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Attractive and non-attractive models
Totally asymmetric simple exclusion process
A ® © 0 model
Totally asymmetric zero range process

On large scales
Shocks
Rarefaction waves

A mean field version
Positive recurrence

Two words on the proof
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Models

The totally asymmetric simple exclusion process

wj(0) ~ Bernoulli(o) product distribution.

Particles step to the right with rate 1,
unless the destination site is occupied.

The Bernoulli(o) product distribution is stationary (and
non-reversible) for all 0 < p < 1: w;(t) ~ Bernoulli(p).
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+ Elwi(t) [wo(0) =1] - 0
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The second class particle

Cov(wi(t), wo(0)) = Efwi(t)] - 0 — 0. @)
P{Q(t) =i} = E[wi(t)] — E[wi(t)]. )
0=Ewi(t)]-(1-0) +E[wi(t)]- 0. (3

So,

Cov(wi(t), wo(0)) 2 o+ (Efwi(t)] — o)
®) 0(1 = 0) - (E[wi(t)] — E[wi (t)D
2 o(1 - 0) - P{Q(t) =i}

The second class particle traces information propagation.
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A single discrepancyt, the second class particle, is conserved.
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On large scales
Let us now allow the density to change slowly in space. The
change of density at position i:
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Burgers eq.: characteristics

Fro+ fxlo(t - ) =0

Characteristics: find a path X (T) where (T, X(T)) is a
constant:

d .
EQ(-RX(T))_O
o . ¢ 0 .
o . N 0 .
a*TQ‘f‘(l—ZQ)'a*XQ—O

The characteristic velocity: X(T) = 1 — 2.

Second class particles are known to follow the characteristics.
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Scaled Shocks Rarefaction waves

On large scales

a(T, X)
1.0+
0.8
Jam
0.4-\
021
—— —— —_— —_— X
X(T)=1-25

Rarefaction wave



Scaled Shocks Rarefaction waves

The second class particle: non-attractive case

We are facing a
» nearest neighbour
» parity conserving
» branching
» annihilating process
» on the dynamic background of first class particles.

The aim is to control the number of t and |’s.

~ honpg2. avi
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A model we can say something about:

Branching with annihilation: exclusion

| 4

» tsand /s always alternate;

» their algebraic sum is constant in time.
» Nothing is monotone.

Question: Is the process, as seen by the leftmost 1, recurrent?
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First instance of DBARW we could find in the literature:
. Positive recurrence:

Results are very sensitive to the details of branching.

But: true second class particles interact (common background
of first class particles).

~~ Repeat the Sturm-Swart proof with configuration dependent
jump rates. Jump rates can depend on the whole configuration.
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DBARW

Conditions on the jumping and branching rates:
» Translation invariance.

» Uniform lower bound on jumping rates: no particles are
stuck.

» Bounds on the branching rates.
» Bounds on the difference for branching rates of t's and I’s.
» Weak dependence on particles far away.

» No repulsion in the jumping rates between particles. (A bit
of repulsion locally is still OK.)
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Positive recurrence

Theorem
Then, starting from a single t:

» The process takes finitely many steps in finite time
(construction).

» The width of the process has all moments finite.

» The process as seen from the leftmost t is positive
recurrent.

» The stationary distribution sees a finite expected number
of particles.

» (Extension of all this to non nearest neighbour symmetric
branching.)
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» Branching rates: constant.
» Jump rate to the right:

1 1
27 Z distance®’

particle on right

jump rate to the left:

1 1
2" Z distance®’
particle on left

a>1.

Unfortunately we do not seem to be there yet... This is not
covered at the moment.
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Another example

» Branching rates: constant.
» Jump rate to the right:

1
2t X

gaps L; on the right

jump rate to the left:

1
2t 2

gaps L; on the left

a>1.

This one is fine.
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\
[

Main tool 1: the number of inversions, i.e., wrongly ordered 1-0
pairs.

If there are too many of them, the generator is negative on the
number of these pairs.

Main tool 2: if the process is not tight, then on the long run
there cannot be any finite number of particles:

i/OT P{number(t) <N} dt — O (YN).

Thank you.
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