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Abstract

We study Onsager’s model of isotropic—nematic phase transitions with
orientation parameter on a sphere. We consider two interaction potentials:
the antisymmetric (with respect to orientation inversion) dipolar potential
and symmetric Maier—Saupe potential. We prove the axial symmetry and
derive explicit formulae for all critical points, thus obtaining their complete
classification.  Finally, we investigate their stability and construct the
corresponding bifurcation diagrams.

Mathematics Subject Classification: 82B27, 82D60

Introduction

The theory of isotropic—nematic phase transitions in rod-like polymers and liquid crystals
acquired a solid mathematical background when Onsager introduced a variational model
relating their equilibrium states to critical points of a free energy functional [20]. Ever since,
his approach has become the standard way of describing many associated phenomena, both
static and dynamic [6, 8, 13]. However, the problem of rigorous analysis and classification
of all critical points of Onsager’s functional remained open, and only recently has significant
progress beyond numerical and approximate results been achieved.

Let us begin by reviewing the major contributions to the theory. Onsager’s original
approach is based on the second virial approximation: the second virial coefficient was
calculated for excluded volume interaction between the rods which results in the |x x x|
potential in the variational model (x stands for the director of the rod). Due to the non-analytic
nature of this potential no exact non-trivial solutions can be obtained, and Onsager used a
variational approximation in his studies. The work by Maier and Saupe [19] suggested that
using a similar but analytic potential — (x - x")% +1/3 would yield quantitatively correct results;
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however their investigations involved an additional approximation of the uniaxial mean-field.
(Most of the subsequent studies, as well as ours, employ the Maier—Saupe potential rather than
the original Onsager potential.) A paper by Freiser [11] extends the Maier—Saupe interaction
for applicability to the systems with asymmetrical molecules. Kayser and Raveché [14]
developed an iterative scheme for computation of the axially-symmetric critical points of
the original Onsager model. A mean-field approximation producing equations similar to those
of the Maier—Saupe theory was made by Doi [7], who analysed bifurcations which occur as
the mean field is varied. Some of the first numerical solutions were obtained by Larson and
Ottinger [17] (see also references within) who studied the gradient flow equations for the
Onsager functional (usually referred to as Doi, or Smoluchowski, equations). Effects of the
steady state shear and elongational flows on the Doi bifurcation diagram were numerically
investigated by Bhave et al [2]. These studies were then extended by Wang [21]; Bhandar and
Wiest [1], who considered additional factors, e.g. an external mean-field magnetic potential.
The highly resolved numerical simulations by Forest et al (see, e.g. [10]) reveal many fine
details that appear once various small perturbations are applied to the system. Additional
references to various numerical results in related models may be found in the review by
Kroger [16].

On the rigorous analytical side the current results include a detailed study of a reduced
model (rod orientation is assumed to lie on a circle) by Constantin ef al [4] and Constantin and
Vukadinovic [5], Luo et al [18] and the authors [9]. Constantin et al also considered the full
model on a sphere [3] and deduced an upper bound on the number of critical points from the
analysis of a transcendental equation (constitutive equation) for the orientational order tensor.
However the principal difficulty hindering a complete classification of all critical points, i.e. a
rigorous proof of their axial symmetry, still had not been addressed.

In this work we prove the axial symmetry of all critical points of the Onsager functional
on a sphere with dipolar and Maier—Saupe interaction potentials. We also extend the methods
employed in [9] for the model on a circle and derive explicit analytical expressions for all
critical points and investigate their stability and bifurcations. (Note that we do not make
any additional approximations beyond Onsager’s second virial approximation.) As a result
we produce a complete analytical solution to this remarkable model in statistical physics of
polymers.

Let us review the model and outline our most important results. The state of the system
(aliquid—crystalline suspension) is described by a probability density of rod orientations p (s).
The orientation parameter s belongs to a unit sphere S? in a three-dimensional Euclidean space.
Throughout this paper we routinely use alternative notations for the points on the unit sphere,
e.g.s € S? may be represented as a unit vector in Cartesian coordinates: x = (xy, X, x3) € R3,
|x] = 1; or as angles, ¢ € [0, 27), 0 € [0, 7] in a spherical coordinate frame. In the last case,
unless the polar axis (¢ = 0) and the plane ¢ = 0 are prescribed explicitly, they may be chosen
arbitrarily.

The Onsager free energy functional may be written as

1
Flpl := /Sl |:r,o(s) Inp(s) + Ep(s) ./SZ U(s,sNp(s) ds'] ds. (1

The first term under the integral is the entropic term, the positive parameter t is the temperature
(the Boltzmann’s constant is set to unity). This term is minimized by the uniform density
p(s) = 1/4m and is dominant when t is large. The second term is the interaction term, the
function U (s, s') is called interaction potential (it corresponds to the second virial coefficient).
In this work we consider two interaction potentials: the dipolar potential

Ug(x,x) == —x - x' 2)
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Figure 1. Isotropic—nematic phase diagram for the dipolar interaction. The bell-shaped curve
(symmetric about zero) is the graph of the temperature t versus the order parameter r, given by
(20). The thick solid line corresponds to the stable branches: the trivial state, ® = 0, for t > 1/3;
and the family (19) for < 1/3. The hollow line marks the unstable state, ® = 0, when t < 1/3;
the dashed lines represent asymptotic expansions (25).

and the Maier—Saupe potential [19]
Ups(x, %) := —(x - x)* + 1. 3)

The principal difference between these two potentials is that the Maier—Saupe potential remains
invariant when one of its arguments changes sign; thus it is indifferent to inversion of the rod
orientations. The dipolar potential, in contrast, prefers that all rods have the same orientation;
in a sense, such an interaction may be considered an interaction of ‘arrows’ rather than
‘rods’. Physically this corresponds to the situation when the polymer molecules possess dipole
moment.

In our paper we fix the strength of interaction and vary the temperature 7. Note that since
the system is athermal [6,13], it may seem more appropriate to fix T and vary the interaction
strength (concentration of polymer molecules in the fluid). However, choosing t as a parameter
simplifies many calculations; moreover it only makes a semantical difference: the interaction
strength corresponds (mathematically) to the inverse temperature.

It is not hard to see that the uniform density p = 1/4x is a critical point of the free energy
functional (1) for any 7. It describes the disordered, isotropic phase. For the dipolar potential
we prove that p is a unique critical point (and the global minimizer) when 7 > 7, := 1/3.
At T = 7, it loses stability as a result of a pitchfork bifurcation, and a family of critical points
given by (in a suitable spherical coordinate frame)

pa(p, 0) := 271 e*"(f)cosé) o

appears. The order parameter r(7) is obtained inverting (20). These states become the global
(non-isolated) minimizers and describe the ordered, nematic phase. No other critical points
exist. The corresponding bifurcation diagram (isotropic—nematic phase diagram) is displayed
in figure 1.

For the Maier—Saupe potential we prove that the uniform density is a unique critical point
when 7 > 7* ~ (0.149 and an isolated minimizer for t > 7. = 2/15. Att = t* asaddle-node
bifurcation (a fold) occurs (away from the uniform state), and rwo families of critical points
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Figure 2. Isotropic—nematic phase diagram for the Maier—Saupe interaction. The bell-shaped
curve is the graph of the temperature T versus the order parameter r, given by (27). The thick
solid line corresponds to the stable branches: the trivial state, ® = 0, for T > 2/15; and the stable
prolate family for t < t*. The hollow line marks the unstable states, the dashed lines represent
asymptotic expansions (37).

given by (in a suitable spherical coordinate frame)
Pus(,0) := 27 e r12DG 007D )

emerge; the functions r; () are obtained inverting (27). No other critical points exist. When
T € (7., T*) both families correspond to prolate nematic states; respective probability densities
are concentrated near the poles of the sphere. One of these families is stable, the other is
unstable. The stable prolate states persist for t € (0, 7.) and become global (non-isolated)
minimizers at some 7, € (7., T*). At T = 7. the unstable prolate states ‘collide’ with the
uniform state and a transcritical bifurcation occurs. As aresult, the uniform state loses stability,
and the unstable prolate states become unstable oblate states (respective probability densities
are concentrated near the big circles of the sphere). These unstable oblate states persist for all
T € (0, 7.). The isotropic—nematic phase diagram for the Maier—Saupe potential is presented
in figure 2 (observe its similarity to the Doi’s mean-field phase diagram [7]).

1. Some properties of interaction potentials and critical points

Let us first discuss a few simple but important properties of interaction potentials and critical
points of the free energy functional. Some properties of spherical harmonics are summarized
in appendix B.

Representations of interaction potentials. Observe that potentials (2) and (3) are
eigenfunctions of the Laplace—Beltrami operator (B4) on S:

AU(s,s") =AU, s, 6)
A may act on either variable. For the dipolar interaction A = —2, and for the Maier—Saupe
potential A = —6. The corresponding eigenspaces A and A, are three- and five-dimensional

and are spanned by spherical harmonics y; ,(s) of the first and second-order respectively
(@ =1,2,m = —I,...,1). Therefore, we may expand U (s, s") in the corresponding bases:
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using (B7) we get

1
4

Ug(s,s) = —Py(e-€) = ug m;yl,m@) COR g = =

- (7N

2
/ 2 ’ * / . 8m
UmS(Sv s ) = _§P2(e * e) = Ums Z }’Z,m(s)yz,m(s )7 Ums = _E
m=-2
Euler-Lagrange equation. Let us introduce the thermodynamic potential ® (s) setting
p(s) =: 271 %W, Z= f e 0 ds. ®)
SZ

The normalizing constant Z is called the partition integral. Note that ®(s) is defined up to
an additive constant which is chosen so that ®(s) integrates to zero over the sphere. The
Euler-Lagrange equation for critical points of the free energy functional (1) may now be
written as

rdD(s):/ U(s,s)p(s)ds'. ©)]
SZ

In this paper we mainly deal with the thermodynamic potential @ (s), and the properties of the
corresponding probability density p(s) may be reconstructed from (8).
Applying the Laplace—Beltrami operator on both sides of (9) and using (6) we obtain

AD(s) = A D(s), (10)

i.e. ®(s) is an eigenfunction corresponding to the same eigenvalue as U (s, s”). This implies
that it may be expanded on the same basis {y; , (s)}:

I
() = D Guyrm(s). (1)
m=-—I[
‘We may regard the partition integral Z as a function of the coefficients ¢,, satisfying ¢ = ¢_,,
(this condition is assumed from now on, as we are interested in real solutions):

Z(¢p) = / ™ 2m Bnn(®) 4. (12)
S2?
Hereafter summation over m is always taken over the whole range —/, ..., [. Rewriting the
Euler-Lagrange equation in Fourier coordinates (for the coefficients ¢,,) we obtain
Ty = uz! / Vin(s)e” 2wt B 1w () g (13)
s

and the constant u is defined in (7). Note that y;fm (s) = y1,.—m(s). Equation (13) are equivalent
to the original Euler-Lagrange equation (9): an arbitrary set of the coefficients, ¢,,, produces
a solution of (9) if and only if for any m,

u 0
T = _¢_ma¢;§ In Z(¢). (14)

If ¢, = 0 for some m, we have to verify directly that respective integral in (13) produces
zero. Finally, let us note that the free energy of a critical point may be found (using the
Euler-Lagrange equation) as

2
T

Flpl = —2—||<I>||2 —7lnZ. (15)
u

Now let us consider individually the cases with dipolar and Maier—Saupe interaction potentials
in greater detail.
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2. Critical points for the dipolar interaction potential

For the dipolar potential U (x,x’) = —x - x’ we may compute the partition integral (for any
values of the parameters ¢,,) explicitly. Rewriting (12) in spherical coordinates (using (B6),
I =1) we get

T p2m
Z(¢) — / / eacos@+(ﬁcos¢+y sin @) sin 6 Slngd@ de. (16)
0 0

The parameters, o, B and y, may be easily related to the coefficients ¢,,; however it is sufficient
to observe that

3
rri=at+ fryt = 4—|¢|2. (17)
TT

Integral (16) becomes elementary after an appropriate rotation in R? (see, e.g. [12]):

2 T ] 1
Z(@) =/ / gl cos? sin 6 de df :47r; sinh r. (18)
o Jo

From the Euler-Lagrange equation (9) we may immediately deduce that for all
temperatures T there exists a trivial solution, ® = 0 (corresponding to r = 0, Z = 4m).
All other critical points may be classified by means of the following theorem.

Theorem 1. A function ®(s) is a nontrivial solution of the Euler—Lagrange equation (9) with
dipolar interaction potential if and only if it may be represented as

®(p,0) =rcosb, r>0 (19)

in some spherical coordinate frame. The order parameter r and the temperature T are related by

1
T = —(rcoth r —1). (20)
r

Remark A. Freedom in the choice of a spherical coordinate frame reflects that a whole family
of equivalent solutions may be obtained by an arbitrary rotation of a given solution.

Remark B. Equation (20) is solvable for r if and only if, 0 < t < 1/3. It has two solutions
which differ by sign; however it is sufficient to consider » > 0: the transformation r — —r
corresponds to inversion of the polar axis and does not produce new critical points.

Proof. As shown in section 1, all solutions of (9) belong to the subspace A; spanned by
the first-order spherical harmonics y; , (s). Therefore, after a suitable rotation, any solution
may be represented as (19). Equivalently, this may be obtained observing that (9) implies
(in Cartesian coordinates)

Tdx)=x-e, e = —/ xp(x)ds(x). 21
|yI=1

Choosing e as the polar axis for a spherical coordinate frame, we obtain (19). Note that
all solutions are axially-symmetric (independent of the latitudinal angle ¢ in an appropriate
spherical coordinate frame).

Now let us verify that any function of the form (19) satisfies the Euler—Lagrange equation
and obtain a relation between r and the temperature 7. From the explicit formulae for spherical
harmonics (B6) we conclude that

4r V2
¢o = [T] r, ¢+1 =0. (22)
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Using this in (13) we may see that equations for m # 0 are satisfied trivially (integrals over
the latitudinal angle ¢ produce zeros). Equation for m = 0, e.g. in the form (14), provides the

value of the temperature t (recollect u = —4/3):
1d
T=-—1InZ(r). (23)
rdr
Substituting an explicit expression for the partition integral (18), we obtain (20). ]

2.1. Stability and bifurcation of critical points

A straightforward analysis shows that t(r) given by (20) is a positive symmetric bell-like
function with the maximum t, := t(0) = 1/3, as displayed in figure 1. Its range is (0, 1/3];
thus equation (20) has a unique positive solution r for any t € (0, 1/3). We conclude that for
T > 7, the only critical point is the trivial solution ® = 0, whereas for 7 < t, there also exists
a family of rotation-equivalent solutions described by theorem 1.

Let us analyse the stability of critical points. Consider the trivial solution & = 0 and
the corresponding probability density p = 1/4m. The second variation of the free energy
functional (1) may be written (expanding in terms of spherical harmonics) as

[ l 1

D Fi;[n] =4m;mzl|m,m|2 - 47””,21 M1l (24)
Here 7 is the variation of the probability density p. We see that the second variation is positive
for any n if and only if t > 1/3 = t.. Consequently, the trivial solution is the global (isolated)
minimizer for T > 7.. At t = 7, a pitchfork bifurcation occurs, and stability is transferred to
the family of nontrivial solutions, which become global (non-isolated) minimizers. The same
result may be obtained by direct comparison of the free energies of respective critical points
using formula (15). Summarizing all of the above, we obtain the following theorem.

Theorem 2. When © > 1. = 1/3 the only critical point of the free energy functional (1) with
dipolar interaction potential is the uniform density p = 1/4m, which is the global minimizer.
When t < 1. this (trivial) state becomes unstable and there exists exactly one family of
rotation-equivalent non-trivial critical points, described by theorem I, which are the global
(non-isolated) minimizers.

For completeness, let us also present the leading-order asymptotic expansions of the order
parameter » as a function of 7; they may be easily derived from (20). The corresponding
graphs are displayed in figure 1.

1
r=—+0(), Tl 0;
. ey \ 25)
r? =45(t, — 1) + O(1. — 1)°, T4 T
3. Critical points for the Maier—Saupe interaction potential
Now we consider the Maier—Saupe interaction potential U (x, x') = —(x-x’)>+1/3. Although

itis possible to compute the partition integral (for an arbitrary set of parameters ¢,,) in terms of
hypergeometric series, such a representation does not allow us to extract much of the required
information, and we have to resort to a more delicate analysis.

As in the case of dipolar interaction, there exists a trivial solution @ = 0, valid for all
temperatures 7. All other solutions may be classified using the following theorem.
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Theorem 3. A function ®(s) is a non-trivial solution of the Euler—Lagrange equation (9) with
Maier—Saupe interaction potential if and only if it may be represented as

(g, 0) = r(3cos’ 0 — 1), r#0 (26)

in some spherical coordinate frame. The order parameter r and the temperature T are related by
1 1 377 e
T=—|1l—-—+|— . 27
6r 2r |:nri| erf/3r @7

Remark A. As in the case of dipolar interaction, a whole family of equivalent critical points
may be obtained by an arbitrary rotation of a given solution.

Remark B. Equation (27) is solvable for r if and only if 0 < t < t*, where 7% is the unique
extremum (maximum) of 7 (r)—see discussion following the proof. For any 7 € (0, t*) there
exist exactly two solutions r; »(t) which, unlike in the case of dipolar interaction, produce
non-equivalent critical points.

Remark C. From (26) we may see that ® (¢, 6) does not depend on the latitudinal angle ¢.
This immediately implies the axial symmetry of all critical points.

Remark D. When r < 0 the probability density p(s) = Z -1 exp{—®(s)} is concentrated near
the poles of the sphere; such states are called prolate. When r > 0, p(s) is concentrated on a
big circle (equator); these states are called oblate.

The proof of this theorem is less trivial than in the case of dipolar interaction. We proceed
in two steps: first, by direct computation (analogous to the dipolar case) we prove that any
axially-symmetric function from A, (a subspace spanned by second-order spherical harmonics)
is a solution, and this accounts for all axially-symmetric solutions. Second, we prove that no
other solutions exist. The second part of the proof relies on lemma 1 which is stated and proved
in appendix A.

Proof. Let us first find all axially-symmetric solutions. As shown in section 1, the
thermodynamic potential ® (s) belongs to the subspace A,, spanned by second-order spherical
harmonics. Using lemma 3 (appendix B) we conclude that any axially-symmetric solution may
be represented in the form (26).

Now let us show that a function in the form (26) solves the Euler—Lagrange equation and
obtain the corresponding temperature. From the explicit formulae for spherical harmonics
(B6) we find

167 7"
po = [?} r, $11 = P12 =0. (28)

Substituting into (13), we may verify that all equations with m # 0 are trivially satisfied
(integrals over the latitudinal angle ¢, again, produce zeros). The equation for m = 0 provides
an expression for the temperature t. Indeed, computing the partition integral (for this particular
combination of ¢,,, we may express it via elementary functions) we get

b4 2 , e’
Z= / / e 173050 gin 0 dp do = 273> ——erf+/3r. (29)
0o Jo Va3r
From (14) (u = —8m/15) we obtain
1 d
= — — InZ@).
4 6r dr n2(r) 30)

An explicit calculation produces (27).
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This concludes the first part of the proof: we showed that any axially-symmetric function
from A, satisfies the Euler-Lagrange equation, and establishes a relation between r and the
temperature 7, i.e. we have accounted for all axially-symmetric solutions. Now we will prove
that there exist no other solutions.

Let us employ a different representation of solutions such as was used in [3]. In Cartesian
coordinates the Euler—Lagrange equation (9) may be written as

3

1

TOX) = — Z Rijxixj + 3. Rij = /le lxixjp(x) ds (x). (31)
ij=1 =

The matrix R;; is symmetric and may be diagonalized by an appropriate rotation. Let us

convert to the corresponding coordinate frame. In this case the thermodynamic potential may

be represented as

3

We may rewrite the Euler—Lagrange equation as equations for the eigenvalues {;}:

3 3
1 2 1 2 1 2
A= Z X; exp - jZ_;)»jxj ds(x), Z = /|x=1 exp {; ;Aixi ds(x).

Xi=1

_ _l 2 2 2 l
d(x) = AX] + A2xy + A3xg . (32)
T

(33)

Solutions to this equation are in one-to-one correspondence (up to rotation in R?) with solutions
of the original equation (9) (see [3] for a complete proof). From (33) it is easy to see that any
solution necessarily satisfies 0 < A1, Ao, A3 < 1, Ay + A2 + A3 = 1. However, there exists a
more subtle property which is proved in lemma 1 (appendix A): equation (33) is only solvable

if ,; = A; for some i # j. Assuming (without loss of generality) that A; = X,, we may
observe that the thermodynamic potential (32) is invariant with respect to rotations around the
X3 axis, i.e. it is axially-symmetric. (|

3.1. Stability and bifurcations of critical points

Stability analysis for the model with Maier—Saupe interaction potential is straightforward but
quite cumbersome. The reason is that here (unlike in the dipolar case) at low temperatures there
exist three families of critical points (see below), and thus we cannot simply compare their
free energies to deduce their stability. In what follows we will omit all technical calculations.

Let us first describe a function t(r) given by (27). A straightforward calculation shows
that this function is positive and has a unique extremum (maximum) t* := 7 (r*). The values
of t* and r* may be obtained by solving the transcendental equation 7’(r) = 0 and seem to
have no representation in quadratures. The approximate numerical values are: r* ~ —0.726,
% 2 0.149. The graph of 7(r) is displayed in figure 2.

We conclude that when T > t* the trivial state ® = 0 is the only critical point of the free
energy functional (1), whereas when 7 < t* there exist two more families of rotation-equivalent
critical points corresponding to the two branches of the inverse function r(t). Let us use the
subscript indices ‘1’ and ‘2’ to distinguish between these branches, setting r;(t) < (1)
(equality is achieved only when T = t*). Observe that r;(7) < 0, whereas r,(7) < 0 for
T > 2/15 =: t.; and rp(7) > O for t < 2/15. An important difference from the dipolar
case is that the critical points @ (s) and ®,(s), corresponding to the branches r; and r, are
not equivalent, i.e. may not be matched by rotations. ®,(s) is always a prolate state, whereas
®,(s) is a prolate state for T > 7, and an oblate state for T < ..
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Now let us study the stability of the critical points. Consider the trivial solution ® = 0 and
the corresponding probability density p = 1/4w. Expanding in terms of spherical harmonics
we may write the second variation (Hessian) of the free energy functional (1) as

oo l 2
8
2 _ 2 : 2 : 2 2 2
D 7:|5[77] =4nt |nl,m| - 15 |772,m| . (34)

=0 m=—I m=-2

Here 1 is the variation of the probability density p. We see that it is positive for any n if and
only if T > 2/15 = 7.. Thus the trivial solution is an isolated minimizer for t > ..

Stability analysis for the other branches p; »(s) may be carried out in a similar manner.
However, estimating variations of the entropic term near nontrivial solutions is rather tedious.
A different approach utilizes the following property.

Proposition 1. Consider a t-dependent family of rotation-equivalent critical points of the
functional (1). Stability of this family may not change (when t is varied) while it remains
isolated, i.e. no other critical points exist in its sufficiently small neighbourhood.

Remark. This statement implies that a stable solution branch may only lose stability if
some other branch bifurcates from it (or a fold occurs). Since we know all possible solution
branches and thus all bifurcation points, we may deduce the stability of any branch by analysing
its arbitrary point. We do not provide a detailed proof here. Let us only comment that this
proposition is a direct consequence of Krasnosel’skii’s theorems for bifurcation points of
nonlinear integral operators [15] (see [22] for refinements in the case of potential operators).

A straightforward computation using formula (15) shows that
Floi1l < Flp2l;  Flp2] < Flp] if and only if T < 7. (35)

Thus the critical points corresponding to r; (t) are the global minimizers when v < 7.; in fact,
this happens at some 7, = 0.148 € (7., T*). Employing proposition 1 we conclude that the
whole branch is stable for € (0, t*). At t = t* the two prolate branches merge and the
corresponding state is unstable: its energy is greater than that of the trivial solution (since at
this temperature there exist only two nonequivalent critical states this is sufficient to conclude
instability). We may classify the bifurcation at T = t* as a saddle-node (or a fold) bifurcation.

Similarly we may show that the whole branch r,(7) is unstable for all 7 € (0, t*). For
that we only need to present variations 7 of the probability density p(s), which yield negative
values for the Hessian of the free energy functional. By straightforward calculation we may
show that when |r| is sufficiently small (r # 0),

D> F,,[3cos’6 —1]1 <0 forr < 0; D’ F,,[sin* 6 cos 2¢] < 0 for r > 0. (36)

The first variation, n = 3 cos? 0 — 1, stretches the prolate state even more in the direction
of the polar axis. It is a variation towards the stable prolate (r|) state. The second variation,
n = sin® 0 cos 2¢, stretches the oblate state in the direction of some axis which crosses the
corresponding big circle. Itis also a variation towards a stable prolate state whose axis is rotated
by 7 /2 (with respect to the axis of the given oblate state). Since the family of critical points
corresponding to () is isolated when t € (0, t.) and T € (., T*), employing proposition 1
once again, we conclude that it is unstable for all 7 € (0, t*). When t = 7, this branch
‘collides’ with the trivial solution, and its energy is greater than that of p; (s); thus it is unstable
(again, we may use the energy comparison because at this temperature there exist only two
nonequivalent critical states). The bifurcation at T = 1, is transcritical; however, note that the
states do not exchange stability: both of them become unstable after collision. Summarizing
all of the above we may formulate the following theorem.
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Theorem 4. When t > t* & 0.149 the only critical point of the free energy functional (1)
with Maier—Saupe interaction potential is the uniform density p = 1/4m, which is the global
minimizer. It remains the global minimizer when v > t, =~ 0.148 and a local minimizer
when T € (1., T.]; it loses stability when © < t.. For T < t* there exist exactly two families
of rotation-equivalent nontrivial critical points described by theorem 1, corresponding to the
two branches of the function r(t) (these branches merge at T = t*). One of these families
consists of stable (local non-isolated minimizers) prolate states which also become global
(non-isolated) minimizers when t € (0, t,). The other family consists of unstable prolate
states when t € (t., T*] and unstable oblate states when T € (0, t.).

As in the case of dipolar interaction we also present the leading-order asymptotic
expansions of the order parameter r as a function of 7; the corresponding graphs are displayed
in figure 2.

1 1
rn=—-——+00), n()=—+0(1), T 0;
3t 61
105 37
ry = T(rc — D)+ 0. —1)%, T — T

4. Discussion

We obtained explicit expressions for all critical points of the Onsager free energy functional
(1) with dipolar (2) and Maier—Saupe (3) interaction potentials. The first step in our approach
is an observation that the thermodynamic potential ® (s) belongs to the same eigenspace of the
Laplace—Beltrami operator as the interaction potential U (s, s”). It turns out that for the dipolar
interaction, any function from the corresponding eigenspace is a solution of the Euler—Lagrange
equation (9) for some value of the temperature t. Thus this case is completely analogous to
the reduced model on a circle [9]. However, this is not true for the Maier—Saupe interaction:
only axially symmetric functions from the respective eigenspace are solutions. We proved this
fact via careful analysis of the Euler-Lagrange equation using semi-explicit representation of
the partition integral by means of Bessel functions. Although our proof is not very technical,
we believe that a simpler proof, based exclusively on the symmetry properties of the model,
is possible; however we were not able to find it. Following classification of critical points we
analysed their stability and studied bifurcations which occur as the temperature is varied.

On a final note let us mention that the calculation for the dipolar interaction potential may
be straightforwardly generalized to a sphere in a Euclidean space of an arbitrary dimension d.
In this case the trivial solution is the unique critical point when 7 > 1/d. When v < 1/d it
loses stability as a result of a pitchfork bifurcation, and a family of rotation-equivalent critical
points (global non-isolated minimizers) appears. The latter are given by

d/j2—1
_ z—1 ,—rcosf _ = / _ li
p(s)y=Z2Z""e , Z=2rn Lijpp—1(r), T = In Z. (38)
r rdr

Here 6 is the polar angle with respect to an arbitrarily chosen polar axis, and » > 0 is determined
uniquely for an arbitrary t € (0, 1/d). No other critical points exist.
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Appendix A. Axial symmetry of thermodynamic potential for the Maier—Saupe
interaction

In this section we prove the main lemma which implies the axial symmetry of solutions for the
model with the Maier—Saupe interaction potential. Consider the following equations (t > 0
is a parameter):

9z 1<
Zh =T —, Z = =) ux?td Al
o . CXP{TZ x,} ) (A1)

i

Lemma 1. Let a set of real numbers, {\|, L2, A3}, be a solution of (Al). Then necessarily:
(l) 0< A, Ao, )\.3 <1 (ll) A +Ap +)x3 =1; (lll) )\.,’ = kjforsamei ?é j

Proof. Conditions (i) and (ii) follow directly from (A1). Thus it only remains to prove (iii).
Without loss of generality, let us label the eigenvalues so that

M < A< A3, M o< 3 < (A2)

Indeed, if A, = A3, (iii) already holds; the second inequality is then implied by (ii). We will
prove that under stated conditions, a solution of (A1) may only occur if A1 = A,.

Our method is to construct a function which turns to zero whenever (A1) is satisfied. We
then show that, in a suitable range of parameters, this function has at most one zero, which
corresponds to A; = A;. (Note that Ay = A, = (1 — X3)/2 is a solution which may be
verified either by a direct calculation, or using equivalence of (A1) and the Euler-Lagrange
equation (33), for which this combination of eigenvalues produces an axially-symmetric
solution.)

Let us make a change of variables in the A-space, introducing parameters a, b and c:

Ay + A3 A b A3 — Ap A+ A+ A3
a:= - —, = , ci=—;
61 3t 2t 3t (A3)
A =1t(c —2a), Mm=1t(c+a—D>b), M =t(c+a+b).

Our convention regarding the labelling of A; translates into a, b > 0. This will be assumed
from now on. We may write (A1) in terms of the new variables a, b, c as

0Z 0Z 0Z
61Za = —, 2t Zb = —, 3tZc = —. (A4)
da ob dc

We may also derive the partial derivatives of Z from its explicit representation: introducing
spherical coordinates (¢ € [0, 27), 6 € [0, 7]) such that

X1 =cos0, Xy = sin @ sin ¢, X3 = sin 6 cos ¢, (AS)

we obtain

3
1
—Zkixiz = c—2a+sin29[3a+bc052(p]. (A6)
T

i=1



Onsager functional on a sphere 2577

Using this relation in (A1) and integrating over the ¢-variable (employing Sommerfeld’s
representation (A11) of Bessel functions, see [12]) we get

Z = 2ges / " sin® 070 (b sin @) sin 6 d@ = 277 ¢ > MIO(b”) (A7)
0 0o -
From here we deduce,
9z L &3 Iy (by)
— =6me™ ————dy —22Z,
da y LTy
2 _on e [ 1 3‘”11(1?1/) (A8)
ab V1
0Z
—=Z.
ac
Comparing with (A4) we obtain the following equalities (expressions for 37 Ze>*~¢/xr):
%"Vlo(b)/) 3 (1 Liby) 2 (! %‘”’Io(by)
By -)—F—dv=7 | y—F—4dy = dy. (A9)
/ Vi—y bjo " J1-vy vl -
The first equality nnphes that whenever (A1) is satisfied, the functlon
e 3ay
,b) = 3y = Dlp(by) — —11(by) | dy, A10
J(a, b) m[(y No(by) — — 1()/)})/ (A10)

turns to zero. Using proposition 2 we know that for a given a > 0 there exists at most one
zero of J(a, b) when b is varied over (0, co). Then this zero necessarily occurs at b = 3a,
or equivalently, A; = A, (since we know that such a set of As produces a solution). One may
also verify that 7 (a, 3a) = 0 computing the integral explicitly (see [12]). This completes the
proof. ]

Finally we prove the propositions employed above. Let us first state and prove a few
auxiliary inequalities. Their proof uses the following standard relations (see, e.g. [12])

1 T
I,(z) = — / e““? cosng de (Sommerfeld’s representation, n € Z); (A11)
T Jo
vl (z dL, (z dl, (z Lo1(z) — Lz
()=Iv71(Z)— U():Iu+1(Z)+ (): v—1(2) +1()’ (A12)
dz dz 2

Lemma 2. Assume z > 0, then (equalities are achieved if and only if 7 = 0)

Iy(z) > Li(2); (A13)
[ (2) > L)L) (Al4)
2121 (2) = 215 () — [ @)]; (A15)
I (z)
dz [Z IO(Z)} O (A10
Proof. (A13) follows directly from (A11). To obtain (A14) use (A12) and derive

d 21 (2)I

d—z[lf(z) —h(@h()] = w > 0. (A17)

Setting v = 1 in (A12), multiplying by Iy(z) and using (A14) we obtain (A15). (A16) is
verified by straightforward computation using (A12) and (A13). U
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Proposition 2. Fixa > 0. The function, J (a, b), defined by (A10) has at most one zero when
b € (0, 00).

Proof. We prove this demonstrating that 9.7 (a, b)/db > 0, whenever J(a,b) = 0, b > 0.
After a few manipulations with Bessel functions, we obtain

3J(a,b) I yedar [ 3ay j|
) By =2Ly) le(b)/) dy. (A18)
Using (A14) we get
BJ(a b) / [ :| L (by)by
3y = )lp(by) — —1L (b ——dy. A19
«/1T Gy = Dlo(by) Liy) LWy (A19)
Using proposition 3 we see that the function
f(y) =0bCy —Dlo(by) — 3ayl(by), (A20)

has at most one zero, y = y*, in the interval 0 < y < 1 (it has to have a zero if J (a, b) = 0).
Now let 7 (a, b) = 0. From the definition (A10) we then obtain

AT o A21

Taking into account relation (A16) and the fact that f(y) is negative for y < y* and positive
for y > y*, we conclude that

7oye Li(by)by boye L (by)by
d - dy. A22

(This follows if we note that the integral term on the left-hand side is multiplied by a
positive function which is uniformly less than the respective multiplier on the right-hand
side.) Collecting both terms on the left-hand side and comparing with (A19) we obtain

0T (a,by 1 (' yed L (by)by
1 dy > 0, A23
T «/l—yf(y) Ly 7 (A2
which concludes the proof. O

Proposition 3. Take any a,b > 0. The function f(z) := b(3z — 2b)Iy(z) — 3azl,(z) has at
most one zero within [0, b].

Proof. It is sufficient to consider 2b/3 < z < b, since f(z) is strictly negative when

0 < z < 2b/3. Let us introduce an auxiliary function g(z) := f(z2)/[zli(z)]. Observe

that zeros of f(z) and g(z) coincide. We will prove that g(z) is an increasing function when

z € [2b/3, b] and thus has at most one zero within this interval. By direct computation
3b To(2) B(z)— 1@ 3blyz) 2b(3z—2b) Iy(z)

! +b(3z—2b — - .
§la)= z Li(2) ( ) 23 (2) RN z? L (2)

For the inequality we used 3z — 2b > 0 and relation (A15). Rearranging the terms we obtain

b(4b —37) 1
d) > % % -0, (A25)

where z < b was used for the second inequality. Thus g(z) is a strictly increasing function on
[2b/3, b] and consequently has at most one zero within this interval. Since f(z) has no zeros
in [0, 2b/3) and the same zeros as g(z) in [2b/3, b], we conclude that f(z) has at most one
zero in [0, b]. (|

(A24)
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Appendix B. Some properties of spherical harmonics and related functions

Let us summarize a few properties of spherical harmonics y; ,, (s) that we employ in this work.
In a spherical coordinate frame (¢ € [0,27), 8 € [0, 7]) we may represent the functions

Vim(8) as

2A+1(1—m)T* .
m(p, 0) = -_— P 0)e"?, [=0,1,....m=—1,...,1.
Yim (@, 0) |: Sy " (cos )e m
(B1)
The associated Legendre functions P/ (z) (for positive integer m) are given by
dm
P = (1 — zz)’"/zd—mPI (), (B2)
Z
where P;(x) are the Legendre polynomials
1
P (2) := 2 -1, 1=0,1,.... (B3)

201 d!
Note that harmonics y; , (s) with positive index m are sometimes defined with (—1)" sign; we
do not use this convention for notational simplicity, in this case y;',, (s) = y1.—m ().

The spherical harmonics are the eigenfunctions of the Laplace-Beltrami operator on S?:

ad 1 92
— —sinf—+ ———.
sin6 96 30 sin® 0 g2

(B4)

Namely, we have

Ay m(s) = =L+ 1)y1m(s). (B5)

The Ith eigenvalue is 2/ + 1-degenerate and the corresponding eigenspace A;, a subspace of

L%(S?), is spanned by y; ,, (s),m = —I, ..., . Harmonics with different indices are orthogonal;

the normalizing coefficients in (B1) are chosen so that y; , (s) comprise an orthonormal basis.

In our work we use harmonics of the orders [ = 1, 2. For instructive purposes let us write
them down explicitly:

172 1/2 _
Yrolg, ) = [E] cost, yix1(, 0) = [Q] sin @ e*¥
5 712
y2,0(9,0) := | — (3cos? 0 — 1), (B6)
167
1/2 4 s 12 |
Y2.x1(9,0) := [E} sin 26 e, v2.42(p,0) 1= [E} sin? 9 e*2¢,

An essential property is the so-called addition theorem for spherical harmonics [12].
Consider two unit vectors x and x" in R®. Let s and s’ denote respective points on the unit
sphere with centre at the origin; then

!
/ 47-[ / I
ﬂu-xw=g:7223%4mnm@» (B7)

Finally, we prove a useful lemma regarding axially-symmetric functions on the sphere.

Lemma 3. A function ¥ e 1L.>(S?) is axially-symmetric (invariant with respect to rotations
around some axis) if and only if it may be expanded in terms of the spherical harmonics with
index m = 0:

W(s) =Y Yayio(s). (BS)
=0
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Proof. Let W(s) be axially symmetric. Choosing the axis of symmetry as the polar axis and
expanding W (s) in terms of respective spherical harmonics we get that for any ¢’

00 l [e9) 1
DD Vi, 0) = V(9. 0) =Wip+¢,0) =) > " Yuyn(e.6).  (BY)

=0 m=—1 1=0 m=—1

Since {y; . (¢, 6)} is a basis in L2, Y1.m = Oforany m # 0. The converse statement is obvious:
W (s) is invariant with respect to all rotations around the polar axis. ]
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