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Jacobi triple product

Theorem
Let|x| <1 andy # 0 be complex numbers. Then

X2i—1

ﬁ(1—x2’)<1+ /2 )(1 x?=1y?) Z X y2m

i=1 m=—o0

Mostly appears in number theory and combinatorics of
partitions.
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The asymmetric zero range process

We need r non-decreasing and assume, as before,
g=1—-p<p.

Examples:
» ‘Classical’ ZRP: r(w;) = 1{w; > 0}.
» Independent walkers: r(w;) = w;.



Product blocking measures

Can we have a reversible stationary distribution in product form:

ww) = ®Mi(wi);

H(Q) . rate(g N gimi-i—1) — H(QimH—“) . rate(gimi-H N Q) ?



Asymmetric simple exclusion

p(n) - rate(y — 1) = p(y~H - rate (T )

ASEP: p; ~ Bernoulli()); ——
p=(1-0)oir1-9
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Asymmetric simple exclusion

p(n) - rate(y — 1) = p(y~H - rate (T )

ASEP: p; ~ Bernoulli()); ——

0i(1 = 0it1)-p= -q
(&)-e 1
Solution:  gj = — T p—— = ——
T+(g)—°¢ (5)°+1
Qi
1 - - - - - - - - - - - - - - A‘AA'AlA'A'AA‘A‘

A
A
O | A-adaaaaaaasrs™ L o o o o L




Asymmetric zero range process

E(g) . I’ate(g N gif\vl'-i-1) — H(gimi+1) . rate(gimi+1 N g) ?

AZRP:

pilwi izt (wizt) - pH{w; > 0} = pi(wi — izt (wizt +1) - g

Solution:  p; ~ Geometric<1 — (g)i_conSt).



State space: ASEP

Notice:
P{ 0}=1-p L asi— oo
ni = =1 =0i=T"7p-ec
T+(5)"°
1
P{ni=1} =0 = 5—7— asi— —
{ni=1}= o I 00

are both summable. Hence by Borel-Cantelli there is p-a.s. a
rightmost hole and a leftmost particle,

0 0
N:=Y(1=m)— Y
i=1

i=—00

is p-a.s. finite.
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Also: itis conserved. Define
Q":={0, 1}* N {N(n) = n},
the irreducible components of the state space.

u( G Q") =1.

n=—oo
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State space: ASEP

Recall
(8)y—°
0 = q
! Pyi—c’
1+ (5)
Qi
1""""""""AA'Al"“"“
AAA
A
A
A
A
A
0 A.ALA.AA.A.AA-A.A ______________
(o )

but
V() = p(-[N() = n)
doesn’t depend on ¢ anymore. Stationary measure on Q.
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State space: ASEP

/_71 7_71 7_71
- .y .y sy
*_ *_ *_
T T T
v 0 v V2
o0 o0

p()= D uCINC)=mu(NC)=n)= Y v"()u(N() = n).

n=—oo n=—o0

Ergodic decomposition of ju.

Let’s find the coefficients u(N(-) = n)!
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State space: ASEP
So,
pN=n-1)= 5> u
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Solution:

discrete Gaussian.
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State space: ASEP

and, it N(1) = n,

ey o ()
v (ﬂ) - H(Q| N(ﬂ) - n) M(N(ﬂ) _ n)
py(i—c)ni g\ (i—e)(1-m) mam oo
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This is the unigque stationary distribution on Q".
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~ The product measure stays stationary on the half-line.
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since stationary distributions of countable irreducible Markov
chains are unique.
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More

Further models
Product blocking measures are very general.

>

v

K-exclusion (!)

All zero range processes (“ ”, independent walkers,
g-zero range)

» Misanthrope / bricklayers processes

v

Other models can be stood up:

>
» g-exclusion
» Katz-Lebowitz-Spohn model

Thank you.
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