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Theorem
Let|x| <1 andy # 0 be complex numbers. Then
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Mostly appears in number theory and combinatorics of
partitions.
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to the right with rate p,
to the left withrate g =1 —p < p.

The jump is suppressed if the destination site is occupied by
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The asymmetric zero range process

We need r non-decreasing and assume, as before,
g=1—-p<p.

Examples:
» ‘Classical’ ZRP: r(w;) = 1{w; > 0}.
» Independent walkers: r(w;) = w;.



Product blocking measures

Can we have a reversible stationary distribution in product form:

plw) = ®Mi(wi);

H(Q) . rate(g N gimi—H) _ H(Qim/—H) . rate(gimi-ﬂ N g) ?
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Asymmetric zero range process

,U/(Q) . rate(g N gir\vi—H) — H(gimi—H) . rate(gimi—H N g) ?

AZRP:

pilwi)tipt (Wi 1) - PHwi > 0} = piwi — Vpip1(wiy +1) - q

Solution:  pj ~ Geometric<1 — <g)icon8t).



State sp. No boundaries Boundaries

State space: ASEP

Notice:
P =0} =1—0 = — -
{ni=0}= _Qi71+(§)"‘c as i — oo
1
P{ni=1} =0 = 5—7— asi— —
{ni=1}=o (@t 1 0

are both summable. Hence by Borel-Cantelli there is p-a.s. a
rightmost hole and a leftmost particle,

0 0
N:—;U —ni) = > i

i=—o00

is p-a.s. finite.
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but
V() = p(-[N() = n)
doesn’t depend on ¢ anymore. Stationary measure on Q.
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p() = _f: p(-[NC) =mp(N() = n) = _f: v ()u(N(:) = n)

Ergodic decomposition of ju.

Let’s find the coefficients u(N(-) = n)!
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State space: ASEP
So,

p(N=n-1)=

Solution:

discrete Gaussian.

No boundaries Boundaries
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State sp.

State space: ASEP

and, if N(n) = n,

oy N ()
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This is the unique stationary distribution on Q".
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Recall: Stationary distribution with marginals
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~» The product measure stays stationary on the half-line.
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since stationary distributions of countable irreducible Markov
chains are unique.
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Jacobi triple product

LHS:
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More

Further models
Product blocking measures are very general.

>

v

K-exclusion (!)

All zero range processes (“ ”, independent walkers,
g-zero range)

» Misanthrope / bricklayers processes

v

Other models can be stood up:

>
» g-exclusion
» Katz-Lebowitz-Spohn model

Thank you.
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