Jacobi triple product and the like via the
exclusion process and the like

Marton Balazs

University of Bristol

Interacting Particle Systems and Hydrodynamic Limits
CRM
23 March, 2022.



____ Models_BlL.meas. _Statesp._Layistand Jacobi Moe BRI
Jacobi triple product

Theorem
Let|x| <1 andy # 0 be complex numbers. Then

X2i—1

ﬁ(1—x2’)<1+ /2 )(1 x?=1y?) Z X y2m

i=1 m=—o0

Mostly appears in number theory and combinatorics of
partitions.
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Product blocking measures

Can we have a reversible stationary distribution in product form:

ww) = ®Mi(wi);

H(Q) . rate(g N gimi-i—1) — H(QimH—“) . rate(gimi-H N Q) ?
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Asymmetric zero range process

E(g) . I’ate(g N gif\vl'-i-1) — H(gimi+1) . rate(gimi+1 N g) ?

AZRP:

piwi) izt (Wipe) - pHw; > 0} = pi(w; — Npip1(wipr +1) - q

Solution:  p; ~ Geometric<1 — (g)i_conSt).



State space: ASEP

Notice:
P{n =0} =1—pj— — '
{77i— }— —QI—W as | — oo
1
P{ni=1}=0i= 57— asi— —
{ni =1} =o; (@t 1 00

are both summable. Hence by Borel-Cantelli there is pi-a.s. a
rightmost hole and a leftmost particle,

0 0
N:=Y(1=m)— Y
i=1

i=—00

is p-a.s. finite.
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State space: ASEP

p() =Y pINC) =mu(NC) =n)= D" v"(u(N() = n).

Ergodic decomposition of jy with v"(-) : = pu(-| N(-) = n).

Let’s find the coefficients u(N(-) = n)!
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Solution:

discrete Gaussian.
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This is the unigque stationary distribution on Q".
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~ The product measure stays stationary on the half-line.
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since stationary distributions of countable irreducible Markov
chains are unique.
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...and the same steps to the left.
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No two consecutive 0’s!
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Odd ground state:
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Even ground state:
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Lay down / stand up a bit differently

» No two consecutive 0’s!is a nonlocal constraint.

» The stood up model is nice otherwise. It has reversible
product blocking measures.

» Reversible measures survive forbidden jumps.



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

ASEP(q, 1)
Jump Rate Jump Rate
®— g'T+qg° — & q+q°
o g'+q3 e — q+q°
0~om g3 Do @
@o~0 (1+¢)g'+q° |ce~0 (1+g3)(q9+q°)

Identity: Has to do with the odd and even terms of Jacobi’s
triple product.



More

New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

A nice three-state model:

Jump Rate | Jump Rate
& — 1 — D q

— O 1 o — q
P~oe c 0~ @®c qc
o ~0 2 oo ~0 2q

Identity: Has to do with the square of Jacobi’s triple product.



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

2-exclusion:
Jump Rate | Jump Rate
& — 1 — D q
— O 1 o — q
0~oco 1 0~do q
@ ~0 1 od~0 g

Identity: Looks new and interesting. . .



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

K-exclusion:

Identity: Rather nice generalisation using the K roots of unity.



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

K-exclusion:

Identity: Rather nice generalisation using the K roots of unity.
Zero range:

Identity: The geometric sum formula. :-D



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

K-exclusion:

Identity: Rather nice generalisation using the K roots of unity.

Zero range:

Identity: The geometric sum formula. :-D

Thank you.
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