Jacobi triple product via the exclusion process

Joint with Ross Bowen

Márton Balázs

University of Bristol

Dualities in Probability and Algebra Lancaster University 16 September, 2024.

Jacobi triple product

Theorem

Let |x| < 1 and $y \neq 0$ be complex numbers. Then

$$\prod_{i=1}^{\infty} (1-x^{2i}) \Big(1+\frac{x^{2i-1}}{y^2}\Big) \Big(1+x^{2i-1}y^2\Big) = \sum_{m=-\infty}^{\infty} x^{m^2} y^{2m}.$$

Mostly appears in number theory and combinatorics of partitions.

We'll prove it using interacting particles (for real x, y only).

Models

Asymmetric simple exclusion Zero range

Blocking measures

No boundaries
Boundaries

Lay down - stand up

Jacobi triple product

More models

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

Particles try to jump

to the right with rate
$$p$$
, to the left with rate $q = 1 - p < p$.

We need *r* non-decreasing and assume, as before, q = 1 - p < p.

Examples:

- 'Classical' ZRP: $r(\omega_i) = \mathbf{1}\{\omega_i > 0\}$.
- ▶ Independent walkers: $r(\omega_i) = \omega_i$.

Product blocking measures

Can we have a reversible stationary distribution in product form:

$$\underline{\mu}(\underline{\omega}) = \bigotimes_{i} \mu_{i}(\omega_{i});$$

$$\underline{\mu}(\underline{\omega}) \cdot \mathsf{rate}(\underline{\omega} \to \underline{\omega}^{i \frown i+1}) = \underline{\mu}(\underline{\omega}^{i \frown i+1}) \cdot \mathsf{rate}(\underline{\omega}^{i \frown i+1} \to \underline{\omega}) \quad ?$$

Here

$$\underline{\omega}^{i \cap i+1} = \underline{\omega} - \underline{\delta}_i + \underline{\delta}_{i+1}.$$

Asymmetric simple exclusion

$$\underline{\mu}(\underline{\eta}) \cdot \operatorname{rate}(\underline{\eta} \to \underline{\eta}^{i \frown i+1}) = \underline{\mu}(\underline{\eta}^{i \frown i+1}) \cdot \operatorname{rate}(\underline{\eta}^{i \frown i+1} \to \underline{\eta})$$

$$\underline{\mathsf{ASEP:}} \ \mu_i \sim \operatorname{Bernoulli}(\varrho_i); \qquad \underline{\underline{\hspace{1cm}}} \qquad \underline{\underline{\hspace{1cm}}$$

Asymmetric simple exclusion

$$\underline{\mu}(\underline{\eta}) \cdot \operatorname{rate}(\underline{\eta} \to \underline{\eta}^{i \frown i+1}) = \underline{\mu}(\underline{\eta}^{i \frown i+1}) \cdot \operatorname{rate}(\underline{\eta}^{i \frown i+1} \to \underline{\eta})$$

$$\underline{\mathsf{ASEP:}} \ \mu_i \sim \operatorname{Bernoulli}(\varrho_i); \qquad \underline{\underline{\hspace{1cm}}} \quad \underline{\underline{\hspace{1cm}}$$

C

$$\underline{\mu}(\underline{\omega}) \cdot \mathsf{rate}(\underline{\omega} \to \underline{\omega}^{i \smallfrown i+1}) = \underline{\mu}(\underline{\omega}^{i \smallfrown i+1}) \cdot \mathsf{rate}(\underline{\omega}^{i \smallfrown i+1} \to \underline{\omega}) \quad ?$$

<u>AZRP:</u>

$$\mu_i(\omega_i)\mu_{i+1}(\omega_{i+1}) \cdot p\mathbf{1}\{\omega_i > 0\} = \mu_i(\omega_i - 1)\mu_{i+1}(\omega_{i+1} + 1) \cdot q$$

Solution:
$$\mu_i \sim \text{Geometric} \left(1 - \left(\frac{p}{a}\right)^{i-\text{const}}\right)$$
.

Notice:

$$\mathbf{P}\{\eta_i = 0\} = 1 - \varrho_i = \frac{1}{1 + (\frac{\varrho}{q})^{i-c}} \qquad \text{as } i \to \infty$$

$$\mathbf{P}\{\eta_i = 1\} = \varrho_i = \frac{1}{(\frac{q}{p})^{i-c} + 1} \qquad \text{as } i \to -\infty$$

are both summable. Hence by Borel-Cantelli there is μ -a.s. a rightmost hole and a leftmost particle,

$$N:=\sum_{i=1}^{\infty}(1-\eta_i)-\sum_{i=-\infty}^{0}\eta_i$$

is μ -a.s. finite.

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 3 - 2$$

$$\bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 3 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 3 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 3 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 2$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 1$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 1$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

0000

$$N(\underline{\eta}) := \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$1 = 2 - 1$$

$$\bullet \quad \circ \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \bullet$$

$$\bullet \quad \circ \quad \circ$$

$$\bullet \quad \bullet \quad \circ \quad \bullet$$

Also: it is conserved. Define

$$\Omega^n := \{0, 1\}^{\mathbb{Z}} \cap \{N(\eta) = n\},$$

$$\underline{\mu}\Big(\bigcup_{n=-\infty}^{\infty}\Omega^n\Big)=1.$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 3 - 2 = 1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 3 - 2 = 1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \underline{\eta})_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 3 - 2 = 1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 3 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 3 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift:
$$(\tau \underline{\eta})_i = \eta_{i+1}$$
.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 2 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 3 = 0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 3 = -0$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 3 = -1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Left shift: $(\tau \eta)_i = \eta_{i+1}$.

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 3 = -1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

$$N(\tau \underline{\eta}) = N(\underline{\eta}) - 1$$

$$N(\underline{\eta}) = \sum_{i=1}^{\infty} (1 - \eta_i) - \sum_{i=-\infty}^{0} \eta_i$$

$$N = 2 - 3 = -1$$

$$\tau:\Omega^n\to\Omega^{n-1}$$

Recall

$$\varrho_i = \frac{\left(\frac{p}{q}\right)^{i-c}}{1 + \left(\frac{p}{q}\right)^{i-c}},$$

but

$$\underline{\nu}^{n}(\cdot) := \mu(\cdot \mid N(\cdot) = n)$$

doesn't depend on c anymore. Stationary measure on Ω^n .

$$\cdots \underbrace{\Omega^{-1}}_{\underline{\nu}^{-1}} \underbrace{\tau^{-1}}_{\tau} \underbrace{\Omega^{0}}_{\underline{\nu}^{0}} \underbrace{\tau^{-1}}_{\tau} \underbrace{\Omega^{1}}_{\tau} \underbrace{\tau^{-1}}_{\tau} \underbrace{\Omega^{2}}_{\underline{\nu}^{2}} \cdots$$

$$\underline{\mu}(\cdot) = \sum_{n=-\infty}^{\infty} \underline{\mu}(\cdot \mid N(\cdot) = n)\underline{\mu}(N(\cdot) = n) = \sum_{n=-\infty}^{\infty} \underline{\nu}^{n}(\cdot)\underline{\mu}(N(\cdot) = n).$$

Ergodic decomposition of μ .

Let's find the coefficients $\mu(N(\cdot) = n)!$

Recall:

$$\varrho_{i} = \frac{\left(\frac{\rho}{q}\right)^{i-c}}{1 + \left(\frac{\rho}{q}\right)^{i-c}} = \frac{1}{\left(\frac{q}{\rho}\right)^{i-c} + 1}$$

$$\underline{\mu}(\underline{\eta}) = \prod_{i \leq 0} \frac{\left(\frac{\rho}{q}\right)^{(i-c)\eta_{i}}}{1 + \left(\frac{\rho}{q}\right)^{i-c}} \cdot \prod_{i > 0} \frac{\left(\frac{q}{\rho}\right)^{(i-c)(1-\eta_{i})}}{\left(\frac{q}{\rho}\right)^{i-c} + 1}$$

$$= \frac{\prod_{i \leq 0} \left(\frac{\rho}{q}\right)^{(i-c)\eta_{i}}}{\prod_{i \geq 0} \left(1 + \left(\frac{\rho}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{\rho}\right)^{(i-c)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{q}{\rho}\right)^{i-c} + 1\right)}$$

Recall:

$$\varrho_{i} = \frac{\left(\frac{P}{q}\right)^{i-c}}{1 + \left(\frac{P}{q}\right)^{i-c}} = \frac{1}{\left(\frac{q}{p}\right)^{i-c} + 1}$$

$$\underline{\mu}(\underline{\eta}) = \prod_{i \leq 0} \frac{\left(\frac{P}{q}\right)^{(i-c)\eta_{i}}}{1 + \left(\frac{P}{q}\right)^{i-c}} \cdot \prod_{i > 0} \frac{\left(\frac{q}{p}\right)^{(i-c)(1-\eta_{i})}}{\left(\frac{q}{p}\right)^{i-c} + 1}$$

$$= \frac{\prod_{i \leq 0} \left(\frac{P}{q}\right)^{(i-c)\eta_{i}}}{\prod_{i \geq 0} \left(1 + \left(\frac{P}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{p}\right)^{(i-c)(1-\eta_{i})}}{\prod_{i > 0} \left(\frac{q}{p}\right)^{i-c} + 1}$$

$$\underline{\mu}(\underline{\tau\underline{\eta}}) = \frac{\prod_{i \leq 0} \left(\frac{\underline{p}}{q}\right)^{(i-c)\underline{\eta_{i+1}}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{p}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{\underline{q}}{p}\right)^{(i-c)(\underline{1}-\underline{\eta_{i+1}})}}{\prod_{i > 0} \left(\left(\frac{\underline{q}}{p}\right)^{i-c} + 1\right)}$$

$$\underline{\mu}(\underline{\tau}\underline{\eta}) = \frac{\prod_{i \leq 0} \left(\frac{\underline{p}}{q}\right)^{(i-c)\eta_{i+1}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{p}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{p}\right)^{(i-c)(1-\eta_{i+1})}}{\prod_{i > 0} \left(\frac{q}{p}\right)^{i-c} + 1\right)}$$

$$= \frac{\prod_{i \leq 1} \left(\frac{\underline{p}}{q}\right)^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{p}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 1} \left(\frac{q}{p}\right)^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} \left(\frac{q}{p}\right)^{i-c} + 1\right)}$$

$$\underline{\mu}(\underline{\tau}\underline{\eta}) = \frac{\prod_{i \leq 0} \left(\frac{p}{q}\right)^{(i-c)\eta_{i+1}}}{\prod_{i \leq 0} \left(1 + \left(\frac{p}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{p}\right)^{(i-c)(1-\eta_{i+1})}}{\prod_{i > 0} \left(\left(\frac{q}{p}\right)^{i-c} + 1\right)}$$

$$= \frac{\prod_{i \leq 1} \left(\frac{p}{q}\right)^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{p}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{p}\right)^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{q}{p}\right)^{i-c} + 1\right)}$$

$$= \frac{\prod_{i \leq 0} \left(\frac{p}{q}\right)^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{p}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{q}{p}\right)^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{q}{p}\right)^{i-c} + 1\right)} \cdot \left(\frac{p}{q}\right)^{-c}$$

$$\underline{\mu}(\underline{\tau\eta}) = \frac{\prod_{i \leq 0} (\frac{p}{q})^{(i-c)\eta_{i+1}}}{\prod_{i \leq 0} (1 + (\frac{p}{q})^{i-c})} \cdot \frac{\prod_{i > 0} (\frac{q}{p})^{(i-c)(1-\eta_{i+1})}}{\prod_{i > 0} ((\frac{q}{p})^{i-c} + 1)}$$

$$= \frac{\prod_{i \leq 1} (\frac{p}{q})^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} (1 + (\frac{p}{q})^{i-c})} \cdot \frac{\prod_{i > 1} (\frac{q}{p})^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} ((\frac{q}{p})^{i-c} + 1)}$$

$$= \frac{\prod_{i \leq 0} (\frac{p}{q})^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} (1 + (\frac{p}{q})^{i-c})} \cdot \frac{\prod_{i > 0} (\frac{q}{p})^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} ((\frac{q}{p})^{i-c} + 1)} \cdot (\frac{p}{q})^{-c}$$

$$= \frac{\prod_{i \leq 0} (\frac{p}{q})^{(i-c)\eta_{i}}}{\prod_{i \leq 0} (1 + (\frac{p}{q})^{i-c})} \cdot \frac{\prod_{i > 0} (\frac{q}{p})^{(i-c)(1-\eta_{i})}}{\prod_{i > 0} ((\frac{q}{p})^{i-c} + 1)} \cdot (\frac{p}{q})^{N(\underline{\eta}) - c}$$

$$\underline{\mu}(\underline{\tau}\underline{\eta}) = \frac{\prod_{i \leq 0} \left(\frac{\underline{\rho}}{q}\right)^{(i-c)\eta_{i+1}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{\rho}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{\underline{q}}{\rho}\right)^{(i-c)(1-\eta_{i+1})}}{\prod_{i > 0} \left(\left(\frac{\underline{q}}{\rho}\right)^{i-c} + 1\right)}$$

$$= \frac{\prod_{i \leq 1} \left(\frac{\underline{\rho}}{q}\right)^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{\rho}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 1} \left(\frac{\underline{q}}{\rho}\right)^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{\underline{q}}{\rho}\right)^{i-c} + 1\right)}$$

$$= \frac{\prod_{i \leq 0} \left(\frac{\underline{\rho}}{q}\right)^{(i-c-1)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{\rho}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{\underline{q}}{\rho}\right)^{(i-c-1)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{\underline{q}}{\rho}\right)^{i-c} + 1\right)} \cdot \left(\frac{\underline{\rho}}{q}\right)^{-c}$$

$$= \frac{\prod_{i \leq 0} \left(\frac{\underline{\rho}}{q}\right)^{(i-c)\eta_{i}}}{\prod_{i \leq 0} \left(1 + \left(\frac{\underline{\rho}}{q}\right)^{i-c}\right)} \cdot \frac{\prod_{i > 0} \left(\frac{\underline{q}}{\rho}\right)^{(i-c)(1-\eta_{i})}}{\prod_{i > 0} \left(\left(\frac{\underline{q}}{\rho}\right)^{i-c} + 1\right)} \cdot \left(\frac{\underline{\rho}}{q}\right)^{N(\underline{\eta})-c}$$

$$= \underline{\mu}(\underline{\eta}) \cdot \left(\frac{\underline{\rho}}{q}\right)^{N(\underline{\eta})-c}.$$

$$\underline{\mu}(N=n-1) = \sum_{\underline{\eta}: N(\underline{\eta})=n-1} \underline{\mu}(\underline{\eta})$$

$$\underline{\mu}(N = n - 1) = \sum_{\underline{\eta}: N(\underline{\eta}) = n - 1} \underline{\mu}(\underline{\eta})$$
$$= \sum_{\underline{\eta}: N(\underline{\tau}\underline{\eta}) = n - 1} \underline{\mu}(\underline{\tau}\underline{\eta})$$

$$\underline{\mu}(N = n - 1) = \sum_{\underline{\eta}: N(\underline{\eta}) = n - 1} \underline{\mu}(\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\tau}\underline{\eta}) = n - 1} \underline{\mu}(\underline{\tau}\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\eta}) = n} \underline{\mu}(\underline{\eta}) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}$$

$$\underline{\mu}(N = n - 1) = \sum_{\underline{\eta}: N(\underline{\eta}) = n - 1} \underline{\mu}(\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\tau\underline{\eta}) = n - 1} \underline{\mu}(\tau\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\eta) = n} \underline{\mu}(\underline{\eta}) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}$$

$$\underline{\mu}(N = n - 1) = \sum_{\underline{\eta}: N(\underline{\eta}) = n - 1} \underline{\mu}(\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\tau}\underline{\eta}) = n - 1} \underline{\mu}(\underline{\tau}\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\eta}) = n} \underline{\mu}(\underline{\eta}) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}$$

$$= \underline{\mu}(N = n) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}.$$

So,

$$\underline{\mu}(N = n - 1) = \sum_{\underline{\eta}: N(\underline{\eta}) = n - 1} \underline{\mu}(\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\tau}\underline{\eta}) = n - 1} \underline{\mu}(\underline{\tau}\underline{\eta})$$

$$= \sum_{\underline{\eta}: N(\underline{\eta}) = n} \underline{\mu}(\underline{\eta}) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}$$

$$= \underline{\mu}(N = n) \cdot \left(\frac{\underline{p}}{q}\right)^{n - c}.$$

Solution:

$$\underline{\mu}(N=n) = \frac{\left(\frac{q}{p}\right)^{\frac{n^2+n}{2}-cn}}{\sum \left(\frac{q}{p}\right)^{\frac{m^2+m}{2}-cm}}$$

discrete Gaussian.

and, if
$$N(\underline{\eta}) = n$$
,

$$\underline{\nu}^{n}(\underline{\eta}) = \underline{\mu}(\underline{\eta} \mid N(\underline{\eta}) = n) = \frac{\underline{\mu}(\underline{\eta})}{\mu(N(\underline{\eta}) = n)} \\
= \frac{\prod\limits_{i \leq 0} \left(\frac{p}{q}\right)^{(i-c)\eta_{i}}}{\prod\limits_{i \leq 0} \left(1 + \left(\frac{p}{q}\right)^{i-c}\right)} \cdot \frac{\prod\limits_{i > 0} \left(\frac{q}{p}\right)^{(i-c)(1-\eta_{i})}}{\prod\limits_{i > 0} \left(\left(\frac{q}{p}\right)^{i-c} + 1\right)} \cdot \frac{\sum \left(\frac{q}{p}\right)^{\frac{m^{2}+m}{2}-cm}}{\left(\frac{q}{p}\right)^{\frac{n^{2}+n}{2}-cn}}.$$

This is the unique stationary distribution on Ω^n .

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

State space: AZRP

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \left(1 - \left(rac{p}{q}
ight)^{i-\operatorname{const}} \right).$$

$$\mu_i \sim \operatorname{Geometric} \left(1 - \left(rac{p}{q}
ight)^{i-\operatorname{const}} \right).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

→ The product measure stays stationary on the half-line.

since stationary distributions of countable irreducible Markov chains are unique.

Jacobi triple product

ASEP $(\underline{\eta})$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1}} = \frac{$$

Jacobi triple product

$$\prod_{i\leq 0} \bigl(1-\bigl(\frac{p}{q}\bigr)^{i-1}\bigr) \cdot \prod_{i\leq 0} \bigl(1+\bigl(\frac{p}{q}\bigr)^{i-c}\bigr) \cdot \prod_{i>0} \bigl(\bigl(\frac{q}{p}\bigr)^{i-c}+1\bigr) = \sum_{m=-\infty}^{\infty} \Bigl(\frac{q}{p}\Bigr)^{\frac{m^2+m}{2}-cm}$$

LHS:

$$\prod_{i=1}^{\infty} \left(1 - \left(\frac{q}{p}\right)^{i}\right) \cdot \left(1 + \left(\frac{q}{p}\right)^{i-1+c}\right) \cdot \left(\left(\frac{q}{p}\right)^{i-c} + 1\right)$$

$$= \prod_{i=1}^{\infty} \left(1 - x^{2i}\right) \left(1 + \frac{x^{2i-1}}{y^{2}}\right) \left(1 + x^{2i-1}y^{2}\right)$$

with
$$\mathbf{x} = \left(\frac{q}{p}\right)^{\frac{1}{2}}$$
, $\mathbf{y} = \left(\frac{q}{p}\right)^{\frac{1}{4} - \frac{c}{2}}$.

RHS:

$$\sum_{m=-\infty}^{\infty} \left(\frac{q}{p}\right)^{\frac{m^2}{2}} \left(\frac{q}{p}\right)^{m(\frac{1}{2}-c)} = \sum_{m=-\infty}^{\infty} x^{m^2} y^{2m}.$$

Further models

Further models

Product blocking measures are very general.

ASEP

Further models

- ASEP
- K-exclusion (!)

Further models

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)

Further models

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Other models can be stood up:

► ASEP

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

- ASEP
- q-exclusion

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

- ASEP
 - q-exclusion
 - Katz-Lebowitz-Spohn model

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

- ASEP
- q-exclusion
- Katz-Lebowitz-Spohn model

Further models

Product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- ► Misanthrope / bricklayers processes

Other models can be stood up:

- ► ASEP
- q-exclusion
- Katz-Lebowitz-Spohn model

The point was that ASEP is in both lists.

Thank you.