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Abstract

We present a theory of orientational order in nematic liquid crystals which interpolates between several distinct
approaches based on the director field (Oseen and Frank), order parameter tensor (Landau and de Gennes), and
orientation probability density function (Onsager). As in density-functional theories, the suggested free energy is a
functional of spatially-dependent orientation distribution, however, the nonlocal effects are taken into account via
phenomenological elastic terms rather than by means of a direct pair-correlation function. In illustration of this
approach we consider a simplified model with orientation parameter on a circle and reveal its relation to the complex
Ginzburg-Landau theory.
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1. Introduction

Two basic phenomenological theories address-
ing spatial variations of orientational order in ne-
matic liquid crystals are the Oseen-Frank [1,2] and
Landau-de Gennes [3] theories. The central object
in both these theories is a free energy functional;
in the former case it is a functional of the field of
director (locally-preferred orientation of liquid crys-
talline molecules), whereas in the latter case it is a
functional of the tensor field of order parameter (see
the next section for details). Minimizers of the free
energy functionals correspond to equilibrium states
of liquid crystalline system — a common feature of
all free energy-based variational theories.

A microscopic approach to derivation of the free
energy was suggested by Onsager [4]. From this
point of view the free energy is a functional depend-
ing on probability density function of orientations
(of liquid crystalline molecules) and may be derived
via some cluster or virial expansion (Onsager used
the second virial approximation). One of the de-

ficiencies of Onsager’s theory is insensitiveness to
spatial variation of orientation distribution, i.e., the
latter is obtained via sampling over all molecules
in the system rather than via local, “mesoscopic,”
sampling. The modern density-functional theories
[5,6] (which are in many ways generalizations of
Onsager’s approach) attempt to solve this issue. Un-
fortunately, some of their most essential quantities
(e.g., the direct pair-correlation function) cannot
be readily computed from microscopic principles,
so phenomenological approximations still have to
be made if one wishes to obtain tangible results.

The goal of this work is to suggest a class of models
that may be analyzed and understood analytically
(rather than by means of computer simulations).
Akin to density-functional method, we base our de-
scription on spatially-dependent orientation proba-
bility density. However, instead of following the mi-
croscopic approach to full extent, we express the
order-parameter (or director) field by means of the
appropriate averaging, and employ the Oseen-Frank
and Landau-de Gennes -type ideas to express the
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elastic part of the free energy. The principal reasons
for using this scheme are its simplicity and recent
improvements in analytical techniques addressing
(spatially-homogeneous) Onsager-type models [7,8].
After describing the general theory we concentrate
on a specific model in which the orientation param-
eter belongs to a circle (rather than a sphere). This
simplified model has many properties of the full one
and its analysis is quite illustrative mathematically.
Additionally, it has an intrinsic relation to complex
Ginzburg-Landau-type models and the problem of
harmonic mapping into a unit circle. In the last sec-
tion we discuss various extentions of this work such
as incorporation of additional physical features and
description of dynamical phenomena in terms of gra-
dient flows generated by the free energy functionals.

2. Models for nematic liquid crystals

Let us begin with a brief summary of the theories
(mentioned in the introduction) that lay foundation
for our work. Since their detailed review is not the
goal of this paper, the presentation is considerably
simplified (e.g., some terms in the free energy func-
tionals are omitted). Reviews [9–11], or texts such
as [12,3] cover the missing details to a great extent.

In what follows we assume the convention that
the liquid-crystalline substance is contained in some
spatial domain Ω ⊂ R3, the corresponding coordi-
nates are denoted by x, y, etc. The orientational
degree of freedom may be completely characterized
by a point on a sphere S2 imbedded in a three-
dimensional Euclidean space, i.e., S2 = {s ∈ R3 :
|s| = 1}. (Strictly speaking if a rod-like molecule is
symmetric with respect to inversion its orientation
is characterized by point on a two-dimensional pro-
jective plane, however it is simpler to use S2 which
can be nicely imbedded into R3.)

2.1. Phenomenological models

Most phenomenological continuum models de-
scribe liquid crystalline systems via macroscopic
order-parameter fields. The free energy is consid-
ered as a functional of these fields and is constructed
using symmetries, qualitative analogies, etc., to pos-
sess all essential features known from experiments.
Various parameters in such models are tuned so
that the theoretical predictions match with exper-
imental observations. In such theories the lack of
connection with microscopic (molecular) properties

of real liquid crystalline systems is compensated by
relative simplicity of mathematical apparatus and
good (at least qualitative) agreement with experi-
mental data.

Perhaps the oldest theory that addresses spatial
variations of nematic ordering is the Oseen-Frank
elastic theory. The state of the system is described
via the field of director, n(x) — the space-dependent
average orientation of liquid crystalline molecules.
In essence, it is assumed that the liquid crystalline
system is in nematic state and at every macroscopic
location x ∈ Ω ⊂ R3, n(x) ∈ S2 is well-defined.
In its most basic form the free energy functional is
given by (the surface terms as well as some other
contributions are omitted)

EOF[n] =
1
2

∫

Ω

{
κ11 (∇ · n)2

+ κ22 (n · ∇ × n)2 + κ33 |n×∇× n|2
}

dx. (1)

The elastic moduli καβ are matched with experi-
ments or microscopic theories [13,14] and may them-
selves be nontrivial functions of temperature, con-
centration, etc. (Generally, the indices α and β vary
from one to six and additional terms may be present
in (1). However, due to symmetries only five out
of thirty six καβ are independent.) The functional
(1), even in the reduced form presented here, is in-
tractable analytically, and a simpler model may be
obtained under assumption that κ11 = κ22 = κ33. In
this case the free energy density becomes κ|∇n|2/2,
which is the usual Dirichlet (elastic) energy. (Need-
less to say that this simplification is bound to im-
pose additional limitations on the class of phenom-
ena that may be described within this framework.)

Another phenomenological theory is that of Lan-
dau and de Gennes. Instead of the director field,
here we have the tensor (traceless and symmetric)
order-parameter field, O(x). In essence, the compo-
nents Oαβ(x) (α, β = 1, 2, 3) are mesoscopic aver-
ages of the products sαsβ over the liquid crystalline
molecules located at macroscopic coordinate x. The
Landau-de Gennes free energy may be written as

ELdG[O] =
∫

Ω

{ κ1

2
|∇O|2 +

κ2

2
|∇·O|2

+ a TrO2 − b TrO3 + c
[
TrO2

]2} dx. (2)

The gradient terms model elastic interactions
whereas the nonlinear terms appear as the result of
expansion of the free energy and bear the structure
necessary to allow for the isotropic-nematic phase
transition. Unlike the Oseen-Frank theory, Landau-
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de Gennes theory also captures variations in the
strength of nematic ordering, e.g., one may think of
TrO2 as a scalar order parameter with TrO2 = 0
corresponding to isotropic state and TrO2 ≈ 2/3
corresponding to nematic state. Even though the
functional (2) is the simplest functional of the order
parameter field (among those that encode all im-
portant physical features), its analysis is still very
nontrivial as it contains highly nonlinear functions
of a tensor field O(x).

2.2. Onsager model

Unlike the above theories, the Onsager theory is
to a large extent microscopic, i.e., its free energy
functional may be (quite rigorously) derived for long
rod-like molecules in the limit of small concentra-
tion. Onsager’s idea is to consider the free energy as
a functional of orientation probability density, %(s),
and to use asymptotic expansion of this functional
with respect to concentration. He assumed that the
liquid crystalline molecules may be represented as
hard rods of length ` and diameter d (` À d) and
expanded the free energy (per unit volume) up to
second order with respect to concentration, c (this
approximation is known as the second virial approx-
imation) obtaining

FOns[%] =
∫

S2
%(s) ln %(s) ds

+
γ

2

∫∫

S2
U(s, s′) %(s)%(s′) dsds′. (3)

(A few terms irrelevant for our study are omit-
ted here.) Unlike parameters in the Oseen-Frank
and Landau-de Gennes theories, γ is directly re-
lated to microscopic properties of liquid crystalline
molecules: γ = 2cd`2 (F is measured in the units
of kBT ). The interaction potential, U(s, s′), is the
so-called second virial coefficient (a multiplicative
factor is absorbed into γ). In the original Onsager
model

UOns(s, s′) =
[
1− (s · s′)2]1/2

= |s× s′|, (4)

which corresponds to the excluded-volume (hard
cores) interaction of liquid-crystalline molecules.

Note also that a phenomenological (mean-field)
Maier-Saupe theory [15] produces a free energy func-
tional of Onsager type (3). In their model, however,
the interaction (and the parameter γ) is not explic-
itly derived from the microscopic properties of the
system and is rather prescribed as
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Fig. 1. Isotropic-nematic diagram for the Onsager model (3)
with Maier-Saupe interaction (5). The branch r = 0 corre-
sponds to isotropic phase which is stable when γ < 15/2. The
curve γ(r) obtained from (7) corresponds to nematic states.
These states may be prolate (r < 0) or oblate (r > 0). Oblate
states are always unstable, whereas the prolate states may
be both stable (left branch) and unstable. At γ ≈ 6.76 (not
pictured) the isotropic state becomes “metastable,” i.e., it
stops being a global minimizer of the free energy functional
(remaining a local minimizer while γ < 15/2).

UMS(s, s′) :=
1
3
− (s · s′)2. (5)

Nevertheless, this interaction has been commonly
used since it preserves all essential features of the
model and does not suffer from the lack of analytic-
ity as UOns does. Even though γ in Maier-Saupe ap-
proximation is phenomenological, it is still directly
proportional to concentration and will be referred
to as concentration further on. (Let us also com-
ment that γ in Maier-Saupe approximation may be
thought of as a factor in multi-pole expansion of the
true second virial coefficient, and their model is in
this sense a quadrupole approximation.)

In [8] we have shown that all critical points of On-
sager functional with Maier-Saupe interaction (also
called P2-Onsager model) are given by

%(s) = Z−1 exp−r(γ)(3 cos2 ϑ−1), (6)

where the constantZ is obtained from normalization
condition, the order parameter r and concentration
γ are related by

1
γ

=
1
6r

d
dr

lnZ(r). (7)

See Figure 1 for the corresponding phase (isotropic-
nematic) diagram.

Onsager’s theory captures well the isotropic-
nematic phase transition and is explicitly solvable,
which makes it a perfect starting point for the
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development of more complicated theories that in-
corporate dependence of the orientation probability
density on the spatial coordinate x. It became a pre-
cursor to modern density-functional theories where
the state of the system is described via %(x, s) (or
more complex joint probability density functions)
and the free energy is written down as a functional
of the state. Generally, this functional has a form
similar to (3) except the interaction U itself be-
comes a functional of % (this object is known as
direct pair-correlation function). The catch is that
no systematic way of computing U [%](s, s′) is cur-
rently known and some phenomenological or ad-hoc
approximations still have to be made for obtaining
tangible results. (Moreover, the assumption that U
may be considered as a functional of % alone does
not have to hold and, strictly speaking, the whole
hierarchy of joint probability density functions has
to be taken into account in a truly complete micro-
scopic theory.)

2.3. A framework for semi-microscopic models

Here we present a class of models that in some
sense interpolate between Onsager’s model and phe-
nomenological models of Oseen-Frank and Landau-
de Gennes. The idea is to use Onsager’s model on
“mesoscopic” level and to model the spatial inter-
actions via elastic-like terms as in Oseen-Frank and
Landau-de Gennes theories. We base our description
on space-dependent orientation probability density
function, %(x, s), assuming that at every macro-
scopic location x ∈ Ω the latter is well-defined.
(Generally, if liquid-crystalline molecules have addi-
tional relevant degrees of freedom, s may belong to a
more complicated manifold than S2, see Section 4.2
for discussion.)

Such description allows us to recover the order-
parameter field of Landau-de Gennes theory: the el-
ements Oαβ(x) may be represented as

Oαβ(x) =
∫

S2
sαsβ %(x, s) ds− δαβ

3
. (8)

Recovery of the director field n(x) is a more com-
plicated matter and may not even be possible. The
reason, of course, is that the description in terms
of %(x, s) is more complete and incorporates the
states for which the director simply cannot be prop-
erly defined. Formally, one can find n(x) minimiz-
ing the distance between %(x, s) and δn(s) (atomic
measure split in equal halves between n ∈ S2 and

the opposite point) in some reasonable metric (e.g.,
Wasserstein-2 [16]).

Following [17], we suggest to employ a five-
dimensional director field defining

n(x) :=
∫

S2
Y(s)%(x, s) ds, (9)

Y(s) denotes a vector of second-order spherical
harmonics [ Y2,−2(s), . . . , Y2,2(s) ]. Note that n(x)
contains precisely the same information as the
Landau-de Gennes order-parameter tensor O(x),
since second-order spherical harmonics are the or-
thogonalized second-order homogeneous polynomi-
als of s. The reason to use the averages of spher-
ical harmonics Y2,m(s) rather than the averages
of products sαsβ is that they enjoy a number of
nice mathematical properties and are convenient to
work with.

Within the framework of our theory the total
(bulk) free energy is decomposed into two parts:

E [%] =
∫

Ω

{
Fo(x) + Fe(x)

}
dx. (10)

The first term, Fo(x) is the Onsager-type orienta-
tional entropy density (3), which now becomes a
function of x. The second term, Fe(x) is a phe-
nomenological elastic energy density penalizing vari-
ations of orientational ordering. In case of linear elas-
ticity (the energy is quadratic with respect to spatial
derivatives of n) we have

Fe[n(x)] =
1
2

(∂n, κ̂∂n), (11)

where the operator ∂ has components

∂0 = ∂z, ∂±1 = (∂x ± i∂y)/
√

2, (12)

and κ̂ is a 15× 15 matrix containing elastic moduli.
As shown in [17], due to symmetry considerations,
only three entries of κ̂ are independent. Indeed, the
products ∂i nj may be combined to form three irre-
ducible tensors (l = 1, 2, 3; m = −l . . . l)

[∂ ⊗ n](l)m =
1∑

i=−1

2∑

j=−2


 1 2 l

i j m


 ∂i nj . (13)

Here the weighting factors are the Clebsch-Gordan
coefficients (3j-symbols). Contracting these tensors
we may form three scalar invariants (one for each l)

I(l) =
l∑

m=−l


 l l 0

m −m 0


 [∂⊗n](l)m [∂⊗n](l)−m. (14)

Thus the elastic energy (11) may be represented as

Fe[n(x)] = κ1I
(1) + κ2I

(2) + κ3I
(2). (15)
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Fig. 2. Graph of T(r) = I1(r)/ I0(r). As r → ±∞,
T(r) → ±1. Slope of T(r) at r = 0 is 1/2 (the dashed line)
reflecting that (18) has nonzero solutions when γ > 2.

Explicit expressions for I(l) may be found in [17].
Some possible generalizations for Fe(x) are dis-
cussed in Section 4.1.

Finally, let us mention that in this work we do
not analyze the surface effects in such a generality
and, instead, illustrate a few possible scenarios on
specific examples in the following section.

3. A two-dimensional (S1) model

In order to illustrate some of the principal fea-
tures of the suggested class of models, let us study
in greater detail one particular example in which the
orientation parameter belongs to a unit circle, S1,
parameterized by a number in [0, 2π). The full three-
dimensional case (the orientation parameter belongs
to a sphere, S2) shares lots of similarity with this
simplified example and may be analyzed by similar
methods. It is, however, more technical and will be
considered in a separate paper [18].

As discussed in the previous section, we use an
Onsager-type functional (a few irrelevant terms are
omitted),

Fo[%] :=
∫ 2π

0

%(ϕ) ln %(ϕ) dϕ

−γ

2

∫∫ 2π

0

cos 2(ϕ− ϕ′) %(ϕ)%(ϕ′) dϕdϕ′, (16)

for the orientational free energy density. Note that
our interaction, cos 2(ϕ − ϕ′), is equivalent to the
Maier-Saupe interaction (5). As it was shown in [7],
all critical points of (16) are given by

%(ϕ) =
exp{r cos 2(ϕ− ψ)}

2π I0(r)
, (17)
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Fig. 3. Isotropic-nematic phase diagram for the free energy
functional (16). The vertical line, r = 0, corresponds to
isotropic state which is stable when γ < 2. The curved line
is the graph of γ(r) obtained from (18); it corresponds to
stable nematic states.

where the order parameter r is either zero or is re-
lated to concentration γ by

1
γ

=
T(r)

r
, T(r) :=

I1(r)
I0(r)

. (18)

Here In(r) are the modified Bessel functions of the
first kind; the ratio I1(r)/ I0(r) appears quite often
in what follows, so we designate a special symbol,
T(r), for it (see Figure 2 for the graph of T(r)).
The graph of functional dependence of γ on r is pre-
sented in Figure 3. For small concentrations (γ ≤ 2)
r = 0 is the only critical point (and the global mini-
mizer); when γ > 2 it loses stability and a rotation-
equivalent family (parameterized by ψ) (17) of non-
trivial global minimizers emerges. Here the major
difference with the full S2-model can be spotted: the
phase transition in S1-model is of the second order
and does not allow for coexistence of stable isotropic
and nematic phases (compare Figures 1 and 3). In
particular, this implies that the full treatment is
necessary in order to describe such phenomena as
isotropic-nematic interfaces.

For the elastic free energy density we pick the
simplest Dirichlet-type functional

Fe[%] :=
κ

2
|∇n|2

=
κ

2

∫∫ 2π

0

cos 2(ϕ− ϕ′)∇%(ϕ)·∇%(ϕ′) dϕ dϕ′. (19)

The gradient∇ is with respect to the spatial variable
x ∈ Ω. Here we related the order-parameter field
n(x) to the spatially-dependent orientation density
function %(x, ϕ) via

5



n(x) :=
∫ 2π

0

e 2iϕ%(x, ϕ) dϕ. (20)

(In S1-model n is two-dimensional rather than five-
dimensional as it would be in S2-model, cf (9).) Note
that we often treat n(x) as a complex scalar field
rather than a two-dimensional real vector-field (this
simplifies notation and plays no essential role other-
wise).

The total free energy is obtained by integrating
both contributions, (16) and (19), over the spatial
domain Ω:

E [%] :=
∫

Ω

{
Fo[%] + Fe[%]

}
dx. (21)

Now the equilibrium states of the system may be
found via minimization of the total free energy (21).
This energy, in general, has to be augmented by the
boundary terms arising due to interaction of poly-
mers with the container or other surface effects. Typ-
ically, the boundary contribution is given by

Ebnd[%] := −
∫

∂Ω

n(x) · u(x) ds(x), (22)

where u(x) is a boundary potential (it provides the
preferred orientation of n(x) on the boundary) and
ds(x) is the area of the surface element. It is also
possible to use a somewhat simplified approach pre-
scribing the boundary conditions for the argument
of n(x) directly. Such treatment corresponds to an
assumption that it is experimentally feasible to con-
trol orientation of liquid-crystalline molecules on the
boundary of the system.

3.1. Euler-Lagrange equations

Let us consider the Euler-Lagrange equations
associated with (21). It is convenient to make
a change of variables, introducing a potential
Ψ := ln % + const, choosing the constant so that
Ψ(ϕ) integrates to zero over ϕ ∈ [0, 2π). We have

%(x, ϕ) = Z−1(x) e−Ψ(x,ϕ), (23)

where the partition integral, Z, is given by

Z(x) =
∫ 2π

0

e−Ψ(x,ϕ) dϕ. (24)

A straightforward computation shows that Euler-
Lagrange equation for critical points of (21) may be
written as

Ψ(x, ϕ) =
∫ 2π

0

cos 2(ϕ− ϕ′)
[
γ + κ∆

]
%(x, ϕ′) dϕ′.

(25)

(Laplacian, ∆, only acts on the spacial variable x.)
The boundary contributions into the total free en-
ergy supply the boundary conditions, e.g., (22) pro-
duces

κ∂⊥n(x) = u(x), x ∈ ∂Ω, (26)
where ∂⊥ denotes the normal derivative. Differenti-
ating both sides of (25) twice with respect to ϕ, we
immediately find that Ψ satisfies

Ψϕϕ(x, ϕ) = −4Ψ(x, ϕ) (27)

which implies that it may be represented as

Ψ(x, ϕ) = r(x) cos 2[ϕ− ψ(x)]. (28)

Substituting this in (24) and integrating we get

Z(x) = 2π I0(r(x)), (29)

which implies that critical points of the free energy
are given by

%(x, ϕ) =
exp{r(x) cos 2[ϕ− ψ(x)]}

2π I0(r(x))
. (30)

It is rather remarkable that in the x-dependent
model (21) the structure of critical points is very
similar to the “homogeneous” case (16): the param-
eters r and ψ here become the x-dependent fields
while the structure of the orientation probability
density remains the same, cf (17). The problem is
now reduced to finding r(x) and ψ(x).

Before proceeding with analysis of the Euler-
Lagrange equation let us reveal a intimate connec-
tion of our free energy functional with Ginzburg-
Landau-type functionals.

3.2. Reduction to a Ginzburg-Landau-type model

Since we know that all critical points satisfy (30)
we may express the free energy as a functional of
n(x) (or r(x) and ψ(x)). Integrating (20) using (30)
we obtain

n(x) = e2iψ(x) T(r(x)). (31)

Inverting this relation (denoting n = |n| and intro-
ducing A(n), the inverse function of T(r)) we may
express r as a function of n

r = A(n). (32)

Now let us integrate over ϕ in (16). The % ln %-part
yields

r T(r)− ln[2π I0(r)]. (33)
The interaction part of (16) becomes

−γ

2
T2(r). (34)
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Fig. 4. Graphs of W (r) given by (35). The dashed line cor-
responds to the critical value, γ = 2; the dotted line — to
γ = 0.2; the solid line — to γ = 4. The logarithmic sub-
plot demonstrates that W (r) → ∞ as r → ∞ (the growth
is logarithmically slow).

Thus we obtain

Fo[%] = W (r)

= r T(r)− γ

2
T2(r)− ln I0(r)− ln 2π. (35)

The graphs of W (r) for several values of γ are pre-
sented in Figure 4. Expressing Fo as a function of n
we get

Fo[%] = V (n) := W (r(n))

= n A(n)− γn2

2
− ln I0(A(n))− ln 2π. (36)

A few graphs of V (n) are presented in Figure 5. Ob-
serve that when γ ≥ 2 existence of nematic ordering
is manifested through appearance of potential wells
in W (r) and V (n), characteristic for Landau-type
theories of second-order phase transitions.

The total free energy (21) may now be written as

E [n] =
∫

Ω

{ κ

2
|∇n|2 + V (n)

}
dx. (37)

Since

|∇n|2 = |T′(r)∇r|2 + 4|T(r)∇ψ|2, (38)

this is equivalent to

E [r, ψ] (39)

=
∫

Ω

{κ

2
|T′(r)∇r|2 + 2κ|T(r)∇ψ|2+ W (r)

}
dx.

One can immediately recognize a similarity between
(37) and the canonical Ginzburg-Landau energy for
which V (n) = (1− n2)2. Our potential (36) is more
complicated, however it maintains the same double-
well structure (when γ > 2). In the limit as γ ↗∞

-1 -0.5 0 0.5 1

0

1

2

Fig. 5. Graphs of V (n) given by (36). The dashed line cor-
responds to the critical value, γ = 2; the dotted line — to
γ = 0.2; the solid line — to γ = 4.

the functional (21) is, in fact, a different regulariza-
tion of Dirichlet energy for harmonic mapping from
Ω into a unit circle. This connection requires a more
detailed consideration and will be studied elsewhere.

3.3. A few special solutions

Let us now proceed with analysis of Euler-
Lagrange equations for the free energy functional
(21). Since we have shown equivalence of critical
points of (21) and (37), we will actually study the
latter functional (employing methods associated
with Ginzburg-Landau equations). A straightfor-
ward derivation produces the following equation

κ∆n =
n

n
V ′(n) =

n

n
A(n)− γn. (40)

Representing (note that φ below is different from ψ
introduced in (31) by a factor of two)

n = neiφ, (41)

we may rewrite (40) as a system

κ∆n + γn = κn|∇φ|2 + A(n), (42)
2∇n · ∇φ + n∆φ = 0. (43)

Equation (40), or (42) and (43), has to be solved
within the spatial domain Ω and should be compli-
mented by the boundary conditions arising from the
appropriate boundary terms in the total free energy
functional. In what follows we consider the bound-
ary conditions of Neumann type (26), and simpli-
fied Dirichlet boundary conditions on Arg n(x). We
generally assume that γ > 2 (γ ≤ 2 corresponds to
isotropic state in which case V (n) does not have a
double-well shape and thus the structure of solu-
tions is trivial).
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A one-dimensional domain Let the physical set up
be such that the system is translation-invariant in
all but one spatial dimensions. Effectively we get a
one-dimensional domain, Ω = (0, L). In this case
equation (43) conceals a conserved quantity,

α = n2φx, (44)

and may be integrated. Thus we may express φ
through n:

φ(x) = φ(0) + α

∫ x

0

dy

n2(y)
. (45)

(The integral may not diverge since this would yield
infinite variation of φ and divergence of energy.) The
value of α needs to be determined using the bound-
ary data. Substituting back into (42) we obtain a
single equation for n(x):

κnxx = A(n)− γn +
κα2

n3
. (46)

Now let us consider a few specific boundary data.
In the simplest case one may prescribe the values for
φ = Arg n, φ(0) and φ(L). Since |nx|2 = n2

x + n2φ2
x

and φx = α/n2, we may rewrite the total energy (for
critical points) as

E [n] =
∫ L

0

{ κ

2
n2

x + V (n)
}

dx

+
κ δϕ2

2

[∫ L

0

dx

n2

]−1

, (47)

where δϕ = φ(L) − φ(0) (up to a possible factor of
2πk). Since for this kind of boundary conditions δϕ
is fixed, the minimizers are necessarily constants. In-
deed, minimizing the last two terms independently
of the Dirichlet term we obtain n(x) ≡ const. How-
ever this also minimizes the Dirichlet term, so the
whole energy is also minimized by a constant func-
tion. Equation (46) then becomes

n

[
γ − κ

(
δϕ

L

)2
]

= A(n). (48)

So essentially this leads to renormalization of con-
centration γ. If δϕ < L

√
(γ − 2)/κ, (48) has a non-

trivial solution, n = nc > 0, and the system is in a
(chiral) nematic phase: φ(x) = ϕ(0) + δϕ x/L. Oth-
erwise the only solution of (48) is n ≡ 0, and the
system is in a uniformly isotropic state.

More interesting solutions may be obtained if we
use the boundary data arising from the boundary
terms in the total free energy, e.g., (26). In the one-
dimensional case this corresponds to

κ nx(0) = −u0, κ nx(L) = uL, (49)

n=nc                                      n

0

nx

A

B

C

Fig. 6. Schematic representation of the phase portrait of (46)
near the equilibrium point n = nc. The fixed point itself
is the solution when the boundary conditions are imposed
on Argn. Solutions to more complicated cases are displayed
using the thick lines. For half-line, L = ∞, the solution is
given by a portion of separatrix with endpoint (A) satisfying
κnx = −u0. For finite L, solution for a prescribed α is given
by an orbit whose endpoints (B,C) satisfy the boundary data
(50) and the “time” of travel from B to C is exactly L.

which may be converted into

κ2α2 = n2(u2 − κ2n2
x), (50)

φ = ∓Arg u− arccos
κnx

u
, x = 0, L. (51)

In this formulation α is an unknown constant to
be determined so that (46) and (45) may be solved
subject to (51).

Consider a semi-infinite domain, L = ∞ (the
boundary data is only given at x = 0). From the en-
ergy standpoint we immediately get that φx → 0 as
x ↗∞ and thus α = 0 (otherwise the energy is not
optimal). Thus we get

φ(x) ≡ Arg u0, (52)

while n(x) corresponds to the separatrix of (46), see
Figure 6, and may be found inverting

x =
κ

2

∫ n

nc

[
V (p)− V (nc)

]−1/2

dp. (53)

(Unfortunately, no closed analytical expression for
this integral may be found.)

When L is finite, finding the value of α is a non-
trivial “eigenvalue” problem: for any fixed α we can
solve the boundary-value problem (50) for (46), see
Figure 6. Using (51) we then may find φ(0) and, in-
tegrating (45), φ(L). This value, however, will only
satisfy the boundary condition (51) at x = L for
some particular α (the “eigenvalue”).
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Vortex solution One of the most important special
solutions for two-dimensional spatial domains is a
vortex solution. Let us set

φ(x) = arctan(x1/x2) (54)

and demand that n(x) be a radial function with
n(0) = 0. Equation (43) for φ(x) is immediately
satisfied, whereas equation (42) for n(x) becomes

n′′ +
1
z

n′ +
(

1− 1
z2

)
n =

1
γ

A(n), (55)

where we introduced z :=
√

γ/κ x. The linear part
of (55) is Bessel equation, however the nonlinear-
ity on the right-hand side does not allow us to ob-
tain explicit solutions. Still, a qualitative analysis is
possible. As z ↗ ∞, the O(1) terms on the right-
and left-hand sides have to be balanced, thus we get
n(z) → n0, where n0 solves

γn0 = A(n0). (56)

This is an analogue of (18) with n0 corresponding
to the nematic state (remember, a nonzero solution
exists if γ > 2). So, far away from the origin the
solution describes nematic phase whose director is
orthogonal to the ray from the origin. The next-
order correction may be found in a straightforward
manner and we get (using the original variable, x)
that as x ↗∞,

n(x) = n0

[
1− κ

A′(n0)− γ

1
x2

]
+ O(x−4) (57)

It is not as trivial to obtain asymptotics for n(x) as
x ↘ 0. Since A(n) ∼ 2n as n ↘ 0, in the neighbor-
hood of zero (55) is equivalent to

n′′ +
1
z

n′ +
(

1− 2
γ
− 1

z2

)
n = 0. (58)

Thus the required solution behaves as

n(z) ∼ C J1(
√

(γ − 2)/γz). (59)

(J1 denotes Bessel function of the first order.) Find-
ing the constant C, however, amounts to solving a
nonlinear “eigenvalue” problem and cannot be ac-
complished analytically. Indeed, trying to solve (55)
with initial data n(0) = 0, n′(0) = c, one finds that
for small values of c, the solution behaves like (59)
for all z, whereas for c large, it reaches n = 1 while
z is still finite. There exists precisely one value of c
(and the corresponding value of C) at which n has
the required behavior (57) at infinity. Numerical so-
lution of (55) is presented in Figure 7.

We see that near the origin the nematic phase
“melts” allowing the director to rotate. The width of

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Fig. 7. Profile n(z) of the vortex solution for γ = 4 (the cor-
responding equilibrium value n0 ≈ 0.83). The dashed lines
represent approximate asymptotic solutions given by (57)
and (59), and approximate numerical value for the constant
C in (59) is 0.86.

the melted layer is proportional to
√

κ and roughly
to 1/

√
γ as γ ↗ ∞ (dependence on γ is less trivial

when γ ≈ 2 because of isotropic-nematic phase tran-
sition at γ = 2). Unlike the γ ↗ ∞ limit, the limit
as κ ↘ 0 is not particulary interesting, since it sim-
ply removes all spatial interactions. In the former
case the vortex solution becomes the “true vortex,”

n(x) =
ix
x

(60)

(here we treat x as a complex variable, x1 + ix2).
Generally, if we fix a finite domain Ω and impose
the boundary conditions such that the argument of
n(x) runs around [0, 2π) k times, the minimizer will
contain k vortices. The problem of finding their pre-
cise locations is quite nontrivial and is closely re-
lated to similar problems arising in various models
describing pattern formation [19,20].

4. Discussion

In conclusion let us discuss a few ideas, gener-
alizations, and promising directions for subsequent
research within the outlined theory. The first imme-
diate task is analysis of the full three-dimensional
model instead of the simplified one considered in
Section 3 (s ∈ S2 rather than s ∈ S1). The mathe-
matical apparatus employed here for the S1 case car-
ries over to S2-model with little effort, and an ana-
logue of (30) may be easily derived. The following
analysis, however, is more technical due to the fact
that one must deal with spherical harmonics (basis
on S2) instead of the usual cosine functions (basis on
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S1). This analysis will be carried out in a follow-up
to this paper [18].

4.1. More on elasticity and nonlocal interactions

A complete and rigorous microscopic derivation
of elastic terms such as Fe[%] in our model, or more
general, nonlocal terms (involving spatial gradients
or values of various quantities at different spatial
locations) in free energy functionals for liquid crys-
talline systems has not been accomplished yet. On
phenomenological level elastic-like terms of Oseen-
Frank and Landau-de Gennes theories are quite sat-
isfactory and are commonly used in contemporary
research. The microscopic density-functional theo-
ries may be appropriate for a better understanding
of elasticity of liquid crystals, however, most of the
studies in this direction are primarily concerned
with expressing the phenomenological constants
(e.g. elastic moduli καβ , or constants in Landau-de
Gennes theory) by means of direct pair-correlation
function rather than with an explicit derivation of
the functional form of nonlocal terms.

From mathematical standpoint there exist two
common types of nonlocal terms in free energy func-
tionals — elastic-like terms involving spatial gradi-
ents of various quantities at the same spatial loca-
tion, e.g., (dropping differentials for compactness)

∫

Ω

∫

S2
F

(
%(x, s),∇Ω%(x, s)

)
; (61)

and “truly nonlocal” terms involving values of the
fields at different points, e.g.,

∫∫

Ω

∫∫

S2
V (x,x′; s, s′)%(x, s)%(x′, s′). (62)

Quite often, however, there is little difference be-
tween them. For example, F (%,∇Ω%) = |∇Ω%|2 is
equivalent to V (x, x′; s, s′) = −δs(s′)∆Ωδ(x− x′).
From the microscopic physical standpoint only the
latter type of interactions (62) is directly justifi-
able (n-tuple integrals appear in various cluster ex-
pansions and correspond to n-particle effects). The
gradient terms of the first type appear when one
makes a transition from microscopic to macroscopic
scale, i.e, some kind of asymptotic limit has been
taken in the process. For example, if in such a limit
V (x, x′; s, s′) converges in the sense of distributions
to −Vαβ(s, s′) ∂2

αβ δ(x− x′) (summing over α, β =
1, 2, 3), we obtain a more general form of elastic en-
ergy density. Skipping the field of director, n(x),

and expressing Fe directly as a functional of %(x, s),
we get

Fe[%] =
∫∫

S2
Vαβ(s, s′) ∂α%(x, s) ∂β%(x, s′). (63)

Observe that (11) is a particular case of (63) corre-
sponding to a specific choice of potentials Vαβ(s, s′).
In general, varying this potential provides additional
freedom for modeling of elastic interactions.

Finally, it is important to understand that all the
terms in free energies suggested here have been at
most quadratic with respect to %(x, s). This essen-
tially means that we have only taken into account
the two-particle interactions. This may not be suf-
ficient for quantitative description of systems with
high concentration of liquid crystalline molecules
and terms cubic or of the higher order in % (or more
complex joint probability density functions) must
be present to address such cases.

4.2. A few comments on cholesterics

Cholesteric liquid crystals possess the so called
chirality — their director rotates in space with a
characteristic length-scale (the pitch) even when
the system is in equilibrium and has no external
constraints. The microscopic reasons for this be-
havior are not completely understood, however, it
is clear that this phenomenon is related to the fact
that the molecules of such liquid crystals possess
less symmetry than simple rods. Mathematically
this means that the space of orientation parameter
has to be extended from S2 to a more complicated
manifold. Since orientations of a generic molecule
may be parameterized by rotations in a three-
dimensional space, the simplest extension would be
to SO3 (group of rotations). A necessary step in
extending our approach to systems of this kind is
derivation of a proper interaction potential U(s, s′)
for the Onsager-type functional in case s, s′ ∈ SO3.
Unfortunately, we are not aware of any progress in
this direction.

4.3. Dynamics

Study of critical points of free energy function-
als provides information about equilibrium states of
liquid crystalline systems. In order to explore their
properties in out-of-equilibrium conditions one has
to look into associated dynamics. A rigorous deriva-
tion of dynamic equations has not yet been attained
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and is related to the problem of closure of various
BBGKY-type hierarchies of kinetic equations. It is
quite common (and often goes along with some clo-
sure assumption) to consider dissipative gradient
flow dynamics on the free energy landscape (more
complex models may be obtained by coupling such
dynamics with hydrodynamic equations, see [21] for
a recent review). For example, the classical Doi-
Smoluchowski (diffusive transport) dynamics [22]
for Onsager free energy functionals is governed by

∂t%(s, t) = ∇S2 ·
{

%(s)∇S2
δFOns[%]

δ%(s)

}
. (64)

This is the gradient flow in the so called Wasserstein-
2 metric [16] of probability measures. (Note that
here the probability density of orientations, %(s), is
x-independent and the divergence and gradient op-
erators are native to the sphere S2.) At the same
time dynamics for theories based on the order pa-
rameter, e.g, Landau-de Gennes theory, is described
by the usual gradient flow (in L2 metric)

∂tO(x, t) = −δELdG[O]
δO(x)

. (65)

As demonstrated in the previous sections, within the
framework of our theory there is a direct relation
between the order parameter field and x-dependent
orientation density. Thus this theory provides a nat-
ural setting for studying the question of whether it
is possible to relate the Doi-Smoluchowski-type dy-
namics for %(x, s) with Landau-type dynamics of
the order parameter fields. (The gradient flow equa-
tion for evolution of %(x, s) would be identical to
(64) except the gradient and divergence operators
would then act in the full space Ω× S2 and the full
free energy (10) would replace FOns[%].)
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Boston-Berlin, 2005.

[17] L. Longa, D. Monselesan, and H.-R. Trebin. An
extension of the Landau-Ginzburg-de Gennes theory for
liquid crystals. Liquid Crystals, 2(6):769–796, 1987.

[18] I. Fatkullin and V. Slastikov. On Spatial variations of
nematic ordering. Part II. In preparation.

[19] M. C. Cross and P. C. Hohenberg. Pattern formation
outside of equilibrium. Reviews of Modern Physics,
65:851–1112, 1993.

[20] F. Bethuel, H. Brezis, and F. Helein. Ginzburg-Landau
vortices. Progress in nonlinear differential equations and
their applications, Birkhäuser, Boston, 13, 1994.
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