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We discuss a dynamical theory for nematic liquid crystals describing the stage of evolution in which
the hydrodynamic fluid motion has already equilibrated and the subsequent evolution proceeds via
diffusive motion of the orientational degrees of freedom. This diffusion induces a slow motion
of singularities of the order parameter field. Using asymptotic methods for gradient flows, we
establish a relation between the Doi-Smoluchowski kinetic equation and vortex dynamics in two-
dimensional systems. We also discuss moment closures for the kinetic equation and Landau-de
Gennes-type free energy dissipation.

1. Introduction

Dynamics of liquid crystalline systems is traditionally described in a framework of theories com-
bining fluid dynamics equations, constitutive relations between the hydrodynamic stress tensor
and liquid crystalline order parameters, and evolution equations for the latter [3], [6], [9], [12]. In
the absence of hydrodynamic motion, the relaxation of the orientational degrees of freedom is in-
duced by the free energy dissipation. This relaxation is generally slow and can be characterized by
the evolution of topological defects in the order parameter fields. Our goal in this work is to derive
equations of motion for these defects starting from a kinetic Doi-Smoluchowski-type equation [6].
To accomplish this task we use asymptotic methods for gradient flows similarly to the way it is
used in the Ginzburg-Landau theory [4], [7], [13], [14], [16]. We omit most of the technical details
concentrating rather on the methodology and final results. Additionally, we discuss the possibil-
ity of describing the dissipative dynamics in terms of the order parameter fields, similar, to, e.g.,
Landau-de Gennes theory [5]. We also discuss the extent to which the formal moment closures
provide the correct evolution equations.

We choose the Doi-Smoluchowski (D-S) model [6] as the starting point for our analysis, because,
in some respect, it is a microscopic theory, in comparison to, e.g., Ericksen-Leslie [9], [12], or Beris-
Edwards models [3]. In the D-S theory, the state of a liquid crystalline system is described by means
of a probability density of rods orientations; and the D-S equations are kinetic equations for this
density. The other aforementioned models are based on description via its various moments, and
should, in principle, be derived from a D-S-type model. Mathematically, the D-S equations describe
gradient flow dynamics for the Onsager-Maier-Saupe free energy [10] in Wasserstein metric [17].
This makes analysis of the system amenable to methods of the theory of gradient flows [2].

In this paper we are interested in the two-dimensional model. One of the characteristic features
of two-dimensional systems is that the energy of topological singularities, or vortices, diverges log-
arithmically in meaningful asymptotic limits. The Doi dynamics of orientation density reduces
directly to the vortex dynamics. Due to this, it is impossible to find a nontrivial regime in which
a Landau-de Gennes-type gradient flow evolution for the second moment can be derived from
the D-S model. This is different from the three-dimensional theory, where one can reduce the D-S
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dynamics to equations for the second moment [8], [18].

The paper is organized as follows: We start by reviewing the two-dimensional spatially extended
Onsager-Maier-Saupe free energy, introduced in our earlier works [10], [11]. Understanding the
landscape of this free energy provides us with characterization of the states which posses “moder-
ate” amounts of free energy, as compared to the ground, uniform nematic state; we call such states
tempered. These states are uniquely characterized by the location of vortices, and some auxiliary
function, so that the evolution of tempered states may be completely described by the evolution of
these quantities. We then set up the D-S dynamics as a gradient flow dynamics for our free energy,
and carry out an asymptotic reduction. In order to explain the methods and ideas of this reduction
we consider a finite-dimensional example on a rather rigorous level. After that, we implement an
analogous procedure for the infinite-dimensional system, deriving equations governing the vortex
motion. Finally, we derive an infinite hierarchy of equations for moment of the orientation density,
and discuss possible closures.

2. Review of the spatially-extended Onsager-Maier-Saupe model

The main goal of the next two sections is to familiarize the reader with spatially extended Onsager-
Maier-Saupe model [10, 11], and to state the principal results of this paper in its context. As men-
tioned in the Introduction, we specialize to two-dimensional systems.

In the framework of this model, the state of a liquid crystalline system is characterized by the
space-dependent orientation probability density of nematic molecules, $(ϕ, z) integrating to unity
over ϕ for each z ∈ Ω. Here ϕ ∈ [0, 2π) is the orientation parameter of liquid crystalline molecules,
and z ∈ Ω ⊂ C is a spatial variable. Note that we employ complex notation z = x + iy for the
spatial coordinates, as this simplifies many calculations. Refer to appendix for additional details.

The free energy of the liquid crystalline system, E($), is a functional of orientation probability
density $(ϕ, z) and is represented as an integral over the spatial domain Ω of the sum of two
contributions:

E($) =
∫

Ω

[
Fo($) +Fe($)

]
dυ(z). (1)

Hereafter we use dυ(z) = dx dy to denote the volume element in Ω.

The orientational free energy density Fo is an Onsager-type functional,

Fo($) =
∫ 2π

0
$(ϕ, z) ln

[
2π$(ϕ, z)

]
dϕ − γ

2

∫∫ 2π

0
cos 2(ϕ− ϕ′) $(ϕ, z)$(ϕ′, z) dϕ dϕ′ + Cγ, (2)

where the constant Cγ is chosen to have Fo ≥ 0. The positive parameter γ is referred to as concen-
tration.

The elastic free energy density is a quadratic functional of the order-parameter field equivalent to
that of the Landau-de Gennes theory:

Fe($) =
ε2

2
|∇n(z)|2. (3)

Here n(z) is the order parameter field related to the orientation probability density function, $, via

n(z) =
∫ 2π

0
e 2iϕ $(ϕ, z)dϕ. (4)

The positive parameter ε2 in equation (3) is called the elastic modulus.
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A useful observation is that the total free energy (1) may be decomposed in the following way:

E($) =
∫

Ω

[ ε2

2

∣∣∇n
∣∣2 + Wγ(n)

]
dz +

∫
Ω
S($|$̂[n])dυ(z). (5)

Here for a given probability density $, the order parameter field, n, is defined in (4). The potential
Wγ is given by

Wγ(n) = − γn2

2
+
[
n A(n) − ln I0(A(n))

]
+ Cγ, (6)

where we use notation n = |n|. Some of the properties of Wγ(n) and related special functions are
presented in Appendix A. In particular, we must pick γ > 2 to assure the existence of nematic
states.

The locally-equilibrated probability density $̂[n] in equation (5) is related to n via

$̂[n](ϕ, z) =
exp

{
A
(
n(z)

)
cos

(
2ϕ− arg n(z)

)}
2π I0

(
A(n)

) ; (7)

and S($|$̂[n]) is the relative entropy of $ with respect to $̂[n], i.e.,

S($|$̂[n]) =
∫ 2π

0
ln

$(ϕ)

$̂[n](ϕ)
$(ϕ)dϕ. (8)

The field $̂[n] has a straightforward interpretation: whenever $ = $̂[n], S($|$̂[n]) = 0, and thus
$̂[n] minimizes the total free energy in the class of all fields with prescribed order-parameter n(z).

We define the reduced free energy E(n) as a functional of the order parameter n alone,

E(n) =
∫

Ω

[ ε2

2

∣∣∇n
∣∣2 + Wγ(n)

]
dυ(z) (9)

and notice its similarity to the Ginzburg-Landau energy. Thus, from (5) we see that the total liquid
crystalline energy, E($), is decomposed in the sum of a Ginzburg-Landau-type energy, E(n), and
the relative entropy S($|$̂[n]). This allows us to obtain an asymptotic limit in which the orientation
density, $, becomes enslaved to its second moment, n via equation (7).

Multi-vortex patterns are configurations of the order parameter field, n, which appear in the limits
as γ → ∞ or ε → 0. In this work we are interested in the dynamics of liquid crystalline systems
in the limit as ε → 0. Even though this particular limit was not considered in [11], the results
below can be easily obtained by combining analysis in [11] and results presented in [15] for the
Ginzburg-Landau energy.

Consider a family of order parameter fields, nε(z), which satisfy the boundary condition,

nε(z) = neq exp{iΨ(z)}, z ∈ ∂ Ω, (10)

where neq is the minimizer of Wγ(n). Assume that in the limit, as ε → 0, the energy of these order
parameter fields satisfies the bound

1
ε2 E(nε) ≤ πn2

eq |d| ln ε + C, (11)

where d = deg nε|∂ Ω; C is a positive constant independent of ε. (Such configurations are called
tempered.) Then, as ε→ 0, nε(z), converge in appropriate sense (up to a subsequence) to

n∗(z) = neq exp
{

iΦ(z) + i sgn d
d

∑
k=1

arg(z− zk)
}

, (12)
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where Φ(z) is a function with finite Dirichlet energy. Such a field n∗(z) is a particular example of
the so-called multi-vortex field, which in general may be represented as

n∗[z1, . . . , zN ; d1, . . . , dN ](z) = neq exp
{

iΦ(z) + i
N

∑
k=1

dk arg(z− zk)

}
. (13)

In this paper we allow the vortices to have different degrees dk = ±1. It is possible to show,
that the results valid for tempered states nε(z) hold in the setting when vortices have degrees
dk = ±1, provided nε(z) stays close to a multi-vortex configuration (13). In this case we still refer
to such states as tempered. In particular, the limiting equations for the vortex dynamics remain
valid until vortices of different signs approach each other (or the boundary) and undergo collision-
annihilation process that we do not discuss here. Until that, the structure of all tempered states
is completely characterized by the degrees and locations of vortices, dk, zk, k = 1, . . . , N, and the
function Φ(z).

Our derivation of the limiting equations relies on the lower bound on the energy E($ε). This
bound follows from the results obtained in [11] for Onsager-Maier-Saupe energy and in [1] for the
Ginzburg-Landau energy:

E($ε)

ε2n2
eq
≥ πN ln ε + NE0 + Ẽ(z1, . . . , zN ; Φ) +

1
ε2n2

eq

∫
Ω
S
(
$ε
∣∣$̂[n∗])dυ(z). (14)

Here E0 is a fixed constant related to the optimal profile problem, the renormalized multi-vortex
energy is given by

Ẽ(z1, . . . , zN ; Φ) =
1
2

∫
Ω
| ∇Φ(z)|2 dυ(z) + U(z1, . . . , zN), (15)

where the first term is the Dirichlet energy of the field Φ(z), which satisfies the boundary condition,

Φ(z) = Ψ(z)− i
N

∑
k=1

dk arg(z− zk), z ∈ ∂ Ω; (16)

and the second term is the multi-vortex potential,

U(z1, . . . , zN) = − π
N

∑
j, k=1
j 6=k

dkdj ln |zk − zj| (17)

+
N

∑
k=1

dk

∮
∂Ω

ln |z− zk|dΨ(z) − 1
2

N

∑
j, k=1

dkdj

∮
∂Ω

ln |z− zk|d arg(z− zj).

In this work we impose the Dirichlet boundary condition on the order parameter fields, n(z), on
∂ Ω, i.e., we prescribe the function Ψ(z), cf. (10). Therefore the multi-vortex potential U may be
expressed explicitly as a function of vortex locations. This contrasts with a situation when the
Neumann boundary condition is used. In that case, the multi-vortex potential also depends on the
function Φ(z). This may be seen if we rewrite the second term on the right-hand side of (17) in
terms of Φ(z) using the identity (16) (as the function Ψ is not given). Therefore the multi-vortex
potential, U, also depends on the boundary value of Φ(z).

The energy decomposition (14) allow us to undertake an asymptotic reduction in the limit of
small ε. We see, that, as ε→ 0, the relative entropy term forces $(ϕ, z) to remain close to $̂[n∗](ϕ, z)
at all times. Consequently, any gradient flow dynamics preserving the temperedness condition
reduces to the motion of vortices and evolution of the field Φ(z).

4



3. Dissipative Doi-Smoluchowski dynamics

The generalized Doi-Smoluchowski kinetic equations [6] describe evolution of the density of liq-
uid crystalline molecules c(s, r; t) at a position r ∈ R3 and orientation s ∈ S2. In general, the
D-S dynamics includes the hydrodynamic interactions and diffusive transport of the spatial and
orientational degrees of freedom. In this paper we consider the stage of evolution at which the hy-
drodynamic and diffusive transports of the spatial degrees of freedom have already equilibrated,
and the evolution proceeds via diffusion of the orientational degrees of freedom. In this regime the
concentration of liquid crystalline molecules is constant,

c(r; t) :=
∫

S2
c(s, r; t)ds = const; (18)

and the D-S equations may be rewritten in terms of the space-dependent probability density of
molecules orientations, $(s, r; t) := c(s, r; t)/c(r; t):

∂t $(ϕ, z; t) = ∂s ·
[

$ ∂s
δE
δ$

]
, (19)

where ∂s and ∂s · denote the gradient and divergence operators on the sphere S2; δ/δ$ is the
usual Euler-Lagrange variational derivative; and E($) is the free energy of the system. In the two-
dimensional model that we consider in this work, this equation becomes

∂t $(ϕ, z; t) = ∂ϕ

[
$ ∂ϕ

δE
δ$

]
, (20)

where ϕ ∈ [0, 2π), and E($) is the spatially-extended Onsager-Maier-Saupe free energy (1). Explic-
itly, equation (20) may be written as

∂t $(ϕ, z; t) = ∂2
ϕϕ $ − 2 Im

[
∂ϕ($ e−2iϕ)L n

]
, L = ε2∆+ γ. (21)

Prescribing the boundary conditions on ∂ Ω for $ directly is physically meaningless (there is no
physical mechanism which would allow us to manipulate the density of orientations directly), and
mathematically ill-posed. In this work we impose the Dirichlet boundary condition on the order
parameter field:

n(z) = neq exp
{

iΨ(z)
}

, z ∈ ∂ Ω, (22)

where Ψ is defined on the boundary, possibly with a 2πk-jump discontinuity somewhere on ∂ Ω,
as only values of Ψ(z) mod 2π are relevant. Physically, this corresponds to the strong anchor-
ing regime. Note, however, that Neumann, Robin, or mixed boundary conditions may be treated
similarly, and result in different expressions for the renormalized multi-vortex energy.

We would like to study the dynamics prescribed by (20) in the limit when ε � 1. This scaling
corresponds to a regime when the defect cores shrink to a point and is motivated by our goal
to understand the global evolution of patterns arising in the system, rather than the particular
details of dynamics in vicinity of defect cores. Observe, that because of the energy decomposition
(14) in order to obtain a nontrivial dynamics, when the system does not immediately relax to the
equilibrium state, we must consider (20) on a slower timescale t′ = ε2t (dropping primes in what
follows). The dynamics on this timescale is given by

∂t $(ϕ, z; t) =
1
ε2 ∂ϕ

[
$ ∂ϕ

δE
δ$

]
. (23)
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Summary of the results. In this work we show that, as ε → 0, the states of the system are close
to multi-vortex configurations prescribed by (13), and the dynamics (23) may be reformulated in
terms of the dynamics of vortices zk and the field Φ(z). In particular, on the O(1) timescale, the
vortices are stationary, while the field Φ(z) evolves according to heat equation,

∂tΦ(z; t) =
4
|Ω|τγ

∆Φ, z ∈ Ω, (24)

with the boundary condition

Φ(z; t) = Ψ(z) −
N

∑
k=1

dk arg(z− zk), z ∈ ∂ Ω. (25)

Here τγ is related to parameters of the system via formula (75). In order to obtain the motion of
vortices, we must rescale the time yet again, introducing

t′ = − 8t
πτγ ln ε

. (26)

On this time scale, the function Φ(z; t′) is a harmonic function satisfying the same boundary con-
dition (25), while the vortices move according to the gradient flow equations generated by the
renormalized multi-vortex energy given by (17):

żk(t′) = − ∂z̄k U
(
z1, . . . , zN

)
. (27)

We want to remark that in the natural regime of the Doi-Smoluchowski dynamics, which we
consider in this paper, it is impossible to obtain a closed evolution equation for the order parame-
ter field n(z), without immediately reducing it to the dynamics of vortices. This is a consequence
of the fact that the reduction of the dynamics of $(ϕ, z) to configurations defined by $̂[n] (which al-
lows one to express all the relevant quantities in terms of n) happens in the same limit as reduction
of n(z) to multi-vortex configurations prescribed by n∗. This can be seen from equation (5), where
the boundedness of the energy E($)/ε2 simultaneously imposes constraints on the relative entropy
S($|$̂[n]) and the potential Wγ(n), making the reduced free energy E(n) singular. Reduction to a
theory involving exclusively the order parameter n would be possible if an additional large pa-
rameter appeared in front of the relative entropy term in (5), without affecting the potential Wγ.
However this is impossible due to the fact that both these terms appear as parts of the same entropic
term in the Onsager energy [11]. The situation is somewhat different in three dimensions, because
in three-dimensional systems, the topological singularities do not possess infinite energy and thus
the analogue of the reduced free energy E(n) remains nonsingular in such a limit. See [8] and [18],
where a reduction of Doi-Smoluchowski-type kinetic equations to Ericksen-Leslie equations was
carried out.

In the following sections we will derive equations (24) and (27) from the D-S evolution (23)
using ideas from the theory of gradient flows. To familiarize the reader with these ideas, we first
discuss a finite dimensional example, in which we explain the methodology and derive equations
for gradient flow dynamics constrained to a submanifold by a large drift generated by the diverging
part of the energy. Then we proceed to the analogous derivation for the D-S dynamics. In the
final section of this paper, we rewrite equation (23) in terms of an infinite hierarchy of evolution
equations for moments of the orientation density and discuss possibilities for various closures of
this hierarchy.
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4. A finite-dimensional example

Suppose we are solving a (gradient flow) differential equation for x(t) ∈ Rn,

ẋ(t) = −D(x) ∂xE(x), (28)

where E : Rn → R is the energy function; D(x) is a symmetric positive semi-definite n× n matrix.
Assume that all the quantities that we employ are sufficiently regular to guarantee well-posedness
of our formal derivations. Our first goal is to show that the vector problem (28) is equivalent to a
single scalar inequality, which allows us to interpret solutions of (28) as curves of maximal slope for
the energy function, E. Next, we will show, that if the energy depends on a small parameter, ε, in
such a way that, as ε → 0, solutions become constrained to a submanifold of Rn, we can describe
the limiting curves as curves of maximal slope in some native parameterization of this manifold.

Formulation via curves of maximal slope. Consider an arbitrary curve x(t), t ∈ [0, T], which is
such that ẋ ∈ rng D(x) for all t. For variation of E(x) along this curve, we have

E(t)− E(0) =
∫ t

0
∂xE

(
x(s)

)
· ẋ(s)ds. (29)

Here we allow for a slight abuse of notation, employing E(t) instead of E
(

x(t)
)
. Let G(x) be the

generalized inverse of D(x), in the sense that G is a symmetric matrix with the same range and kernel
as D, inverting D in its range (for each x). Such generalized inverse is defined uniquelly. Observe
that both D and G are positive semi-definite, they commute, and posses unique symmetric square
roots. Observe also that DG acts as identity on ẋ. Thus we have,

E(0)− E(t) = −
∫ t

0
∂xE ·

[√
DG

]
ẋ(s)ds =

∫ t

0

[
−
√

D ∂xE
]
·
[√

G ẋ(s)
]

ds. (30)

Using elementary inequalities, we obtain (omitting s-dependence),

E(0)− E(t)
(a)

≤
∫ t

0

∣∣√D ∂xE
∣∣ ∣∣√G ẋ

∣∣ds
(b)

≤ 1
2

∫ t

0

(∣∣√D ∂xE
∣∣2 +

∣∣√G ẋ
∣∣2)ds. (31)

Equality in (a) holds, if and only if −
√

D ∂xE and
√

G ẋ are collinear. Equality in (b) holds, if and
only if these quantities are equal by absolute values. Therefore, equalities in (31) are attained, if
and only if √

G ẋ = −
√

D ∂xE(x). (32)

Multiplying both sides by
√

D, we recover (28). Thus, by reversing the inequalities in (31), we
obtain an inequality which is equivalent to the differential equation (28):

E(0)− E(t) ≥ 1
2

∫ t

0

(∥∥∂xE
(
x(s)

)∥∥2
D +

∥∥ẋ(s)
∥∥2

G

)
ds. (33)

Here we denoted (explicitly writing out the derivatives and employing Einstein summation rules)∥∥∂xE(x)
∥∥2

D := Dij(x) ∂jE(x) ∂iE(x);
∥∥ẋ
∥∥2

G := Gij(x) ẋi ẋj. (34)

We say that a curve x(t) is a curve of maximal slope for the energy function E(x) in metric prescribed
by G(x), if ẋ ∈ rng G(x), and the inequality (33) holds for (almost) all t.

In this derivation we started from a differential equation and obtained a scalar inequality, i.e.,
we showed that solutions of (28) are curves of maximal slope for E(x), and vice versa. One could,
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however, start with (33) in a rather general metric space setting, and prove that the curves of maxi-
mal slope exist, posses certain regularity properties, and satisfy some differential equations, when-
ever the energy and the metric are sufficiently regular themselves. Such developments may be
found in the book by Ambrosio, Gigli, and Savaré [2]. Whenever we discuss gradient flow equa-
tions in this work, we understand them in terms of the curves of maximal slope formulation.

Change of variables. Suppose we want to study a family of curves of maximal slope which lie in
an m-dimensional submanifold,M, of Rn in a parameterization native toM. In other words, we
assume that x(t) = χ(y(t)) for y ∈ Rm, m ≤ n, and some map χ : Rm → Rn; and we want to
obtain description of our curves using the y-variables. We will always work within the same chart
ofM, and will not worry about chart transitions here.

Using the chain rule, we immediately get, (employing Greek indices for the y-variables)∥∥ẋ
∥∥2

G = Gij(x) ẋi ẋj = Gij
(
χ(y)

) [
∂αχi(y)ẏα

][
∂βχj(y)ẏβ

]
:= G̃αβ(y) ẏαẏβ =

∥∥ẏ
∥∥2

G̃, (35)

where the m×m matrix G̃(y) is defined as

G̃αβ(y) = ∂αχi(y) Gij
(
χ(y)

)
∂βχj(y). (36)

The matrix G̃(y) has a simple geometric interpretation: it is the metric induced by G on M, ex-
pressed in the y-parameterization. Define D̃(y) as the generalized inverse of G̃(y); and set

Ẽ(y) := E
(
χ(y)

)
. (37)

Let us make a few additional assumptions, which are not required, but simplify some of the follow-
ing arguments. Suppose there exists a neighborhood ofM, in which there exists a non-degenerate
map η : Rn → Rm, such that

y = η
(
χ(y)

)
. (38)

Assume also that the exists another non-degenerate map ζ : Rn → Rn−m, such thatM is the 0-level
set of ζ, and ∂xζ is orthogonal to ∂xη, i.e.,

∂iζ
ν(x) Dij(x) ∂jη

α(x) = 0; α = 1 . . . m; ν = 1 . . . n−m. (39)

Decomposing the x-gradient of E into the sum of gradients with respect to η and ζ, we get∥∥∂xE
∥∥2

D =
∥∥∂ηE ∂xη + ∂ζ E ∂xζ

∥∥2
D =

∥∥∂ηE ∂xη
∥∥2

D + ∂νE
[
∂iζ

ν Dij ∂jη
α
]
∂αE +

∥∥∂ζ E ∂xζ
∥∥2

D

=
∥∥∂ηE ∂xη

∥∥2
D +

∥∥∂ζ E ∂xζ
∥∥2

D ≥
∥∥∂ηE ∂xη

∥∥2
D. (40)

When x = η(y) ∈ M, the last term in (40) is exactly
∥∥∂yẼ

∥∥2
D̃. Thus we get∥∥∂xE

(
χ(y)

)∥∥2
D ≥

∥∥∂yẼ(y)
∥∥2

D̃. (41)

This inequality expresses the fact that by extending Ẽ as E fromM into Rn, we can only increase
the norm of its gradient. Combining equations (35), (41), and (33), we get

Ẽ(0)− Ẽ(t) ≥ 1
2

∫ t

0

(∥∥∂yẼ
(
y(s)

)∥∥2
D̃ +

∥∥ẏ(s)
∥∥2

G̃

)
ds. (42)

Thus we demonstrated that curves of maximal slope in x-parameterization of Rn are also curves
of maximal slope in y-parameterization of Rm, when the latter is equipped with metric inherited
through its embedding as the submanifold of Rn.
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Asymptotic reduction. Suppose now, our energy depends on a small parameter, ε, and the dy-
namics is such that, as ε → 0, all the trajectories xε(t) become constrained ontoM. Let us derive
equations which describe this asymptotic dynamics in terms of the y-variables.

Consider the energy function of the following form:

Eε(x) = U(x) +
1
ε

V(ζ(x)), (43)

where ζ(x) is as above. Assume that U : Rn → R is bounded below; V : Rn−m → R+ has
minimum at the origin and has no other critical points; without loss of generality, set V(0) = 0.
This construction is designed so, that the “fast” flow generated by V will quickly carry solutions to
the vicinity ofM, while it will not affect the dynamics onM itself.

Pick a sequence of initial conditions, such that

xε(0)→ x0(0) ∈ M; (44a)

Eε
(
xε(0)

)
→ U

(
x0(0)

)
. (44b)

The second condition assures that there is no excess energy in the system. Generally, one can show
(by other methods) that this condition is not required, as it will be automatically satisfied after some
initial time of O(1). Assume that, as ε→ 0,

xε(t)→ x0(t), pointwise for t ∈ [0, T]. (45)

This may be proven for sufficiently regular U and V. The energy is non-increasing along the curves
of maximal slope, therefore V

(
xε(t)

)
must remain ofO(ε) for all t > 0. This implies that x0(t) ∈ M

for all t ≥ 0.

We will now show that x0(t) is a curve of maximal slope for U on M equipped with metric
inherited from Rn. First of all, observe, that due to positivity of V,

Eε
(

xε(0)
)
− Eε

(
xε(t)

)
≤ Eε

(
xε(0)

)
−U

(
xε(t)

)
. (46)

Passing to the limit as ε→ 0, using (44b) and the continuity of U, we get

lim
ε→0

[
Eε
(

xε(0)
)
− Eε

(
xε(t)

)]
≤ U

(
x0(0)

)
−U

(
x0(t)

)
= Ũ

(
y(0)

)
− Ũ

(
y(t)

)
. (47)

The pointwise convergence of xε(t) to x0(t) implies

lim inf
ε→0

∫ t

0

∥∥ẋε(s)
∥∥2

G(xε)
ds ≥

∫ t

0

∥∥ẋ0(s)
∥∥2

G(x0)
ds =

∫ t

0

∥∥ẏ(s)
∥∥2

G̃(y) ds. (48)

From (40), using that V only depends on ζ, we get that∥∥∂xEε(xε)
∥∥2

D(xε)
≥
∥∥∂ηEε(xε) ∂xη(xε)

∥∥2
D(xε)

=
∥∥∂ηU(xε) ∂xη(xε)

∥∥2
D(xε)

. (49)

Therefore

lim inf
ε→0

∫ t

0

∥∥∂xEε
(

xε
)∥∥2

D(xε)
ds ≥

∫ t

0

∥∥∂ηU
(
x0) ∂xη

(
x0)∥∥2

D(x0)
ds =

∫ t

0

∥∥∂yŨ(y)
∥∥2

D̃(y) ds. (50)

Using inequalities (47), (48), and (50) in (33), we get the desired result:

Ũ(0)− Ũ(t) ≥ 1
2

∫ t

0

(∥∥∂yŨ
(
y(s)

)∥∥2
D̃ +

∥∥ẏ(s)
∥∥2

G̃

)
ds. (51)
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Thus we see that the limiting trajectories are curves of maximal slope for the “slow” part of the
energy, U, constrained to M. Using the equivalence of this formulation to formulation via gradient
differential equations, we can also state this result in the following manner: the limiting trajectories
may be obtained as x0(t) = χ(y(t)), where y(0) = η(x(0)) and y(t) satisfies

ẏ(t) = −D̃(y) ∂yŨ(y). (52)

Note that the matrix D̃(y) must be computed by inverting the matrix of the metric tensor G̃(y)
given by (36). Calculation of these matrices becomes the only ingredient required for obtaining the
limiting dynamics.

5. Derivation for the Doi-Smoluchowski dynamics

The kinetic equation (20) formally resembles our finite-dimensional ODE example. The density
of orientations $(ϕ, z) plays the role of x-variables, while the vortex locations zk and the function
Φ(z) correspond to the reduced y-variables. Thus we will proceed along the same lines in this
derivation.

Mobility and metric. As in the finite-dimensional example, we can obtain that the dynamics (20)
is equivalent to the following inequality:

E(0)− E(t) ≥
∫ t

0

(∥∥∥∥ δE
δ$

∥∥∥∥2

D̂
+
∥∥ ∂t $

∥∥2
Ĝ

)
dt, (53)

where the operator D̂[$] f (ϕ) :=−∂ϕ

(
$ ∂ϕ f (ϕ)

)
corresponds to the matrix D(x) in (28), and Ĝ = D̂−1

is the generalized inverse of D̂. In order to determine Ĝ, we must solve the differential equation,

− ∂ϕ

(
$(ϕ) ∂ϕ f (ϕ)

)
= u(ϕ). (54)

Let us assume that the support of $(ϕ) is the entire interval, [0, 2π), and treat D̂ and Ĝ as symmetric
operators defined on smooth 2π-periodic functions. Integrating (54) once, we get

v(ϕ) := ∂ϕ f (ϕ) = − 1
$(ϕ)

∫ ϕ

0
u(ϕ′)dϕ′ +

C
$(ϕ)

. (55)

The function v(ϕ) is a derivative, and thus its total integral must vanish; this gives us the condition,

C =

[ ∫ 2π

0

dϕ

$(ϕ)

]−1 ∫ 2π

0

1
$(ϕ)

∫ ϕ

0
u(ϕ′)dϕ′ dϕ. (56)

We do not need to integrate equation (54) second time, as it is convenient to define Ĝ using v(ϕ).
We only need Ĝ as a bilinear form; for its action we have, whenever u, ũ, f , f̃ ∈ rng Ĝ,

(u, Ĝũ) = (D̂ f , ĜD̂ f̃ ) = (D̂ f , f̃ ) = (− ∂ϕ $ ∂ϕ f , f̃ ) = ($ ∂ϕ f , ∂ϕ f̃ ). (57)

Writing this down explicitly in terms of v(ϕ) and ṽ(ϕ),

(u, Ĝũ) =
(
u,
[
− ∂ϕ $ ∂ϕ

]−1ũ
)

:=
∫

Ω

∫ 2π

0
v(ϕ, z) ṽ(ϕ, z) $(ϕ, z)dϕ dυ(z). (58)
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Structure of the slow manifold. The manifold M corresponds to the set of optimal orientation
densities produced by multi-vortex maps. Let us use the hat symbol, “ˆ” to denote such configura-
tions; we have, as in (7),

$(ϕ, z) = $̂[n̂](ϕ, z) =
[
2π I0

(
A(n̂)

)]−1
exp

[
A(n̂) cos(2ϕ− arg n̂)

]
, (59)

where the order parameter field is parameterized by vortex locations, zk, k = 1, . . . , N, and the
phase function Φ(z):

n̂[z1, . . . , zk; Φ](z) = n̂[z1, . . . , zN ](z) exp
[
iΦ(z) + i ∑

k
dk arg(z− zk)

]
. (60)

Even though we do not know the exact shape of the function n̂[z1, . . . , zN ](z), the finiteness of
the energy E(n) implies that n̂(z) turns to zero at the location of vortices and approaches neq at
distances larger than O(ε). However, the specifics of this behavior are not important for our pur-
poses. It is sufficient to utilize the following property, which is well-known in the context of the
Ginzburg-Landau theory [15]. Given a tempered family of order parameter fields converging to
a multi-vortex configuration, there exists a covering of the vortices by disks Bzk (Rε) with radii
Rε = O(ε), such that |nε(z)− neq| = O(1) in the exterior of these disks, while∫

Bzk (Rε)
|∇nε(z)|2 dυ(z) ≤ C. (61)

This bound will be used below to estimate the matrix elements of Ĝ restricted to multi-vortex
configurations.

Change of variables. In our liquid crystalline system, the role of the map χ is played by $̂; variables
parameterizing the slow manifold,M, are the vortex locations, zk, and the function Φ(z). Let us
define Y :=(z1, . . . , zN , Φ). Let the index α run through these parameters. Using expression (14)
for the decomposition of energy E($), and proceeding formally in the same way as in the finite
dimensional example, we obtain,

Ẽ(0) − Ẽ(t) ≥
∫ t

0

(∥∥∥∥ δẼ
δY

∥∥∥∥2

D
+
∥∥∂tY

∥∥2
G

)
dt. (62)

This inequality is equivalent to the following differential equations for the reduced dynamics:

∂tY = −D
δẼ
δY

. (63)

Thus we need to compute the matrix G and its generalized inverse D = G−1. We start by computing
the analogues of the derivatives ∂α χi(y). The chain rule gives us,

∂α$̂ =
[
∂n$̂
]

∂αn̂ +
[
∂arg n$̂

]
∂α arg n̂. (64)

Observing that ∂arg n $̂ = − ∂ϕ $̂/2, we can write

∂Φ$̂ = − 1
2

∂ϕ $̂;
(a)

(65a)

∂zk $̂ = − idk
4(z− zk)

∂ϕ $̂

(b)

+ ∂n$̂ ∂zk n̂.
(c)

(65b)
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In order to compute the matrix

Gαβ := (∂α$̂, Ĝ ∂β$̂) =
∫

Ω

∫ 2π

0
vα(ϕ, z) vβ(ϕ, z) $(ϕ, z)dϕ dυ(z), (66)

we must find the fields vα(ϕ, z) by solving the differential equations,

− ∂ϕ($̂ vα) = ∂α $̂, (67)

as described in formulas (55) and (56), and after that, evaluate the integrals in (66). Let us imple-
ment this plan for Gzk z̄k . As equation (67) is linear, its solution may be represented as a sum of
solutions with right-hand sides corresponding to terms labelled as (b) and (c) in formula (65b). For
the solution corresponding to term (b), omitting the z-dependence, we get

v(ϕ) =
2π

$̂(ϕ)

[ ∫ 2π

0

dϕ′

$̂(ϕ′)

]−1

− 1 =
1

2π I2
0(A

(
n̂)
)
$̂(ϕ)

− 1. (68)

For term (c), we first compute

∂$̂

∂n
= A′(n)

[
cos(2ϕ− arg n) − n

]
$̂(ϕ); (69)

now we can see that the solution to (67) with right-hand side given by (69) may be represented as
A′(n)F(ϕ, arg n), where F is some bounded function. Thus we have

vzk (ϕ) = − idk
4(z− zk)

[
1

2π I2
0(A

(
n̂)
)
$̂(ϕ)

− 1
]
+ A′(n)F(ϕ, arg n) ∂zk n̂. (70)

For vz̄k we get the expression, complex-conjugate to (70). Now we compute the integrals in (66).
As, the only non-integrable singularity which appears in the calculation is 1/|z|2, all the terms,
except the product of the first term in (70) and its complex conjugate, contribute in O(1) as ε → 0.
Integrating over ϕ, we obtain

Gzk z̄k =
1

16

∫
Ω

[
1 − 1

I2
0
(
A(n̂(z))

)] dυ(z)
|z− zk|2

+ O(1). (71)

In order to estimate this integral, we first split the domain Ω in two parts: BRε(zk) and Ω \ BRε(zk),
where the radius Rε = O(ε) is chosen so that the inequality (61) holds. Using the properties of the
function A(n) (see formula (95) in the appendix), and taking into account (61), we obtain

Gzk z̄k ≤ C1

∫
BRε (zk)

|∇n|2 dυ(z) ≤ C2. (72)

For the integral over the exterior of the disk BRε(zk) we can use Lemma A.1 from the appendix,
obtaining in the end,

Gzk z̄k = −π

8

[
1 − 1

I2
0
(
A(neq)

)] ln ε + O(1). (73)

The calculation of GΦΦ is equivalent to this one. We do not provide detailed calculations for other
matrix elements of G here; it is only important to note that they all are of O(1) as ε → 0. Summa-
rizing all these calculations we have,

Gzk z̄k = −
πτγ

8
ln ε + O(1), k = 1, . . . , N; (74a)

GΦΦ =
|Ω|τγ

4
+ O(ε); (74b)

Gαβ = O(1), for all other combinations of α and β. (74c)
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Here we introduced a scaling factor,

τγ := 1 − 1
I2
0
(
A(neq)

) = 1 − 1
I2
0(γneq)

; (75)

for the second equality we used that neq satisfies γneq = A(neq).

The final step in our calculation is computation of D, the inverse of G. Using Lemma A.2 from
the appendix (setting δ = −1/ ln ε), we obtain

Dzk z̄k = − 8
πτγ ln ε

+ O(1/ ln2 ε), Dzkzk = O(1/ ln2 ε), k = 1, . . . , N; (76a)

DΦΦ =
4
|Ω|τγ

+ O(1/ ln ε); (76b)

Dαβ = O(1/ ln ε), for all other combinations of α and β. (76c)

Evolution equations for zk, Φ, and timescales. Now, once we have computed the matrix D, we
are finally able to write down equations governing the evolution of vortices, zk, and the function
Φ(z) in the limit as ε→ 0:

żk =
8

πτγ ln ε
∂z̄k Ẽ(z1, . . . , zN ; Φ) + O(1/ ln ε)

δẼ
δΦ

+ O(1/ ln2 ε); (77a)

∂tΦ = − 4
|Ω|τγ

δẼ
δΦ

+ O(1/ ln ε) =
4
|Ω|τγ

∆Φ + O(1/ ln ε). (77b)

From these equations we can see that, as ε → 0, the vortices are stationary, and the only evolution
which occurs in our system is the relaxation of the field Φ(z) governed by the heat equation,

∂tΦ(z; t) =
4
|Ω|τγ

∆Φ, z ∈ Ω. (78)

The boundary condition is inherited from our Dirichlet boundary condition on n:

Φ(z; t) = Ψ(z) −
N

∑
k=1

dk arg(z− zk), z ∈ ∂ Ω. (79)

In order to capture the vortex dynamics, we introduce a slow, rescaled time,

t′ = − 8t
πτγ ln ε

. (80)

On this time scale, in the leading order, Φ is a harmonic function satisfying the same boundary
condition (79). We get that on the t′-timescale, the evolution of vortices satisfies

żk(t′) = − ∂z̄k U
(
z1, . . . , zN

)
. (81)

Note, that the second term on the right-hand side of equation (77a) vanishes because on the t′-
timescale, δẼ/δΦ = 0.

5.1. Equations for the moments and closures

For the sake of completeness, here we derive equations for the moments of the orientation den-
sity (its Fourier coefficients) and formally perform a closure at the level of the first moment. This
closure, even though sensible from the physical standpoint, does not have a valid mathematical
justification, and does not occur in some well-defined asymptotic limit.
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Equations for the moments. Let us define k-th moment (Fourier coefficient) of the orientations
density $(ϕ, z; t) as

n(k)(z; t) :=
∫ 2π

0
e 2ikϕ $(ϕ, z; t)dϕ. (82)

The factor of 2 in e2ikϕ appears because, physically, in nematic systems, the orientations density is
invariant with respect to inversion of liquid crystalline molecules, and thus $(ϕ) = $(ϕ + π), and
all the odd Fourier coefficients of the orientation density vanish. The first moment n(1) is exactly
the order parameter field, n, employed in our work.

In order to obtain dynamic equations for k-th moment we can differentiate equation (82) with
respect to time t and use evolution equation (21) for $, obtaining

∂t n(k)(z; t) = − 4k2 n(k) + 2k
[
n(k−1) L n − n(k+1) L n̄

]
. (83)

It is possible to rewrite these equations in a gradient form using the energy decomposition (5):

∂t n(k)(z; t) = 4k
[

n(k+1) δE
δn
− n(k−1) δE

δn̄

]
− 2ik

∫ 2π

0
e 2ikϕ

[
δS($|$̂[n])

δ$

]
ϕ

$(z, ϕ; t)dϕ (84)

Equations (83) or (84) form an infinite hierarchy, as equation for each n(k) involves n(k+1), etc. In
order to obtain a closed system of equations for some first few moments, one must find a way to
decouple this hierarchy by expressing the higher-order moments via the lower-order ones. This
requires some additional assumptions on the orientation density $.

Maximal entropy closure. A natural physical assumption is that the orientation density relaxes
to its optimal configuration, $̂[n], given by (7), which minimizes the relative entropy term in the
energy (5). (Physical entropy is defined with a sign opposite to the one used here, and thus the
name, “maximal entropy.”) This allows us to calculate the higher-order moments in terms of n
explicitly:

n(k)(z) =
∫ 2π

0
e2ikϕ $(ϕ, z)dϕ =

Ik(A(n))
I0(A(n))

e ik arg n(z) . (85)

In particular, we find that

n(2)(z) =
I2(A(n))
I0(A(n))

e i2 arg n(z) =
n2

n2

[
1− 2n

A(n)

]
. (86)

Now it is possible to close the hierarchy (83) at the level of the first moment:

∂t n(z; t) = − 4n + 2
[
L n − n2

n2

(
1− 2n

A(n)

)
L n̄
]

. (87)

Similarly, the same closure in the gradient form may be obtained from (84):

∂t n(z; t) =
4n2

n2

[
1− 2n

A(n)

]
δE
δn
− 4

δE
δn̄

. (88)

This equation is quite similar to the canonical Landau-de Gennes equation (or Ginzburg-Landau
equation) for the free energy dissipation in L2 metric,

∂t n(z; t) = − δE
δn̄

. (89)

Curiously, (88) becomes exactly (89) (up to a time-scale change), when n(z) = neq; γ = 2 and
A(neq) = 2neq, which corresponds to the isotropic-nematic phase transition. This is exactly when
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the Landau expansion of the free energy is valid. We would like to stress though, that in general,
this maximal entropy closure is only mathematically justifiable when the relative entropy term
in (5) is penalized in some appropriate asymptotic limit. In such a limit, however, the dynamics
prescribed by equations (87) or (88) itself becomes singular and reduces to vortex dynamics, as
explained in this work.

A. Notation and some useful facts

We use bold face font to denote complex-valued functions and variables; regular font for their
absolute values, e.g., z = |z|. Given z = x + iy, the operators ∂z and ∂z̄ are defined as

∂z =
1
2
(

∂x − i ∂y
)
, ∂z̄ =

1
2
(

∂x + i ∂y
)
. (90)

The complex form of Stokes’ theorem may be written as∮
∂ Ω

f (z, z̄)dz = 2i
∫

Ω
∂z̄ f (z, z̄)dυ(z), (91)

where integral on the left is counter-clockwise contour integral, and integral on the right is the
usual area integral, i.e., dυ(z) = dx dy.

Useful identities involving Ln z = ln z + i arg z:

∂z Ln z =
1
z

= 2 ∂z ln z = 2i ∂z arg z; ∂z̄ Ln z = 0; (92a)

d arg z = ∂z arg z dz + ∂z̄ arg z dz̄ =
x
z

dy − y
z

dx. (92b)

Note that integration with d arg z is well-defined in C \ {0}, even though arg z is a multivalued
function with jump discontinuities on closed contours encircling the origin.

Let us state a lemma which is used in estimation of some integrals; its proof is straightforward.

Lemma A.1
Let Ω ⊂ C and BRε(z0) be a disk of radius Rε = O(ε) centered at z0. Assume that µ(ε) → 0 as ε → 0
and a sequence f ε(z) satisfies (1− µ(ε)) ≤ | f ε(z)| ≤ 1 for all z ∈ Ω \ BRε(z0). Then∫

Ω\BRε (z0)
f ε(z)

dv(z)
|z− z0|2

= −2π ln ε +O(1). (93)

Special functions. In our work we use several special functions, such as the modified Bessel func-
tions of the first kind, Iν(λ), and the function A(n). Here is a brief summary of their properties.
The function A(n) is the inverse of I1 / I0, i.e.,

I1
(

A(n)
)

I0
(

A(n)
) = n. (94)

Using the properties of modified Bessel functions, it is straightforward to show that A(n) is a mono-
tone increasing function defined on (−1, 1) with vertical asymptotes at n = ±1; it is odd and convex
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Figure 1: Graphs of the function A(n) (left) and the potential Wγ(n) for γ = 6 (right).

when n > 0. The graph of A(n) is shown in Figure 1. By direct computation we can verify that

0 < 1 − 1
I2
0(A(n))

≤ min(1, Cn2), (95)

for some C > 0 independent of n. This inequality is used in estimation of some of the integrals
occurring in this paper.

The potential Wγ(n) is given by

Wγ(n) = − γn2

2
+
[
n A(n) − ln I0(A(n))

]
+ Cγ, (96)

where Cγ is chosen so that Wγ(n) ≥ 0 with equality achieved at n = nγ
eq. The value of nγ

eq satisfies
γnγ

eq = A
(
nγ

eq
)
. This equation has a nonzero solution for γ > 2, which corresponds to the isotropic-

nematic phase transition. The graph of Wγ(n) is shown in Figure 1.

Here is a lemma which we use to invert the matrix G in Section 5:

Lemma A.2
Let A be a symmetric block-matrix , representable, when δ→ 0, as

A =
1
δ

[
A11 0
0 0

]
+

[
B11 B12
B21 B22

]
+ δ

[
C11 C12
C21 C22

]
+ O

(
δ2), (97)

where Aii, Bii, Cii symmetric matrices; A11 and B22 are invertible; B12 = B†
21, C12 = C†

21. Then its inverse,
A−1, exists for all sufficiently small δ, and is given by

A−1 =

[
0 0
0 B−1

22

]
+ δ

[
A−1

11 D12
D21 D22

]
+ O

(
δ2), (98)

where D12 = −A−1
11 B12B−1

22 = D†
21, D22 = B−1

22
(
C22 − B21 A−1

11 B12
)

B−1
22 .

Proof Computing the determinant of A via expansion with respect to rows corresponding to A11,
we obtain an asymptotic formula, det A = δ−d det A11 det B22 +O

(
δ1−d), where d is the dimension
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of A11. Because A11 and B22 are invertible, det A−1 6= 0 for all sufficiently small δ, and thus, within
this range of δ, A−1 exists.

Let us verify equation (98). Consider

B =

[
0 0
0 B−1

22

]
+ δ

[
A−1

11 D12
D21 0

]
. (99)

By direct computation we obtain,

AB = I + δC + O(δ2); C =

[
A−1

11 B11D12 + C12B−1
22

0 B21D12 + C22B−1
22

]
. (100)

Multiplying (on the left) both sides by A−1, we get

B = A−1
{

I + δC + O(δ2)
}

. (101)

By Gershgorin circle theorem, all eigenvalues of the matrix in curly brackets in equation (101) lie
within O(δ) distance of 1, thus it is invertible, and its inverse is given up to O

(
δ2) by I − δC.

Therefore, A−1 = B
(

I − δC +O(δ2)
)

, verifying the claim. �
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