) : v €V},

where V is the closed convex set
V= {UGLZ(KM)Z vZO,/ vduﬁ’y}.
Y

The solution u is the (unique) projection of g onto V, and using the variational characterization
of projections, we have

(3.10) /{(U—u)(g—u)duZO

for every v € V.

For every n € N consider the set J, := {z € Y : u(z) > } and let J := UpJ, = {z €Y
u(z) > 0}. If p € L>(Y, 1) and fJ’n @dp = 0, then the function v := utepx, belongs to V if € is
sufficiently small, and in view of (3.10) it follows that [ 7. (u—g)pdu = 0. Since p is non-atomic,
this in turn implies that v — g is constant p-a.e. in J,, for every n. We conclude that

(3.11) u=A+g a.e inJ
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for a suitable constant A, and v = 0in Y \ J. Since

/ udp < / gdu,
Y Y
it follows that A < 0.

We claim that in fact u = max{\+ g,0}, i.e. A+g <0 a.e. on Y \ J. In order to show this, we
assume by contradiction the existence of € > 0, J' C J, with 0 < p(J’) < 400, and of H CY \ J,
with 0 < p(H) < 400, such that

(3.12) At+g>e inJ UH.

Here we used the fact that u(J) > 0, or else w = 0 and u would not be a minimizer (take as a
competitor v = g/2). In particular, u({\+ g > 0}) > 0. Setting \; := A — ¢ we also have

(3.13) A+g>0 inJ UHforallte (0,e).
By (3.11) and (3.12), lim;o [,z (Ae + 9) du = [}, (A + g) du > 7, where
(3.14) 7y:=/ ()\—i-g)d,u:/ udp,

J J

and so we can find £ € (0,¢) such that [}, . (Ar+ g)du > 7. Moreover, as [}, (A\;+ g) du <7 and
4 is non-atomic, there exists H' C H such that

(3.15) / (Ai+g)du=7.
J'UH'
Let
s ! !
a(z) = u(z) %fxeY\(J UH'),
Aitg(z) ifzeJ UH.

In view of (3.13), (3.14), and (3.15) we have that & € V. By Jensen’s Inequality for every v such
that fJ’UH’ vdu = 7 it follows that

Lne= " > iy ([ - 9%)

1 2
3.16 = — ’y—/ gd,u) :/ a— g)%dpu,
(8.16) p(J'UH) ( J'UH' J’UH’( )

where in the last equality we used (3.15). The equality in (3.16) holds if and only if v — g = A7
a.e. in J' U H', that is if and only if v = @ a.e. in J' U H'. Therefore, since v # @ in J' U H', we

have by (3.16)
/ (ﬂ—g)Qdﬂ</ (u—29)*du
J'UH' JIUH'

/Y(ﬂ—g)zdu</y(u—g)2d#

which contradicts the minimality of u. We have established the claim, i.e. v = max{\ + g,0}.
Step 2. Here we prove that A, found in Step 1 satisfies (3.8). If not, then we could find X' € (},0)
such that v := max{\ + ¢,0} € V, and, by (3.5),

/(v—g)zdu:/ min{|)\'|2,g2}du</min{|)\|2,g2}du:/(u—g)2du,
Y Y Y Y

violating the minimality of u.
Step 8. To show the uniqueness of ) it suffices to observe that if A’ # A, say X' < A, and if

(317) 1= [ X radu= [ (hra)dn,

and, in turn,
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where A := {A+ g > 0} and A" := {X + g > 0}, then clearly A’ C A and thus

/A(A+g)du=/A,(X+g)du+u(z4')(>\—>\')+/A\AI(/\+9)du-

The last identity is incompatible with (3.17) unless u(A’) =0, i.e. v =0, and this contradicts the

hypotheses on ~. O
For every v > 0 and for § € [0, 1) define

(3.18) ¢s(7) = inf inf {E(u, X; (—1,1)) : (u,A) € Ase(7)},

where

As () == {(u, \) € HY(—t,t) x (—00,0] : u(—t) =6, u(t) =1 -4,

)

t
(3.19) max{\ + [v|,0} dz §7+5}.
—t
Remark 3.3. (i) Arguing as in Remark 3.1 one can show that
d5(7) = inf inf { B(u, X5 (~1,8)) : (u,3) € su(1) },
where

As () o= {<u, N) € H'(—t,1) x (—o00,0] : u(—t) = 6, u(t) = 1 — 4,

t
/ max{\ + |u'|,0} dz = min{y + 6, 1 — 26}} ,
—t
and that
1-6 1-6
(3.20) ¢5(0) = 2\/5/ f(s)ds and  ¢s(y) = 2/ f(s)ds fory>1-234.
[ 4
(ii) Let (u,A) € Ag(7), and fort' >t let @ be the function which is zero in (—t', —t), coincides
with u in (—t,t), and equals 1 in (t,t"). Then (@,\) € Aow(y) and E(u,X; (—t,t)) =
E(a,\; (—t',t")). Hence
(3.21) $0(7) = Jim inf {Bu, X (4,8)) 5 () € Aos (1)}

Note that Ag (v + ) C Ags(y+6') if 6 < ¢, and so we can write

1
(3.22) $o(y) :=supdo(y +6) = lim ¢o(v+6),  ¢o(y) = 2/ f(s)ds ify>1.
§>0 =0t 0
Lemma 3.4. For every v > 0 there holds
(3.23) $o(7) =0(7)  and  $5(v) S o(v) as & — 0T
Proof.

Step 1. We show that ¢5(v) 7 ¢o(v) as § — 0.
If v > 1 by (3.20) and (3.22) we have

1-6
bs(7) =2 /5 £(s) ds

and thus ¢s(y) — 2f01 f(s)ds = do(7) as 6 — 0.
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Suppose now v < 1. If ¢ > 0 and (u,\) € Ag.(y + &) then, by continuity, we can find
—t < t; <ty < t such that u(t;) = 6 and u(t2) = 1 — 4. Setting @(-) := u(- + 24%2), the pair
(@, A) € A; 12+, (7) and, due to the translation invariance of E,

L

to —t1 tog—1t
¢6(7) S E <ﬂ7 ’\; <_ 2 9 ! ) %)) = E(ua )\; (tl,t2)) S E(u, )‘; (_ta t))7
which yields ¢5(v) < ¢o(y + d) for every v € [0,1), and thus

(3.24) lim sup ¢5(7) < $o(7)-

In order to prove the opposite inequality, let (un,An) € As, 1. (7) be such that ¢, > 0, 6, — 0T,
and

(3.25) lim E(up, An;(—tn,tn)) = lim @5, (y) = liminf ¢5(7).
n—00 §—0

n—-+oo

We claim that there exists a constant ¢ > 0 such that
(3.26) An < —cforallneN.

Indeed, assume by contradiction that, up to a subsequence (not relabeled), A,, — 0. By continuity,
for any fixed § satisfying (recall that vy < 1)

(3.27) 1-26> 7

and for n large enough, we can find an interval I,, := (xl,n, mzjn) C (—tn,tn) such that § < u, <
1—-461in I, up(z1,n) = 0, and up(z2,) =1 — 4. Since by (3.25)

| I, | min _f(u / f(up) dz < sup E(um, Am; Im) < 00,
€[6,1-4] meN

we deduce that sup,, |I,,| < +oco. Therefore, since (upAn) € A5, 1, () we have

v = lim (y+46,) > limsup/ max{\, + |u.,|,0} dz
I,

n—00 n— oo

> limsup/ (O + [l ]) dz > Tim (1 — 26+ |Tn|An) = 1 — 26,
I" n—oo

n—oo

which contradicts (3.27). This establishes claim (3.26).

Set
On On
(3.28) Ty p = T Top = ,
o f(6ny) dy \/fo fOny+1—3d,)dy
and define
0 ife <—t, —Tip,
1)
T—n (:B + t'n + Tl,'n,) if _t'n - Tl,'n. S z S _t'na
1,n
Un(z) := ¢ Un(x) if —t, <z <t,,
On .
—(r—ty)+1-06, ift,<z<t,+Ton,
T2,n
1 ifx>t, +Top.
Note that

1
lim On lim /f(&ny) dy =0 and lim —": lim \// flny+1-06,)dy=0
0

n—00 Tl,n n—o00 n—oo T+ n—oo
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since f(0) = f(1) = 0. Therefore, recalling that A, is bounded away from 0 (see (3.26)), for n
sufficiently large (see (3.26)) we have

An + 1, < 0in (=00, —t,) U (t,, 00),
which yields for any T > t,

T tn
/ max{xn+|a;|,o}dx=/ max{A, + [, 0} dz < 7 + 8,

since (up, An) € As, ¢, (7). This shows that for n large enough (@n, A\,) € Ao,r(y + d,) for any
T > t,, and we can estimate

$o(y+30n) < E(tn, An; (=T,T))

—tn
< B Ctwt) [ (7
Tl,n

(z+tn, + Tl,n)) dx

—tn— 1,n

tntTon (G, 262 262
In (e 1_ % “On
+/tn f(Tz,n(x tn) + 6)d$+T1n+T2n

1
— B(uny M (—ty tn)) + Tim / F(6uy) dy + Tom / FGny +1 - 62)dy
0 0

n 262 n 262
Tl ,n T2 ,n

(3.29) = E(un, An; (=tn,tn)) + 36n “ (6ny) dy + 36, \// f(Ony +1—6,)dy,

where in the last equality we used (3.28). Letting n — oo in (3.29), and recalling (3.25), we deduce
that ¢o(y) < liminfs_,o ¢s(y) which, together with (3.24), yields that lims_,o+ 5(7) = do(7) -

Step 2. We show that ¢o(7y) = qﬁ('y)

We remark that if v > 1 then clearly ¢o(v) = ¢(7y). If ¥ < 1 then A < 0, and trivially ¢ < ¢g. To
establish the opposite inequality it is enough to show that for any (u,\) € A(y) we can construct
a sequence {(un,A)}, with (un,A) € Ao n+1(7), such that E(uy,, A; (0,n + 1)) — E(u, A;R). This
can be done by considering the restriction of u to the interval (—n,n) and then by connecting u(n)
to 1 on [n,n+1] and u(—n) to —1 on [—(n + 1), —n| with affine functions. Then, since A < 0 for n
large enough (u,, \) is admissible for Ag ,1(7y) and satisfies the required approximation property.
We leave the details to the reader. O

The next theorem deals with the existence of an optimal profile, that is, of a minimizing pair for
the problem (3.1). Although the Direct Method of the Calculus of Variations cannot be applied
due to the lack of convexity of E(:,-;R), and therefore possible failure of lower semicontinuity, the
proof will be achieved by showing that lower semicontinuity is ensured along minimizing sequences.

Theorem 3.5 (Existence of an optimal profile). For every v > 0 the optimal profile problem (3.1)
admits a solution (u,\) € A(y), with v a non-decreasing function. Moreover, for every optimal
pair (u, A) € A(7) the function u is non-decreasing and strictly increasing in the set {0 < u < 1}.

Proof. We only consider the case v € (0,1) since for v ¢ (0,1) the problem reduces to the
standard Modica-Mortola optimal profile problem (see Remark 3.1-(ii)). We split the proof in two
steps.

Step 1. With the notation introduced in (3.18), (3.19), for any fixed T > 0 we consider the
problem
min{E(u, X; (=T, T)) : (u, ) € Ao, r(7)}

and we show that it admits a non-decreasing solution.
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Let {(un, An)} be a minimizing sequence, extract a subsequence (not relabeled) such that

(3.30) un, = u weakly in H(-T,T).
By Remark 3.1-(i) we can assume that fTT max{A, + |u,|,0} dz = v. We claim that
(3.31) sup | A, | < +o0.
n
Indeed, denoting I,, := {z € (-T,T) : |ul| > |\n|}, by Holder’s and Chebichev’s Inequalities, we
have
T 1 2
[ e = ([ i)
_r |1,
) 2
> (/ max{\, + |u,|, O}dx)
||
2 2
S ST S 1,
I | f ! |2 dz’

and this implies (3.31) since sup,, fTT |ul,|?dz < +o0o. By (3.30) and (3.31) we can extract a
further subsequence such that

(3.32) lup| = w and  max{\, + |u,|,0} = 2z weakly in L*(-T,T).
Using (3.5) and noticing that the function

(z,y) = (z —y)*
is convex, by lower semicontinuity and Fatou’s Lemma we obtain

hm E(un,)\n,( T,7T))

T
= lim (/ f(un dx+/ |un|2dx+/ (max{\, + |uL|,0} — |ul])? dx)
n—oo T

(3.33) ZKTf(u)dz+1T |u'|2da:+/T (z — w)*dz.

-T
By Lemma 3.2, identity (3.5), and the fact that w > |u/| (which follows form (3.30) and (3.32)),
we also have

(3.34)
T T T T
/ (z —w)?dz > / (max{\ + w,0} — w)?dz = / min{\?, w?} dz > / min{\?, [u'|*} dz,
—-T -T -T -T

where A < 0 is uniquely determined by

T T
/ max{/\—i—w,O}dw:/ zdz =1.
-7

-T

Since
T T
/ max{A + |u|,0} dz < / max{\ +w, 0} dz = v
-T -T
we deduce that (u,\) € Ao r(7), and from (3.33), (3.34), (3.5), we obtain

T T
lim E(tn, An; (—T,T)) 2/ ) d:c—l—/ min{)\2 + [u/[2, 21/ |2} d& = E(u, \; (—T, T)),
-7 -7

n—oo

and this implies that (u,\) is an optimal pair.
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In order to show that u is non-decreasing, we first observe that a truncation argument yields
0 <u <1in (-T,T). Now suppose by contradiction that there exist 0 < z; < z2 such that
u(z1) > u(z2). We can also assume without loss of generality that

3.35 = = mi :
(3-35) u(@) = max u(z), u(zz)= min u(z)

Let v be such that

(3-36) f() = (v)-

If 5 = u(x1) then we consider the first point x5 € (z2,T] for which u(z3) = u(z1) (such a point
exists since u(T) =1 > u(z1)), and define a new function @ as

u(x) == {“(ff) for 2 € (=T, 1) \ [21, 23],
v for z € (z1,z3).

min
v€[u(z2),u(z1)]

If ¥ < u(z1) then we consider the last point g € [T, z1) and the first point z3 € (z1, 2] such
that u(zo) = u(z3) = 7, and define

a(a) = {u(a:) for z € (=T, T) \ [zo, 3]
v for x € (zo,z3).

In both cases, using (3.35) and (3.36) it follows that that (@, A) € Ao,z (y) and E(, A; (-T,T)) <
E(u,X;(=T,T)), and this contradicts the minimality of (u, ).

Step 2. Given a sequence T, T +00 let (un, A,) be a solution of the problem considered in Step 1
with T'=T,,. By Lemma 3.4 and (3.21) we have lim, oo E(Un, An; (—=Tn,Tn)) = ¢(7). Extending
Upn to R as Uy := X(0,400) in R\ (=75, T},), using the translation invariance of £’ and monotonicity
of u,, we may assume without loss of generality that

1 1
(3.37) Up < 5 in (—00,0] and u, > 2 in [0, +00).

Arguing as in the previous step, up to the extraction of a subsequence we have u,, — u weakly in

H} _(R), for some function u € H (R), and we can find A < 0 such that
+oo
/ max{\ + [¢/|,0}dz <+ and E(u,\;R) < lim E(un, \n;R) = ¢(7).
o n—oo
As each u,, is non-decreasing, u is also non-decreasing, and thus there exist lim,_, u(z) =: «

and lim,_,_ o u(z) =: B. Since by (3.37) u <  in (—00,0] and u > 1 in [0, +00), and taking into
account that [, f(u)dz < 400, we must have o = 1 and 8 = 0. We can now conclude that (u, \)
belongs to A(vy) and minimizes E. Finally, the monotonicity of any optimal function u can be
proved exactly as in Step 1, while the strict monotonicity in the set {0 < u < 1} follows from the
observation that the energy can be strictly decreased by removing the intervals where u = ¢, with
ce€ (0,1). O

We now show that the surface energy density ¢ is convex. This fact will play a crucial role in
the N-dimensional estimates.

Theorem 3.6. The function ¢ defined in (3.1) is convez.

PROOF. The proof will be split in several steps.
Step 1. We start by considering the following auxiliary energy density:

w
(M, a,b;y) := inf inf {Mu +/ min{\% + [u'|%, 2|«/|*} dz : (u, \) € Ay, a,b; 'y)},
H 0
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where M >0,0<a <b,v>0,and

A(p,a,b;7) = {(u, A) € H*(0, 1) x (—00,0] : u(0) = a, u(p) = b,

m
(3.38) / max{\ + |u'[,0} dz < v } .
0

Note that ¥/(M, a, b; -) is non-decreasing and we prove that it is convex. Arguing as in Remark 3.1,
one can show that the class A(u, a, b;7y) can be replaced by

Ay a,b57) = {<u, A) € H'(0, 1) x (—00,0] : u(0) = a, u(u) = b

m
/ max{\ + |[v/|,0} dz = min{y,b — a} } ,
0
without affecting the definition of 4. Fix x> 0 and let (u,\) € A(u, a, b;) be a minimizer of
m
Mu +/ min{\? + |v'|?, 2]v/|?} dz.
0

As in the proof of Theorem 3.5, we have that u is increasing and, using Lemma 3.2 and identity
(3.5), we deduce that the pair (u, max{u’ 4+ A, 0}) minimizes

(3.39) Mu+/0u |v'|2dx+/0u(p— 1))2 de,

among all pairs (v, p) such that v € H'(0, ) with v(0) = a and v(u) = b, and p > 0 satisfies
(3.40) /N pdz = min{y,b —a}.

Indeed, if (v, p) is one such pair, then0

(3.41)

" w w " _
/ ' ? dz + / (p— [v/])? de > / o' de + / (max{[v'| + %,0} — [v/])? de
0 0 0 0
" _ w
=/ min{|v'|2+)\2,2|v'|2}dw2/ min|u/ |2 + A2, 20|} deo
0 0

n n
= / |u'|? dz + / (max{u’ + \,0} —u')*dz
0 0
where ) is such that
M -
(3.42) / max{\ + [v'[,0} dz = min{y, b — a}.
0

Therefore, variations of the form (u + ep, max{u’' + A, 0}) in the functional (3.39) yield the Euler-
Lagrange equation

(3.43) 2u' —max{u' + \,0} =C a.e. in (0, )

for a suitable constant C. From (3.43) it immediately follows that

(3.44) W =C/2 ae onA:={zec(0,p): v <-A}
and

(3.45) W =C+X ae.onB:={ze(0,u): v >-A}L

We claim that u' is constant almost everywhere. If v = 0 then by (3.40) max{u'+ A, 0} = 0 almost
everywhere and so the claim follows immediately from (3.43). If v > 0 then we show that |A| = 0.
Indeed, suppose by contradiction that A has positive measure. Since B must also have positive
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measure (otherwise p = max{u' + A\,0} = 0 a.e. and (3.40) would be violated), from (3.44) we
deduce C' < —2\, whereas from (3.45) we get C > —2\ and thus we have a contradiction. We
conclude that u is affine in the interval (0, p).

We are now in a position to compute explicitly the value of (M, a,b;~y). From the preceding
discussion we know that there is a unique optimal pair (u, p) for (3.39) given by

b—
u(:c)za—i——ax and p=1u'+ A,
@

where A is determined by (3.40) and reads

\_ min{(y— (b-)),0}
n

We conclude that

Y(M,a,b;7)

min {Mp L (-0  min{(y—(b—a)),0}]" }
u>0 L P

_ {2\/M\/(b—a)2—f-(’y—(b—a))2 if y <b-—a,

2VM(b—a) otherwise,

and thus ¥(M,a,b;-) is convex.
Step 2. We now assume that the double-well potential f is lower semicontinuos and piecewise
constant in [0, 1], i.e. there exists a finite subdivision

O=ap<a1 <--<am_1<am=1,

and M; > 0,i=1,...,m, such that f = M; in (a;—1,a;). We claim that

o(v) = min{zw(Miaai—hai;%) D% >0,) vi= min{%l}}

=1 =1
[¢(M1aa0,a1; ')Dd}(M%al,a’Z; ) D"'Dw(Mm,amfl,am; )] (7) if’Y <1,

[Y(Mi,a0,a1; -) O (M2, a1,a2; -)O...0¢%(Mp,am-1,am; - )] (1) ify>1,

where the symbol “0” denotes the infimal convolution (see Rockafellar’s book [24]). Once (3.46)
is established the convexity of ¢ follows from Step 1 and the fact that the infimal convolution of
convex non-increasing functions is still convex and non-increasing (see again [24]).

In order to prove the claim, we first observe that there exists an optimal pair (u,\) for the
infimum problem defining ¢(y). Indeed, the same argument used in the proof of Theorem 3.5
works without changes if assume the double-well potential to be just lower semicontinuous. We
also recall that v must be strictly increasing in the set »~'(0,1). Since min,¢(o,1) f(u) > 0 the set
u~1(0,1) is a finite interval, and taking into account the strict monotonicity of w,

w0,1) = U (o i) e0) U ek

s

=1

where we set
u Hag) =u 1(0) :=max{z € R:u(z) =0} and u (a,)=u '(1):=min{z e R:u(z) =1}
Writing 1; := (v (a;—1),u"(a:)), pi := |1,

¥i == / max{u’' + X,0}dz and wv;(z) :=u(z+u (a;_1)),
I;
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we see that (vi, A) € A, ai—1,a4;%;) (recall (3.38)),

m

Z’yi = / max{u' + \,0} dz = min{~, 1},

i=1 u=1(0,1)
and thus, by the translation invariance of the energy E, we have

¢(v)zZE(u,A;L~) = ZE(vi,A;(o,m))

m
> > (M, a0 %)
i=1
(3-46) > min {Z@/}(Muail,ai;%) 1 20, Z%’ = min{y, 1}} .
=1 =1
For the opposite inequality we choose 71, ..., ¥mn such that
m
(3.47) > 4 = min{y,1}
i=1
and
(3.48) Z#’(Mi,ai—hai;%) = min {ZTﬁ(Mi,ai—hai;%) 1y >0, Z%’ = min{~y, 1}}-
i=1 i=1 i=1

Correspondingly, we can find p; and (v;, A;) € A(ws, ai—1,a4;%;) such that
(3.49) E(vi, Ai; (0, 10)) = (M, ai—1, a4 %)-

We now set tg := 0, t; := Z;zl Wi, fori=1,...,m,

0 if x <0,
w(z):=Quvi(x—t; 1) ifzxe(tiq,t) fori=1,...,m,
1 if ¢ > tn,
and
0 ifx <0,
p(z) := ¢ max{u' + \;,0} ifz € (t;i_1,t;) fori=1,...,m,
0 if x> tn,.

Finally, take A such that fj:: max{u' + A,0}dz = min{y,1}. Clearly (u,)) € A(y), i.e. it is
admissible for the minimum problem defining ¢(-y). Moreover, by (3.47),

+oo LY m
/ pdx = Z/ max{v; + \;,0} dz = Zmin{%,ai —a;_1} < min{vy,1}.
oo =170 i=1
Therefore, by Lemma 3.2 and by (3.5) we deduce that
m L +o0 +o0
Z/ min{\?, |u'|*} dz = / (p—u')?dz / (max{u’ + X, 0} — /)2 dz
i=1 " ti-1

— 00 — 00

Y

(3.50)

m
i=

t;
Z/ min{\2, [u/|2} da.
i—1 Y ti-1
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Using (3.48), (3.49), (3.50), and the translation invariance of E, we obtain

m m m
min {Z Y(Mi,a;1,ai57) v > 0, Z%’ = min{y, 1}} = ZE(Uz',)\z‘; (0, 1))
=1

i=1 i=1

= > E(u,\; (i1, t:))
=1

> > EB(u, A (tio1, 1))
i=1

= E(u,\;R) > ¢(v),

which, together with (3.46), concludes the proof of the claim.

Step 3. Let f be any continuous double-well potential. We conclude by an approximation pro-
cedure. Indeed, construct a sequence f,, of lower semicontinuous double-well potentials satisfying
the hypotheses of Step 2, coinciding with f in R\ (0,1), and decreasing uniformly to f. If we call
¢n the surface energy density associated with f, according to formula (3.1), then by Step 2 we
have that each ¢,, is convex. In order to conclude it is enough to show that ¢, — ¢ pointwise.

Clearly we have liminf, . ¢, > ¢. For the opposite inequality, fix v > 0, € > 0, and choose
t > 0and (u,\) € Ag(7) (see (3.19)) such that u is non-decreasing and E(u, A; (—t,t)) < () +e.
This is possible thanks to Lemma 3.4 and Theorem 3.5. Denoting by FE, the energy associated
with the potential f,, it is easy to see that E,(u, A; (—t,t)) = E(u, A; (—t,t)). Hence

lim sup ¢, (7) < li_>m E,(u, A;(0,t)) = E(u, A;(0,t) < ¢(7) +e.
n—oo n—oo
The conclusion follows from the arbitrariness of €. O

Corollary 3.7. Let ¢5 be the function defined in (3.18). Then ¢s /* ¢ as & — 0T and the
convergence is uniform on the compact subsets of [0,+00).

PRrooF. This corollary follows immediately from Lemma 3.4 provided we show that ¢ = éo.
By Lemma 3.4 we have ¢ = ¢y, and thus ¢, is continuous thanks to Theorem 3.6. This, in turn,
implies that ¢g = ¢o. O

0

oy

FiGURE 1. The surface density ¢.
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3.2. Proof of Theorem 2.1: the case N = 1. Step 1: I'-liminf inequality.
Let &, — 0, u, — w in L'(I), and p, = pu weakly* in M (I). Without loss of generality we
may assume that

liminf F,_(upn,pn) = lim F,_(upn,pn) =< +o00.
n—oo n— oo

Then, since

1
Fe, (Ue,, pe,) > 6—/f(uen)d:c+sn/|u'€n|2d:z,
nJI I

by the well-known Modica-Mortola estimate we get that v € BV (I;{0,1}) and §S,, < co. Extract-
ing a subsequence, if necessary, we may assume that u, — u almost everywhere.

Let zy € S, be a jump point of u and suppose that u({z¢}) < 1. Without loss of generality we
can also assume
(3.51) lim uw(z) =0 and lim u(z)=1.

TTy z—)zg’
Fix § € (0, 3) such that
(3.52) p{zo}) <1-36

and let k¥ € N. By the pointwise convergence of u, and by (3.51), up to a translation we can
find two sequences z1, — x;, and 2, — :L'(')F such that u,(z1,) = 0 and u,(z2,) =1 — 4, and
I, := (%1,n,Z2n) C (—% + xo,xo + %) for n > n(k). For every k € N let 9, be a cutoff function
such that

2 2 . 1 1
suppi/)k§<——+xo,x0+—> and Y =1in (——+w0,xo+—>.

k k k k
We have
limsup/ prndr < lim lim /'¢kpn dr = lim /wk du = p({zo}),
n—oo JI, k—ocon—oo /1 k—oo J1
and thus
(3.53) / pnde < p({z0}) + 6

n

for n large enough. Setting v, (z) := u,(zo + enz) and o, := €,pn(To + €,x) We can estimate:

1 - 1 - 2
an(umpn;In) - f (Un (-’13 $0>> de + — U;z <m 530)‘ dz
En Jr1, En En Jr1, En

) (52) e (22)])

+— On — v, | —— dz
en Jr, €n €n
= [ fewdrs [ P [ (o D)y

Eﬁl(ln—zo) 5;1(171_970) 6;1(171_330)
[t
en (In—wo)
(354 w0 Py [ (max(h el 0} )P

6;1(In—20) 67_11(117,_20)

where in the last inequality we applied Lemma 3.2, and A,, is determined by

(3.55) / max{\, + |v,|,0} dz = / ondz = / pndz < p({zo}) + 9,
ent(In—w0)

ent(In—x0) I,

v

where we have used (3.53). Note that by (3.52) A, < 0. Setting ¥,,(-) := v, (- — t,), where ¢, is
chosen in such a way that ¢, + ¢, (I, — o) is a symmetric interval centered at the 0, it follows
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that (Tn, Ap) € A(s ea'tal (#({zo})) and thus, from (3.54), (3.5), and the translation invariance of

FE we obtain

liminf Fy, (U, pn; In) > Himinf E(Tn, Anjtn + 0 (In — 20)) > ds(u({z0}))-

n—oo n—oo

By Corollary 3.7, letting § — 0, we get
liminf Fy_(un, pn; In) > d(u({zo})).

n—oo

If u({zo}) > 1 then the above inequality is an immediate consequence of Remark 3.1-(ii) and the
classical Modica-Mortola I'-convergence result. Repeating the same procedure in a neighborhood
of each point z € S,, we finally obtain

hnrgng (un, pn; I Z¢ ({z}))-

€S,

Step 2: I'-limsup inequality.
For every M > 0 we consider the following funtional defined for every (u, p) € X(I) as

inf {limsustn(un,pn) 2 (Un, pn) = (u,p) in X(I),/pn dz < M} if w(I) <M,
I

n— oo

F(u,p) :=
+00 otherwise.

It is clear that
I-limsup F;, < Fu
n—oo

for every M > 0, and thus it will be enough to show that
(3.56) Fu(u,p) < F(u, p)

for every M > 0 and for every (u, ) € X (I) with u(I) < M. The advantage of considering F s lies
in the fact that F s is sequentially lower semicontinuous with respect to the 7 X 75 convergence in
X (I). This is an easy consequence of the metrizability of the subset of X (I) where F; is finite.
Note that, on the other hand, the lower semicontinuity of I'-limsup,,_, ., Fr_ is not a priori clear.

We start by constructing a recovering sequence {(un,p,)} for a pair (u,u) such that u €
BV (I;{0,1}) with #S, finite and p € S, where S is the class of all positive finite linear com-
binations of Dirac measures. Write u as

N1 No
B = Z 72521 + Z IBiéyi7
i=1 i=1

where v;, B; > 0, vazll{x,-} = Sy, and y; € I\ S, for ¢ = 1,...,Na. Since the construction
of the recovering sequence will be localized near each atom of u, and wu, will match u on the
boundary of disjoint intervals centered at x; and y;, it suffices to consider the particular case where
p = Y0z, + B0y, with z; € S, and y; € T\ S,. By the same reason it is not restrictive to assume
that u(z) = 0 for z < z; and u(z) =1 for z > z;. For any fixed n > 0, by Lemma 3.4 and Remark
3.3-(ii), we can find ¢t > 0 and (v, \) € Ap ¢(7y) such that

t t
(3.57) f(v)dz + min{\? + |v'|?, 2|v'|*} dz < ¢(y) + 1,
—t —t
where )\ satisfies
t

(3.58) max{\ + |v'[,0} = min{~, 1}.

—t
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Define u,, as

0 ifzeln{y: y<azi},
2(x — 1) —ent .
Up(z) =< v — if x € (z1,21 + ten),
1 otherwise in I,
and p, by

( A

max |u'n|+,0} for z € (z1, 1 + teyn),
En
max{y — 1,0}

_— = for x € (z1 + tep, 1 + ten, + \/En
o) =} (e e V)
NG for z € (y1,91 + \/2n)s
0 otherwise in I.

\
Note that p,, is well-defined when n is large enough. Clearly u,, — u in L*(I), and using (3.58) it
is also easy to see that [} p, dz = pu(I) =+ B for every n and p, X 4. Moreover, we have

1 x1+ten xT1+ten

Fo(umpn) = Flue,) do+ e / 2 dz

En T 1

z1+ten A 2
—i—sn/ <max {|u'n| + —,0} - |u;|) dz
1 En

+e /11+t6n+ﬁ (max{’Y - 1,0})2 dx +¢ /yﬁﬁ ( b >2 dz
" x1+ten vV €n " Y1 \/En

t t
= / f(v)dz + / min{\? + ||, 2|v'|*} dz + (max{y — 1,0})2 Ven + B3 \/En,
—t —t

where the second equality is obtained by a change of variables and by (3.5). Therefore, recalling
(3.57), we deduce that

lim sup Fy, (tn, pn) < ¢(7) + 1.

n—oo

The arbitrariness of n yields
(3.59) F(u, p) < F(u, p)
for all M > 0 and for all (u,p) € BV (I;{0,1}) x S with u(I) < M.

In order to remove the restriction on p (i.e. p € S), we decompose p as p = p| Sy + p[(I'\ Su)
and construct a sequence of purely atomic measures v € S such that v;|S, = 0 for every k,
ve(I\ Su) = (I \ Su), and v, = p|(I\ S,). Setting pg := pu|Sy + vi it follows that ug € S,
pe — p, and F(u, pg) = F(u, p) for every k. Therefore by the lower semicontinuity of Fs (with
M > u(I)) and by (3.59) we have

I-limsup F., (u, ) < Far(u,p) < liminf Fpr(u, px) < lim F(u, px) = F(u, p)
n—oo k—o0 k—o0

and this concludes the proof. a

3.3. The optimal profile. In this subsection we show that for a large class of double-well poten-
tials the optimal profile problem admits a unique (up to translation of the function u) minimizing
pair (u, A), and we provide an explicit construction. The additional assumptions on the double-well
potential f are the following:

H1) the restriction fjjo,) is of class cl

H2) there exists ug € (0,1) such that ' > 0in (0,up) and f' < 0 in (ug,1).
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For simplicity, in the sequel we will assume in addition
H3) up = 1/2 and f is symmetric with respect to 1/2, that is f(u) = f(1 — u) for every
u € (0,1).
The symmetry condition stated in H3) will allow to simplify some arguments, but it will be clear
that all the analysis below can be extended with minor changes to the case where just H1) and
H2) hold. A typical example of potential satisfying our hypotheses is given by f(u) = u?(1 — u)2.
Fix v € (0,1) and let (u,\) € A(7) be a minimizer for the problem defining ¢(v). In view of
Theorem 3.5, we already know that u must be non-decreasing and in fact strictly increasing in the
set u~1(0,1). We claim that u is of class C!. Indeed, setting p := max{u’ + ),0}, by Lemma 3.2
u minimizes the functional

+oo +oo +o0
vr—>/ f(v)dx—i—/ |v'|2dx+/ (p— [v'|)? dz
—o0 —o0 —o0
among the functions v satisfying the same conditions at infinity as u and thus, using the Euler-

Lagrange equation, we deduce the existence of a C! function g, with ¢’(z) = f’(u(z))/2, and of a
suitable representative of u’ (still denoted by u') such that

(3.60) 2u'(z) — max{u/(z) + A\,0} = g(z) forallz € R.

In order to show that «’ is continuous, let z,, — = and assume first that u’(z) > —\. Then from
(3.60) we get g(z) = u'(z) — A > —2X\ and so, by the continuity of g (see H1) and again by (3.60),
2/ (z,) — max{u'(zn) + A, 0} > —2 for n large. It follows that necessarily u'(z,) > —A for n large
and thus

U (zn) — A = g(zn) = g(z) =u'(z) — A,
that is, u'(z,) — v/(z). A similar argument shows that if v’(z) < —X then max{v'(z,)+X,0} = 0
and thus, from (3.60),

lim 2u/(z,) = nlLIr;o(Zu'(mn) + max{u'(z,) + A, 0}) = Jim 9(zn) = g(z) = 2/ (2),

n—oo

which concludes the proof of the continuity of u'.

Now taking into account condition H2) and the strict monotonicity of u in uw~1(0,1), an ele-
mentary study of the differential equation (3.60) yields the following conclusion: After translation
of the function u, there exists ¢t > 0 such that

(3.61) {z eR: ¥ (z) < =A} = (-00,0) U (t,+00) and {z eR:u'(z) > -A} =(0,1),

and u satisfies

(3.62) 4" = f'(u) in (—o0,0) U (¢, +0o0),
and
(3.63) 2u" = f'(u) in (0,t).
Moreover,
1
(3.64) 0 <u(0) < 5 and  u/(0) =4/(t) = -\
Next we show that all the conditions listed above, together with the volume constraint
—+oo
(3.65) / max{u' + \,0}dz =,
— 00
determine uniquely v and \. First we observe that equation (3.62) integrates in (—o0, 0) to
UI — f(u) + C,

2
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for a suitable constant C. Since lim,_, o u(z) = 0 and liminf, , . u'(z) = 0, we deduce that
C = 0. The same conclusion holds in (¢, +00), and thus

f(u)

(3.66) u = - in (—00,0) U (¢, +00).
In particular, using (3.64) we get 2A% = f(u(0)) = f(u(t)), or equivalently,
(3.67) w(0) = h(2)?)  and  wu(t) =1 — h(2)?),

where h denotes the inverse of f|(o,1/2). Note that in the second equality in (3.67) we used the
symmetry of f (see condition H3)). Arguing as before and using now (3.63), we have that u’ =

f(u) + C in (0,t), where, by (3.64) and (3.67), C := (v/(0))* — f(u(0)) = A2 — f(h(2)?)) = —\2%.
It follows that u(g,;) coincides with the solution uy of the Cauchy problem

ul)‘ - f(’U,)\) - )‘27
(3.68) {u,\(O) = h(2)\?).

From (3.67) and (3.68) we get

1—h(2)2) 1
(3.69) t=t(\) = / ——du
h(22%) flu) =22
Also, the volume constraint (3.65), (3.61), (3.67), and (3.69) yield
t 1—h(2)2) A
'7:/u'—i—)\d:v:u(t)—u(O)—l—)\t:1—2h(2)\2)+/ —du.
0 h(2)2) flu) = X2
Setting
) 1—h(2)2?) A
3.70 F(A) :=1— 2h(2) +/ A )
(3.70) (N (2X%) o) ) = %
we have

oo [T W
0= [y GO

that is, F is invertible and thus ) is uniquely determined as A = A(y) = F~ ().

Since all the solutions of (3.66) taking values in (0, 1) are obtained by translating the particular
solution ug which satisfies uo(0) = 1/2, there exist 7y and 72 such that

ul(*oo,O)(-) =up(-+711) and ul(t,+oo)(') =ug(- + 72).

In order to identify 77, observe that

(3.71) h(2)?) = u(0) = /_0 o dz _/ \/m / \/7

and so 71 is uniquely determined as a smooth function of A. The symmetry of f yields

(3.72) up(z) =1—wup(—z) rmforz>0 and 7o=—-t—m.

Finally, note that X is a C? function of v, while ¢, 71, and 75 are C! functions of A\. This means
that the dependence of the solution (u,\) on 7 is at least of class C1, and, in turn, the function ¢
is of class C! in (0,1). In fact, all functions A, ¢, 71, 72, and therefore ¢ inherit at least the same
regularity as fijo,1- In particular, if f|jo,1] is analytic then ¢,1) is also analytic. We summarize
what we proved so far in the following proposition.
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Proposition 3.8. Let f be a double-well potential satisfying the conditions H1), H2), and H3) listed
above. Then for every v > 0 the optimal profile problem (3.1) admits a unique (up to translations
of the function u) minimizing pair (u,\) given by:

A=X()=F'(y),

where F is the function defined in (3.70), and

ug(T1(A) +z) in (—00,0),
(3.73) u(z) = { ua(z) in (0,t(N)),
ug(T2(A) + ) in (¢(N), +00),

where t(\) is given by (3.69), T1(X) is smplicitly defined in (3.71), T2(A) = —t(A) — 11(A), and ug
is the solution of the equation (3.66) satisfying uo(0) = 1/2. The dependence of the solution on v
is as smooth as fj0,1), and, in turn, @|o,1) has at least the same regularity as f|j0,1)- Moreover, ¢
is continuously differentiable in (0, +00).

PROOF OF PROPOSITION 3.8. In view of what was established prior to the statement of Propo-
sition 3.8, all it remains to prove is the global C! regularity of ¢. To this end, it is enough to show
that lim,_,;- ¢'(y) = 0.

Fix v € (0,1) and consider the minimizing pair (u,A) constructed above. We will write u =
u(7,z) to highlight the (C'-)dependence of u on v. Clearly, from the definition (3.73) of u, we
have

(3.74) ¢(v) = E(u, ;R) = E(uo(r1 ++), A; (—00,0)) + E(ux, A; (0,1)) + E(uo(2 +-), A; (¢, +00)).

Using the identity 2|uf|? = f(uo) and (3.72), we easily get

71(A)
E(uo(m1 + ), A5 (=00,0)) + E(uo(r2 + ), A; (£, +00)) = 41 (o) de,
whence
d 71(A)
(3.75) ™ (4 1 f(uo) dw) = 4f (w0 (i (V)L (WA = 8X*T'X,

where we used that f(uo(71)) = f(u(0)) = f(h(2A?)) = 2)2. Using (3.70) and (3.71) we also have
(3.76)

Syl W) ey [T fw) " B
1) = f(uo(T1)) = TeN) ¢ A== </h(2/\2) (f(u) = A2)3/2 ‘ ) ‘

By (3.75) and (3.76) we conclude

d

& (E(uo(1 + ), X5 (—00,0)) + E(uo(r2 + +), X; (t,+00))) (7n)
(3.77) = —32X2h/ (22N

Next, since ' > —A in (0,%())), we have

t(A) uy |?
E(ux, X; (0,¢(N))) = /0 (f (un) + ‘%

) dz + M\*t()).
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In order to determine its derivative we first assume that fj[o 1) is of class C2. This implies that
(7,z) = ux (7, z) is of class C? as well, and so:

(B 0. ) = (f(ux(%t(/\))) + gm0t )t’(A)A'
+ /0 o ( f’(uA)%—qf; + 2%7;*;9;;; ) dz 4+ X' ()X + 22Nt(N).
We recall that ux(v,0) = h(2)‘2)a ux(7,t(N) = 1 - h(2)‘2)7 flur(r,t(N)) = 2)%, %L;('Ya 0) =

Ouy

%2 (7,t(A)) = =, and uy solves (3.63). In particular,
T2 0t00) = GROLN) — GROHNE AN = ~4H NI + A ()N

Therefore, after integration by parts we obtain

d , ) t\) ’ 52
B0 = N+ [0 () 28R ) de

0
(r,t(V)
+[z%%]
97 02 ] 3,0
(3.78) = 222 (AN 4+ 16A2H (2X%) X + 2DNt(N).

Moreover, by (3.69)

+2ANH(N)

_ 2
(3‘79) 2)\2tl()\))\/ — 16A2h/(2A2)AI + /1 h(2)\ ) 2A3AI2 - d/u“
neaz)y  (f(u) —A2)¥

Summing up, by (3.69), (3.77), (3.78), and (3.79), we finally get

du.

(3.80) ) = / R g RN gpay

———du+ a5
r2x?) A/ f(u) — A2 heae)y  (fu) — A2)3/2
If f is simply of class C', then we proceed by approximation, i.e. we construct a sequence of

C?-potentials f, satisfying the assumptions H1), H2), and H3) and converging uniformly to f in
[0,1]. Then the corresponding sequence ¢, converges to ¢, and by the above arguments we obtain

2 2
(3.81) Pn(7) = / FEW X, [P 20N,
" hn(222) v fn(u) — A2 hn(222) (fn(u) — )‘%)3/2 ’

where A, X, and h,, are defined exactly in the same way with f replaced by f,. Note that all
these quantities depend on v and f,, only, and not on f], nor on f)/. It is then easy to verify that
An, A, and h,, converge to the corresponding quantities A, X', h. In particular, the right-hand side
of (3.81) converges to the right-hand side of (3.80) which must then coincide with ¢'. We leave
the details to the reader. We deduce that (3.80) holds also if f is of class C!. Moreover, since
by construction f, > 2A2 in the interval (h,(2)2),1 — h,(2A2)), we also have that f(u) > 2A? in
(h(2A?),1 — h(2)?)), and thus both integrands in (3.80) are dominated by 2)’. Since ) vanishes as
v — 17, the Dominated Convergence Theorem implies that both integrals vanish as well, that is,
¢'(y) = 0 as vy — 17, and this concludes the proof. O

From the proof of the proposition it is clear that the same approximation procedure holds if f
is simply continuous and has the same increasing-decreasing structure we assumed before. This is
made precise in the following corollary.
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p =max{u’'+ A,0}

FIGURE 2. The solution u to the optimal profile problem and the corre-
sponding p.

Corollary 3.9. Let f be a continuous double well-potential such that f(u) = f(1 — u) for every
u € (0,1) and f is strictly increasing in (0,1/2) and strictly decreasing in (1/2,1). Then ¢ is of
class C1.

PROOF. As in the last part of the previous proof, we can approximate f by a sequence of
regular potentials satisfying the assumptions of Proposition 3.8. Since the expression of ¢!, does
not involve any derivative of f,, we can pass to the limit and deduce that (3.80) still holds. We
then argue as before. (I

We conclude this section with the following:

Corollary 3.10. Under the assumptions of Proposition 3.8, if in addition f |1 is analytic, then
¢ 1s strictly convez in (0,1).

PROOF OF COROLLARY 3.10. From Proposition 3.8 ¢ is analytic in (0,1), and by Theorem 3.6
it is convex. Thus ¢ is either strictly convex or affine in (0, 1), but the latter possibility is ruled
out by the fact that ¢'(1) = 0. O

4. THE N-DIMENSIONAL CASE

Here we prove Theorem 2.1 in the case where Q& C RY and N > 2. As in the 1-D framework we
consider only the case (i), and assume without loss of generality that a(e) =e.

4.1. The T-liminf inequality. Let &, \, 0, up, — u in L'(Q), and p, = p weakly* in M (Q)
be such that
lim inf F, (Un, pn) < +o00.

Extracting a subsequence (not relabeled), if necessary, we may assume that

liminf F,_(un, pn) = lim F._(un,pn),
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Uy — U a.e. in 2, and

1 *
E—f(un) +en (|Vual? + (pn — [Vu,|)?) 2o
weakly* in M (Q). Set p(x) := W( z). In order to proof the I'-liminf inequality it is enough
to show that

do

(4.1) m(f'?)

> ¢(p(z))

for HN¥~l-a.e. x € S,. For every point z € S, where the generalized normal vector v(z) is defined
we denote by Qs the cube of side-length § centered at x and with two of its faces orthogonal to
v(z). Let zg € S, satisfy

(a) limg_,o+ 517N’HN71(Q,;0,5 NSy ) =1

N(Qwo ) 1-N
I 5 .
() 5ot HN- HQuzo,56 N Su) 6—>0+6 #(Qao,6) = p(z0);
(on, ) 1 1-N o d—O' .
(c) 5lio+ HVN"Y(Quo.6 N Su) 515& 0" 0(Qros) = dHN-1|S, (@o)s
N I —N _
(@) lim 5 /Q+ Jule) = 1l = im0 /_ ulo)l s =0,
xQ, zQ,

where we define
Qf 5= {2 € Quos + H(z — o) - v(wo) > 0}.

Note that condition (d) simply states that 1 and 0 are the upper and lower traces, respectively, of
u on S, at xzg. It can be restated as

(dy hm NNz e QF ;¢ u(x) #1} = él_i)r(r)1+ NNz e Q5 ¢ u(z) #0}=0.

We clalm that (4.1) holds for zyp. We treat only the case p(xg) < 1, as the other case reduces to
the standard Modica-Mortola estimate. Fix € > 0 such that

.’1:05.

(4.2) (1—4e) > (1 +¢)p(xo),
and choose § < 1 such that 0(0Qz,,5) = 1(0Q4z,,5) =0,
(4.3) 8N 1(Qao,6) < (1+€)p(20),
d
(4.4) 3N (Qao,s) < (14 s)m(wo),
and
(4.5)

1—¢

e Qs u@ =12 (157)6 e Mee g ue) =0p> (15) ",

By Severini-Egoroff’s Theorem we can find two closed sets C* C {r € Q}
C~ c{z e Q, ;5: u(z) =0} such that

: u(z) = 1} and

E()(s'

wo(;
N (ot (1—5)2 N
L (C’ ) > — 1)

and u, — u uniformly in C* U C~. In particular, we have that the orthogonal projection K+ of
C* onto Q5= Q:o,d NQ,, s> that is, the set

K* .= {y €Qy,s: e (0 g) s.t. y £tv(zo) € Ci}
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satisfies

HN-L(KE) > (1 )26V1
and thus, setting K := K+ N K, we have
(4.6) HV"YK) > (1 — 4e)dV 1.
For every y € ng’é and t € (—%, %) set

Un,y(t) = un(y + tv(zo))-
Now let A,, € R be such that

@7) /Q

We claim that )\, < 0 for n large enough. Indeed, assume by contradiction that A,, > 0 for a
subsequence ny — oo and fix 7 < 1. By the uniform convergence of u,, to u in CT UC~ we deduce
that for k large enough the total variation of uy, , is bigger than 1 — 27 for almost every y € K,
and thus

max{\, + |Vu,|,0} dz = / pn dz.

zq,8 Qmo,J

1(Qzy,5) = lim Pn, dz = lim max{A,, + |Vun,|,0}dz

k—oo Qwo,& k—oo Qw0,5

) 3
> timsup [ [ max{hn, + (ung.) )]0 dedy > timsup [ [ [(une) (O] dedy
KJ-2 KJ-¢

k—00 k—ro0
> (1-48)6N1(1 - 21),
where in the last inequality we used (4.6). Dividing by 6V ~! and recalling (4.3) we deduce
(14 &)p(ao) > (1 - 4e)(1 - 2n),

which contradicts (4.2) if 5 is small enough. Hence A, < 0 for n large enough, and thus using
(4.7), Lemma 3.2, and (3.5), we can estimate

1
F,, (un,pn;Quo,s) > — f(un)da:—i—sn/ mln{)\2+|Vu |2 2|Vug, |}dz
QJ:::O Qmo&
1
> / / 2 (ung) + 2o mind2 (Y () 210, () dedy
5
(4.8) > vny +m1n{/‘l’n+ |(Un,y) (t)|2a2|(Un,y)l(t)|2}dtdya

where we set vy, (1) = Un y (&:n ) and py, := €, An, and, without loss of generality, we assume that
29 = 0. For every y € ng,t; define

)

2
gn(y) == \ max{\, + |Vu,(y + tv)|,0} dt,
-2
and note that
"
(4.9) / , max{un +[(vny) ()], 0} dt = [ max{An + |(uny)'(£)],0} dt < gn(y)
T 2en -2
and that, recalling (4.3),
(4.10) [, om@dy= [ pado< (14 20)p(a0)" "
ng,g Qmo,é
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if n is large enough. By Chebichev’s Inequality and by (4.6) it is possible to find M > 0 so large
that

(4.11) HYN T {yeK: ga(y) <M} > (1 —e)HV Y K) > (1—e)(1 —4e)6™N !

for all n. Moreover, by Corollary 3.7 we can find 79 < 1 such that for all 0 < 7 < g

(4.12) (1) 2 (1 —€)p(y) for0<y< M.

Now by the uniform convergence of u, to u in CT U C~, we deduce that for n large and for
all almost every y € K there exist (sn(y),tn(y)) C (—%, %) such that vy y(sn(y)) = n and

Un,y(tn(y)) =1 — n and therefore, by (4.9) and the very definition of ¢,, we get

8

T F(vny) +min{ug + |(vny) ()17, 2|(v ) (£)[*} dtdy

T 2en

tn(y)
> [ Hon) im0 (O 200 (OF) didy = dn(o(0)

Hence, from (4.8) and (4.12) we obtain

(4.13) F. (s pn; @ao5) > (1—¢) / (9 (v)) dy,

{yeK: gn(y)<M}
for n large enough. Since by (4.10) and (4.11)
1+ 2
gn(y) dy < === P(w0)
][{yeK:gn<y)<M} (1—¢)(1—4e) ’
and recalling that ¢ is convex and non-increasing, from (4.13) we deduce that
- 142
Fe,(unpn; Ques) > (L—e)HV ' ({y € K: gn(y) <M}) ¢ (mp(ﬂco))

> (1= - 4980 (2 e,

for n large enough, where we have used (4.11) again. Dividing this inequality by 6"V !, and using
the fact that

lirIln Fen (una Pn; on,é) = U(on,é)u
and (4.4), we finally obtain
do 1+2¢
m(xo) > (1—¢)(1—-4e)¢ (mp(xo)) .

Owing to the arbitrariness of £ and the continuity of ¢, we conclude that (4.1) holds for any point
o satisfying conditions (a)-(d), that is, for H¥~!-a.e. point zo € S,. This completes the proof of
the I'-liminf inequality.

(1+¢)

4.2. The I'-lim sup inequality. The proof of the I'-lim sup inequality will be split in several steps.

Step 1 Assume firstly that 4 = xanq, where A is an open set with JA a smooth (N — 1)-
manifold, and that p = gHN=!|S, + >.7_, ci6,;, where g is piecewise constant on S, and the
atoms z; are in Q \ S,. More precisely, there exist a finite collection of pairwise disjoint compact
subsets, Ki,..., Km C S, and positive constants 71,..., ym such that gjx, = v and g = 0 on

Su \ UMK;. We also assume that K; = B(y;,r;) NS, for some r; > 0 and y; € S,,. We claim that
there exist v, — u in L' and p, — p with Jo prndz = () such that

. du N-1
. < dHN-1LS, .
(4.14) hrrllisolipFn(van) = /Su ¢ (dHN—lLSu) M
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Since the construction of the recovering sequence can be localized near each set K; and each atom
x;, it suffices to consider the special case where

B = 7XK,HN71 |_Su + ,86107

with v, 8 > 0, K = B(yo,r) NSy for some r > 0 and yy € Sy, and zg € 2\ S,. We fix n < 1 and
choose t > 0 and (u1, A1) € Ag¢(7) such that

t

(4.15) max{\; + |u}|,0} dz = min{~y, 1}
and
(416) E(ula A1 (_t7 t)) < ¢(7) +7,

and let up € H}, (R) with us = x(0,400) in R\ (—t,t) such that (see Remark 3.1)

(4.17) / (F(uz) + 20y) de < $(0) + 1.

-t

We extend u; to the whole real line by X(o,+00) in R\ (—2,¢). For § > 0 we denote K5 :=
B(yo,r +0) NSy, and we choose a cut-off function ¢ € C§°(Sy;[0,1]) such that p =1in K, ¢ =0
in S, \ Ks, and |Vy|leo < C/§ with C > 0 independent of §. Finally, since S, is smooth we
know that the signed distance function d from S, and the projection 7 on S, are well-defined and
smooth in the n-neighborhood (S.), of S., provided 7 is small enough. Moreover, without loss of
generality, we may assume that u(z) =1 if d(z) > 0 and u(z) =0 if d(z) < 0.

We can now define (for te,, < 7)

plr(@))un (42) + (1 - p(r(@)uz (42) iz € (Su)ien N2,

vn () ==
U otherwise,
and
( max {u’l (da(:)) + A1, 0}
6 if z € (Su)te, and w(z) € K,
n
max{y—1,0 .
;z/g_ } if 2 € ((Su)ie, sy \ (Su)ee,) and n(z) € K,
pn(T) = cn "
B . &
f B 2N
oo ifee (:vo,en ),
0 otherwise,

where ap denotes the measure of the N-dimensional unit ball and ¢,, is a normalization constant
chosen in such a way that fQ pndz = p(Q). Note that p,, is well-defined provided that n is large
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enough. We claim that ¢, — 1 as n — oo. Indeed, using the Coarea Formula (see [1]), we have

ten
Ci pndz = (En)*l/ max {u] ((ex) '8) + A\, 0}HY '({z € Q: n(z) € K, d(z) = s}) ds
n JQ —tey
ten+1/en
+(2v/€5) " max{y — 1,0} HY 1 {z € Q:n(z) € K, d(z) = s}) ds
ten
ten
+(2v/&n) " ' max{y — 1,0} HYN1{z € Q:n(z) € K, d(z) = s})ds+ B
—ten—+/En
= I'4I2+13+5.
Since
(4.18) lim HY ' {z € Q:7n(z) € K, d(z) = s}) = HV 1 (K),
s—
and
ten+4/En
@@“574/ HN(fz € Q: m(e) € K, d(z) = s}) ds
n—oo ten
—ten
_ nm(¢sy4/' HY1({z € Q: n(a) € K, d(z) = s}) ds = HN~1(K),
n—00 *t&'n*\/a
we have
t
lim I, = 1TR/rmﬂx+¢ﬁpw”%@eazﬂ@ek;a@:eﬂpdz
n—oo n—oo [_,

t
= ’HN_I(K)/ max{\ + u},0} dz = min{y, 1}V ~1(K),
—t

where the last equality follows from (4.15), and, similarly,
lim I2 + I3 = max{y — 1,0}V ~}(K).

n—00

We conclude that )
lim - [ pudo = MY K) + 6 = u(@),
Q
and thus ¢, — 1. Using this fact and again the Coarea Formula it is now easy to show that p,, — pu.

The convergence of v,, to u is clear.
It remains to estimate F; _(vn,pn). We can write

1
FEn (Unapn) = / 7f(’vn) +€n|an|2 +5n (pn _ |an|)2 dz
{me(su)ten:ﬂ'(w)EK} En
1
+/ = f(vn) + €n|VUn | + €n (pn — |Voa|)? dz
{EG(Su)esn:W(z)eKﬁ} En
1
*/ —J(vn) + €n|Von | + €0 (pn — |Vn)” da
{2€(Su)te,, w(x)EKs\K} En
max{y — 1,0})?2 82
+cn( {74 b N ({:L' € (S’u,)tsn+ﬁ\ (Suw)te, & m(z) € K}) + a\/a
(4.19) = I} +I2+13+O(ven).

Using the Coarea Formula and changing variables as before, we easily get

t

—t
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where h,(s) := HVN"1({z € Q : n(z) € K, d(z) = en5}). By (4.16) and (4.18) we conclude that

(4.20) limsup I, < (¢(7) +mH ! (K).
n—oo
Similarly, one can show that
(4.21) limsup I2 < (#(0) + MHN 1 (QN A\ K).
n—o0

Finally we have the estimate
(4.22) I? < 0(9).
Combining (4.19), (4.20), (4.21), and (4.22), due to the arbitrariness of n and § we can conclude
I- lim_%lp Fe(u,p) < F(u,p) = ¢(7)HN_1(K) + ¢(0)H(0AN K).
€

Similarly to the argument used in 1-D case, it is convenient to restate Step 1 as follows: for
every M > 0 consider the functional
. . X(Q) .
— inf {hmsup F., (un,pn): (Un,pn) — (u, u),/ pndr < M} if w(Q) <M,
Far(u, p) == n—o00 Q
+oo otherwise.

Then
I- limsup < Fs(ua N) < FM(ua /J') < F(U, /J’)

e—0
for every pair (u,u) satisfying the assumptions of Step 1 and with u(Q) < M. As we already
observed the advantage of considering F s lies in the fact that F'ps is sequentially lower semicon-
tinuous with respect to the 7 x 7o convergence in X ().

Step 2 Let u = x(anq) With 84 a smooth (N — 1)-manifold and p = gHN =" S, + 3°7_; cide,
where g : 2 — R is a continuous function. We may find a sequence gi of piecewise constant
functions satisfying the assumptions of the previous step and converging to g uniformly on S,,. We
may also assume that [ gi dHN ! = Js, 9 dHN 1 for every k. Then, setting pg, := gp HY 1| Su+

2?21 cibs,, we clearly have g () = u(Q) for every k and pp, — p. Let M > u(2). By the lower
semicontinuity of F; and from Step 1 we have

[-limsup Fy (u, u) < Far(u,p) < liminf Fpr(u, px)
e—=0 k—o0

IN

iIIl N-—-1
1 /S o) dn

k— oo
= /S ¢(g) dHN ' = F(u, p).

Step 3 Let u = x(ann) With A an arbitrary set of finite perimeter, and let u = gHN LS, +

Z?zl ¢;i0z; where g : Q — R is a continuous function. By a well known approximation result (see

[21]), we may find a sequence {Ax} of open sets such that 0Aj is a smooth manifold and

XA, = Xa in LY(RY) and Per (Ag, Q) — Per (4, Q).
We define py, == gHN"1[0A; + t E;-lzl ¢i0z,, where tj is chosen so that ux(Q) = u(Q). Since by
Reshetnyak’s theorem (see [1])

/Q bgd(HV-1[0A5) - /Q bgd(HN 1|07 A)
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for any 1 € C(Q), we have that t; — 1 and g — p. Set up := Xxa,nq. From the previous step
and again by Reshetnyak’s theorem, we get

[-limsup F:(u, p) < Far(u,p) < liminf Fpr(ug, )
e—0

k—o0

< lim /Q o(g) d(HN " |9.Ax)

k—o0

/Q 6(g) d(HN-1(0" A)
/S ¢(g) dHN ! = F(u, p).

Step 4 Let u = Xx(anq) with A an arbitrary set of finite perimeter, and let u be an arbitrary
positive finite Radon measure. We can construct a sequence {u} of the form

Nk
e = geHN T Su 4+ Y ey,

i=1
where each g : Q@ — R is continuous, g — dH—Nd—IHL—Su in L*(S,; HN 1), and 3 7*, C%zf A

w— UmNdf"lLSuHN —1190*A . Clearly up = p, and from Step 3 we conclude that

I-limsup F. (u,p) < Far(u,p) < likmianM(u,,uk)
—00

e—0

< lim B(gr) dHN 1
k— oo Su

d
= /5' ¢ (d'HN—Nl |_Su> dHN T = F(u, N)'

The theorem is proved. O

From the preceding proof it is clear that given (u, u) € X(Q) the recovering sequence {(uk, pr)}
can be constructed in such a way that ui(2) = p(Q). Moreover, if f grows at least quadratically
near the two wells one can argue as in [13] to show that the constraint [, ux dz = [, udz can be
imposed. In other words, the same I'-convergence result remains true if we fix the volume of both
u and p. In order to state this precisely, assume that f is a continuous double-well potential with
wells at 0 and 1 and that it satisfies the following additional growth assumption: There exist § > 0
and C > 0 such that

f(u) > Clul? and f(1—u) > Cluf?
for |u| < 8. For a € (0,£N(2)) and 3 > 0 consider the space

XP(Q) := {(u, p) € X(Q) : / udz = a and p(Q) = B}

Q
and define
Ge(u,p) if (u,p) € X*P(Q) and p = pdz,
FE ) :={ lwp) ) € XD
400 otherwise,

where G, is the functional defined in (2.1) with a(e) = ¢, and

dp No1
— f X*B(Q BV (Q;{0,1
FoB () 1= /sf(dHNlLSu(‘”)) dH if (u, ) € (Q) and u € BV(2;{0,1})
+00 otherwise,

where ¢ is the function defined in (3.1). Then we have
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Theorem 4.1. Under the assumptions stated above the family {F>P} T'-converges to F** with
respect to the 11 X T2-convergence of X (€2).

5. REMARKS ON STABILITY

The following theorem deals with the existence of local minimizers for the approximating func-
tionals F, (see (2.2)) near a stable configuration of the limit energy F (see (2.3)), in the spirit of
Kohn-Sternberg (see [19]).

Definition 5.1. Let F : L'(2) — R be a functional. We say that u € L*() is a local minimizer
for F if there exists § > 0 such that

(5.1) F(u) < F(v)

whenever 0 < ||u — v||p2 < § with v satisfying the same volume constraint as u, that is, [, udzr =
fﬂ vdz. We say that ug is an isolated local minimizer for F if (5.1) holds with the strict inequality.

Theorem 5.2. Let (uo, o) € BV (£2;{0,1}) x M1 () be such that ug is an isolated local minimizer
for the functional F(-, po). Then there exists a sequence (ue, pe) with

ue — ug in L*(Q) and  pe > po  in My (Q)
such that for € small enough u. is a local minimizer for the functional Fc(-, pc).
PROOF Let (v, pe) such that
ve - ug in L'(Q) and Pe — po  in M4 (Q)
and

(5.2) Fe(ve, pe) = F(uo, po)-

By assumption there exists § > 0 such that F(ug, to) < F(v, o) whenever 0 < |lug — v|jp2 < 8
and [, uo dx = [, vdz. We choose u. solution to the problem

(5.3) min{FE(v,pE): ||lv — uol| L1 Sé/vda::/uod:c}.
Q Q

The existence of such u. is easily deduced by applying the Direct Method of the Calculus of
Variations. We claim that u. — ug. Indeed, suppose by contradiction that (up to a subsequence)
0 < 61 < ||lue —up|| < 4. Since
sup F; (ue, pe) < +00,
€

by compactness we may assume that u. — u* in L*(Q) for some u* € BV(Q;{0,1}). Clearly we
still have 6; < [lug — u*|| < & and [, u*dz = [, uodz. In light of the minimality of u. we know
F,(ue, pe) < Fe(ve, pe) from which we deduce

F(u*,po) < liminf F,(u, pe)
e—0
(54) S lim FE(UEapEE) = F(UO’)U’O)’
e—0

where the first inequality is a consequence of the I'-convergence of F. to F' while the last equality
follows from (5.2). The inequalities in (5.4) are in contradiction with the fact that g is an isolated
local minimizer. Therefore u. — wug, and this concludes the proof of the theorem. [l

We now use the previous theorem to show that the presence of surfactant may influence the
structure of local minimizers. Let  be the two dimensional cube (0,1) x (0,1) and let uy €
BV (€;{0,1}) be a characteristic function whose jump set is made of a finite collection of line
segments parallel to the z-axis. We start by assuming that no surfactant is present in the system,
that is, po = 0. In this situation uy corresponds to a non-isolated stable configuration for the
functional F(-,0). Indeed we can obtain energetically equivalent configurations by sliding a little bit
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the interfaces. As consequence we cannot apply the previous theorem and in fact by a result due to
Gurtin and Matano ([16]) we know that for every e > 0 all local minimizers for F(-,0) are monotone
in the y-direction and therefore they cannot be close to a multiple interface configuration like ug. In
other words for ¢ finite the configuration given by ug is unstable when there is no surfactant. The
situation changes as soon as we add surfactant. Indeed if pg is a positive measure whose support
coincide with the jump set of ug then it is easy to see that ug is an isolated local minimizer for
F(-, po) and thus, by Theoremb5.2 we can find a sequence {p.} of surfactant densities approaching
the limit distribution po and a sequence {u.} of local minimizers for F,(-,p.) converging to ug.
This shows that the presence of surfactant makes it possible to have stable configurations for the
functionals F; close to a multiple interface configuration.

We conclude by observing that so far we considered only configurations which are stable only
with respect to variations of the phase-variable u. It would be interesting to prove the existence
of multiple interfaces configurations which are stable with respect to variations in the pair (u, p).
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