
1 1D heat and wave equations on a finite interval

In this section we consider a general method of separation of variables and its applications
to solving heat equation and wave equation on a finite interval (a1, a2). Since by translation
we can always shift the problem to the interval (0, a) we will be studying the problem on
this interval.

1.1 Boundary conditions

The most common types of boundary conditions are

• Dirichlet: u(0, t) = h(t), u(a, t) = g(t).

• Neumann: ux(0, t) = h(t), ux(a, t) = g(t).

• Mixed: ux(0, t) = h(t), u(a, t) = g(t) or u(0, t) = h(t), ux(a, t) = g(t).

• Periodic: It is more convenient to consider the problem with periodic boundary
conditions on the symmetric interval (−a, a). Therefore boundary conditions in this
case are

u(−a, t) = u(a, t), ux(−a, t) = ux(a, t).

There is a generalization of mixed boundary condition sometimes called Robin boundary
condition

αu(0, t) + ux(0, t) = h(t), βu(a, t) + ux(a, t) = g(t).

We will not be considering it here but the methods used below work for it as well.

1.2 Heat equation

Our goal is to solve the following problem

ut = Duxx + f (x, t), x ∈ (0, a), (1)

u(x, 0) = φ(x), (2)

and u satisfies one of the above boundary conditions.

In order to achieve this goal we first consider a problem when f (x, t) = 0, h(t) = 0,
g(t) = 0 and use the method of separation of variables to obtain solution.

To illustrate the method we solve the heat equation with Dirichlet and Neumann boundary
conditions. Mixed and Periodic boundary conditions are treated in the similar way and we
will use them in the section for wave equation.
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1.2.1 Homogeneous heat equation with Dirichlet boundary conditions

Here we are solving the following problem

ut = Duxx, for x ∈ (0, a), t > 0 (3)

u(x, 0) = φ(x), (4)

u(0, t) = 0, u(a, t) = 0, for t > 0. (5)

The idea behind the method of separation of variables is to look for a solution in the
following form

u(x, t) = X(x)T(t),

where X(x) and T(t) will be determined. Let’s assume that we have a solution u(x, t) in
the above form. Plugging it into the equation we obtain

X(x)T′(t) = DX′′(x)T(t),

Dividing both parts by DT(t)X(x) we arrive to the following equality

T′(t)
DT(t)

=
X′′(x)
X(x)

.

Since the left side is a function of t only and the right side is the function of x only the
above equality is possible if and only if

T′(t)
DT(t)

=
X′′(x)
X(x)

= k

for some constant k. Therefore if u(x, t) = X(x)T(t) is a solution of the heat equation then

X′′(x) = kX(x), and T′(t) = kDT(t).

Moreover, from the boundary conditions (9) we know that X(0)T(t) = 0 and X(a)T(t) = 0
for all t > 0. This implies X(0) = 0 and X(a) = 0.

We can easily solve the problem for T(t) to obtain

T(t) = Ce−kDt,

where we don’t know constants C and k. The problem for X(x) is called an eigenvalue
problem

X′′(x) = kX(x) on (0, a), X(0) = 0, X(a) = 0. (6)

In order to solve it we have to find all k-s and all nontrivial solutions X(x), corresponding
to these k-s. It is not difficult to see that k < 0. Indeed, if we multiply both parts of the
equation (34) by X(x) and integrate by parts we obtain∫ a

0
|X′(x)|2 + k|X(x)|2 dx = 0.

Obviously, if k ≥ 0 then X(x) = 0 on (0, a). Since we are interested in non-trivial solutions
we have to consider only k = −λ2 < 0. In that case the general solution of (34) is

X(x) = A cos(λx) + B sin(λx)
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and constants A, B, λ will be found from the boundary conditions X(0) = X(a) = 0. Let’s
consider X(0) = 0: obviously X(0) = A and therefore A = 0. Taking this into account and
using X(a) = 0 we obtain

B sin(λa) = 0.

It’s clear that B 6= 0 as then the solution is zero everywhere and we are interested only in
non-zer solutions. Therefore λ = πn

a for all n ∈ Z \ {0}. The solution of the eigenvalue
problem is

k =
π2n2

a2 , n ∈N+ = {1, 2, 3, ...}, X(x) = B sin
(πn

a
x
)

.

Combining our information about k, X(x) and T(t) we arrive to the conclusion that we
have infinitely many solutions of the heat equation (7), satisfying the boundary conditions
(9). Indeed, for all n ∈N+ a function

un(x, t) = e−
π2n2

a2 Dt sin
(πn

a
x
)

solves (7) and (9). Therefore, any linear combination of un-s also solves (7) and (9) and we
represent

u(x, t) =
∞

∑
n=1

ane−
π2n2

a2 Dt sin
(πn

a
x
)

,

where an are arbitrary constants. We will find an-s using initial data.

We can represent φ(x) in terms of a sine Fourier series

φ(x) =
∞

∑
n=1

bn sin
(πn

a
x
)

,

where
bn =

2
a

∫ a

0
φ(x) sin

(πn
a

x
)

dx.

Since we know that u(x, 0) = φ(x) we obtain

∞

∑
n=1

an sin
(πn

a
x
)
= φ(x) =

∞

∑
n=1

bn sin
(πn

a
x
)

.

Therefore
∞

∑
n=1

(an − bn) sin
(πn

a
x
)
= 0.

Multiplying both parts of the above equality by sin
(

πm
a x
)
, m ∈N+ and integrating over

(0, a) we have am = bm for all m ∈N+. Therefore we obtain that

an =
2
a

∫ a

0
φ(x) sin

(πn
a

x
)

dx.

Finally, the solution to the problem (7), (36), (9) is

u(x, t) =
∞

∑
n=1

ane−
π2n2

a2 Dt sin
(πn

a
x
)

,

where
an =

2
a

∫ a

0
φ(x) sin

(πn
a

x
)

dx.
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1.2.2 Homogeneous heat equation with Neumann boundary conditions

Here we are solving the following problem

ut = Duxx, for x ∈ (0, a), t > 0 (7)

u(x, 0) = φ(x), (8)

ux(0, t) = 0, ux(a, t) = 0, for t > 0. (9)

We use the same method os separation of variables and obtain the following eigenvalue
problem for X(x)

X′′(x) = kX(x), on (0, a), X′(0) = 0, X′(a) = 0. (10)

In this case we can show by the same methods as before that k = −λ2 ≤ 0 and therefore
the general solution is

X(x) = A cos(λx) + B sin(λx).

Using X′(0) = 0 we obtain B = 0 and using X′(a) = 0 we obtain A sin(λa) = 0. Therefore
λ = πn

a for all n ∈ Z and the solution of eigenvalue problem (10) is

k =
π2n2

a2 , n ∈N = {0, 1, 2, 3, ...}, X(x) = A cos
(πn

a
x
)

.

Note that here we allow for n = 0 in which case X(x) = A is a solution. As before we
obtain the solution

u(x, t) =
∞

∑
n=0

ane−
π2n2

a2 Dt cos
(πn

a
x
)

,

where we need to find an-s from initial data.

We can represent φ(x) in terms of a cosine Fourier series

φ(x) =
∞

∑
n=0

bn cos
(πn

a
x
)

,

where
bn =

2
a

∫ a

0
φ(x) cos

(πn
a

x
)

dx for n > 0,

b0 =
1
a

∫ a

0
φ(x) dx.

As before using initial data we know that an = bn and therefore the solution is

u(x, t) =
∞

∑
n=0

ane−
π2n2

a2 Dt cos
(πn

a
x
)

,

where
an =

2
a

∫ a

0
φ(x) cos

(πn
a

x
)

dx for n > 0,

a0 =
1
a

∫ a

0
φ(x) dx.
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1.2.3 Heat equation with f (x, t) 6= 0 and zero Dirichlet boundary conditions

Now let us explain how we can solve the following problem

ut = Duxx + f (x, t), for x ∈ (0, a), t > 0 (11)

u(x, 0) = φ(x), (12)

u(0, t) = 0, u(a, t) = 0, for t > 0. (13)

We know that a Fourier series with basis functions sin
(

πn
a x
)
, n ∈N+ is consistent with the

boundary conditions. We also know that for a fixed t any function u(x, t) and f (x, t) can be
expanded in a Fourier series as follows

f (x, t) =
∞

∑
n=1

fn(t) sin
(πn

a
x
)

,

where
fn(t) =

2
a

∫ a

0
f (x, t) sin

(πn
a

x
)

dx for n ∈N+,

and

u(x, t) =
∞

∑
n=1

un(t) sin
(πn

a
x
)

,

where un(t) will be determined later using equation.

Plugging these representations for u(x, t) and f (x, t) in the (11) we obtain
∞

∑
n=1

(
u′n(t) + D

π2n2

a2 un(t)− fn(t)
)

sin
(πn

a
x
)
= 0.

Multiplying both parts of equality by sin
(

πm
a x
)

and integrating over (0, a) we have

u′m(t) + D
π2m2

a2 um(t) = fm(t).

Using initial data we clearly have

u(x, 0) =
∞

∑
n=1

un(0) sin
(πn

a
x
)
= φ(x),

and therefore
um(0) =

2
a

∫ a

0
φ(x) sin

(πm
a

x
)

dx for m ∈N+.

Now for each m ∈N+ we have the following ODE

u′m(t) + D
π2m2

a2 um(t) = fm(t), um(0) =
2
a

∫ a

0
φ(x) sin

(πm
a

x
)

dx.

It is clear that we can solve it to obtain

um(t) = um(0)e
−D π2m2

a2 t
+ e−D π2m2

a2 t
∫ t

0
eD π2m2

a2 s fm(s) ds.

Since we know um(0) and fm(t) we obtain um(t) and therefore we have a solution of the
problem (11)-(13) as

u(x, t) =
∞

∑
n=1

un(t) sin
(πn

a
x
)

.

We can use the same method to treat all other boundary conditions. I omit the details here.
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1.2.4 Inhomogeneous boundary conditions

In this subsection we want to understand how to solve the following problem

ut = Duxx, for x ∈ (0, a), t > 0 (14)

u(x, 0) = 0, (15)

u(0, t) = h(t), u(a, t) = g(t), for t > 0. (16)

We can construct an auxiliary function

v(x, t) =
g(t)− h(t)

a
x + h(t).

It is clear that w(x, t) = u(x, t)− v(x, t) satisfies the following problem

wt = Dwxx − vt(x, t), for x ∈ (0, a), t > 0 (17)

w(x, 0) = −v(x, 0), (18)

w(0, t) = 0, w(a, t) = 0, for t > 0. (19)

Using results from the previous subsection we can find w(x, t) and therefore we can find
that

u(x, t) = w(x, t) + v(x, t),

where we know w and v.

Note that the same idea works for Neumann and Mixed boundary conditions. We just
need to construct an appropriate auxiliary function v(x, t) satisfying boundary conditions.

1.2.5 General problem

Now we are ready to solve the following general problem

ut = Duxx + f (x, t), for x ∈ (0, a), t > 0 (20)

u(x, 0) = φ(x), (21)

u(0, t) = h(t), u(a, t) = g(t), for t > 0. (22)

It is straightforward to check that if v(x, t) satisfies

vt = Dvxx + f (x, t), for x ∈ (0, a), t > 0 (23)

v(x, 0) = φ(x), (24)

v(0, t) = 0, v(a, t) = 0, for t > 0, (25)

and w(x, t) satisfies
wt = Dwxx, for x ∈ (0, a), t > 0 (26)

w(x, 0) = 0, (27)

w(0, t) = h(t), w(a, t) = g(t), for t > 0, (28)

then u(x, t) = v(x, t) + w(x, t) solves (20), (21), (22). Since we already know from the
previous subsections how to solve the problems for v(x, t) and w(x, t) we are done.

The same method works for all boundary conditions, not just Dirichlet.
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1.3 Wave equation

Our goal is to solve the following problem

utt = c2uxx + f (x, t), x ∈ (0, a), (29)

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (30)

and u satisfies one of the boundary conditions.

In order to achieve this goal we proceed as with heat equation, first consider a problem
when f (x, t) = 0, h(t) = 0, g(t) = 0 and use the method of separation of variables to obtain
solution.

To illustrate the method we solve the wave equation with Mixed and Periodic boundary
conditions. Dirichlet and Neumann are treated in the similar way and have been
considered before for heat equation.

1.3.1 Homogeneous wave equation with mixed boundary conditions

Here we are solving the following problem

utt = c2uxx, for x ∈ (0, a), t > 0 (31)

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (32)

ux(0, t) = 0, u(a, t) = 0, for t > 0. (33)

We look for a solution in the following form

u(x, t) = X(x)T(t),

where X(x) and T(t) will be determined. Let’s assume that we have a solution u(x, t) in
the above form. Plugging it into the equation we obtain

X(x)T′′(t) = c2X′′(x)T(t),

Dividing both parts by c2T(t)X(x) we arrive to the following equality

T′′(t)
c2T(t)

=
X′′(x)
X(x)

.

Since the left side is a function of t only and the right side is the function of x only the
above equality is possible if and only if

T′′(t)
c2T(t)

=
X′′(x)
X(x)

= k

for some constant k. Therefore if u(x, t) = X(x)T(t) is a solution of the wave equation then

X′′(x) = kX(x), and T′′(t) = kc2T(t).

Moreover, from the boundary conditions (9) we know that X′(0)T(t) = 0 and
X(a)T(t) = 0 for all t > 0. This implies X′(0) = 0 and X(a) = 0.
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The problem for X(x) is called an eigenvalue problem

X′′(x) = kX(x) on (0, a), X′(0) = 0, X(a) = 0. (34)

In order to solve it we have to find all k-s and all nontrivial solutions X(x), corresponding
to these k-s. It is not difficult to see that k < 0. Indeed, if we multiply both parts of the
equation (34) by X(x) and integrate by parts we obtain∫ a

0
|X′(x)|2 + k|X(x)|2 dx = 0.

Obviously, if k ≥ 0 then X(x) = 0 on (0, a). Since we are interested in non-trivial solutions
we have to consider only k = −λ2 < 0. In that case the general solution of (34) is

X(x) = A cos(λx) + B sin(λx)

and constants A, B, λ will be found from the boundary conditions X′(0) = X(a) = 0. Let’s
consider X′(0) = 0: obviously X′(0) = Bλ and therefore B = 0. Taking this into account
and using X(a) = 0 we obtain

A cos(λa) = 0.

It’s clear that A 6= 0 as then the solution is zero everywhere and we are interested only in
non-zero solutions. Therefore λ = 1

a
(

π
2 + πn

)
for all n ∈ Z. The solution of the eigenvalue

problem is

k =
1
a2

(π

2
+ πn

)2
, n ∈N = {0, 1, 2, 3, ...}, X(x) = A cos

(
1
a

(π

2
+ πn

)
x
)

.

Solving equation for T(t) we obtain

T(t) = C cos
( c

a

(π

2
+ πn

)
t
)
+ D sin

( c
a

(π

2
+ πn

)
t
)

.

Combining our information about X(x) and T(t) we arrive to the conclusion that we have
infinitely many solutions of the wave equation (35), satisfying the boundary conditions
(33). Indeed, for all n ∈N a function

un(x, t) =
(

an cos
( c

a

(π

2
+ πn

)
t
)
+ bn sin

( c
a

(π

2
+ πn

)
t
))

cos
(

1
a

(π

2
+ πn

)
x
)

solves (35) and (33). Therefore, any linear combination of un-s also solves (35) and (33) and
we represent

u(x, t) =
∞

∑
n=0

(
an cos

( c
a

(π

2
+ πn

)
t
)
+ bn sin

( c
a

(π

2
+ πn

)
t
))

cos
(

1
a

(π

2
+ πn

)
x
)

,

where an, bn are arbitrary constants. We will find an, bn as before using initial data.

1.3.2 Homogeneous wave equation with periodic boundary conditions

Here we are solving the following problem

utt = c2uxx, for x ∈ (−a, a), t > 0 (35)
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u(x, 0) = φ(x), ut(x, 0) = ψ(x) (36)

u(−a, t) = u(a, t), ux(−a, t) = ux(a, t), for t > 0. (37)

We look for a solution in the following form

u(x, t) = X(x)T(t),

where X(x) and T(t) will be determined. Let’s assume that we have a solution u(x, t) in
the above form. Plugging it into the equation we obtain

X(x)T′′(t) = c2X′′(x)T(t),

Dividing both parts by c2T(t)X(x) we arrive to the following equality

T′′(t)
c2T(t)

=
X′′(x)
X(x)

.

Since the left side is a function of t only and the right side is the function of x only the
above equality is possible if and only if

T′′(t)
c2T(t)

=
X′′(x)
X(x)

= k

for some constant k. Therefore if u(x, t) = X(x)T(t) is a solution of the wave equation then

X′′(x) = kX(x), and T′′(t) = kc2T(t).

Moreover, from the boundary conditions (9) we know that X(−a)T(t) = X(a)T(t) and
X′(−a)T(t) = X′(a)T(r) for all t > 0. This implies X(−a) = X(a) and X′(−a) = X′(a).
Solving equation for X(x) we obtain

X(x) = A cos(
√

kx) + B sin(
√

kx).

Using boundary conditions we have

A cos(
√

ka)− B sin(
√
(k)a) = A cos(

√
ka) + B sin(

√
ka);

√
k(A sin(

√
ka) + B cos(

√
ka)) =

√
k(−A sin(

√
ka) + B cos(

√
ka)).

Solving these equations we obtain

sin(
√

ka) = 0.

Therefore
√

k = πn
a for all n ∈N = {0, 1, 2, ...} and

Xn(x) = An cos
(πn

a
x
)
+ Bn sin

(πn
a

x
)

.

Solving equation for T(t) we obtain

Tn(t) = Cn cos
(πnc

a
t
)
+ Dn sin

(πnc
a

t
)

.

Now we can find the general solution u(x, t) to be

u(x, t) = a0 +
∞

∑
n=1

(
Cn cos

(πnc
a

t
)
+ Dn sin

(πnc
a

t
)) (

An cos
(πn

a
x
)
+ Bn sin

(πn
a

x
))

.

Using initial data we can recover a0, An, Bn, Cn, Dn as before.
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1.3.3 General problem

In order to solve the general problem (29), (30) with inhomogeneous boundary conditions
we follow exactly the same ideas as in sections 1.2.4 and 1.2.5. The details are omitted.

2 1D heat and wave equations on R

In this section we consider two general methods of solving heat and wave equations on R,
namely, method of fundamental solutions (it is also sometimes called method of Green’s
functions). We also can construct a solution on the semi-infinite domain R+ based on the
knowledge of a solution on R.

2.1 Boundary conditions

When we are on the whole R we cannot prescribe boundary conditions. Usually we
assume some information about behaviour of the solution at infinity, for instance, that
ux(x, t) or/and u(x, t) vanish as x → ±∞. We will spell out these assumptions for
particular problems.

For semi-infinite domain R+ we prescribe Dirichlet or Neumann boundary conditions
only at one end x = 0 and treat infinity as described above.

2.2 Heat equation on R. Method of fundamental solution.

Our goal is to solve the following problem

ut = Duxx + f (x, t), x ∈ R, t > 0, (38)

u(x, 0) = φ(x), x ∈ R. (39)

We also want to make reasonable assumptions about behaviour of f (x, t) and φ(x) at
infinity: ∫

R
|φ(x)| dx < ∞,

∫
R
| f (x, t)| dx < ∞ for all t > 0.

Firstly, we will try to solve homogeneous equation without any initial data

ut = Duxx, x ∈ R, t > 0

using similarity solutions. It is clear that rescaling of R by a constant will always give the
same domain R. Therefore if we change space variable z = ax and change time variable
s = a2t (it’s called dilation), we will obtain exactly the same domains for x and t. Moreover
we see that if u(x, t) is a solution of the heat equation then

v(z, s) = Au(ax, a2t)

10



is also a solution of the above heat equation for general parameters a, A. We choose
A = aα, where we will determine α later. Now we have two different solutions v(z, s) and
u(x, t) and we notice that

z2

s
=

x2

t
,

v(z, s)
sα/2 =

u(x, t)
tα/2 .

This suggests to us that there are solutions such that these quantities are invariant with
respect to dilation and therefore we can define

ξ =
x√

t
, f (ξ) =

u(x, t)
tα/2 .

Therefore we look for similarity solution in the form

u(x, t) = f
(

x√
t

)
tα/2. (40)

Plugging it into the heat equation we obtain the following equation for f

α

2
f (ξ)− 1

2
ξ f ′(ξ)− D f ′′(ξ) = 0. (41)

Now we have a choice of α that will give use solution to the (41) and hence a solution to
heat equation. We would like to look for a solution that is integrable and decays at infinity
together with its x-derivatives, i.e.∫

R
|u(x, t)| dx < ∞, ux(x, t)→ 0 for x → ±∞.

If we impose these assumptions then integrating heat equation over R we obtain

d
dt

∫
R

u(x, t) dx = D
∫

R
uxx(x, t) dx = D(ux(∞, t)− ux(−∞, t)) = 0.

Therefore ∫
R

u(x, t) dx = const for all t > 0.

Without loss of generality (by rescaling u) we can choose the above constant to be 1.
Plugging in our anzatz (40) for u(x, t) we obtain

tα/2
∫

R
f
(

x√
t

)
dx = 1,

or
t(α+1)/2

∫
R

f (ξ) dξ = 1 for all t > 0.

Therefore we have to take α = −1.

The equation (41) becomes

−1
2

f (ξ)− 1
2

ξ f ′(ξ)− D f ′′(ξ) = 0

and we can solve it as follows

1
2
(ξ f (ξ))′ + D f ′′(ξ) =

(
D f ′(ξ) +

1
2

ξ f (ξ)
)′

= 0.
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Using behavior at infinity we obtain

D f ′(ξ) +
1
2

ξ f (ξ) = 0

and

f (ξ) = Ae−
ξ2

4D .

Now recalling that
∫

R f (ξ) dξ = 1 we have A = 1√
4πD

and

u(x, t) =
1√

4πDt
e−

x2

4Dt . (42)

The solution in (42) is called the fundamental solution of heat equation.

In what follows below we will use fundamental solution to construct solutions to heat
equation. We will denote the fundamental solution as

Φ(x, t) =
1√

4πDt
e−

x2

4Dt

and note that it has the following properties

1. Φt = DΦxx for all x ∈ R, t > 0;

2. Φ(x, t) = Φ(−x, t) > 0, for all x ∈ R, t > 0;

3. Φ(x, t) is a smooth (C∞) function of (x, t) for x ∈ R, t > 0;

4.
∫

R Φ(x, t) dx = 1 for all t > 0.

5. As t→ 0+, Φ(x, t)→ 0 for all x 6= 0 and Φ(0, t)→ ∞.

Looking at the properties 4 and 5 we note that as t→ 0+, Φ(x, t)→ δ(x), where δ(x) is a
delta-function. Note that we don’t specify the convergence here as δ-function is not a
function in a usual sense. In fact the convergence will be in a sense of ”measures” but we
don’t discuss it here.

2.2.1 Homogeneous heat equation

In this section we solve the following problem

ut = Duxx, x ∈ R, t > 0, (43)

u(x, 0) = φ(x), x ∈ R. (44)

For simplicity, we assume that φ(x) is uniformly continuous and bounded function. The
result is true for any integrable function φ(x).

We note that if Φ(x, t) is the fundamental solution of heat equation then for any fixed
y ∈ R the function Φ(x− y, t) also solves heat equation (59). Moreover we can take a
convolution of Φ and φ and obtain that

v(x, t) =
∫

R
Φ(x− y, t)φ(y) dy

12



satisfies (59). Recalling that as t→ 0, Φ(x− y, t)→ δ(x− y) we expect that

v(x, t)→
∫

R
δ(x− y)φ(y) dy as t→ 0.

Recalling properties of δ-function we have
∫

R
δ(x− y)φ(y) dy = φ(x) and therefore

v(x, 0) = φ(x). It seems that if we take

u(x, t) =
∫

R
Φ(x− y, t)φ(y) dy,

then it will be a solution of the problem (59), (60). Let’s verify it.

It is clear that u(x, t) =
∫

R
Φ(x− y, t)φ(y) dy satisfies (59) as

ut − Duxx =
∫

R
[Φt(x− y, t)− DΦxx(x− y, t)] φ(y) dy = 0.

We just need to check that
u(x, t)→ φ(x) as t→ 0+.

Using property 4 of Φ it is clear that

u(x, t)− φ(x) =
∫

R
Φ(x− y, t)(φ(y)− φ(x)) dy.

As φ(x) is a uniformly continuous function we know that for any ε > 0 there exists δ > 0
such that |φ(x)− φ(y)| < ε for all |x− y| < δ. We now split our integral as follows∫

R
Φ(x− y, t)(φ(y)− φ(x)) dy =∫

|y−x|<δ
Φ(x− y, t)(φ(y)− φ(x)) dy +

∫
|y−x|≥δ

Φ(x− y, t)(φ(y)− φ(x)) dy. (45)

It is clear that

|
∫
|y−x|<δ

Φ(x− y, t)(φ(y)− φ(x)) dy| ≤
∫
|y−x|<δ

Φ(x− y, t)|φ(y)− φ(x)| dy ≤

ε
∫
|y−x|<δ

Φ(x− y, t) dy ≤ ε
∫

R
Φ(x− y, t) dy = ε (46)

For the second integral we notice that as φ(x) is bounded, i.e. |φ(x)| ≤ C for all x ∈ R then

|
∫
|y−x|≥δ

Φ(x− y, t)(φ(y)− φ(x)) dy| ≤ 2C
∫
|y−x|≥δ

Φ(x− y, t) dy = 4C
∫ ∞

δ
Φ(z, t) dz.

Using explicit expression for Φ we can easily compute

∫ ∞

δ
Φ(z, t) dz =

1√
4πDt

∫ ∞

δ
e−

z2

4Dt dz =
1√
π

∫ ∞

δ√
4Dt

e−s2
ds ≤ 1

2
√

π
e
− δ√

4Dt .

Combining everything we obtain that for any ε > 0 there exists δ > 0 such that∣∣∣∣∫
R

Φ(x− y, t)(φ(y)− φ(x)) dy
∣∣∣∣ ≤ ε +

2C√
π

e
− δ√

4Dt .

13



Taking limit as t→ 0 we have

lim
t→0+

∣∣∣∣∫
R

Φ(x− y, t)(φ(y)− φ(x)) dy
∣∣∣∣ ≤ ε.

Since ε > 0 was arbitrary, we take ε→ 0+ to obtain

lim
t→0+

∫
R

Φ(x− y, t)φ(y) dy = φ(x).

We just showed that u(x, t) =
∫

R
Φ(x− y, t)φ(y) dy solves (59), (60).

2.2.2 Heat equation with f (x, t) 6= 0 and zero initial data

In this section we solve the following problem

ut = Duxx + f (x, t), x ∈ R, t > 0, (47)

u(x, 0) = 0, x ∈ R. (48)

We will use Duhamel’s principle to find the solution of the above problem. Let us start with
the following auxiliary problem. Fix any s > 0 and consider

vt = Dvxx, x ∈ R, t > s, (49)

v(x, s) = f (x, s), x ∈ R. (50)

Due to translation invariance of the heat equation we can easily check that for each fixed s

v(x, t; s) =
∫

R
Φ(x− y, t− s) f (y, s) dy

solves the problem (64), (65) (note that v(x, s; s) = f (x, s)). Now we define the following
function

w(x, t) =
∫ t

0
v(x, t; s) ds

and claim that it solves (47), (48). Let’s verify it.

It is clear that w(x, 0) = 0 and therefore (48) is satisfied. Now

wt(x, t) = v(x, t; t) +
∫ t

0
vt(x, t; s) ds = f (x, t) +

∫ t

0
vt(x, t; s) ds

and

wxx(x, t) =
∫ t

0
vxx(x, t; s) ds.

Therefore for all t > 0

wt − Dwxx = f (x, t) +
∫ t

0
(vt(x, t; s)− Dvxx(x, t; s)) ds = f (x, t).

We just showed that

u(x, t) =
∫ t

0

∫
R

Φ(x− y, t− s) f (y, s) dy ds

solves (47), (48).
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2.2.3 General problem

Now we are ready to solve the following general problem

ut = Duxx + f (x, t), for x ∈ R, t > 0 (51)

u(x, 0) = φ(x), for x ∈ R. (52)

It is straightforward to check that if v(x, t) satisfies

vt = Dvxx, for x ∈ R, t > 0 (53)

v(x, 0) = φ(x), (54)

and w(x, t) satisfies
wt = Dwxx + f (x, t), for x ∈ R, t > 0 (55)

w(x, 0) = 0, (56)

then u(x, t) = v(x, t) + w(x, t) solves (51), (52). Since we already know from the previous
subsections how to solve the problems for v(x, t) and w(x, t) we obtain

u(x, t) =
∫

R
Φ(x− y)φ(y) dy +

∫ t

0

∫
R

Φ(x− y, t− s) f (y, s) dy ds.

2.3 Wave equation on R. Method of fundamental solution.

Our goal is to solve the following problem

utt = c2uxx + f (x, t), x ∈ R, t > 0 (57)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ R. (58)

We start by solving homogeneous problem with f (x, t) ≡ 0.

2.3.1 Homogeneous wave equation. D’Alembert’s solution.

In this section we solve the following problem

utt = c2uxx, x ∈ R, t > 0, (59)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ R. (60)

Using the following change of variables ξ = x− ct, η = x + ct we obtain

ut = −cuξ + cuη, ux = uξ + uη,

utt = c2uξξ − 2c2uξη + c2uηη, uxx = uξξ + 2uξη + uηη.

Therefore
utt − c2uxx = −2c2uξη = 0.

It follows that u = f (ξ) + g(η) and therefore returning to original variables

u(x, t) = f (x− ct) + g(x + ct).
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Using initial data we obtain

f (x) + g(x) = φ(x), −c f ′(x) + cg′(x) = ψ(x), for all x ∈ R.

After straightforward calculation it follows that for all x ∈ R and some fixed a ∈ R

f (x) =
1
2

φ(x)− 1
2c

∫ x

a
ψ(s) ds, g(x) =

1
2

φ(x) +
1
2c

∫ x

a
ψ(s) ds.

Now we see that

u(x, t) = f (x− ct)+ g(x+ ct) =
1
2

φ(x− ct)− 1
2c

∫ x−ct

a
ψ(s) ds+

1
2

φ(x+ ct)+
1
2c

∫ x+ct

a
ψ(s) ds.

Finally we obtain D’Alembert’s solution

u(x, t) =
1
2

φ(x− ct) +
1
2

φ(x + ct) +
1
2c

∫ x+ct

x−ct
ψ(s) ds. (61)

2.3.2 Wave equation with f (x, t) 6= 0 and zero initial data

In this section we solve the following problem

utt = c2uxx + f (x, t), x ∈ R, t > 0, (62)

u(x, 0) = 0, ut(x, 0) = 0 x ∈ R. (63)

We again use Duhamel’s principle to find the solution of the above problem. Let us start with
the following auxiliary problem. Fix any s > 0 and consider

vtt = c2vxx, x ∈ R, t > s, (64)

v(x, s) = 0, vt(x, s) = f (x, s), x ∈ R. (65)

Due to translation invariance of the wave equation we can easily check that for each fixed s

v(x, t; s) =
1
2c

∫ x+c(t−s)

x−c(t−s)
f (r, s) dr.

solves the problem (64), (65) (note that v(x, s; s) = 0, vt(x, s; s) = f (x, s)). Now we define
the following function

w(x, t) =
∫ t

0
v(x, t; s) ds

and claim that it solves (62), (63). Let’s verify it.

It is clear that w(x, 0) = 0 and therefore (63) is satisfied. Now

wt(x, t) = v(x, t; t) +
∫ t

0
vt(x, t; s) ds =

∫ t

0
vt(x, t; s) ds,

wtt(x, t) = vt(x, t; t) +
∫ t

0
vtt(x, t; s) ds = f (x, t) +

∫ t

0
vtt(x, t; s) ds.

and

wxx(x, t) =
∫ t

0
vxx(x, t; s) ds.
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Therefore for all t > 0

wtt − c2wxx = f (x, t) +
∫ t

0
(vtt(x, t; s)− c2vxx(x, t; s)) ds = f (x, t).

We just showed that

u(x, t) =
1
2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (r, s) dr ds

solves (62), (63).

2.3.3 General problem

Now we are ready to solve the following general problem

utt = c2uxx + f (x, t), for x ∈ R, t > 0 (66)

u(x, 0) = φ(x), ut(x, 0) = ψ(x) for x ∈ R. (67)

It is straightforward to check that if v(x, t) satisfies

vt = Dvxx, for x ∈ R, t > 0 (68)

v(x, 0) = φ(x), vt(x, 0) = ψ(x) for x ∈ R. (69)

and w(x, t) satisfies
wt = Dwxx + f (x, t), for x ∈ R, t > 0 (70)

w(x, 0) = 0, wt(x, 0) = 0 for x ∈ R (71)

then u(x, t) = v(x, t) + w(x, t) solves (66), (67). Since we already know from the previous
subsections how to solve the problems for v(x, t) and w(x, t) we obtain

u(x, t) =
1
2

φ(x− ct) +
1
2

φ(x + ct) +
1
2c

∫ x+ct

x−ct
ψ(r) dr +

1
2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (r, s) dr ds.
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