Reduced models for ferromagnetic nanowires

VALERIY V. SLASTIKOV AND CHARLES SONNENBERG Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK.

Abstract

In this paper we consider the micromagnetic variational problem for soft ferromagnetic nanowires. We show that, as the diameter of the wire is small, the magnetization inside the wire depends only on the length variable of the wire. The micromagnetic energy of the wire, in this case, is greatly simplified and in order to find the optimal magnetization distribution, one has to solve a one-dimensional local variational problem. micromagnetics; nanowire; Γ -convergence.

1 Introduction

Magnetic structures of reduced dimensions (thin films, nanowires, nanodots) attract a lot of attention because of their applications to magnetic storage and logic devices, see Skomski (2003), Vaz et al. (2008). Continual miniaturization of magnetic devices raises questions that seemed unimportant before and phenomena, that previously seemed negligible, gain importance. Theoretical understanding of magnetic properties of nanostructures with reduced dimensions is of utter importance. The problem is very difficult from an analytical point of view due to its nonlocal character and the presence of multiple length scales. Relation between the material properties and the geometry of the ferromagnetic nanostructures create a variety of different regimes. Some of these regimes have been investigated in mathematical literature in the context of thin films, see Gioia & James (1997), Desimone et al. (2002), Kohn & Slastikov (2005), Kurzke (2006), Slastikov (2005); multilayers, see García-Cervera (2005); nanowires, see Kühn (2007), Sanchez (2009); and nanodots, see Desimone (1995), Slastikov (2010).

We focus our attention on soft ferromagnetic nanowires. These nanostructures are widely used in new technological applications related to magnetic memory devices and are therefore of major interest to both physical and mathematical communities. In the last few years there were several mathematical studies of static and dynamic phenomena in straight nanowires. The optimal profile problem, for straight wires with a circular cross-section, was studied by Kühn (2007) using Fourier transformations. The Landau-Lifshitz-Gilbert equations, for straight wires in the regime when the exchange coefficient and diameter of the wire tend to zero, were studied by Sanchez (2009) using

1 INTRODUCTION

quite involved asymptotic analysis. In many cases nanowires are fabricated with crosssections that are different from the disk (rectangular, elliptic, e.t.c.), have a curvature and exhibit some surface roughness. These effects significantly influence the magnetic properties of a nanowire.

In this paper we study the properties of cylindrical nanowires with an arbitrary cross-section and non-zero curvature. Using the micromagnetic variational principle we rigorously derive a one-dimensional reduced micromagnetic model for ferromagnetic nanowires. In this reduced model the nonlocal magnetostatic energy term becomes local and plays a role of additional anisotropy. This has been rigorously shown for straight cylindrical wires with a circular cross-section, see Kühn (2007). In such wires the additional anisotropy is uniaxial (directed along the wire) and isotropic in the transverse directions. Our results indicate that this, in general, is not true and additional anisotropy: a) strongly depends on the shape of the cross-section; b) favours a preferred plane rather than a preferred direction.

The paper is organized as follows. Below we briefly discuss the micromagnetic variational principle. In section 2 we set up the variational problem for a straight cylindrical wire with a general cross-section. In section 3 we simplify the magnetostatic energy, which allows us to prove a Γ -convergence result in section 4. Section 5 is devoted to the specific example of a straight wire with an elliptical cross-section: we explicitly derive the reduced energy and calculate the optimal profile. In section 6 we prove a Γ -convergence result for curved cylindrical wires with a general cross-section, based on the previously obtained results.

1.1 The micromagnetic variational principle

The micromagnetic variational principle captures the remarkable multiscale complexity of magnetization behavior inside ferromagnets. The local minima of micromagnetic energy correspond to the stable, and therefore observable, magnetization distributions, see Aharoni (1996), Hubert & Schäfer (1998).

The normalized form of the micromagnetic energy is given by

$$\mathscr{E}(m) = w^2 \int_{\Omega} |\nabla m|^2 + Q \int_{\Omega} \phi(m) + \int_{\mathbf{R}^3} |\nabla u|^2 - 2 \int_{\Omega} h_{ext} \cdot m, \tag{11}$$

where the four terms of the energy (11) are the exchange, anisotropy, magnetostatic and Zeeman energies, respectively.

The ferromagnet being investigated is defined by the domain $\Omega \subset \mathbf{R}^3$, with the magnetization, $m: \Omega \to \mathbf{R}^3$, given such that

$$|m(x)| = \chi_{\Omega}. \tag{12}$$

Using Maxwell's equation, we have that *u* satisfies

$$\operatorname{div}(\nabla u + m\chi_{\Omega}) = 0 \quad \text{in } \mathbf{R}^3, \tag{13}$$

in the sense of distributions. It is clear that the magnetostatic energy term is nonlocal in *m*. Using integration by parts we obtain:

$$\int_{\mathbf{R}^3} |\nabla u|^2 = -\int_{\Omega} m \cdot \nabla u. \tag{14}$$

This form of magnetostatic energy will be useful for analysis done in section 3.

We are seeking a Γ -convergence result, and since Γ -convergence is insensitive to compact perturbations of the functional, we can disregard the anisotropy and Zeeman terms to simplify the presentation.

2 Mathematical formulation: straight wire

In this section we are going to present a mathematically precise formulation of the problem for a straight generalized wire. We define the following reference domain

$$\mathbf{\Omega} = \{ (x, y, z) : x \in [-L, L], (y, z) \in \boldsymbol{\omega} \subset \mathbf{R}^2 \},\$$

where ω has C^1 boundary. The ferromagnetic wire is represented by

$$\Omega_h = \{(x, y, z) : (x, y/h, z/h) \in \Omega\},\$$

where $h \ll 1$ is a small parameter corresponding to the thickness of the wire and *L* corresponds to the length of the wire. For simplicity of the presentation, we concentrate here on the case when *L* is finite, however one can modify the proofs to include $L = \infty$.

Figure 1: Straight generalized cylindrical wire.

We study the following one parameter family of micromagnetic energy functionals

$$E_h(m_h) = d^2 \int_{\Omega_h} |\nabla m_h|^2 + \int_{\mathbf{R}^3} |\nabla u_h|^2, \qquad (21)$$

where $|m_h| = 1$ and u_h satisfies the following equation

$$-\Delta u_h = \operatorname{div}(m_h \chi_{\Omega_h}) \quad \text{in } \mathbf{R}^3.$$
(22)

Rescaling cross-section variables and the energy we obtain the following problem

$$E_h(\tilde{m}_h) = d^2 \int_{\Omega} \left(\frac{\partial \tilde{m}_h}{\partial x}\right)^2 + \frac{1}{h^2} |\nabla' \tilde{m}_h|^2 + \frac{1}{h^2} \int_{\mathbf{R}^3} |\nabla u_h|^2,$$
(23)

where

$$\tilde{m}_h(x, y, z) = m_h(x, hy, hz)$$
 for $(x, y, z) \in \Omega$

3 CALCULATION OF MAGNETOSTATIC ENERGY

and $\nabla' = \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ (note that the magnetostatic energy is written as in (21), (22)). We will assume that *d* is a fixed constant that corresponds to material parameters of the wire.

We describe the behavior of the stable equilibrium magnetization distributions of the energy (23) as $h \rightarrow 0$. In order to do this we show that E_h Γ -converges to the one-dimensional energy E_0 , whose minimizers are much easier to study.

THEOREM 21 Assume d is a constant then

- if E_h(m
 _h) ≤ C then m
 _h → m weakly in H¹(Ω; S²) (maybe for a subsequence), m = m(x) depends only of one variable x;
- A sequence $E_h \Gamma$ -converges to the energy E_0 in $H^1_w(\Omega; S^2)$, where

$$E_0(m) = \begin{cases} \int_{-L}^{L} d^2 |m'(x)|^2 + \int_{-L}^{L} (Mm(x), m(x)) & \text{if } m = m(x) \\ \infty & \text{otherwise.} \end{cases}$$
(24)

Here M is a constant symmetric matrix defined as

$$M = -\frac{1}{2\pi} \int_{\partial \omega} \int_{\partial \omega} n(\mathbf{x}) \otimes n(\mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|, \qquad (25)$$

where $n(\mathbf{x}) = (0, n_2, n_3)$ is a normal vector to $\partial \omega$.

3 Calculation of magnetostatic energy

In this section we simplify the magnetostatic energy for the straight generalized wire. In order to do this we follow the arguments of Kohn & Slastikov (2005) used to study thin film behavior. We first show that one can replace $m_h(x, y, z)$ by its average over the cross-section ω_h .

LEMMA 31 Define $\bar{m}_h(x) = \frac{1}{|\omega_h|} \int_{\omega_h} m_h(x, y, z)$ and let \bar{u}_h be a solution of (22) with m_h replaced by \bar{m}_h . Then the following estimate is true:

$$\frac{1}{h^2} \left| \int_{\mathbf{R}^3} |\nabla u_h|^2 - \int_{\mathbf{R}^3} |\nabla \bar{u}_h|^2 \right| \le Ch \left(\frac{1}{h^2} \|\nabla' \tilde{m}_h\|_{L^2(\Omega)}^2 + 1 \right).$$
(31)

Proof of lemma 31. Applying the formula (14) and using the definitions of u_h , \bar{u}_h we obtain

$$\int_{\mathbf{R}^3} |\nabla u_h - \nabla \bar{u}_h|^2 \le \int_{\Omega_h} |m_h - \bar{m}_h|^2$$

Poincaré's inequality applied with respect to the (y,z) variables yields

$$\int_{\Omega_h} |m_h - \bar{m}_h|^2 = h^2 \int_{\Omega} |\widetilde{m}_h - \bar{m}_h|^2 \le Ch^2 \int_{\Omega} |\nabla' \widetilde{m}_h|^2.$$

Last two inequalities and the triangle inequality imply

$$\left| \left(\int_{\mathbf{R}^3} |\nabla u_h|^2 \right)^{\frac{1}{2}} - \left(\int_{\mathbf{R}^3} |\nabla \bar{u}_h|^2 \right)^{\frac{1}{2}} \right| \le Ch \|\nabla' \widetilde{m}_h\|_{L^2(\Omega)}.$$
(32)

3 CALCULATION OF MAGNETOSTATIC ENERGY

It is clear from (14) that

$$\left(\int_{\mathbf{R}^{3}} |\nabla u_{h}|^{2}\right)^{\frac{1}{2}} \leq \|m_{h}\|_{L^{2}(\Omega_{h})} \text{ and } \left(\int_{\mathbf{R}^{3}} |\nabla \bar{u}_{h}|^{2}\right)^{\frac{1}{2}} \leq \|\bar{m}_{h}\|_{L^{2}(\Omega_{h})}.$$
(33)

Since $|\bar{m}_h| \le |m_h| = 1$ we can combine (32) and (33) to obtain

$$\left|\int_{\mathbf{R}^3} |\nabla u_h|^2 - \int_{\mathbf{R}^3} |\nabla \bar{u}_h|^2\right| \le Ch^2 \|\nabla' \widetilde{m}_h\|_{L^2(\Omega)} \le Ch^3 \left(\frac{1}{h^2} \|\nabla' \tilde{m}_h\|_{L^2(\Omega)}^2 + 1\right).$$

The lemma is proved.

Using the above lemma we may focus on estimating $\int_{\mathbf{R}^3} |\nabla \bar{u}_h|^2$. We know that

$$\int_{\mathbf{R}^3} |\nabla \bar{u}_h|^2 = -\int_{\Omega_h} \nabla \bar{u}_h \cdot \bar{m}_h = \int_{\Omega_h} \bar{u}_h \operatorname{div} \bar{m}_h - \int_{\partial \Omega_h} \bar{u}_h (\bar{m}_h \cdot n).$$
(34)

Explicitly solving the equation (13) for u_h we obtain

$$4\pi \bar{u}_h(\mathbf{x}) = \int_{\Omega_h} \frac{1}{|\mathbf{x} - \mathbf{y}|} \operatorname{div} \bar{m}_h(\mathbf{y}) - \int_{\partial \Omega_h} \frac{1}{|\mathbf{x} - \mathbf{y}|} (\bar{m}_h \cdot n)(\mathbf{y}).$$
(35)

Plugging the expression (35) for \bar{u}_h into formula (34) and recalling that $\bar{m}_h = (\bar{m}_{1,h}, \bar{m}_{2,h}, \bar{m}_{3,h})$ depends only on one variable *x* we have

$$4\pi \int_{\mathbf{R}^{3}} |\nabla \bar{u}_{h}|^{2} = \int_{\Omega_{h}} \int_{\Omega_{h}} \frac{1}{|\mathbf{x} - \mathbf{y}|} \bar{m}'_{1,h}(y) \bar{m}'_{1,h}(x)$$

$$- 2 \int_{\partial \Omega_{h}} \int_{\Omega_{h}} \frac{1}{|\mathbf{x} - \mathbf{y}|} \bar{m}'_{1,h}(y) (\bar{m}_{h} \cdot n)(\mathbf{x})$$

$$+ \int_{\partial \Omega_{h}} \int_{\partial \Omega_{h}} \frac{1}{|\mathbf{x} - \mathbf{y}|} (\bar{m}_{h} \cdot n)(\mathbf{y}) (\bar{m}_{h} \cdot n)(\mathbf{x}).$$
(36)

We will refer to the three terms of (36) as "bulk-bulk term", "bulk-boundary term", and "boundary-boundary term" respectively. Using the fact that \bar{m}_h is dependent only on the length of the wire we will expand these terms and estimate them. At this point we will change variables, for added clarity, so that we have

x,**y**∈ ω_h are cross-section variables, <math>s, t ∈ [-L, L] are length variables.

With these new variables, we redefine the three terms of (36).

Bulk-bulk term

$$A_{1} = \int_{-L}^{L} \int_{-L}^{L} \int_{\omega_{h}} \int_{\omega_{h}} \int_{\omega_{h}} \frac{\bar{m}'_{1,h}(s)\bar{m}'_{1,h}(t)}{\sqrt{|\mathbf{x}-\mathbf{y}|^{2}+(s-t)^{2}}}.$$
(37)

Bulk-boundary term

$$A_{2} = -2 \int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\omega_{h}} \frac{\bar{m}_{1,h}'(s)(\bar{m}_{h} \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s - t)^{2}}} -2 \int_{-L}^{L} \int_{\omega_{h}} \int_{\omega_{h}} \frac{\bar{m}_{1,h}'(s)\bar{m}_{1,h}(L)}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s - L)^{2}}} +2 \int_{-L}^{L} \int_{\omega_{h}} \int_{\omega_{h}} \frac{\bar{m}_{1,h}'(s)\bar{m}_{1,h}(-L)}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s + L)^{2}}}.$$
 (38)

Boundary-boundary term

$$A_{3} = \int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\partial \omega_{h}} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s - t)^{2}}} + \int_{\omega_{h}} \int_{\omega_{h}} \frac{|\bar{m}_{1,h}(-L)|^{2} + |\bar{m}_{1,h}(L)|^{2}}{|\mathbf{x} - \mathbf{y}|} - 2 \int_{\omega_{h}} \int_{\omega_{h}} \frac{\bar{m}_{1,h}(-L)\bar{m}_{1,h}(L)}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + 4L^{2}}} - 2 \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\omega_{h}} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})\bar{m}_{1,h}(-L)}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s + L)^{2}}} + 2 \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\omega_{h}} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})\bar{m}_{1,h}(L)}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s - L)^{2}}}.$$
 (39)

Next we seek to estimate $|A_1|$, $|A_2|$ and $|A_3|$. We first state the following simple lemma (for proof see Kohn & Slastikov (2005)).

LEMMA 32 (GENERALIZED YOUNG'S INEQUALITY) Assume $\Omega \subset \mathbf{R}^n$ is a bounded set, $f, g \in L^2(\Omega)$ and $K \in L^1_{loc}(\mathbf{R}^n)$. Then

$$\int_{\Omega} \int_{\Omega} f(x)g(y)K(x-y) \le \|K\|_{L^{1}(B)} \|f\|_{L^{2}(\Omega)} \|g\|_{L^{2}(\Omega)},$$
(310)

for some ball $B \subset \mathbf{R}^n$, depending only on Ω .

Using lemma 32 it's not difficult to obtain the following estimate on $|A_1|$:

$$|A_1| \le Ch^4 |\ln h| \|\bar{m}'_{1,h}\|^2.$$
(311)

It is straightforward to estimate the first term in A_2 by $Ch^3 |\ln h| (||\bar{m}'_{1,h}||^2 + 1)$ and the last two terms by $Ch^4 |\ln h|$. Therefore we obtain

$$|A_2| \le Ch^3 |\ln h| (\|\bar{m}'_{1,h}\|^2 + 1).$$
(312)

The calculation of the first term in A_3 will be provided later but we see that this is the dominating term here since the rest of the terms in A_3 can be estimated by Ch^3 , Ch^4 and $Ch^3 |\ln h|$, respectively.

Therefore the magnetostatic energy can be rewritten as

$$4\pi \int_{\mathbf{R}^{3}} |\nabla u_{h}|^{2} = \int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\partial \omega_{h}} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^{2} + (s - t)^{2}}} + O(h^{3}) \left(\frac{1}{h^{2}} \|\nabla' \tilde{m}_{h}\|_{L^{2}(\Omega)}^{2} + 1\right) + O(h^{3}|\ln h|) \left(\|\bar{m}_{1,h}'\|_{L^{2}(\Omega)}^{2} + 1\right).$$
(313)

4 Reduced energy: Γ-convergence result

In this section we are going to derive the reduced energy for a straight ferromagnetic nanowire using Γ -convergence techniques. From the previous section we see that in order to do this it is necessary to understand the asymptotic behavior, as $h \rightarrow 0$, of the following term

$$\int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega_h} \int_{\partial \omega_h} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^2 + (s - t)^2}}$$

Before proving the actual Γ -convergence result we prove the following lemma, which identifies its limiting behavior.

LEMMA 41 Assume $\bar{m}_h \rightarrow m$ weakly in $H^1(-L,L)$ then we have

$$\lim_{h\to 0} \frac{1}{h^2} \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega_h} \int_{\partial\omega_h} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^2 + (s - t)^2}} = -2 \int_{-L}^{L} \int_{\partial\omega} \int_{\partial\omega} (m \cdot n)(t, \mathbf{x})(m \cdot n)(t, \mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|.$$
(41)

Proof of lemma 41. Since $n(\mathbf{x})$ depends only on the cross-section variable \mathbf{x} and $\bar{m}_h(s)$ depends only on the length variable s, it is clear that in this case (not relabeling n)

$$\frac{1}{h^2} \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega_h} \int_{\partial\omega_h} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^2 + (s - t)^2}} = \int_{\partial\omega} \int_{\partial\omega} \int_{-L}^{L} \int_{-L}^{L} \frac{(\bar{m}_h(s) \cdot n(\mathbf{x}))(\bar{m}_h(t) \cdot n(\mathbf{y}))}{\sqrt{h^2 |\mathbf{x} - \mathbf{y}|^2 + (s - t)^2}}.$$
(42)

Therefore we essentially have to understand how to evaluate the following expression

$$G_h = \int_{-L}^{L} \int_{-L}^{L} \frac{f_h(s, x) f_h(t, y)}{\sqrt{(s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}},$$

where $f_h(t, \mathbf{y}) = (\bar{m}_h(t) \cdot n(\mathbf{y}))$ and $f_h(s, \mathbf{x}) = (\bar{m}_h(s) \cdot n(\mathbf{x}))$. Since we integrate over *s* and *t* variables we may treat **x** and **y** as parameters here. Let's rewrite G_h as

$$\int_{-L}^{L} f_h(t, \mathbf{y}) \int_{-L}^{t} \frac{f_h(s, \mathbf{x}) \, ds \, dt}{\sqrt{(s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}} + \int_{-L}^{L} f_h(t, \mathbf{y}) \int_{t}^{L} \frac{f_h(s, \mathbf{x}) \, ds \, dt}{\sqrt{(s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}}.$$

Integration by parts yields

$$\int_{-L}^{t} \frac{f_h(s, \mathbf{x}) \, ds}{\sqrt{(s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}} = \int_{-L}^{t} f_h'(s, \mathbf{x}) \ln\left(t - s + \sqrt{(s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}\right) \, ds$$
$$- f_h(t, \mathbf{x}) \ln(h|\mathbf{x} - \mathbf{y}|) + f_h(-L, \mathbf{x}) \ln\left(t + L + \sqrt{(t+L)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}\right) \tag{43}$$

and

$$\int_{t}^{L} \frac{f_{h}(s,\mathbf{x}) \, ds}{\sqrt{(s-t)^{2} + h^{2} |\mathbf{x} - \mathbf{y}|^{2}}} = -\int_{t}^{L} f_{h}'(s,\mathbf{x}) \ln\left(s - t + \sqrt{(s-t)^{2} + h^{2} |\mathbf{x} - \mathbf{y}|^{2}}\right) \, ds$$
$$-f_{h}(t,\mathbf{x}) \ln(h|\mathbf{x} - \mathbf{y}|) + f_{h}(L,\mathbf{x}) \ln\left(L - t + \sqrt{(L-t)^{2} + h^{2} |\mathbf{x} - \mathbf{y}|^{2}}\right). \tag{44}$$

Therefore we can explicitly obtain

$$G_{h} = -2 \int_{-L}^{L} f_{h}(t, \mathbf{x}) f_{h}(t, \mathbf{y}) \ln(h|\mathbf{x} - \mathbf{y}|) + f_{h}(-L, \mathbf{x}) \int_{-L}^{L} f_{h}(t, \mathbf{y}) \ln\left(t + L + \sqrt{(t + L)^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right) + f_{h}(L, \mathbf{x}) \int_{-L}^{L} f_{h}(t, \mathbf{y}) \ln\left(L - t + \sqrt{(L - t)^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right) + \int_{-L}^{L} f_{h}(t, \mathbf{y}) \int_{-L}^{t} f_{h}'(s, \mathbf{x}) \ln\left(t - s + \sqrt{(s - t)^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right) - \int_{-L}^{L} f_{h}(t, \mathbf{y}) \int_{t}^{L} f_{h}'(s, \mathbf{x}) \ln\left(s - t + \sqrt{(s - t)^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right).$$
(45)

It is clear that as $h \to 0$, $f_h \to f(f(t, \mathbf{x}) = m(t) \cdot n(\mathbf{x}))$ and we can pass to the limit to get

$$G_{h} + 2\ln h \int_{-L}^{L} f_{h}(t, \mathbf{x}) f_{h}(t, \mathbf{y}) \to -2 \int_{-L}^{L} f(t, \mathbf{x}) f(t, \mathbf{y}) \ln |\mathbf{x} - \mathbf{y}| + f(-L, \mathbf{x}) \int_{-L}^{L} f(t, \mathbf{y}) \ln(2(t+L)) + f(L, \mathbf{x}) \int_{-L}^{L} f(t, \mathbf{y}) \ln(2(L-t)) + \int_{-L}^{L} f(t, \mathbf{y}) \int_{-L}^{t} f'(s, \mathbf{x}) \ln(2(t-s)) - \int_{-L}^{L} f(t, \mathbf{y}) \int_{t}^{L} f'(s, \mathbf{x}) \ln(2(s-t))$$
(46)

uniformly in **x**, **y**. Recalling the definition of $f_h(t, \mathbf{x})$ and $f(t, \mathbf{x})$ we can deduce, using Stokes' theorem, that

$$\int_{\partial \omega} f_h(t, \mathbf{x}) = \int_{\partial \omega} (\bar{m}_h(t) \cdot n(\mathbf{x})) = 0 \text{ and } \int_{\partial \omega} f(t, \mathbf{x}) = \int_{\partial \omega} (m(t) \cdot n(\mathbf{x})) = 0.$$
(47)

Integrating (46) over $\partial \omega$ with respect to **x** and **y**, having in mind (47) and recalling the definition of G_h , we obtain

$$\lim_{h \to 0} \int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})}{\sqrt{|\mathbf{x} - \mathbf{y}|^2 + (s - t)^2}} = -2 \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} (m(t) \cdot n(\mathbf{x}))(m(t) \cdot n(\mathbf{y})) \ln |\mathbf{x} - \mathbf{y}|.$$
(48)

The lemma is proved.

Now we are ready to prove the Γ -convergence result. Let us recall the definition of the micromagnetic energy we are considering here (for simplicity of notation we drop all tildes)

$$E_h(m_h) = d^2 \int_{\Omega} \left(\frac{\partial m_h}{\partial x}\right)^2 + \frac{1}{h^2} |\nabla' m_h|^2 + \frac{1}{h^2} \int_{\mathbf{R}^3} |\nabla u_h|^2.$$

Proof of theorem 21. Using bounds on the energy $E_h(m_h) \leq C$ it is straightforward to deduce that

- $m_h \rightarrow m$ weakly in $H^1(\Omega; S^2)$;
- m = m(x) is independent of (y, z) variables;
- $\bar{m}_h \rightarrow m$ weakly in $H^1(-L,L)$.

Using (313) and lemma 41 we obviously have

$$\liminf E_h(m_h) \ge E_0(m),$$

for any $m_h \rightarrow m$ weakly in $H^1(\Omega; S^2)$.

Now take any $m \in H^1(\Omega; S^2)$. We can construct the recovery sequence by defining $m_h = m$. Again, using (313) and lemma 41 it is straightforward that

$$E_{h}(m_{h}) = d^{2} \int_{\Omega} \left(\frac{\partial m}{\partial x}\right)^{2} + \frac{1}{h^{2}} |\nabla' m|^{2} - \frac{1}{2\pi} \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} (\bar{m} \cdot n)(t, \mathbf{x})(\bar{m} \cdot n)(t, \mathbf{y}) \ln|\mathbf{x} - \mathbf{y}| + o(1).$$
(49)

Therefore it is clear that $E_h(m_h)$ Γ -converges to $E_0(m)$ and theorem 21 is proved.

5 Example of a wire with elliptic cross-section

In this section we calculate the reduced energy and equilibrium magnetization distributions for a specific example of ferromagnetic generalized cylindrical wire with an elliptic cross-section. The result turns out to be quite different from the well known energy for a wire with a circular cross-section, see Kühn (2007).

Figure 2: Elliptical wire.

Looking back at (24) we just need to find the symmetric matrix $M = \{M_{ij}\}$ to get the magnetostatic energy. Parameterizing the boundary of an ellipse in \mathbf{R}^2 by $(a \cos \theta, b \sin \theta)$, with $\theta \in [0, 2\pi)$ and a, b > 0 we obtain

$$M_{11} = -\frac{b^2}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \cos\theta \cos\phi \ln\left(a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2\right), \quad (51)$$

$$M_{12} = -\frac{ab}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \cos\theta \sin\phi \ln\left(a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2\right), \quad (52)$$

$$M_{22} = -\frac{a^2}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \sin\theta \sin\phi \ln\left(a^2(\cos\theta - \cos\phi)^2 + b^2(\sin\theta - \sin\phi)^2\right).$$
 (53)

5 EXAMPLE OF A WIRE WITH ELLIPTIC CROSS-SECTION

Using the change of variables $\theta \rightarrow 2\pi - \theta$ and $\phi \rightarrow 2\pi - \phi$ it is clear that $M_{12} = 0$. It is then straightforward to obtain

$$M_{11} = \frac{\pi a b^2}{a+b}, \quad M_{22} = \frac{\pi a^2 b}{a+b}$$

Hence the reduced magnetostatic energy is

$$\frac{\pi abh^2}{a+b} \int_{-L}^{L} bm_2^2(x) + am_3^2(x)dx.$$
(54)

Putting everything together we now have

$$E_0(m) = d^2 \int_{-L}^{L} |m'(x)|^2 dx + \frac{\pi ab}{a+b} \int_{-L}^{L} bm_2^2(x) + am_3^2(x) dx.$$
(55)

In order to obtain the magnetization distribution of this energy we will now need to find a minimizer of the energy for a set of Dirichlet boundary conditions. We will choose our boundary conditions such that the magnetization vector is tangent to the wire at each end, i.e m(-L) = (-1, 0, 0), m(L) = (1, 0, 0).

Clearly minimizing the above is equivalent to finding a minimizer of

$$F(m) = \alpha \int_{-L}^{L} |m'(x)|^2 dx + \int_{-L}^{L} bm_2^2(x) + am_3^2(x) dx,$$
(56)

where α is a positive constant.

Since we have |m(x)| = 1, for $x \in [-L, L]$, we can write m(x) as

$$m(x) = (\cos \theta(x), \sin \theta(x) \cos \phi(x), \sin \theta(x) \sin \phi(x)).$$
(57)

To achieve the boundary conditions we have $\theta(0) = \pi$, $\theta(1) = 0$ and ϕ =constant. Rewriting (56) we now get

$$F(\theta,\phi) = \int_{-L}^{L} \alpha(\theta')^2 + (\alpha(\phi')^2 + (b-a)\cos^2\phi + a)\sin^2\theta \, dx.$$
(58)

Clearly if a = b, then in order to minimize this functional, we see that we can choose ϕ to be any constant. However, if a > b then $\phi = 0$ or $\phi = \pi$ will minimize the energy and if b > a then $\phi = \frac{\pi}{2}$ or $\phi = \frac{3\pi}{2}$ will minimize the energy. In both cases the energy is simplified to

$$F(\theta,\phi) = \int_{-L}^{L} \alpha(\theta')^2 + \min\{a,b\} \sin^2 \theta \, dx.$$

From this it's not difficult to derive the Euler-Lagrange equation for θ

$$\theta'' = k\sin(2\theta),\tag{59}$$

where $k = \frac{\min\{a,b\}}{2\alpha}$ is a positive constant, $\theta(0) = \pi$, $\theta(1) = 0$. We notice that for a circular cross-section (a = b) the magnetization can lie in any plane (ϕ is any constant). On the other hand, if $a \neq b$ there is a preferred plane in which magnetization lies ($\phi = 0$ or $\phi = \frac{\pi}{2}$).

REMARK 51 For a wire with arbitrary cross-section matrix M defined in (25) is symmetric. Therefore, it is clear that there exists a frame in which M is diagonal matrix. Using the above arguments for the elliptic wire it is clear that optimal magnetization distribution will always lie in some preferred plane (that will depend on the wire's cross-section).

6 Reduced energy for a curved wire

We now turn our attention to the problem of finding the reduced energy of a curved generalized cylindrical wire. For clarity of the presentation we choose to parameterize the wire using the Frenet-Serret frame (see Dineen (2001)).

We have that tangent T(s), normal N(s) and binormal B(s) to a 3D curve $\gamma(s)$ form the Frenet-Serret basis $\{T(s), N(s), B(s)\}$. The relation between the basis vectors is given by the Frenet-Serret equations

$$T'(s) = \kappa(s)N(s), \tag{61}$$

$$N'(s) = -\kappa(s)T(s) + \tau(s)B(s), \tag{62}$$

$$B'(s) = -\tau(s)N(s), \tag{63}$$

where $\kappa(s)$ and $\tau(s)$ are the curvature and torsion of $\gamma(s)$ respectively.

We can define the following reference domain

$$\Omega = \{ (x, y, z) \in \mathbf{R}^3 : (x, y, z) = \gamma(s) + x_1 N(s) + x_2 B(s) \},\$$

where $s \in [-L, L]$ is the arc length of the wire, $\mathbf{x} = (x_1, x_2) \in \boldsymbol{\omega}$ (where $\boldsymbol{\omega}$ is the crosssection) and $\gamma(s) \subset \mathbf{R}^3$ is the central curve of the wire with N(s) and B(s) being the normal and binormal to the curve respectively. We will work with curves γ which are smooth, non-intersecting and regular. Without loss of generality we assume the condition diam $(\boldsymbol{\omega}) < \frac{1}{\min_s \kappa(s)}$, where $\kappa(s)$ is the curvature. The ferromagnetic wire is represented by

$$\Omega_h = \{(x, y, z) \in \mathbf{R}^3 : (x, y, z) = \gamma(s) + h(x_1 N(s) + x_2 B(s))\},\$$

where *s* is the arc length and $(x_1, x_2) \in \omega$.

As before we study the following one parameter family of micromagnetic energy functionals

$$E_h(m_h) = \frac{d^2}{h^2} \int_{\Omega_h} |\nabla m_h|^2 + \frac{1}{h^2} \int_{\mathbf{R}^3} |\nabla u_h|^2,$$
(64)

where, as before, $|m_h| = 1$ in Ω_h and u_h satisfies the following equation

$$-\Delta u_h = \operatorname{div}(m_h \chi_{\Omega_h}) \quad \text{in } \mathbf{R}^3.$$
(65)

In this section we will now prove the following theorem:

THEOREM 61 Assume d is a constant then we have:

Figure 3: Curved generalized cylindrical wire.

- if $E_h(\tilde{m}_h) \leq C$ then $\tilde{m}_h \to m$ weakly in $H^1(\Omega; S^2)$ (maybe for a subsequence), m = m(s);
- $E_h \Gamma$ converges to the following energy E_0 in $H^1_w(\Omega; S^2)$

$$E_0(m) = \begin{cases} d^2 \int_{-L}^{L} |m'(s)|^2 + \int_{-L}^{L} (M(s)m(s), m(s)) & \text{if } m = m(s) \\ \infty & \text{otherwise.} \end{cases}$$
(66)

Here M(s) is a symmetric matrix defined as

$$M(s) = -\frac{1}{2\pi} \int_{\partial \omega} \int_{\partial \omega} n(s, \mathbf{x}) \otimes n(s, \mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|,$$

where *n* is a normal vector to $\partial \Omega$ and parameter *s* corresponds to an arc length of the wire.

6.1 Exchange energy

We will begin by looking at the exchange energy and so we will need to change variables from $(x, y, z) \rightarrow (s, \mathbf{x})$. We have

$$x = \gamma_1(s) + x_1 N_1(s) + x_2 B_1(s), \tag{67}$$

$$y = \gamma_2(s) + x_1 N_2(s) + x_2 B_2(s), \tag{68}$$

$$z = \gamma_3(s) + x_1 N_3(s) + x_2 B_3(s), \tag{69}$$

where the Jacobian of this transformation is

$$J(s, \mathbf{x}) = |1 - x_1 \kappa(s)|. \tag{610}$$

Next, by implicitly differentiating equations (67) - (69) by x, y and z, we can then solve a set of simultaneous equations to get all of the partial derivatives needed for $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$, respectively. Putting them together we obtain

6 REDUCED ENERGY FOR A CURVED WIRE

$$\frac{d^2}{h^2} \int_{\Omega_h} |\nabla m_h|^2 = \frac{d^2}{h^2 |1 - x_1 \kappa|} \int_{-L}^{L} \int_{\partial \omega_h} |m_{h,s} - x_1 \tau m_{h,x_2} + x_2 \tau m_{h,x_1}|^2 + \frac{d^2}{h^2} \int_{-L}^{L} \int_{\partial \omega_h} |1 - x_1 \kappa| |m_{h,x_1}|^2 + \frac{d^2}{h^2} \int_{-L}^{L} \int_{\partial \omega_h} |1 - x_1 \kappa| |m_{h,x_2}|^2.$$
(611)

Rescaling ω_h to a fixed domain ω (not relabeling (x_1, x_2)) we finally get

$$\frac{d^2}{h^2} \int_{\Omega_h} |\nabla m_h|^2 = \frac{d^2}{|1 - hx_1\kappa|} \int_{-L}^{L} \int_{\partial\omega} |\tilde{m}_{h,s} - x_1\tau \tilde{m}_{h,x_2} + x_2\tau \tilde{m}_{h,x_1}|^2 + \frac{d^2}{h^2} \int_{-L}^{L} \int_{\partial\omega} |1 - hx_1\kappa| |\nabla' \tilde{m}_h|^2, \quad (612)$$

where

$$\tilde{m}_h(s, x_1, x_2) = m_h(s, hx_1, hx_2) \text{ for } s \in [-L, L], (x_1, x_2) \in \omega$$

and $\nabla' = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right).$

6.2 Magnetostatic energy

Now we proceed to compute the magnetostatic energy. Before we begin we should notice that when we change variables from $m_h(x, y, z)$ to $m_h(s, \mathbf{x})$ we can then replace $m_h(s, \mathbf{x})$ with $\bar{m}_h(s) = \frac{1}{|\omega_h|} \int_{\omega_h} m_h(s, \mathbf{x})$. The proof of this fact follows the same arguments as the proof of lemma 31 and therefore we omit it here.

Using expansion (36) of the magnetostatic energy and estimates for the bulk-bulk, bulk-boundary and boundary-boundary terms similar to (37) - (39), we can show as before that

$$4\pi \int_{\mathbf{R}^{3}} |\nabla u_{h}|^{2} = O(h^{3}) \left(\frac{1}{h^{2}} \|\nabla' \tilde{m}_{h}\|_{L^{2}(\Omega)}^{2} + 1 \right) + O(h^{3} |\ln h|) \left(\|\bar{m}'_{1,h}\|_{L^{2}(\Omega)}^{2} + 1 \right) \\ + \int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega_{h}} \int_{\partial \omega_{h}} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})J(s, \mathbf{x})J(t, \mathbf{y})}{|(\gamma(s) + x_{1}N(s) + x_{2}B(s)) - (\gamma(t) + y_{1}N(t) + y_{2}B(t))|}, \quad (613)$$

where in this case **x** and **y** parameterize $\partial \omega_h$. We now proceed to prove the following lemma, analogous to lemma 41.

LEMMA 61 Assume $\bar{m}_h \rightarrow m$ weakly in $H^1(-L,L)$ then as $h \rightarrow 0$ we have

$$\frac{1}{h^2} \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega_h} \int_{\partial\omega_h} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})J(s, \mathbf{x})J(t, \mathbf{y})}{|(\gamma(s) + x_1N(s) + x_2B(s)) - (\gamma(t) + y_1N(t) + y_2B(t))|}$$

$$\rightarrow -2 \int_{-L}^{L} \int_{\partial\omega} \int_{\partial\omega} (m \cdot n)(t, \mathbf{x})(m \cdot n)(t, \mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|.$$
(614)

6 REDUCED ENERGY FOR A CURVED WIRE

Proof of lemma 61. We begin by rescaling (613), but not relabeling $(\bar{m} \cdot n)$, to get

$$\int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})J(s, h\mathbf{x})J(t, h\mathbf{y})}{|(\gamma(s) + hx_1N(s) + hx_2B(s)) - (\gamma(t) + hy_1N(t) + hy_2B(t))|}.$$
 (615)

We will now show that as $h \rightarrow 0$ this integral can be approximated by the following one:

$$\int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} \frac{(\bar{m}_h \cdot n)(s, \mathbf{x})(\bar{m}_h \cdot n)(t, \mathbf{y})}{\sqrt{|\gamma(s) - \gamma(t)|^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}}$$
(616)

with the error O(h).

To show this we will begin by expanding out the denominator of (615). Let $A_h = |(\gamma(s) + hx_1N(s) + hx_2B(s)) - (\gamma(t) + hy_1N(t) + hy_2B(t))|$. Expanding this out we get

$$A_{h}^{2} = |\gamma(s) - \gamma(t)|^{2} + h^{2}|\mathbf{x}|^{2} + h^{2}|\mathbf{y}|^{2} + 2hx_{1}N(s) \cdot (\gamma(s) - \gamma(t)) + 2hx_{2}B(s) \cdot (\gamma(s) - \gamma(t)) + 2hy_{1}N(t) \cdot (\gamma(t) - \gamma(s)) + 2hy_{2}B(t) \cdot (\gamma(t) - \gamma(s)) - 2h^{2}x_{1}y_{1}N(s) \cdot N(t) - 2h^{2}x_{1}y_{2}N(s) \cdot B(t) - 2h^{2}x_{2}y_{1}B(s) \cdot N(t) - 2h^{2}x_{2}y_{2}B(s) \cdot B(t)$$

$$(617)$$

Now let $B_h = \sqrt{|\gamma(s) - \gamma(t)|^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}$. Using basic algebra and Taylor expansions it is not difficult to see that

$$|A_h^2 - B_h^2| \le Ch^2 |t - s| + Ch|t - s|^2,$$
(618)

$$B_h \ge \sqrt{\delta^2 (s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2},$$
(619)

$$A_h \ge \sqrt{\delta^2 (s-t)^2 + h^2 |\mathbf{x} - \mathbf{y}|^2},$$
(620)

for some $\delta > 0$. So we now have

$$\left| \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega} \int_{\partial\omega} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})J(s, h\mathbf{x})J(t, h\mathbf{y})}{|(\gamma(s) + hx_{1}N(s) + hx_{2}B(s)) - (\gamma(t) + hy_{1}N(t) + hy_{2}B(t))|} - \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega} \int_{\partial\omega} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})}{\sqrt{|\gamma(s) - \gamma(t)|^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}} \right|$$
$$\leq C \int_{-L}^{L} \int_{-L}^{L} \int_{\partial\omega} \int_{\partial\omega} \frac{h^{2}|s - t| + h|s - t|^{2}}{(\delta^{2}(s - t)^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2})^{\frac{3}{2}}} \leq Ch. \quad (621)$$

Hence we have shown that we may replace (615) by (616). In order to tackle (616) we begin by investigating

$$\int_{-L}^{L} \frac{f_h(s, \mathbf{x}) ds}{\sqrt{|\gamma(s) - \gamma(t)|^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}},$$

where $f_h = (\bar{m}_h \cdot n)$. This can be written as

$$\int_{-L}^{L} \frac{f_h(s, \mathbf{x})}{\cos \theta(s, t)} \frac{\cos \theta(s, t)}{\sqrt{|\gamma(s) - \gamma(t)|^2 + h^2 |\mathbf{x} - \mathbf{y}|^2}} \, ds, \tag{622}$$

6 REDUCED ENERGY FOR A CURVED WIRE

where $\cos \theta(s,t) = \frac{\gamma'(s) \cdot (\gamma(s) - \gamma(t))}{|\gamma'(s)||\gamma(s) - \gamma(t)|} = \frac{\gamma'(s) \cdot (\gamma(s) - \gamma(t))}{|\gamma(s) - \gamma(t)|}$. It is clear that for $|s - t| \to 0$ $\left|\cos \theta(s,t) - \frac{s - t}{|s - t|}\right| \to 0.$ (623)

We can do a similar integration by parts trick as for the straight wire case by rewriting (622) as

$$\int_{-L}^{t} \frac{f_h(s,\mathbf{x})}{\cos\theta(s,t)} \frac{\cos\theta(s,t)}{\sqrt{|\gamma(s)-\gamma(t)|^2 + h^2|\mathbf{x}-\mathbf{y}|^2}} \, ds + \int_{t}^{L} \frac{f_h(s,\mathbf{x})}{\cos\theta(s,t)} \frac{\cos\theta(s,t)}{\sqrt{|\gamma(s)-\gamma(t)|^2 + h^2|\mathbf{x}-\mathbf{y}|^2}} \, ds,$$
(624)

and noticing that

$$\frac{d}{ds}\ln\left(|\boldsymbol{\gamma}(s)-\boldsymbol{\gamma}(t)|+\sqrt{|\boldsymbol{\gamma}(s)-\boldsymbol{\gamma}(t)|^2+h^2|\mathbf{x}-\mathbf{y}|^2}\right)=\frac{\cos\theta(s,t)}{\sqrt{|\boldsymbol{\gamma}(s)-\boldsymbol{\gamma}(t)|^2+h^2|\mathbf{x}-\mathbf{y}|^2}}.$$

Integration by parts yields

$$\int_{-L}^{t} \frac{f_{h}(s,\mathbf{x})}{\cos\theta(s,t)} \frac{\cos\theta(s,t)}{\sqrt{|\gamma(s)-\gamma(t)|^{2}+h^{2}|\mathbf{x}-\mathbf{y}|^{2}}} ds = -f_{h}(t,\mathbf{x})\ln(h|\mathbf{x}-\mathbf{y}|)$$
$$-\frac{f_{h}(-L,\mathbf{x})}{\cos\theta(-L,t)}\ln\left(|\gamma(-L)-\gamma(t)|+\sqrt{|\gamma(-L)-\gamma(t)|^{2}+h^{2}|\mathbf{x}-\mathbf{y}|^{2}}\right)$$
$$-\int_{-L}^{t}\ln\left(|\gamma(s)-\gamma(t)|+\sqrt{|\gamma(s)-\gamma(t)|^{2}+h^{2}|\mathbf{x}-\mathbf{y}|^{2}}\right)\frac{d}{ds}\left(\frac{f_{h}(s,\mathbf{x})}{\cos\theta(s,t)}\right) \quad (625)$$

and

$$\int_{t}^{L} \frac{f_{h}(s,\mathbf{x})}{\cos\theta(s,t)} \frac{\cos\theta(s,t)}{\sqrt{|\gamma(s) - \gamma(t)|^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}} ds = -f_{h}(t,\mathbf{x})\ln(h|\mathbf{x} - \mathbf{y}|)$$

$$+ \frac{f_{h}(L,\mathbf{x})}{\cos\theta(L,t)}\ln\left(|\gamma(L) - \gamma(t)| + \sqrt{|\gamma(L) - \gamma(t)|^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right)$$

$$- \int_{t}^{L}\ln\left(|\gamma(s) - \gamma(t)| + \sqrt{|\gamma(s) - \gamma(t)|^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}\right) \frac{d}{ds}\left(\frac{f_{h}(s,\mathbf{x})}{\cos\theta(s,t)}\right). \quad (626)$$

Combining these, multiplying everything by $f_h(t, \mathbf{y})$ and integrating over t, \mathbf{x} and \mathbf{y} we can use the same techniques as in the straight wire case to obtain

$$\int_{-L}^{L} \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} \frac{(\bar{m}_{h} \cdot n)(s, \mathbf{x})(\bar{m}_{h} \cdot n)(t, \mathbf{y})}{\sqrt{|\gamma(s) - \gamma(t)|^{2} + h^{2}|\mathbf{x} - \mathbf{y}|^{2}}}$$

$$\rightarrow -2 \int_{-L}^{L} \int_{\partial \omega} \int_{\partial \omega} (m \cdot n)(t, \mathbf{x})(m \cdot n)(t, \mathbf{y}) \ln |\mathbf{x} - \mathbf{y}|. \quad (627)$$

where *n* is the normal to $\partial \Omega$. The lemma is proved.

Proof of theorem 61. This can be proven in the same way as theorem 21 using (612) and lemma 61.

7 Conclusion

We have studied the micromagnetic energy for soft ferromagnetic wires with an arbitrary cross-section, curvature and torsion. Using variational methods and appropriate decomposition of the magnetostatic energy, we have shown that for ferromagnetic wires with a small diameter cross-section, the micromagnetic energy can be reduced to a simple one-dimensional energy. An interesting feature of this reduced problem is that the nonlocal magnetostatic energy simplifies to a local "shape anisotropy" that makes the magnetization prefer specific planes depending on the shape of the cross-section. This is different from the well known magnetization behavior inside wires with a circular cross-section. The magnetization inside the curved wires behaves as expected: it wants to align along the wire, and the optimal profile problem is analogous to the case of the straight wire. The methods used in this paper can also be extended to explain the optimal magnetization distribution inside nanowires with different geometries and in various regimes.

AHARONI, A. (1996) Introduction to the Theory of Ferromagnetism, Oxford University Press.

DESIMONE, A. (1995) Hysteresis and imperfection sensitivity in small ferromagnetic particles, *Meccanica*, **30**, 591-603.

DESIMONE, A., KOHN, R.V., MÜLLER, S.& OTTO, F. (2002) A reduced theory for thin film micromagnetics, *Comm. Pure Appl. Math.*, **55**, 1408-1460.

DINEEN, S. (2001) Multivariate Calculus and Geometry, Second Edition, Springer-Verlag.

GARCÍA-CERVERA, C.J. (2005) Néel walls in low anisotropy symmetric double layers, *SIAM J. Appl. Math.*, **65**(5), 1726-1747.

GIOIA, G.& JAMES, R.D. (1997) Micromagnetics of very thin films, *Proc. Roy. Soc. London A*, **453**, 213-223.

HUBERT, A.& SCHÄFER, R. (1998) Magnetic Domains: The Analysis of Magnetic Microstructures, Springer-Verlag.

KOHN, R.V. & SLASTIKOV, V.V. (2005) Another thin-film limit in micromagnetics, *Arch. Ration. Mech. Anal.*, **178**, 227-245.

KURZKE, M. (2006) Boundary vortices in thin magnetic films, *Calc. Var. Part. Diff. Equat.*, **26**, 1-28.

KÜHN, K. (2007) Reversal modes in magnetic nanowires, Ph.D. Thesis.

SANCHEZ, D. (2009) Behavior of Landau-Lifshitz equation in a ferromagnetic wire, *Math. Models Methods Appl. Sci.*, **32**, 167-205.

SKOMSKI, R. (2003) Nanomagnetics, J. Phys.: Condens. Matter, 15, R841-R896.

SLASTIKOV, V.V. (2005) Micromagnetics of thin shells, *Math. Models Methods Appl. Sci.*, **15**, 1469-1487.

7 CONCLUSION

SLASTIKOV, V.V. (2010) A note on configurational anisotropy, *Proc. Roy. Soc. London Ser. A.*, **466**, 3167–3179.

VAZ, C.A.F., BLAND J.A.C. & LAUHOFF G. (2008) Magnetism in ultrathin film structures, *Rep. Prog. Phys*, **71**, 056501-056578.