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Last passage percolation

◮ Place ωz i.i.d. Exp(1) for z ∈ Z
2.

◮ The geodesic πx,y from x to y is the a.s. unique heaviest

up-right from x to y .

◮ Gx,y =
∑

z∈πx,y
ωz is its weight.
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Surface growth, TASEP, queuing. . .
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Seppäläinen ’17 (LPP). The problem is, uniqueness of

geodesics is still needed.



LPP The result Tools Proof

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

◮ Question raised in first passage percolation (FPP) to

Kesten by Furstenberg in ’86.

◮ Licea, Newman ’96: almost no direction with bi-infinite

geodesics in FPP.

◮ Almost → in any fixed direction: Ahlberg, Hoffman ’16;

Damron, Hanson ’17 (FPP); Georgiou, Rassoul-Agha,
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The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

◮ Question raised in first passage percolation (FPP) to

Kesten by Furstenberg in ’86.

◮ Licea, Newman ’96: almost no direction with bi-infinite

geodesics in FPP.

◮ Almost → in any fixed direction: Ahlberg, Hoffman ’16;

Damron, Hanson ’17 (FPP); Georgiou, Rassoul-Agha,

Seppäläinen ’17 (LPP). The problem is, uniqueness of

geodesics is still needed.

◮ Full result by Basu, Hoffman, Sly ’18, using estimates from

integrable probability.

◮ We only need a bit of random walks, queuing, couplings.
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1. Increments as new boundary

a

y

Ix = Ga,x − Ga,x−e1
Jx = Ga,x − Ga,x−e2

 Act as boundary weights for a smaller, embedded model.
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2. Crossing lemma

Let a be North-West of b.

a

b

u

x

x − e2

Ga,x ≥ Ga,u + Gu,x , Gb,x−e2
≥ Gb,u + Gu,x−e2

,

Ga,x−e2
= Ga,u + Gu,x−e2

, Gb,x = Gb,u + Gu,x .

J
(a)
x = Ga,x − Ga,x−e2

≥ Gu,x − Gu,x−e2
≥ Gb,x − Gb,x−e2

= J
(b)
x .

Similarly, I
(a)
x ≤ I

(b)
x .
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a

y

Ix = Ga,x − Ga,x−e1
Jx = Ga,x − Ga,x−e2
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The embedded model has the same structure.
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3. Stationary LPP
Replace the boundary to ∼ Exp(̺), ∼ Exp(1 − ̺)
independent.

a

y

∼ ((1 − ̺)2
, ̺

2)
Z ̺

a,y

B., Cator, Seppäläinen ’06: P{|Z ̺
a,y | ≥ ℓ} ≤ box2/ℓ3, good

directional control.
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Proof
Take larger and larger boxes and show that geodesics avoid

more and more the origin when crossing from one side to the

other (Newman ’95).

1. Close to vertical and horizontal all semi-infinite geodesics

become trivial.

2. Otherwise, geodesics don’t like to turn too much.

3. We are left with roughly diagonal ones, show that they

fluctuate too much.
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1. When it’s too flat

0

x

∼ ((1 − ̺)2
, ̺

2)

Take ̺ small, but not too small compared to x , so that with large

probability the green stationary path exits on the left of x (use

the shape function here).

G0,x − Ge2,x = Ĵe2
≥ Ĵ

̺
e1

∼ Exp(̺),

and can take ̺ → 0 as the box flattens with x → ∞. So, it’s

never worth leaving from e2 compared from 0.
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2. No sharp turns please

box2/3

box19/24

∼ ((1 − ̺)2
, ̺

2)

Z ̺ too large!
P{·} ∼ box−3/8
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Ĵ
ˆ̺
x ≤ Ĵ
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3. The diagonal case: the attack of the geodesics

With high probability, ∀u, x , v :

◮ The red geodesic crosses where
∑x

j=0(J
(u)
j − Ĵ

(v)
j ) is

maximal.

◮ The bounds J
̺
j − Ĵ λ̂

j ≤ J
(u)
j − Ĵ

(v)
j ≤ Jλ

j − Ĵ
ˆ̺
j are

independent and nicely distributed.

The problem boils down to whether a simple random walk

minus drift reaches its maximum at 0. The answer is an

asymptotic no, the drift is beaten by the fluctuations.

P{·} ∼ box−2/5.
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So, the counting

◮ Intervals on the left are of size ∼ box2/3.

◮ Have box/box2/3 ∼ box1/3 many of these.

 Union bound:

P{any geodesic crosses 0} ∼ box1/3 ·
(

box−3/8 + box−2/5
)

= box−1/24 → 0.
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So, the counting

◮ Intervals on the left are of size ∼ box2/3.

◮ Have box/box2/3 ∼ box1/3 many of these.

 Union bound:

P{any geodesic crosses 0} ∼ box1/3 ·
(

box−3/8 + box−2/5
)

= box−1/24 → 0.

These sharper, probabilistic estimates open up the way to

further understanding of geodesics, with rather intuitive

arguments.

Thank you.
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