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Jacobi triple product

Theorem
Let|x| <1 andy # 0 be complex numbers. Then

X2i—1

ﬁ(1—x2’)<1+ /2 )(1 x?=1y?) Z X y2m

i=1 m=—o0

Mostly appears in number theory and combinatorics of
partitions.
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The asymmetric zero range process

We need r non-decreasing and assume, as before,
g=1—-p<p.

Examples:
» ‘Classical’ ZRP: r(w;) = 1{w; > 0}.
» Independent walkers: r(w;) = w;.



Product blocking measures

Can we have a reversible stationary distribution in product form:

ww) = ®Mi(wi);

H(Q) . rate(g N gimi-i—1) — H(QimH—“) . rate(gimi-H N Q) ?
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Asymmetric simple exclusion

p(n) - rate(y — 1) = p(y~H - rate (T )

ASEP: p; ~ Bernoulli()); ——
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Asymmetric zero range process

E(g) . I’ate(g N gif\vl'-i-1) — H(gimi+1) . rate(gimi+1 N g) ?

AZRP:

pilwi izt (wizt) - pH{w; > 0} = pi(wi — izt (wizt +1) - g

Solution:  p; ~ Geometric<1 — (g)i_conSt).



State space: ASEP

Notice:
P{n =0} =1—pj— — '
{77i— }— —QI—W as | — oo
1
P{ni=1}=0i= 57— asi— —
{ni =1} =o; (@t 1 00

are both summable. Hence by Borel-Cantelli there is pi-a.s. a
rightmost hole and a leftmost particle,

0 0
N:=Y(1=m)— Y
i=1

i=—00

is p-a.s. finite.
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n=—oo
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Recall
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0 = q
! Pyi—c’
1+ (5)
Qi
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A
A
A
A
A
0 A.ALA.AA.A.AA-A.A ______________
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but
V() = p(-[N() = n)
doesn’t depend on ¢ anymore. Stationary measure on Q.
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p()= D uCINC)=mu(NC)=n)= Y v"()u(N() = n).

Ergodic decomposition of ju.

Let’s find the coefficients u(N(-) = n)!
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So,
pN=n-1)= 5> u
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Solution:

discrete Gaussian.
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and, it N(1) =
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This is the unigque stationary distribution on Q".
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~ The product measure stays stationary on the half-line.
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since stationary distributions of countable irreducible Markov
chains are unique.
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More

Further models
Product blocking measures are very general.
>
» K-exclusion (!)

» All zero range processes (* ”, independent walkers,
g-zero range)

» Misanthrope / bricklayers processes
Other models can be stood up:

>

> g-exclusion

» Katz-Lebowitz-Spohn model

Thank you.
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