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... hice wishlist. :-) Is there such a Markov chain? Can we
construct it?

» Models introduced by [F. Spitzer '70]

» Exclusion and zero range up to linear rates: [R. Holley '70], [T.
Liggett ‘72, '73], [E. Andjel '80]
» Up to exponential rates: [B. with F. Rassoul-Agha, T. Seppalainen, S.

Sethuraman ’07]

> Improvements: [E. Andjel, I. Armendariz, M. Jara '21]
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Rent a helicopter and view particles from high above.

That is, rescale space (X) and time (T) of TASEP.

Theorem (Hydrodynamics [H. Rost '81])
The density o(T, X) of particles satisfies

0 0
7o+ glet =) =0

( )

The following are solutions of this equation:
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On large scales

TASEP (R: rarefaction fan, S: Shock):
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Here is what can also happen (R: rarefaction fan, S: Shock):
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What is this all good for?

Two ways to look at this:

» Misanthrope particles [C. Cocozza-Thivent '85]: don’t like each
other

» Surface growth: fills in dips, slows down peaks
So,
» Cars on the road
» 1-dimensional transport e.g., red blood cells in capillaries
» Infection through crops
» Fire combusting paper or a forest
> ...more to come.
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Integrated particle current

ht

hve (D)}

o

hy:(t) = height as seen by a moving observer of velocity V.
= net number of particles passing the window s — Vs.

( )
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.. is the properties of hy;(t) under a stationary evolution.
» Law of Large Numbers: M t_}—oz average growth rate by
standard ergodicity arguments.
» Var(hy(t))? How large is it? Do we have a Central Limit
Theorem?
» Distributional limit of h4(t) in the correct scaling?
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Theorem (CLT [p. A. Ferrari-L. R. Fontes '94 (ASEP)]; [B. ‘03 (TAZRP)])

m hve(t) — E hvi(?) — N, lim
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CLT regime

Under some conditions, flat initial state,

Theorem (CLT [p. A. Ferrari-L. R. Fontes '94 (ASEP)]; [B. ‘03 (TAZRP)])

m th(t) _Eth(t) _>N’ lim

n—o0 /2 t—o0

Var(hv(1))
t

=c-|C—-V]

Initial fluctuations are transported along on this scale.
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Under some conditions, flat initial state,
On theline V = C,
Theorem (KPZ scaling [B., J. komjathy, T. Sepplainen '08-'12 (ASEP,
TAZRP)))

Var(he(1)) Var(he(1))

. <
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Abnormal fluctuations
Under some conditions, flat initial state,
On theline V = C,

Theorem (KPZ scaling [B., J. komjathy, T. Sepplainen '08-'12 (ASEP,
TAZRP)))
Var(hei(1)) . Var(hey(1))

2/ <limsup —+—= < 0.

0< I|trg<|>r<1>f m su 23

There is a huge literature now on limit distribution results

lim hei(1) =...not N

t—o0 [’1/3



Abnormal fluctuations

Under some conditions, flat initial state,
On theline V = C,

Theorem (KPZ scaling [B., J. komjathy, T. Sepplainen '08-'12 (ASEP,
TAZRP)))

. Var(hg(t)) _ . Var(hgi(1))
0< I|trg£fT < h?ling Q.

There is a huge literature now on limit distribution results
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2nd cl

The second class particle

States w and w only differ at one site.

rate>rate
with rate-rate:

;

—

. . f i L
A single discrepancyt, the second class particle, is conserved.
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The second class particle

However,
» Place it in a shock, in some cases Q(t) becomes a simple
random walk (With CLT)' [B., L. Duffy, Gy. Farkas, P. Kovéacs, A. Rakos,
D. Pantelli '16-'19]
» Place it in a rarefaction fan, and it won’t even know which
way it goes. [P. A. Ferrari, C. Kipnis '95], [B., A. L. Nagy '17]

Q(t)

lim —— — something random.
t—oo



Blocking ASEP (7 Liggett '76)

T2 3 ' ' L

p > q, but particles are blocked. The resulting density profile:

----------------- A A A A A
1 AAAAIAA




Blocking

Blocking AZRP
p > Q: convex

to the right with rate p - r(wj)

Particles jump to the left with rate q - r(wj).



Blocking

Blocking AZRP

P < g: concave

L

to the right with rate p - r(wj)

Particles jump to the left with rate q - r(wj).



Blocking

Hills . cawert, B., K. Michaelides 18]

Rescaling this surface with weak aymmetry (p ~ q) results in a
convection-diffusion type equation with boundary conditions.
And this explains a lot of things about hillslope evolution.

100
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h(i)

40

20

0 20 40 60 80 100



Convex hills

Wikipedia



Blocking

Concave hills

Stockphotos4free




A

The stationary slope

— quadratic
— linear
— constant

~— quadratic
— linear
— constant

— quadratic
~— linear
— constant

— quadratic

— linear

— constant

20




Blocking

Dynamics

h(i)

Height

Gradient

L+1 1

p(L)

w(i)



The OMG slides: blocking ASEP [p. adams, B., J. Jay 244]

Theorem (Euler’s identity)




The OMG slides: blocking ASEP [p. adams, B., J. Jay 244]

Theorem (g-binomial theorem)

m ii-n : [m
$ a2 1]~ zan
i=0 q

(a,q)n = ﬁ('l _a i) ni (9:9)n
1A = q9 m q T (3D)m (D n—m



The OMG slides: blocking ASEP [p. adams, B., J. Jay 244]

Theorem (Durfee rectangles identity)

o0 qi(n+) T
2 (@ Dnri- (@9 (G0

i=n—




The OMG slides: blocking ASEP and AZRP e, r. sowen 1g]

Theorem (Jacobi triple product)

S 472 = (4:G)ee - (—02: Qs (—%; Q)OO

i=—o0

Plus: generalisations to the fun model and more [B., D. Fretwell, J.
Jay '22]
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Last passage percolation

» Place i.i.d. random weights on Z2.

» The geodesic from 0 to y is the heaviest up-right path from
0 to y. Its weightis Gy, the time when square y becomes

occupied.
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Guess what? In some situations,

Var(Go,yt)
t2/3

Var(Go,yt)

0 < liminf < limsu
t—oo - t—)oop t2/3

[B., T. Seppaléinen *06]
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Last passage percolation

Guess what? In some situations,

Var(Go,yt)
t2/3

Var(Go,yt)

< limsup 273

0 < liminf
t—o0 t—o0

[B., T. Seppaléinen *06]

There is a huge literature now on limit distribution results

=...not N
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Last passage percolation

Guess what? In some situations,

Var(Go,yt)
t2/3

Var(Go,yt)

< limsup 1573

0 < liminf
t—o0 t—o0

[B., T. Seppaléinen *06]

There is a huge literature now on limit distribution results

=...not N
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Seppalainen '21]
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Last passage percolation

» Half-infinite geodesics exist, things stabilise (8., 0. Busani, T.
Seppalainen '21]

» But there are no doubly infinite geodesics [B., 0. Busani, T.
Seppalainen '20]
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LPP: Road network [B., R. Basu, S. Battacharjee, D. Harper, K. Das 23-24+]

Simulation by David Harper
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Exclusion, its friends and relatives are absolutely everywhere.
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Conclusion

Exclusion, its friends and relatives are absolutely everywhere.

And they are pretty interesting.

Thank you.
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