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Abstract

In this paper we consider the micromagnetic variational problem for soft fer-
romagnetic nanowires. We show that, as the diameter of the wire is small, the
magnetization inside the wire depends only on the length variable of the wire. The
micromagnetic energy of the wire, in this case, is greatly simplified and in order
to find the optimal magnetization distribution, one has to solve a one-dimensional
local variational problem. micromagnetics; nanowire; Γ-convergence.

1 Introduction
Magnetic structures of reduced dimensions (thin films, nanowires, nanodots) attract
a lot of attention because of their applications to magnetic storage and logic devices,
see Skomski (2003), Vaz et al. (2008). Continual miniaturization of magnetic de-
vices raises questions that seemed unimportant before and phenomena, that previously
seemed negligible, gain importance. Theoretical understanding of magnetic properties
of nanostructures with reduced dimensions is of utter importance. The problem is very
difficult from an analytical point of view due to its nonlocal character and the presence
of multiple length scales. Relation between the material properties and the geometry of
the ferromagnetic nanostructures create a variety of different regimes. Some of these
regimes have been investigated in mathematical literature in the context of thin films,
see Gioia & James (1997), Desimone et al. (2002), Kohn & Slastikov (2005), Kurzke
(2006), Slastikov (2005); multilayers, see Garcı́a-Cervera (2005); nanowires, see Kühn
(2007), Sanchez (2009); and nanodots, see Desimone (1995), Slastikov (2010).

We focus our attention on soft ferromagnetic nanowires. These nanostructures are
widely used in new technological applications related to magnetic memory devices
and are therefore of major interest to both physical and mathematical communities.
In the last few years there were several mathematical studies of static and dynamic
phenomena in straight nanowires. The optimal profile problem, for straight wires with a
circular cross-section, was studied by Kühn (2007) using Fourier transformations. The
Landau-Lifshitz-Gilbert equations, for straight wires in the regime when the exchange
coefficient and diameter of the wire tend to zero, were studied by Sanchez (2009) using
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quite involved asymptotic analysis. In many cases nanowires are fabricated with cross-
sections that are different from the disk (rectangular, elliptic, e.t.c.), have a curvature
and exhibit some surface roughness. These effects significantly influence the magnetic
properties of a nanowire.

In this paper we study the properties of cylindrical nanowires with an arbitrary
cross-section and non-zero curvature. Using the micromagnetic variational principle
we rigorously derive a one-dimensional reduced micromagnetic model for ferromag-
netic nanowires. In this reduced model the nonlocal magnetostatic energy term be-
comes local and plays a role of additional anisotropy. This has been rigorously shown
for straight cylindrical wires with a circular cross-section, see Kühn (2007). In such
wires the additional anisotropy is uniaxial (directed along the wire) and isotropic in the
transverse directions. Our results indicate that this, in general, is not true and addi-
tional anisotropy: a) strongly depends on the shape of the cross-section; b) favours a
preferred plane rather than a preferred direction.

The paper is organized as follows. Below we briefly discuss the micromagnetic
variational principle. In section 2 we set up the variational problem for a straight cylin-
drical wire with a general cross-section. In section 3 we simplify the magnetostatic
energy, which allows us to prove a Γ-convergence result in section 4. Section 5 is
devoted to the specific example of a straight wire with an elliptical cross-section: we
explicitly derive the reduced energy and calculate the optimal profile. In section 6 we
prove a Γ-convergence result for curved cylindrical wires with a general cross-section,
based on the previously obtained results.

1.1 The micromagnetic variational principle
The micromagnetic variational principle captures the remarkable multiscale complex-
ity of magnetization behavior inside ferromagnets. The local minima of micromagnetic
energy correspond to the stable, and therefore observable, magnetization distributions,
see Aharoni (1996), Hubert & Schäfer (1998).

The normalized form of the micromagnetic energy is given by

E (m) = w2
∫

Ω

|∇m|2 +Q
∫

Ω

φ(m)+
∫

R3
|∇u|2−2

∫
Ω

hext ·m, (11)

where the four terms of the energy (11) are the exchange, anisotropy, magnetostatic
and Zeeman energies, respectively.

The ferromagnet being investigated is defined by the domain Ω ⊂ R3, with the
magnetization, m : Ω→ R3, given such that

|m(x)|= χΩ. (12)

Using Maxwell’s equation, we have that u satisfies

div(∇u+mχΩ) = 0 in R3, (13)

in the sense of distributions. It is clear that the magnetostatic energy term is nonlocal
in m. Using integration by parts we obtain:∫

R3
|∇u|2 =−

∫
Ω

m ·∇u. (14)
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This form of magnetostatic energy will be useful for analysis done in section 3.
We are seeking a Γ-convergence result, and since Γ-convergence is insensitive to

compact perturbations of the functional, we can disregard the anisotropy and Zeeman
terms to simplify the presentation.

2 Mathematical formulation: straight wire
In this section we are going to present a mathematically precise formulation of the
problem for a straight generalized wire. We define the following reference domain

Ω = {(x,y,z) : x ∈ [−L,L],(y,z) ∈ ω ⊂ R2},

where ω has C1 boundary. The ferromagnetic wire is represented by

Ωh = {(x,y,z) : (x,y/h,z/h) ∈Ω},

where h� 1 is a small parameter corresponding to the thickness of the wire and L
corresponds to the length of the wire. For simplicity of the presentation, we concentrate
here on the case when L is finite, however one can modify the proofs to include L = ∞.

Figure 1: Straight generalized cylindrical wire.

We study the following one parameter family of micromagnetic energy functionals

Eh(mh) = d2
∫

Ωh

|∇mh|2 +
∫

R3
|∇uh|2, (21)

where |mh|= 1 and uh satisfies the following equation

−∆uh = div(mhχΩh) in R3. (22)

Rescaling cross-section variables and the energy we obtain the following problem

Eh(m̃h) = d2
∫

Ω

(
∂ m̃h

∂x

)2

+
1
h2 |∇

′m̃h|2 +
1
h2

∫
R3
|∇uh|2, (23)

where
m̃h(x,y,z) = mh(x,hy,hz) for (x,y,z) ∈Ω
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and ∇′ = ( ∂

∂y ,
∂

∂ z ) (note that the magnetostatic energy is written as in (21), (22)). We
will assume that d is a fixed constant that corresponds to material parameters of the
wire.

We describe the behavior of the stable equilibrium magnetization distributions of
the energy (23) as h→ 0. In order to do this we show that Eh Γ-converges to the
one-dimensional energy E0, whose minimizers are much easier to study.

THEOREM 21 Assume d is a constant then

• if Eh(m̃h) ≤ C then m̃h → m weakly in H1(Ω;S2) (maybe for a subsequence),
m = m(x) depends only of one variable x;

• A sequence Eh Γ-converges to the energy E0 in H1
w(Ω;S2), where

E0(m) =
{ ∫ L

−L d2|m′(x)|2 +
∫ L
−L(Mm(x),m(x)) if m = m(x)

∞ otherwise.
(24)

Here M is a constant symmetric matrix defined as

M =− 1
2π

∫
∂ω

∫
∂ω

n(x)⊗n(y) ln |x−y|, (25)

where n(x) = (0,n2,n3) is a normal vector to ∂ω .

3 Calculation of magnetostatic energy
In this section we simplify the magnetostatic energy for the straight generalized wire.
In order to do this we follow the arguments of Kohn & Slastikov (2005) used to study
thin film behavior. We first show that one can replace mh(x,y,z) by its average over the
cross-section ωh.

LEMMA 31 Define m̄h(x) = 1
|ωh|

∫
ωh

mh(x,y,z) and let ūh be a solution of (22) with mh

replaced by m̄h. Then the following estimate is true:

1
h2

∣∣∣∣∫R3
|∇uh|2−

∫
R3
|∇ūh|2

∣∣∣∣≤Ch
(

1
h2 ‖∇

′m̃h‖2
L2(Ω) +1

)
. (31)

Proof of lemma 31. Applying the formula (14) and using the definitions of uh, ūh we
obtain ∫

R3
|∇uh−∇ūh|2 ≤

∫
Ωh

|mh− m̄h|2.

Poincaré’s inequality applied with respect to the (y,z) variables yields∫
Ωh

|mh− m̄h|2 = h2
∫

Ω

|m̃h− m̄h|2 ≤Ch2
∫

Ω

|∇′m̃h|2.

Last two inequalities and the triangle inequality imply∣∣∣∣∣
(∫

R3
|∇uh|2

) 1
2
−
(∫

R3
|∇ūh|2

) 1
2
∣∣∣∣∣≤Ch‖∇′m̃h‖L2(Ω). (32)
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It is clear from (14) that(∫
R3
|∇uh|2

) 1
2
≤ ‖mh‖L2(Ωh) and

(∫
R3
|∇ūh|2

) 1
2
≤ ‖m̄h‖L2(Ωh). (33)

Since |m̄h| ≤ |mh|= 1 we can combine (32) and (33) to obtain∣∣∣∣∫R3
|∇uh|2−

∫
R3
|∇ūh|2

∣∣∣∣≤Ch2‖∇′m̃h‖L2(Ω) ≤Ch3
(

1
h2 ‖∇

′m̃h‖2
L2(Ω) +1

)
.

The lemma is proved.

Using the above lemma we may focus on estimating
∫

R3 |∇ūh|2. We know that∫
R3
|∇ūh|2 =−

∫
Ωh

∇ūh · m̄h =
∫

Ωh

ūh div m̄h−
∫

∂Ωh

ūh(m̄h ·n). (34)

Explicitly solving the equation (13) for uh we obtain

4π ūh(x) =
∫

Ωh

1
|x−y|

div m̄h(y)−
∫

∂Ωh

1
|x−y|

(m̄h ·n)(y). (35)

Plugging the expression (35) for ūh into formula (34) and recalling that m̄h =(m̄1,h, m̄2,h, m̄3,h)
depends only on one variable x we have

4π

∫
R3
|∇ūh|2 =

∫
Ωh

∫
Ωh

1
|x−y|

m̄′1,h(y)m̄
′
1,h(x) (36)

− 2
∫

∂Ωh

∫
Ωh

1
|x−y|

m̄′1,h(y)(m̄h ·n)(x)

+
∫

∂Ωh

∫
∂Ωh

1
|x−y|

(m̄h ·n)(y)(m̄h ·n)(x).

We will refer to the three terms of (36) as “bulk-bulk term”, “bulk-boundary term”, and
“boundary-boundary term” respectively. Using the fact that m̄h is dependent only on
the length of the wire we will expand these terms and estimate them. At this point we
will change variables, for added clarity, so that we have

x,y ∈ ωh are cross-section variables, s, t ∈ [−L,L] are length variables.

With these new variables, we redefine the three terms of (36).

Bulk-bulk term

A1 =
∫ L

−L

∫ L

−L

∫
ωh

∫
ωh

m̄′1,h(s)m̄
′
1,h(t)√

|x−y|2 +(s− t)2
. (37)

Bulk-boundary term
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A2 =−2
∫ L

−L

∫ L

−L

∫
∂ωh

∫
ωh

m̄′1,h(s)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

−2
∫ L

−L

∫
ωh

∫
ωh

m̄′1,h(s)m̄1,h(L)√
|x−y|2 +(s−L)2

+2
∫ L

−L

∫
ωh

∫
ωh

m̄′1,h(s)m̄1,h(−L)√
|x−y|2 +(s+L)2

. (38)

Boundary-boundary term

A3 =
∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

+
∫

ωh

∫
ωh

|m̄1,h(−L)|2 + |m̄1,h(L)|2

|x−y|
−2

∫
ωh

∫
ωh

m̄1,h(−L)m̄1,h(L)√
|x−y|2 +4L2

−2
∫ L

−L

∫
∂ωh

∫
ωh

(m̄h ·n)(s,x)m̄1,h(−L)√
|x−y|2 +(s+L)2

+2
∫ L

−L

∫
∂ωh

∫
ωh

(m̄h ·n)(s,x)m̄1,h(L)√
|x−y|2 +(s−L)2

. (39)

Next we seek to estimate |A1|, |A2| and |A3|. We first state the following simple lemma
(for proof see Kohn & Slastikov (2005)).

LEMMA 32 (GENERALIZED YOUNG’S INEQUALITY) Assume Ω ⊂ Rn is a bounded
set, f ,g ∈ L2(Ω) and K ∈ L1

loc(R
n). Then∫

Ω

∫
Ω

f (x)g(y)K(x− y)≤ ‖K‖L1(B)‖ f‖L2(Ω)‖g‖L2(Ω), (310)

for some ball B⊂ Rn, depending only on Ω.

Using lemma 32 it’s not difficult to obtain the following estimate on |A1|:

|A1| ≤Ch4| lnh|‖m̄′1,h‖2. (311)

It is straightforward to estimate the first term in A2 by Ch3| lnh|(‖m̄′1,h‖2 + 1) and the
last two terms by Ch4| lnh|. Therefore we obtain

|A2| ≤Ch3| lnh|(‖m̄′1,h‖2 +1). (312)

The calculation of the first term in A3 will be provided later but we see that this is the
dominating term here since the rest of the terms in A3 can be estimated by Ch3, Ch4

and Ch3| lnh|, respectively.
Therefore the magnetostatic energy can be rewritten as

4π

∫
R3
|∇uh|2 =

∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

+O(h3)
(

1
h2 ‖∇

′m̃h‖2
L2(Ω) +1

)
+O(h3| lnh|)

(
‖m̄′1,h‖2

L2(Ω) +1
)

. (313)
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4 Reduced energy: Γ-convergence result
In this section we are going to derive the reduced energy for a straight ferromagnetic
nanowire using Γ-convergence techniques. From the previous section we see that in
order to do this it is necessary to understand the asymptotic behavior, as h→ 0, of the
following term ∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

.

Before proving the actual Γ-convergence result we prove the following lemma, which
identifies its limiting behavior.

LEMMA 41 Assume m̄h→ m weakly in H1(−L,L) then we have

lim
h→0

1
h2

∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

=

−2
∫ L

−L

∫
∂ω

∫
∂ω

(m ·n)(t,x)(m ·n)(t,y) ln |x−y|. (41)

Proof of lemma 41. Since n(x) depends only on the cross-section variable x and m̄h(s)
depends only on the length variable s, it is clear that in this case (not relabeling n)

1
h2

∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

=
∫

∂ω

∫
∂ω

∫ L

−L

∫ L

−L

(m̄h(s) ·n(x))(m̄h(t) ·n(y))√
h2|x−y|2 +(s− t)2

.

(42)

Therefore we essentially have to understand how to evaluate the following expression

Gh =
∫ L

−L

∫ L

−L

fh(s,x) fh(t,y)√
(s− t)2 +h2|x−y|2

,

where fh(t,y) = (m̄h(t) ·n(y)) and fh(s,x) = (m̄h(s) ·n(x)). Since we integrate over s
and t variables we may treat x and y as parameters here. Let’s rewrite Gh as∫ L

−L
fh(t,y)

∫ t

−L

fh(s,x)dsdt√
(s− t)2 +h2|x−y|2

+
∫ L

−L
fh(t,y)

∫ L

t

fh(s,x)dsdt√
(s− t)2 +h2|x−y|2

.

Integration by parts yields∫ t

−L

fh(s,x)ds√
(s− t)2 +h2|x−y|2

=
∫ t

−L
f ′h(s,x) ln

(
t− s+

√
(s− t)2 +h2|x−y|2

)
ds

− fh(t,x) ln(h|x−y|)+ fh(−L,x) ln
(

t +L+
√

(t +L)2 +h2|x−y|2
)

(43)

and∫ L

t

fh(s,x)ds√
(s− t)2 +h2|x−y|2

=−
∫ L

t
f ′h(s,x) ln

(
s− t +

√
(s− t)2 +h2|x−y|2

)
ds

− fh(t,x) ln(h|x−y|)+ fh(L,x) ln
(

L− t +
√

(L− t)2 +h2|x−y|2
)

. (44)
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Therefore we can explicitly obtain

Gh =−2
∫ L

−L
fh(t,x) fh(t,y) ln(h|x−y|)

+ fh(−L,x)
∫ L

−L
fh(t,y) ln

(
t +L+

√
(t +L)2 +h2|x−y|2

)
+ fh(L,x)

∫ L

−L
fh(t,y) ln

(
L− t +

√
(L− t)2 +h2|x−y|2

)
+
∫ L

−L
fh(t,y)

∫ t

−L
f ′h(s,x) ln

(
t− s+

√
(s− t)2 +h2|x−y|2

)
−
∫ L

−L
fh(t,y)

∫ L

t
f ′h(s,x) ln

(
s− t +

√
(s− t)2 +h2|x−y|2

)
. (45)

It is clear that as h→ 0, fh→ f ( f (t,x) = m(t) · n(x)) and we can pass to the limit to
get

Gh +2lnh
∫ L

−L
fh(t,x) fh(t,y)→−2

∫ L

−L
f (t,x) f (t,y) ln |x−y|

+ f (−L,x)
∫ L

−L
f (t,y) ln(2(t +L))+ f (L,x)

∫ L

−L
f (t,y) ln(2(L− t))

+
∫ L

−L
f (t,y)

∫ t

−L
f ′(s,x) ln(2(t− s))−

∫ L

−L
f (t,y)

∫ L

t
f ′(s,x) ln(2(s− t)) (46)

uniformly in x, y. Recalling the definition of fh(t,x) and f (t,x) we can deduce, using
Stokes’ theorem, that∫

∂ω

fh(t,x) =
∫

∂ω

(m̄h(t) ·n(x)) = 0 and
∫

∂ω

f (t,x) =
∫

∂ω

(m(t) ·n(x)) = 0. (47)

Integrating (46) over ∂ω with respect to x and y, having in mind (47) and recalling the
definition of Gh, we obtain

lim
h→0

∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|x−y|2 +(s− t)2

=−2
∫ L

−L

∫
∂ω

∫
∂ω

(m(t)·n(x))(m(t)·n(y)) ln |x−y|.

(48)

The lemma is proved.
Now we are ready to prove the Γ-convergence result. Let us recall the definition of

the micromagnetic energy we are considering here (for simplicity of notation we drop
all tildes)

Eh(mh) = d2
∫

Ω

(
∂mh

∂x

)2

+
1
h2 |∇

′mh|2 +
1
h2

∫
R3
|∇uh|2.

Proof of theorem 21. Using bounds on the energy Eh(mh)≤C it is straightforward to
deduce that
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• mh→ m weakly in H1(Ω;S2);

• m = m(x) is independent of (y,z) variables;

• m̄h→ m weakly in H1(−L,L).

Using (313) and lemma 41 we obviously have

liminfEh(mh)≥ E0(m),

for any mh→ m weakly in H1(Ω;S2).
Now take any m ∈ H1(Ω;S2). We can construct the recovery sequence by defining

mh = m. Again, using (313) and lemma 41 it is straightforward that

Eh(mh)= d2
∫

Ω

(
∂m
∂x

)2

+
1
h2 |∇

′m|2− 1
2π

∫ L

−L

∫
∂ω

∫
∂ω

(m̄·n)(t,x)(m̄·n)(t,y) ln |x−y|+o(1).

(49)

Therefore it is clear that Eh(mh) Γ-converges to E0(m) and theorem 21 is proved.

5 Example of a wire with elliptic cross-section
In this section we calculate the reduced energy and equilibrium magnetization distri-
butions for a specific example of ferromagnetic generalized cylindrical wire with an
elliptic cross-section. The result turns out to be quite different from the well known
energy for a wire with a circular cross-section, see Kühn (2007).

Figure 2: Elliptical wire.

Looking back at (24) we just need to find the symmetric matrix M = {Mi j} to get the
magnetostatic energy. Parameterizing the boundary of an ellipse in R2 by (acosθ ,bsinθ),
with θ ∈ [0,2π) and a,b > 0 we obtain

M11 =− b2

4π

∫ 2π

0

∫ 2π

0
cosθ cosφ ln

(
a2(cosθ − cosφ)2 +b2(sinθ − sinφ)2) , (51)

M12 =− ab
4π

∫ 2π

0

∫ 2π

0
cosθ sinφ ln

(
a2(cosθ − cosφ)2 +b2(sinθ − sinφ)2) , (52)

M22 =− a2

4π

∫ 2π

0

∫ 2π

0
sinθ sinφ ln

(
a2(cosθ − cosφ)2 +b2(sinθ − sinφ)2) . (53)
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Using the change of variables θ → 2π−θ and φ → 2π−φ it is clear that M12 = 0. It
is then straightforward to obtain

M11 =
πab2

a+b
, M22 =

πa2b
a+b

.

Hence the reduced magnetostatic energy is

πabh2

a+b

∫ L

−L
bm2

2(x)+am2
3(x)dx. (54)

Putting everything together we now have

E0(m) = d2
∫ L

−L
|m′(x)|2dx+

πab
a+b

∫ L

−L
bm2

2(x)+am2
3(x)dx. (55)

In order to obtain the magnetization distribution of this energy we will now need to find
a minimizer of the energy for a set of Dirichlet boundary conditions. We will choose
our boundary conditions such that the magnetization vector is tangent to the wire at
each end, i.e m(−L) = (−1,0,0), m(L) = (1,0,0).

Clearly minimizing the above is equivalent to finding a minimizer of

F(m) = α

∫ L

−L
|m′(x)|2dx+

∫ L

−L
bm2

2(x)+am2
3(x)dx, (56)

where α is a positive constant.
Since we have |m(x)|= 1, for x ∈ [−L,L], we can write m(x) as

m(x) = (cosθ(x),sinθ(x)cosφ(x),sinθ(x)sinφ(x)). (57)

To achieve the boundary conditions we have θ(0) = π , θ(1) = 0 and φ=constant.
Rewriting (56) we now get

F(θ ,φ) =
∫ L

−L
α(θ ′)2 +

(
α(φ ′)2 +(b−a)cos2

φ +a
)

sin2
θ dx. (58)

Clearly if a = b, then in order to minimize this functional, we see that we can choose
φ to be any constant. However, if a > b then φ = 0 or φ = π will minimize the energy
and if b > a then φ = π

2 or φ = 3π

2 will minimize the energy. In both cases the energy
is simplified to

F(θ ,φ) =
∫ L

−L
α(θ ′)2 +min{a,b}sin2

θ dx.

From this it’s not difficult to derive the Euler-Lagrange equation for θ

θ
′′ = k sin(2θ), (59)

where k = min{a,b}
2α

is a positive constant, θ(0) = π , θ(1) = 0.
We notice that for a circular cross-section (a = b) the magnetization can lie in any

plane (φ is any constant). On the other hand, if a 6= b there is a preferred plane in which
magnetization lies (φ = 0 or φ = π

2 ).
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REMARK 51 For a wire with arbitrary cross-section matrix M defined in (25) is sym-
metric. Therefore, it is clear that there exists a frame in which M is diagonal matrix.
Using the above arguments for the elliptic wire it is clear that optimal magnetization
distribution will always lie in some preferred plane (that will depend on the wire’s
cross-section).

6 Reduced energy for a curved wire
We now turn our attention to the problem of finding the reduced energy of a curved
generalized cylindrical wire. For clarity of the presentation we choose to parameterize
the wire using the Frenet-Serret frame (see Dineen (2001)) .

We have that tangent T (s), normal N(s) and binormal B(s) to a 3D curve γ(s) form
the Frenet-Serret basis {T (s),N(s),B(s)}. The relation between the basis vectors is
given by the Frenet-Serret equations

T ′(s) = κ(s)N(s), (61)

N′(s) =−κ(s)T (s)+ τ(s)B(s), (62)

B′(s) =−τ(s)N(s), (63)

where κ(s) and τ(s) are the curvature and torsion of γ(s) respectively.
We can define the following reference domain

Ω = {(x,y,z) ∈ R3 : (x,y,z) = γ(s)+ x1N(s)+ x2B(s)},

where s ∈ [−L,L] is the arc length of the wire, x = (x1,x2) ∈ ω (where ω is the cross-
section) and γ(s) ⊂ R3 is the central curve of the wire with N(s) and B(s) being the
normal and binormal to the curve respectively. We will work with curves γ which
are smooth, non-intersecting and regular. Without loss of generality we assume the
condition diam(ω) < 1

mins κ(s) , where κ(s) is the curvature. The ferromagnetic wire is
represented by

Ωh = {(x,y,z) ∈ R3 : (x,y,z) = γ(s)+h(x1N(s)+ x2B(s))},

where s is the arc length and (x1,x2) ∈ ω .
As before we study the following one parameter family of micromagnetic energy func-
tionals

Eh(mh) =
d2

h2

∫
Ωh

|∇mh|2 +
1
h2

∫
R3
|∇uh|2, (64)

where, as before, |mh|= 1 in Ωh and uh satisfies the following equation

−∆uh = div(mhχΩh) in R3. (65)

In this section we will now prove the following theorem:

THEOREM 61 Assume d is a constant then we have:
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Figure 3: Curved generalized cylindrical wire.

• if Eh(m̃h) ≤ C then m̃h → m weakly in H1(Ω;S2) (maybe for a subsequence),
m = m(s);

• Eh Γ- converges to the following energy E0 in H1
w(Ω;S2)

E0(m) =
{

d2 ∫ L
−L |m′(s)|2 +

∫ L
−L(M(s)m(s),m(s)) if m = m(s)
∞ otherwise.

(66)

Here M(s) is a symmetric matrix defined as

M(s) =− 1
2π

∫
∂ω

∫
∂ω

n(s,x)⊗n(s,y) ln |x−y|,

where n is a normal vector to ∂Ω and parameter s corresponds to an arc length
of the wire.

6.1 Exchange energy
We will begin by looking at the exchange energy and so we will need to change vari-
ables from (x,y,z)→ (s,x). We have

x = γ1(s)+ x1N1(s)+ x2B1(s), (67)

y = γ2(s)+ x1N2(s)+ x2B2(s), (68)

z = γ3(s)+ x1N3(s)+ x2B3(s), (69)

where the Jacobian of this transformation is

J(s,x) = |1− x1κ(s)|. (610)

Next, by implicitly differentiating equations (67) - (69) by x,y and z, we can then
solve a set of simultaneous equations to get all of the partial derivatives needed for ∂

∂x ,
∂

∂y and ∂

∂ z , respectively. Putting them together we obtain
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d2

h2

∫
Ωh

|∇mh|2 =
d2

h2|1− x1κ|

∫ L

−L

∫
∂ωh

∣∣mh,s− x1τmh,x2 + x2τmh,x1

∣∣2
+

d2

h2

∫ L

−L

∫
∂ωh

|1− x1κ||mh,x1 |
2 +

d2

h2

∫ L

−L

∫
∂ωh

|1− x1κ||mh,x2 |
2. (611)

Rescaling ωh to a fixed domain ω (not relabeling (x1,x2)) we finally get

d2

h2

∫
Ωh

|∇mh|2 =
d2

|1−hx1κ|

∫ L

−L

∫
∂ω

∣∣m̃h,s− x1τm̃h,x2 + x2τm̃h,x1

∣∣2
+

d2

h2

∫ L

−L

∫
∂ω

|1−hx1κ||∇′m̃h|2, (612)

where
m̃h(s,x1,x2) = mh(s,hx1,hx2) for s ∈ [−L,L], (x1,x2) ∈ ω

and ∇′ =
(

∂

∂x1
, ∂

∂x2

)
.

6.2 Magnetostatic energy
Now we proceed to compute the magnetostatic energy. Before we begin we should
notice that when we change variables from mh(x,y,z) to mh(s,x) we can then replace
mh(s,x) with m̄h(s) = 1

|ωh|
∫

ωh
mh(s,x). The proof of this fact follows the same argu-

ments as the proof of lemma 31 and therefore we omit it here.
Using expansion (36) of the magnetostatic energy and estimates for the bulk-bulk,

bulk-boundary and boundary-boundary terms similar to (37) - (39), we can show as
before that

4π

∫
R3
|∇uh|2 = O(h3)

(
1
h2 ‖∇

′m̃h‖2
L2(Ω) +1

)
+O(h3| lnh|)

(
‖m̄′1,h‖2

L2(Ω) +1
)

+
∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)J(s,x)J(t,y)
|(γ(s)+ x1N(s)+ x2B(s))− (γ(t)+ y1N(t)+ y2B(t))|

, (613)

where in this case x and y parameterize ∂ωh. We now proceed to prove the following
lemma, analogous to lemma 41.

LEMMA 61 Assume m̄h→ m weakly in H1(−L,L) then as h→ 0 we have

1
h2

∫ L

−L

∫ L

−L

∫
∂ωh

∫
∂ωh

(m̄h ·n)(s,x)(m̄h ·n)(t,y)J(s,x)J(t,y)
|(γ(s)+ x1N(s)+ x2B(s))− (γ(t)+ y1N(t)+ y2B(t))|

→ −2
∫ L

−L

∫
∂ω

∫
∂ω

(m ·n)(t,x)(m ·n)(t,y) ln |x−y|. (614)
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Proof of lemma 61. We begin by rescaling (613), but not relabeling (m̄ ·n), to get∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)J(s,hx)J(t,hy)
|(γ(s)+hx1N(s)+hx2B(s))− (γ(t)+hy1N(t)+hy2B(t))|

. (615)

We will now show that as h→ 0 this integral can be approximated by the following
one: ∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|γ(s)− γ(t)|2 +h2|x−y|2

(616)

with the error O(h).
To show this we will begin by expanding out the denominator of (615). Let Ah =

|(γ(s)+hx1N(s)+hx2B(s))− (γ(t)+hy1N(t)+hy2B(t))|. Expanding this out we get

A2
h = |γ(s)− γ(t)|2 +h2|x|2 +h2|y|2

+2hx1N(s) · (γ(s)− γ(t))+2hx2B(s) · (γ(s)− γ(t))
+2hy1N(t) · (γ(t)− γ(s))+2hy2B(t) · (γ(t)− γ(s))

−2h2x1y1N(s) ·N(t)−2h2x1y2N(s) ·B(t)

−2h2x2y1B(s) ·N(t)−2h2x2y2B(s) ·B(t) (617)

Now let Bh =
√
|γ(s)− γ(t)|2 +h2|x−y|2. Using basic algebra and Taylor expansions

it is not difficult to see that

|A2
h−B2

h| ≤Ch2|t− s|+Ch|t− s|2, (618)

Bh ≥
√

δ 2(s− t)2 +h2|x−y|2, (619)

Ah ≥
√

δ 2(s− t)2 +h2|x−y|2, (620)

for some δ > 0. So we now have∣∣∣∣∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)J(s,hx)J(t,hy)
|(γ(s)+hx1N(s)+hx2B(s))− (γ(t)+hy1N(t)+hy2B(t))|

−
∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|γ(s)− γ(t)|2 +h2|x−y|2

∣∣∣∣∣
≤C

∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

h2|s− t|+h|s− t|2

(δ 2(s− t)2 +h2|x−y|2) 3
2
≤Ch. (621)

Hence we have shown that we may replace (615) by (616). In order to tackle (616) we
begin by investigating ∫ L

−L

fh(s,x)ds√
|γ(s)− γ(t)|2 +h2|x−y|2

,

where fh = (m̄h ·n). This can be written as∫ L

−L

fh(s,x)
cosθ(s, t)

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

ds, (622)
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where cosθ(s, t) = γ ′(s)·(γ(s)−γ(t))
|γ ′(s)||γ(s)−γ(t)| =

γ ′(s)·(γ(s)−γ(t))
|γ(s)−γ(t)| . It is clear that for |s− t| → 0∣∣∣∣cosθ(s, t)− s− t
|s− t|

∣∣∣∣→ 0. (623)

We can do a similar integration by parts trick as for the straight wire case by rewriting
(622) as∫ t

−L

fh(s,x)
cosθ(s, t)

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

ds+
∫ L

t

fh(s,x)
cosθ(s, t)

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

ds,

(624)

and noticing that

d
ds

ln
(
|γ(s)− γ(t)|+

√
|γ(s)− γ(t)|2 +h2|x−y|2

)
=

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

.

Integration by parts yields∫ t

−L

fh(s,x)
cosθ(s, t)

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

ds =− fh(t,x) ln(h|x−y|)

− fh(−L,x)
cosθ(−L, t)

ln
(
|γ(−L)− γ(t)|+

√
|γ(−L)− γ(t)|2 +h2|x−y|2

)
−
∫ t

−L
ln
(
|γ(s)− γ(t)|+

√
|γ(s)− γ(t)|2 +h2|x−y|2

)
d
ds

(
fh(s,x)

cosθ(s, t)

)
(625)

and∫ L

t

fh(s,x)
cosθ(s, t)

cosθ(s, t)√
|γ(s)− γ(t)|2 +h2|x−y|2

ds =− fh(t,x) ln(h|x−y|)

+
fh(L,x)

cosθ(L, t)
ln
(
|γ(L)− γ(t)|+

√
|γ(L)− γ(t)|2 +h2|x−y|2

)
−
∫ L

t
ln
(
|γ(s)− γ(t)|+

√
|γ(s)− γ(t)|2 +h2|x−y|2

)
d
ds

(
fh(s,x)

cosθ(s, t)

)
. (626)

Combining these, multiplying everything by fh(t,y) and integrating over t, x and y we
can use the same techniques as in the straight wire case to obtain∫ L

−L

∫ L

−L

∫
∂ω

∫
∂ω

(m̄h ·n)(s,x)(m̄h ·n)(t,y)√
|γ(s)− γ(t)|2 +h2|x−y|2

→−2
∫ L

−L

∫
∂ω

∫
∂ω

(m ·n)(t,x)(m ·n)(t,y) ln |x−y|. (627)

where n is the normal to ∂Ω. The lemma is proved.

Proof of theorem 61. This can be proven in the same way as theorem 21 using (612)
and lemma 61.
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7 Conclusion
We have studied the micromagnetic energy for soft ferromagnetic wires with an ar-
bitrary cross-section, curvature and torsion. Using variational methods and appropri-
ate decomposition of the magnetostatic energy, we have shown that for ferromagnetic
wires with a small diameter cross-section, the micromagnetic energy can be reduced to
a simple one-dimensional energy. An interesting feature of this reduced problem is that
the nonlocal magnetostatic energy simplifies to a local “shape anisotropy” that makes
the magnetization prefer specific planes depending on the shape of the cross-section.
This is different from the well known magnetization behavior inside wires with a cir-
cular cross-section. The magnetization inside the curved wires behaves as expected: it
wants to align along the wire, and the optimal profile problem is analogous to the case
of the straight wire. The methods used in this paper can also be extended to explain
the optimal magnetization distribution inside nanowires with different geometries and
in various regimes.
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HUBERT, A.& SCHÄFER, R. (1998) Magnetic Domains: The Analysis of Magnetic
Microstructures, Springer-Verlag.

KOHN, R.V. & SLASTIKOV, V.V. (2005) Another thin-film limit in micromagnetics,
Arch. Ration. Mech. Anal., 178, 227-245.

KURZKE, M. (2006) Boundary vortices in thin magnetic films, Calc. Var. Part. Diff.
Equat., 26, 1-28.
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