

Markov chains from a distance: shocking particles

Márton Balázs

School of Mathematics

Matrix, University of Bristol, 2 December, 2020

Totally Asymmetric Simple Exclusion Process

Stationary distribution

The infinite model

Hydrodynamics

Characteristics

End of the traffic jam

Start of the traffic jam

Remarks

$\mathbf{A} \oplus \ominus 0$ model

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

~~> What is the probability that an ⌚ rings within a small time t ?

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

↝ What is the probability that an ⌚ rings within a small time t ?

$$\mathbf{P}\{\tau \leq t\} = 1 - \mathbf{P}\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1-t) + \text{error} = t + \text{error}.$$

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

~~> What is the probability that an ⌚ rings within a small time t ?

$$\mathbf{P}\{\tau \leq t\} = 1 - \mathbf{P}\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1-t) + \text{error} = t + \text{error}.$$

~~> What is the probability that *two* independent ⌚ both ring within a small time t ?

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

↝ What is the probability that an ⌚ rings within a small time t ?

$$\mathbf{P}\{\tau \leq t\} = 1 - \mathbf{P}\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1-t) + \text{error} = t + \text{error}.$$

↝ What is the probability that *two* independent ⌚ both ring within a small time t ?

$$\mathbf{P}\{\tau \leq t\} \cdot \mathbf{P}\{\tau \leq t\} \simeq t^2 + \text{error} = \text{error}.$$

Being ageless

⌚ ← This will be an *Exponential* alarm clock that rings at time τ .
We like its *memoryless property*.

↝ What is the probability that an ⌚ rings within a small time t ?

$$\mathbf{P}\{\tau \leq t\} = 1 - \mathbf{P}\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1-t) + \text{error} = t + \text{error}.$$

↝ What is the probability that *two* independent ⌚ both ring within a small time t ?

$$\mathbf{P}\{\tau \leq t\} \cdot \mathbf{P}\{\tau \leq t\} \simeq t^2 + \text{error} = \text{error}.$$

→ More ⌚'s, even smaller probability.

Being ageless

~ What is the probability that *none* of k independent 's ring within a small time t ?

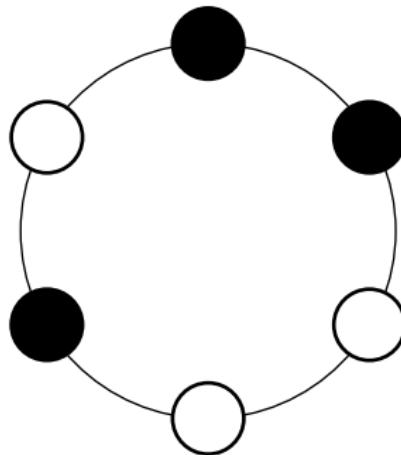
Being ageless

~ What is the probability that *none* of k independent 's ring within a small time t ?

$$\begin{aligned}\mathbf{P}\{\text{none of them ring}\} &= \mathbf{P}\{\tau > t\}^k \\ &= e^{-kt} \\ &\simeq (1 - kt) + \text{error.}\end{aligned}$$

The Totally Asymmetric Simple Exclusion Process

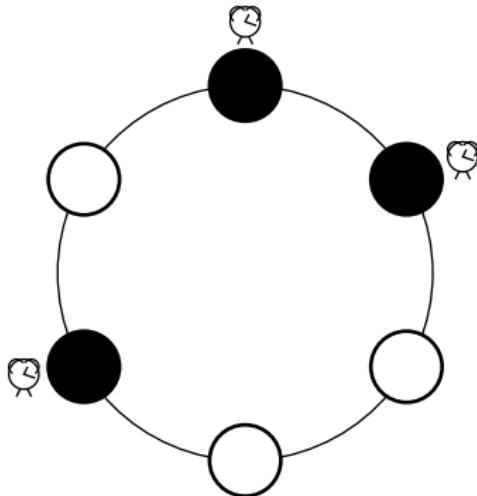
TASEP



m balls in N possible slots.

The Totally Asymmetric Simple Exclusion Process

TASEP

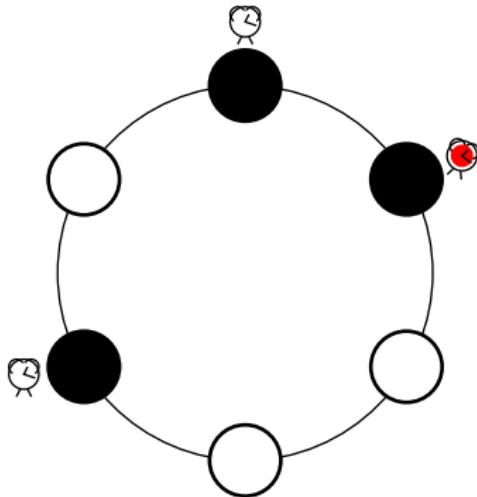


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

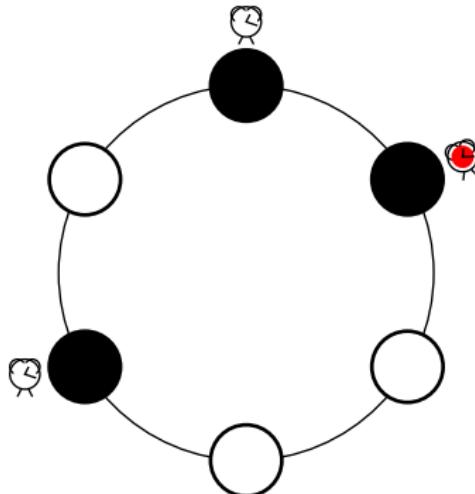


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

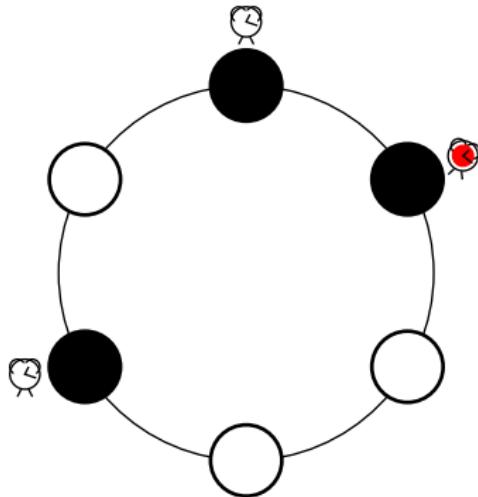


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

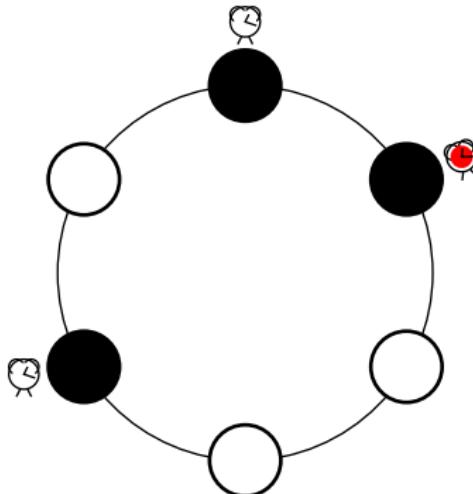


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

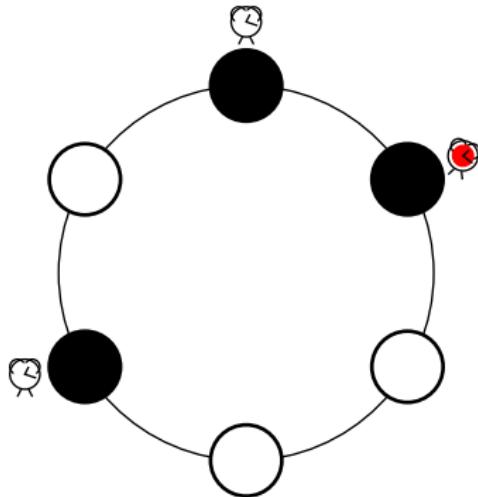


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

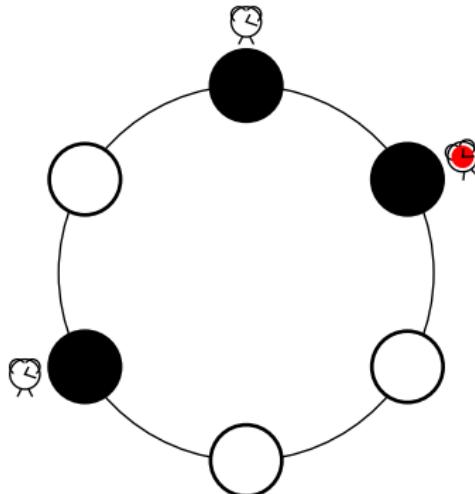


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

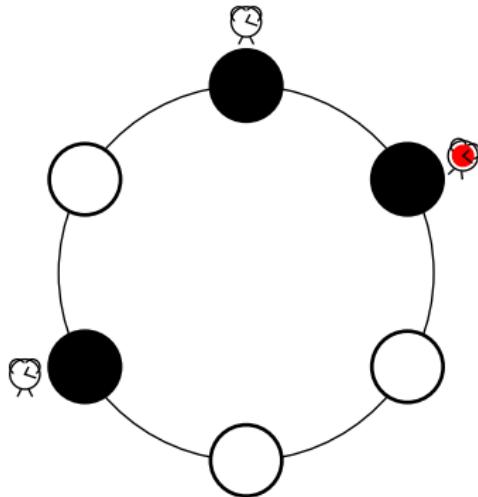


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

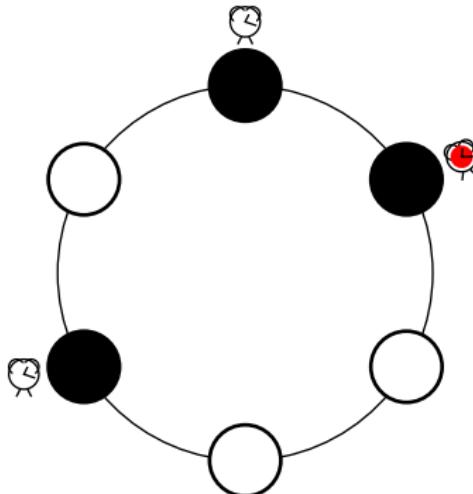


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

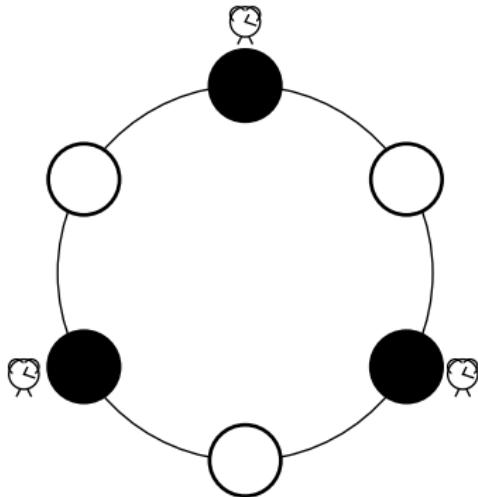


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

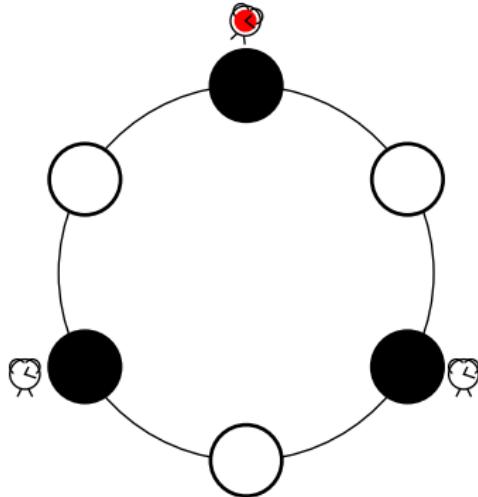


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

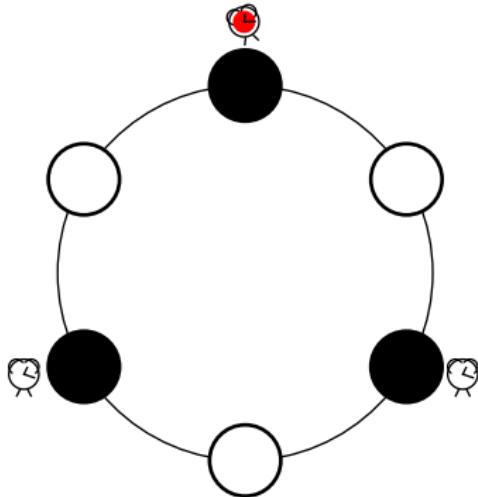


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

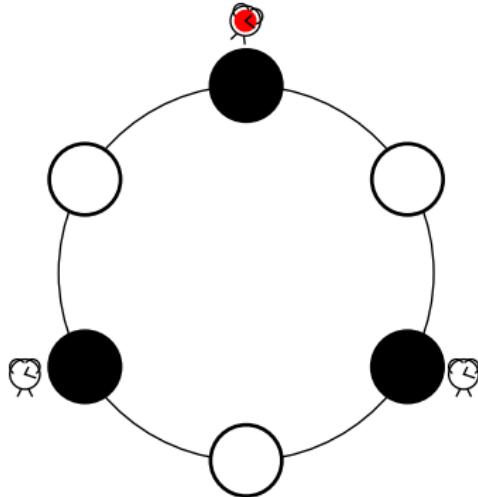


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

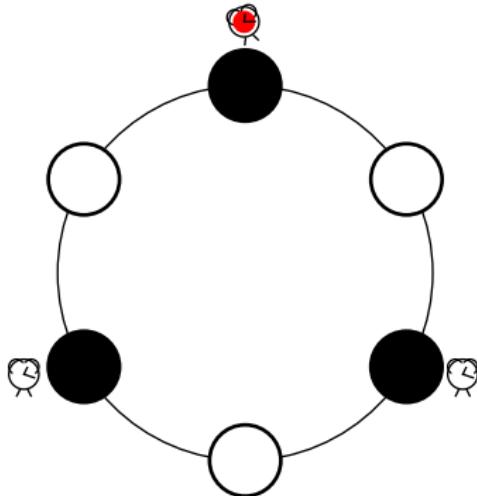


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

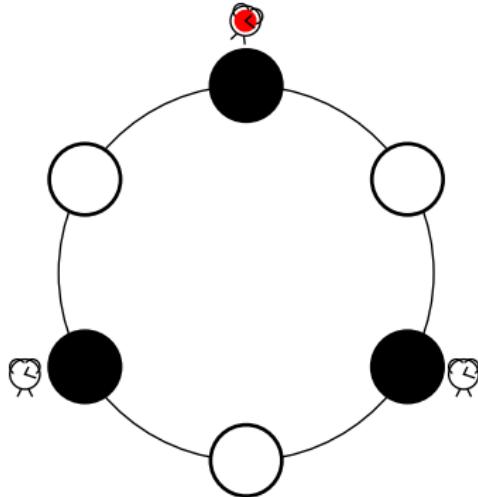


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

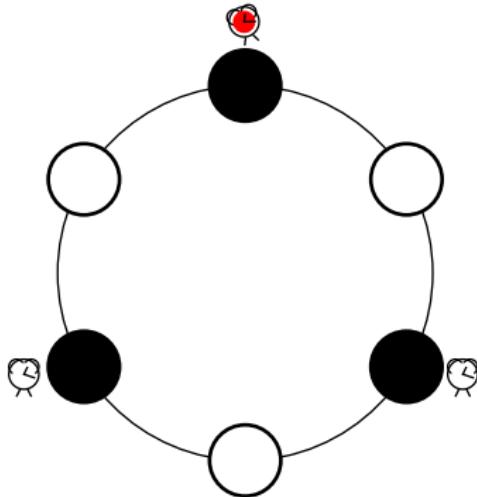


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

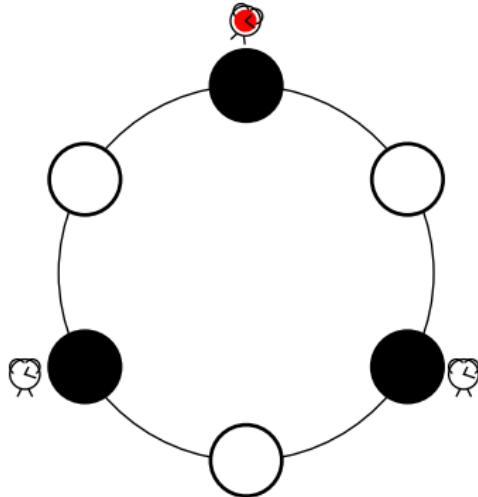


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

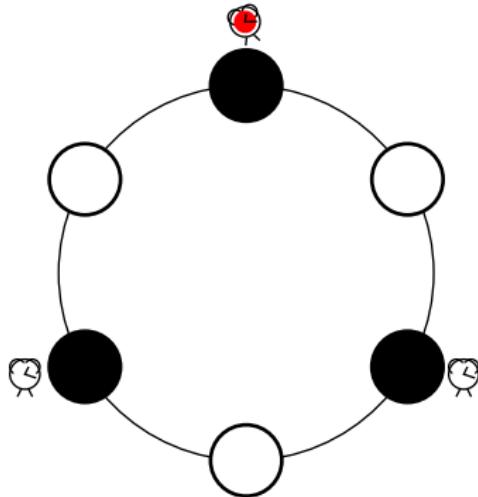


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

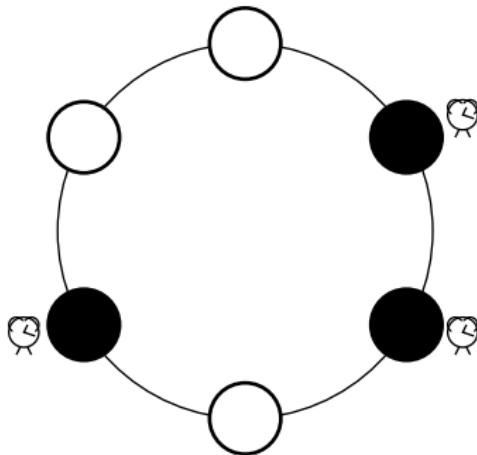


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

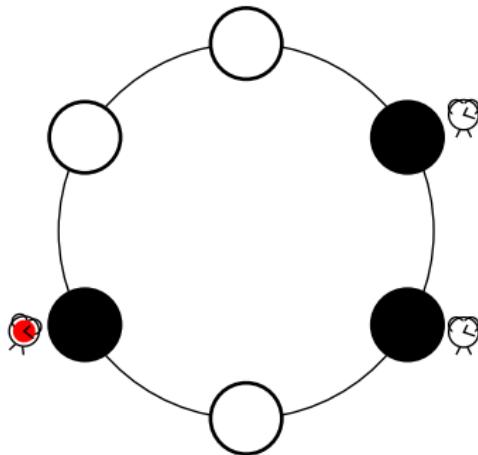


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

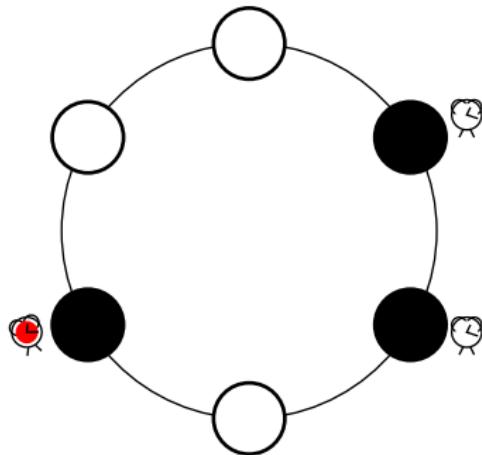


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

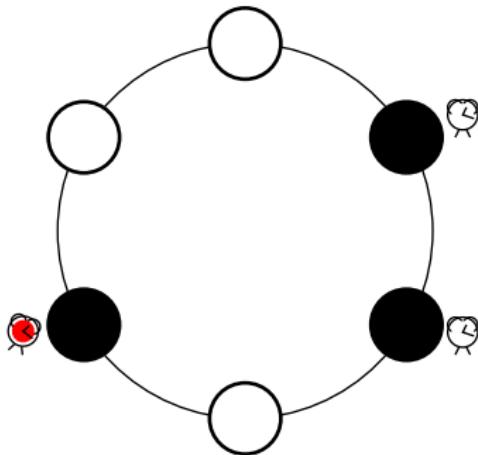


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

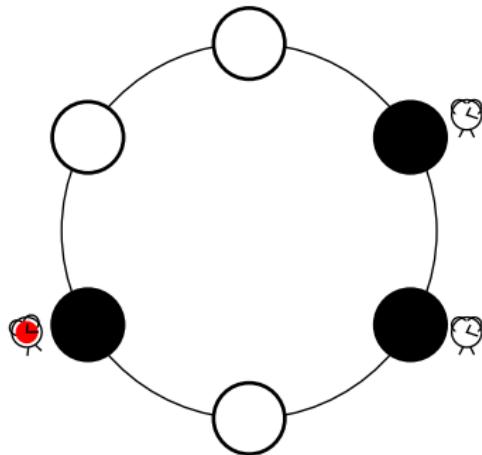


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

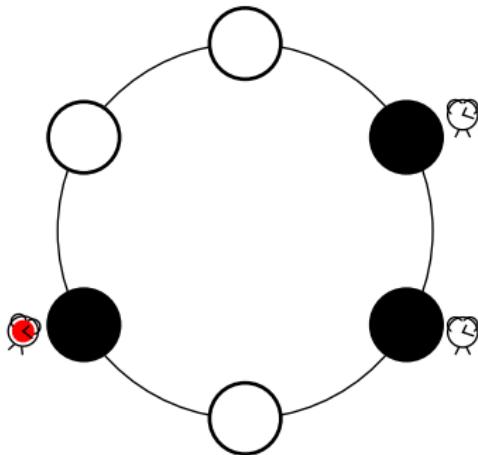


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

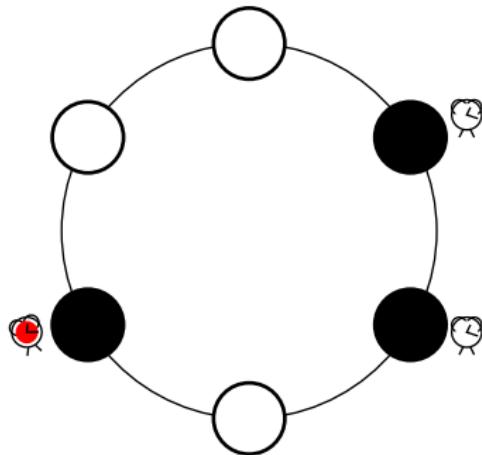


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

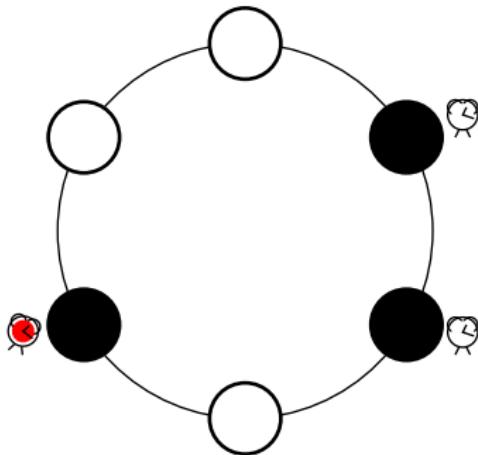


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

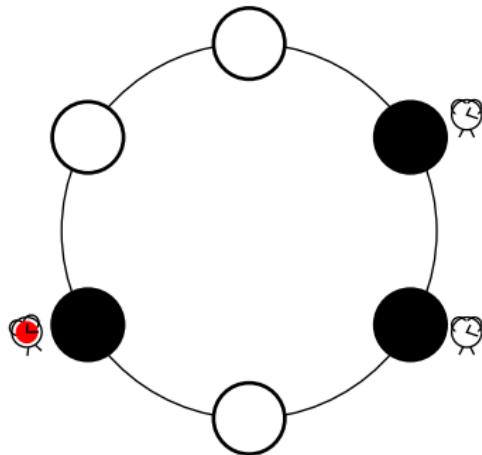


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

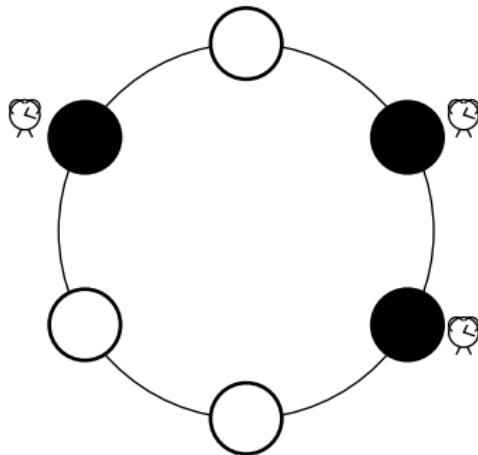


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

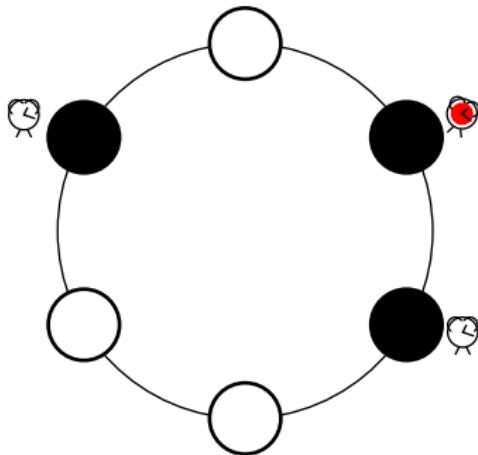


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

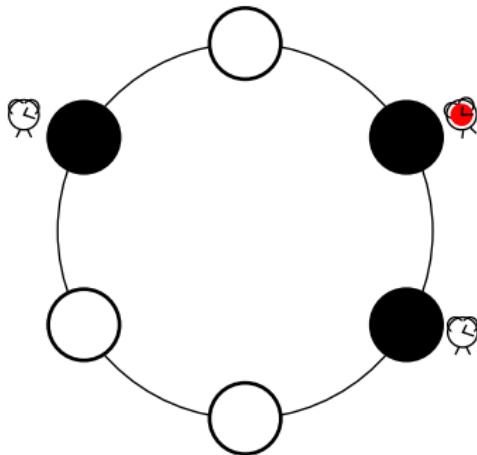


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

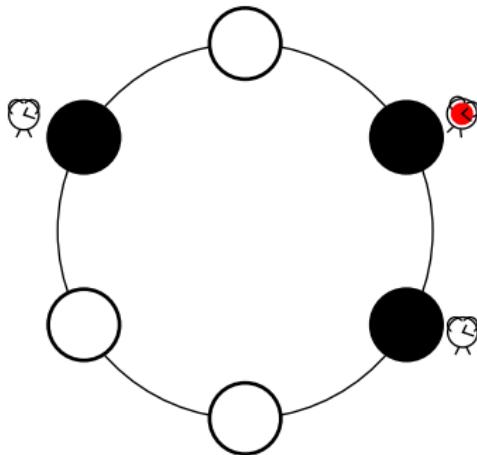


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

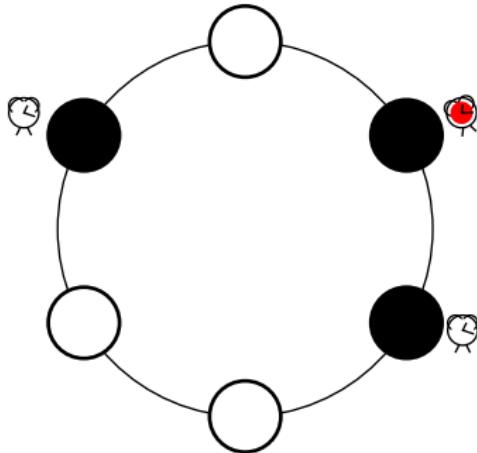


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

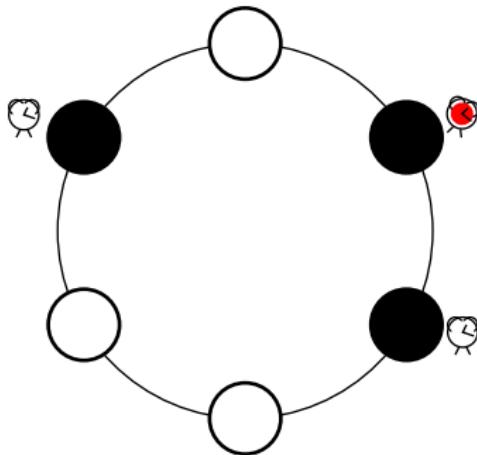


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

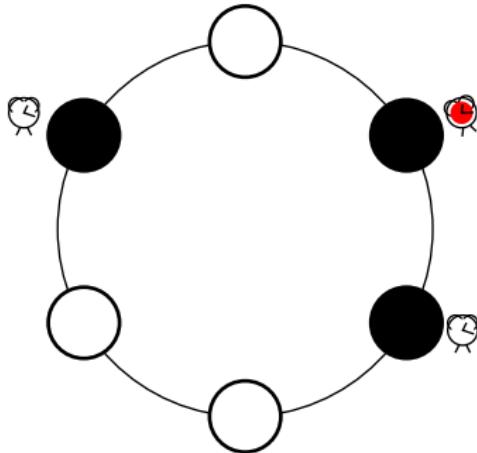


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

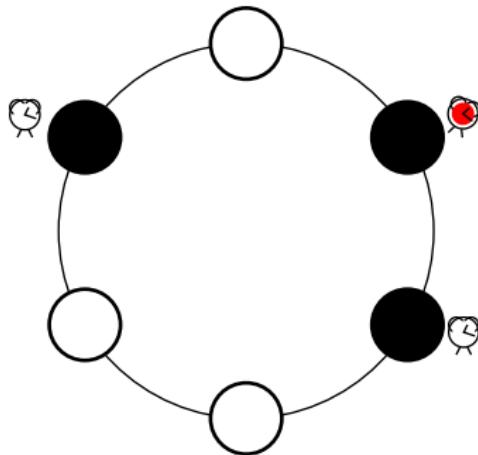


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

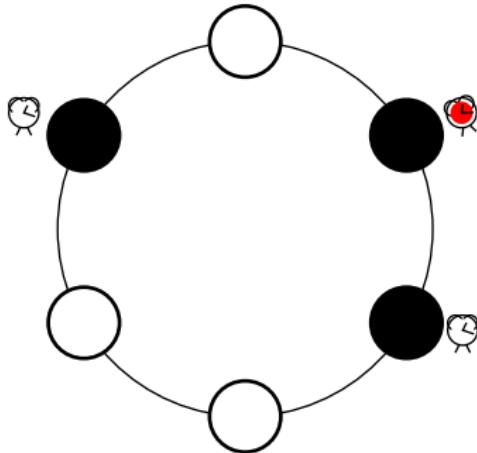


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

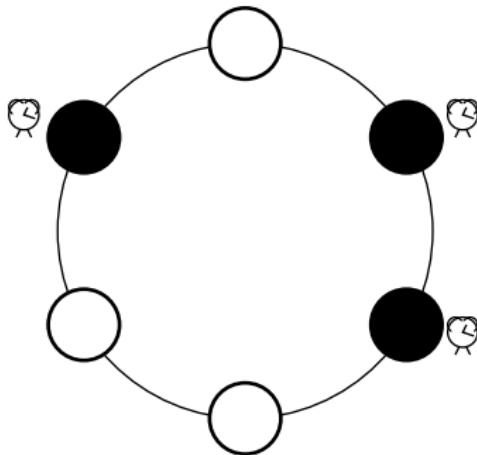


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

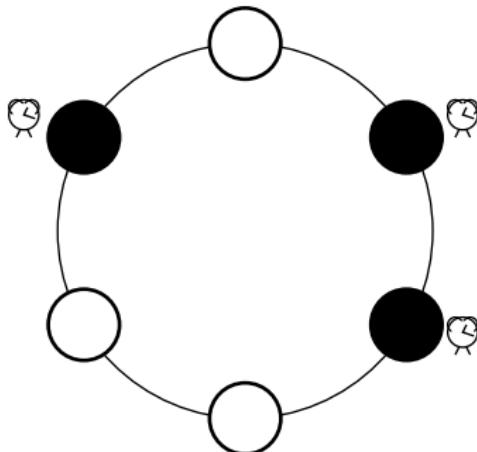


m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right. **But sometimes it's blocked.**

The Totally Asymmetric Simple Exclusion Process

TASEP



m balls in N possible slots.

Each listening to its own . When that rings, the ball tries to jump to the right. **But sometimes it's blocked.**

Memoryless, independent 's \Rightarrow if we know the present, no need to know the past. *Markov property*, makes things handy.

Stationary distribution

Random process \rightsquigarrow need to talk about *distributions*.

Stationary distribution

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution **the one that's unchanged in time**?

Stationary distribution

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution **the one that's unchanged in time**?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m-ball*) configuration, is stationary.

Stationary distribution

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution **the one that's unchanged in time**?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m-ball*) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability $1/\binom{N}{m}$.

Stationary distribution

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution **the one that's unchanged in time**?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m-ball*) configuration, is stationary.

1st remark.

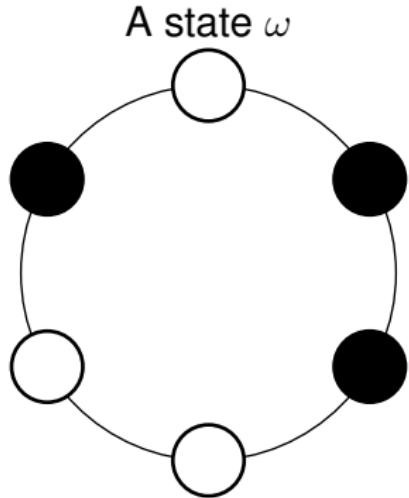
In this case every configuration occurs with probability $1/\binom{N}{m}$.

2nd remark.

With fixed N , m , there is no other stationary distribution.

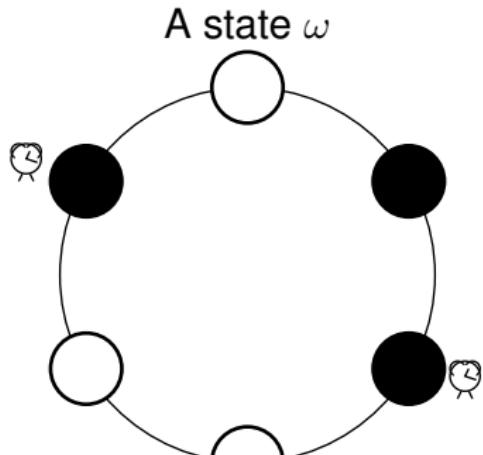
Stationary distribution

Almost proof



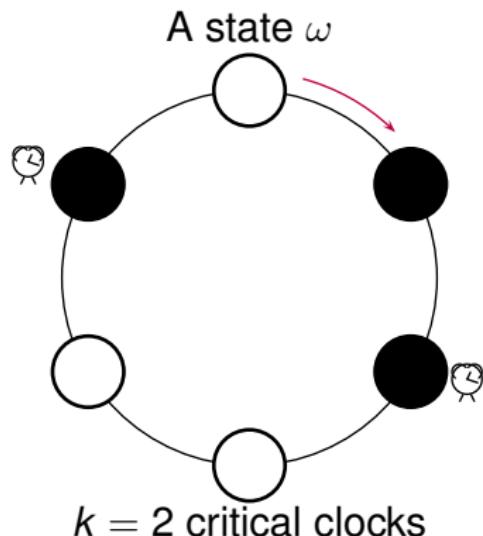
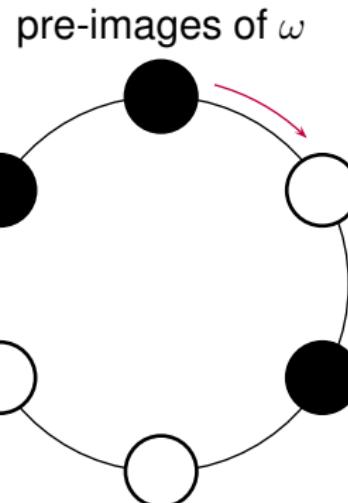
Stationary distribution

Almost proof



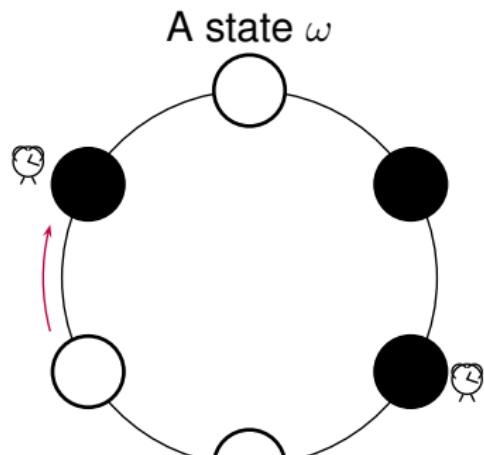
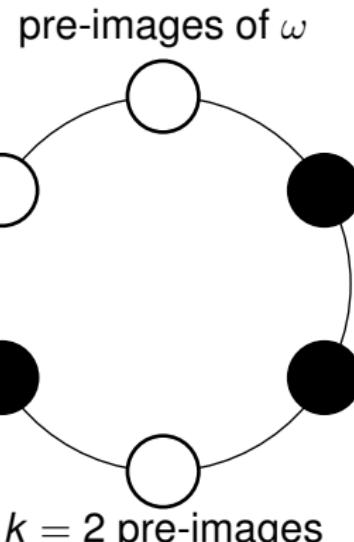
Stationary distribution

Almost proof



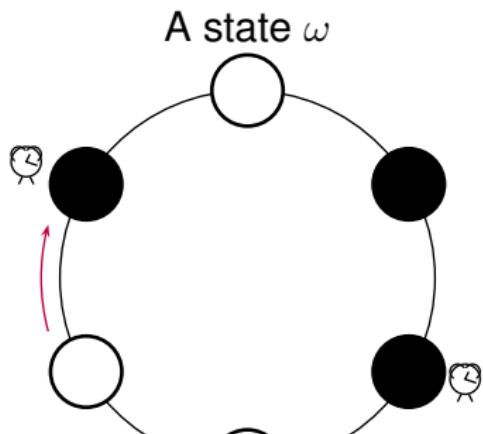
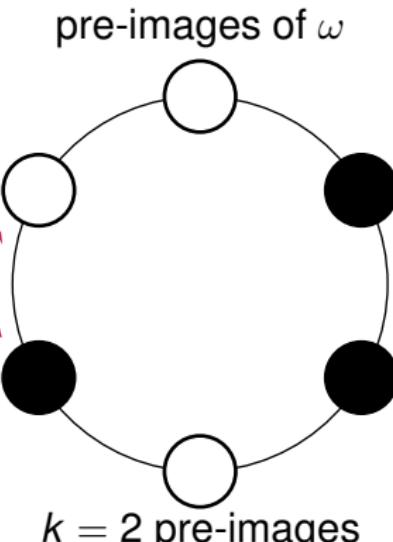
Stationary distribution

Almost proof



Stationary distribution

Almost proof



The number of critical clocks for ω = the number of pre-images of ω = k

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s . What is the probability of the state ω after a small time t ?

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s . What is the probability of the state ω after a small time t ?

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s . What is the probability of the state ω after a small time t ?

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$$

$$+ \mathbf{P}\{\text{was a pre-image of } \omega \text{ at time } s, \text{ and jumps to } \omega\}$$

$$+ \text{error (at least two jumps occur within the small time } t)$$

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s . What is the probability of the state ω after a small time t ?

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$$

$$+ \mathbf{P}\{\text{was a pre-image of } \omega \text{ at time } s, \text{ and jumps to } \omega\}$$

$$+ \text{error (at least two jumps occur within the small time } t)$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \textcircled{Q} \text{ 's ring}\}$$

$$+ \sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \textcircled{Q} \text{ rings}\}$$
$$+ \text{error}$$

Stationary distribution

Almost proof

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \text{⌚}'\text{s ring}\}$$

$$+ \sum_{\substack{\eta \text{ is a pre-image of } \omega}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \text{⌚}'\text{s rings}\}$$

+ error

Stationary distribution

Almost proof

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \text{⌚}'\text{s ring}\}$$

$$+ \sum_{\substack{\eta \text{ is a pre-image of } \omega}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \text{⌚}'\text{s rings}\}$$

+ error

$$= p \cdot (1 - kt) + \sum_{\substack{\eta \text{ is a pre-image of } \omega}} p \cdot t + \text{error}$$

Stationary distribution

Almost proof

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \text{⌚}'\text{s ring}\}$$

$$+ \sum_{\substack{\eta \text{ is a pre-image of } \omega}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \text{⌚}'\text{s rings}\}$$

+ error

$$= p \cdot (1 - kt) + \sum_{\substack{\eta \text{ is a pre-image of } \omega}} p \cdot t + \text{error}$$

$$= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error}$$

Stationary distribution

Almost proof

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \text{⌚}'\text{s ring}\}$$

$$+ \sum_{\substack{\eta \text{ is a pre-image of } \omega}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \text{⌚}'\text{s rings}\}$$

+ error

$$= p \cdot (1 - kt) + \sum_{\substack{\eta \text{ is a pre-image of } \omega}} p \cdot t + \text{error}$$

$$= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error} = p + \text{error}.$$

Stationary distribution

Almost proof

$$\mathbf{P}\{\omega \text{ at time } s+t\}$$

$$= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \text{⌚}'\text{s ring}\}$$

$$+ \sum_{\substack{\eta \text{ is a pre-image of } \omega}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \text{⌚}'\text{s rings}\}$$

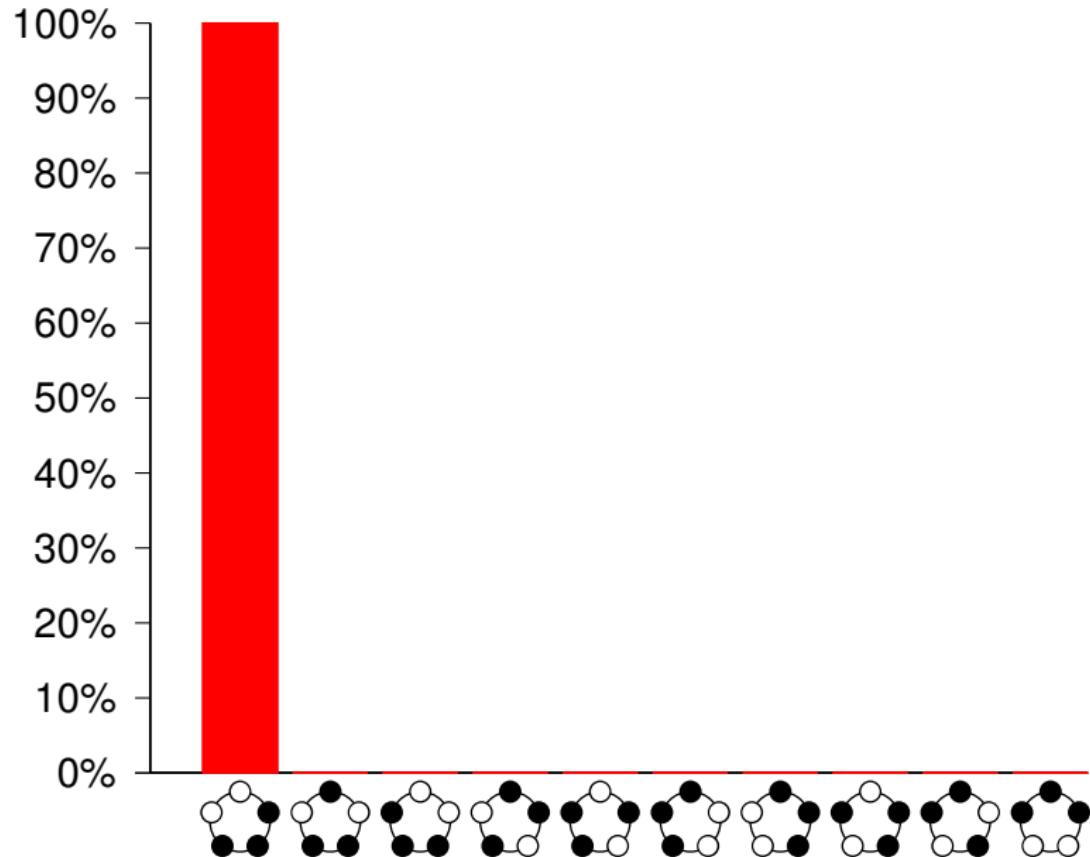
+ error

$$= p \cdot (1 - kt) + \sum_{\substack{\eta \text{ is a pre-image of } \omega}} p \cdot t + \text{error}$$

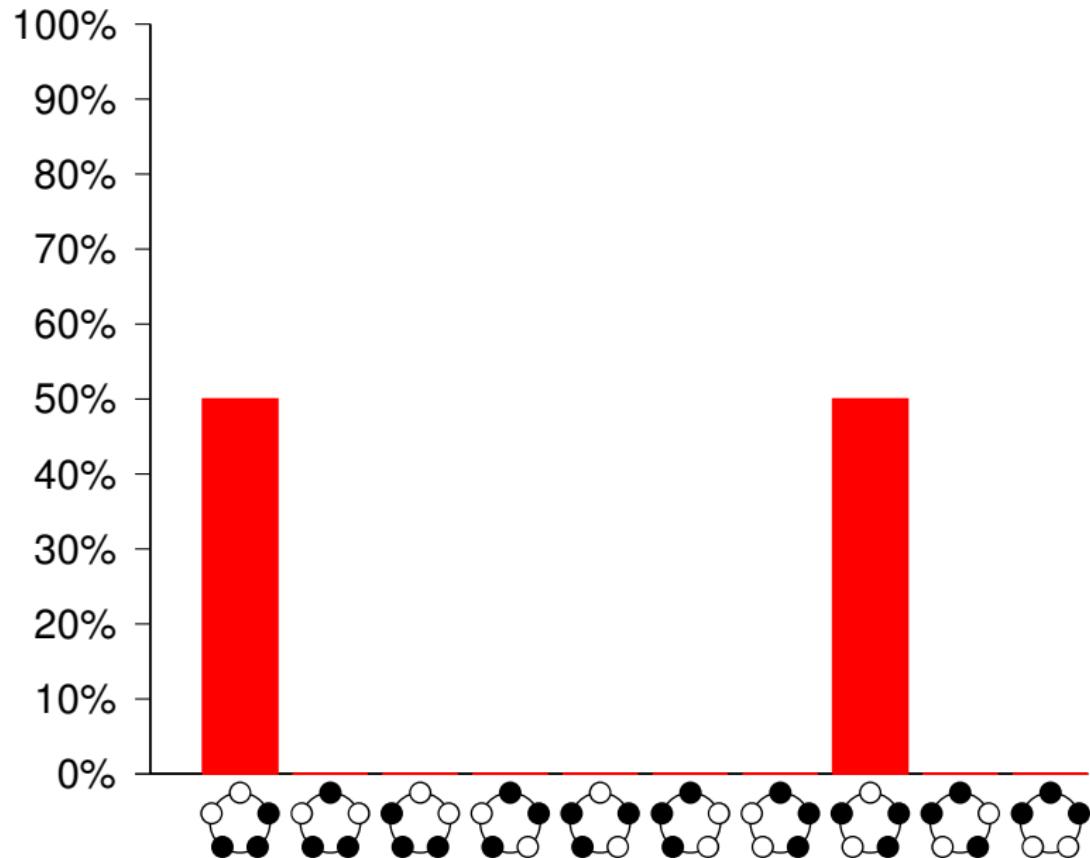
$$= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error} = p + \text{error}.$$

In fact $\text{error} \simeq t^2$, stays small if summed up for more and more smaller and smaller intervals of length t . □

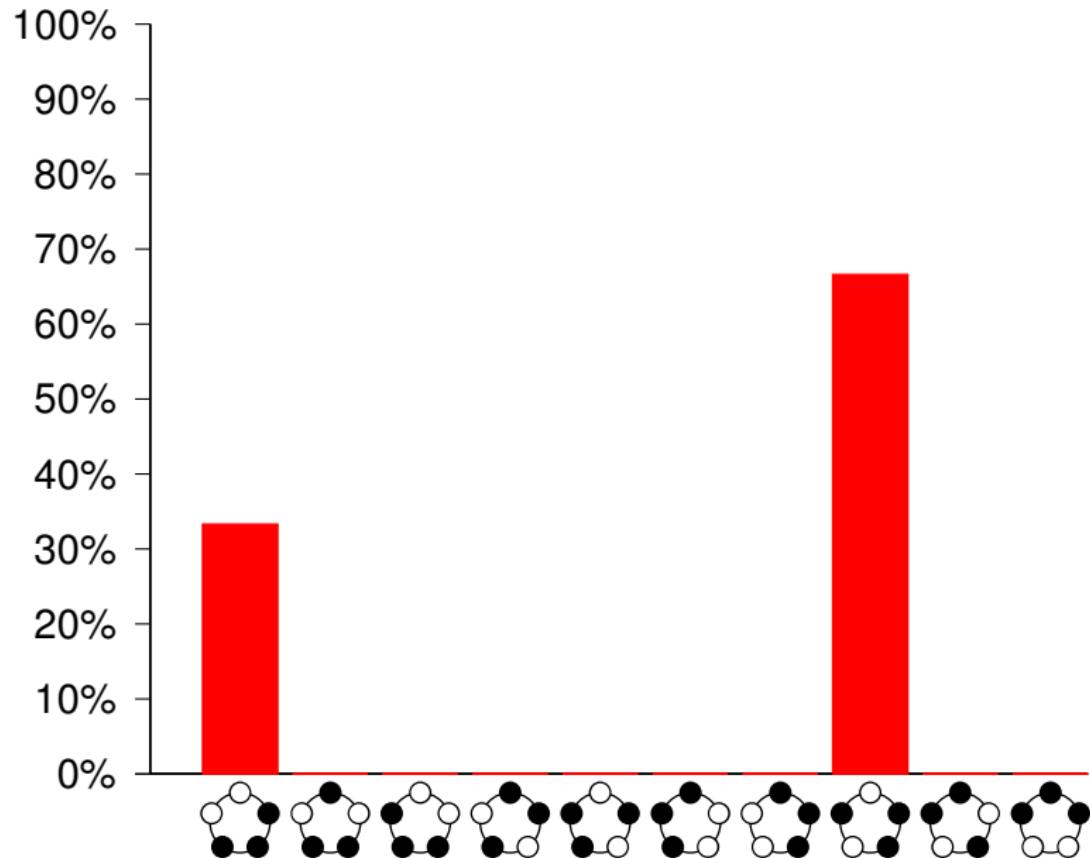
Stationary distribution



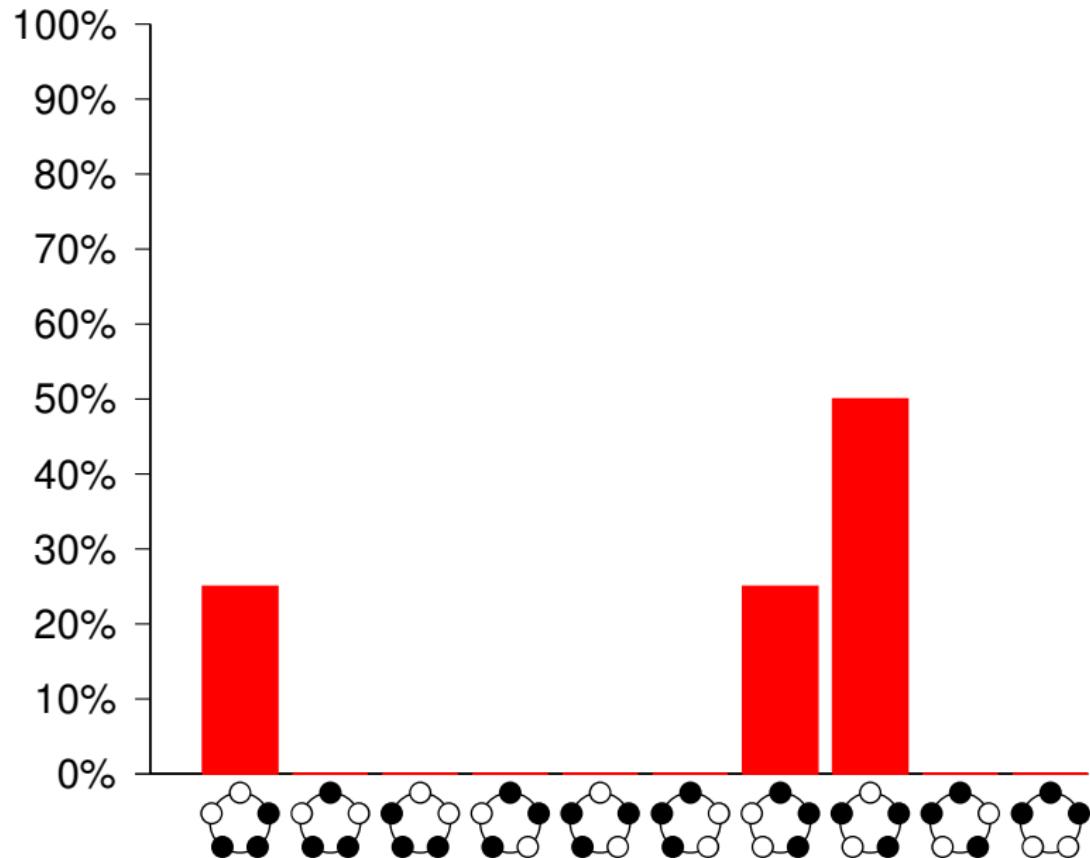
Stationary distribution



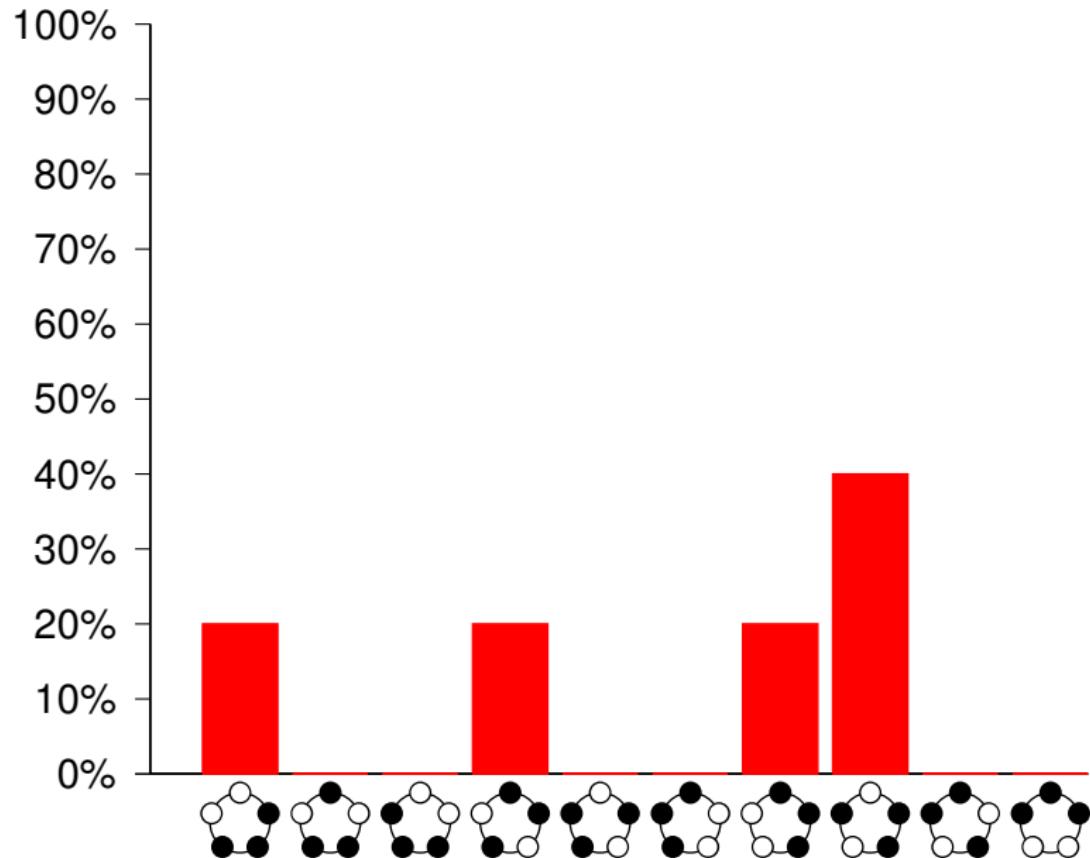
Stationary distribution



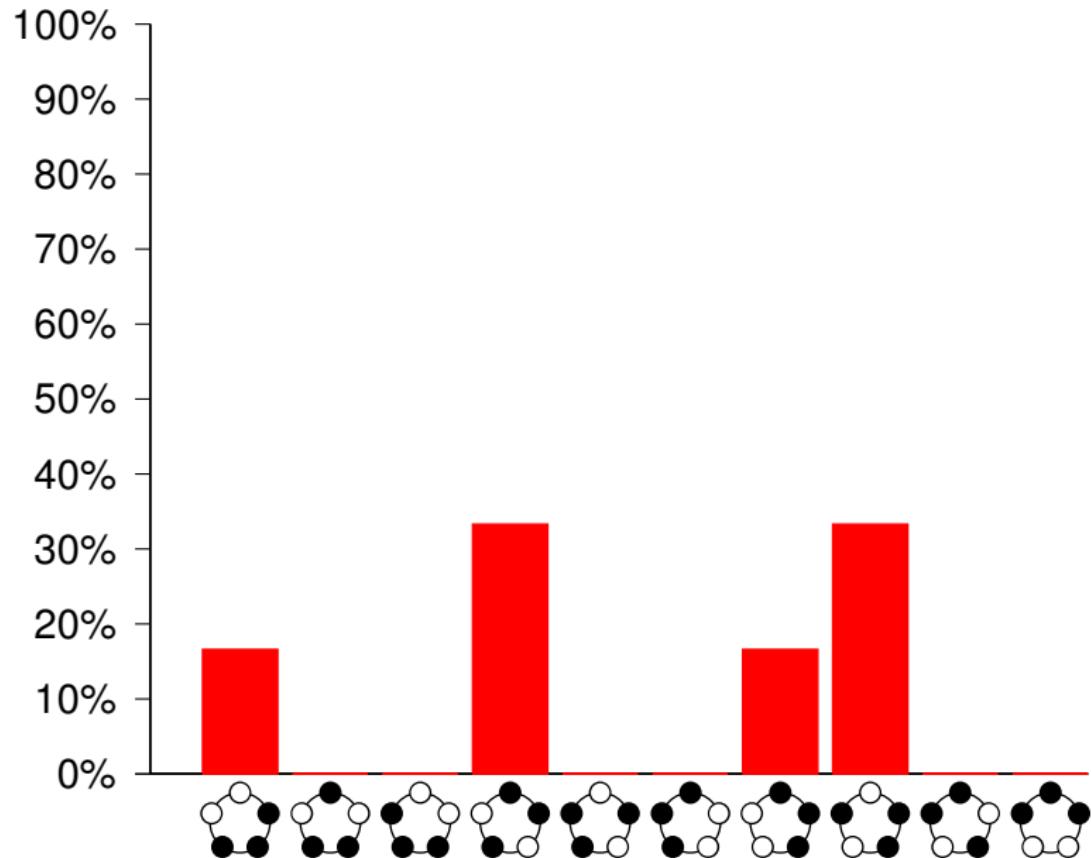
Stationary distribution



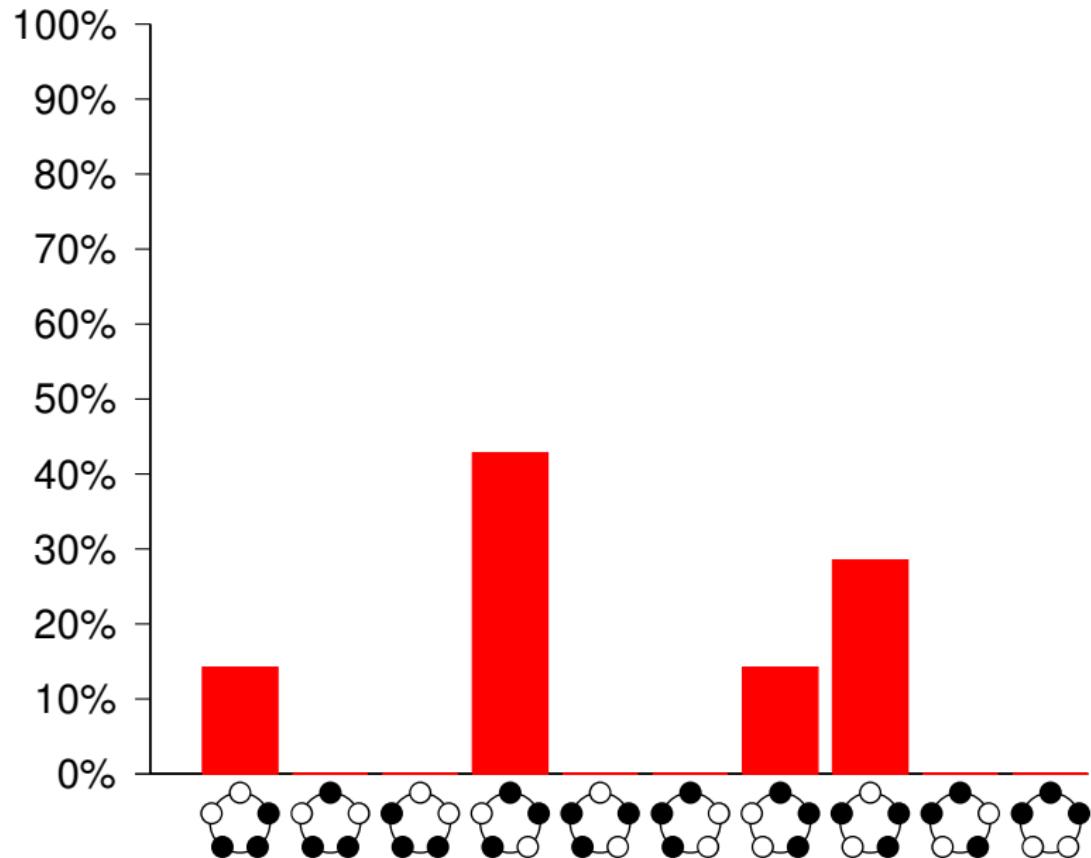
Stationary distribution



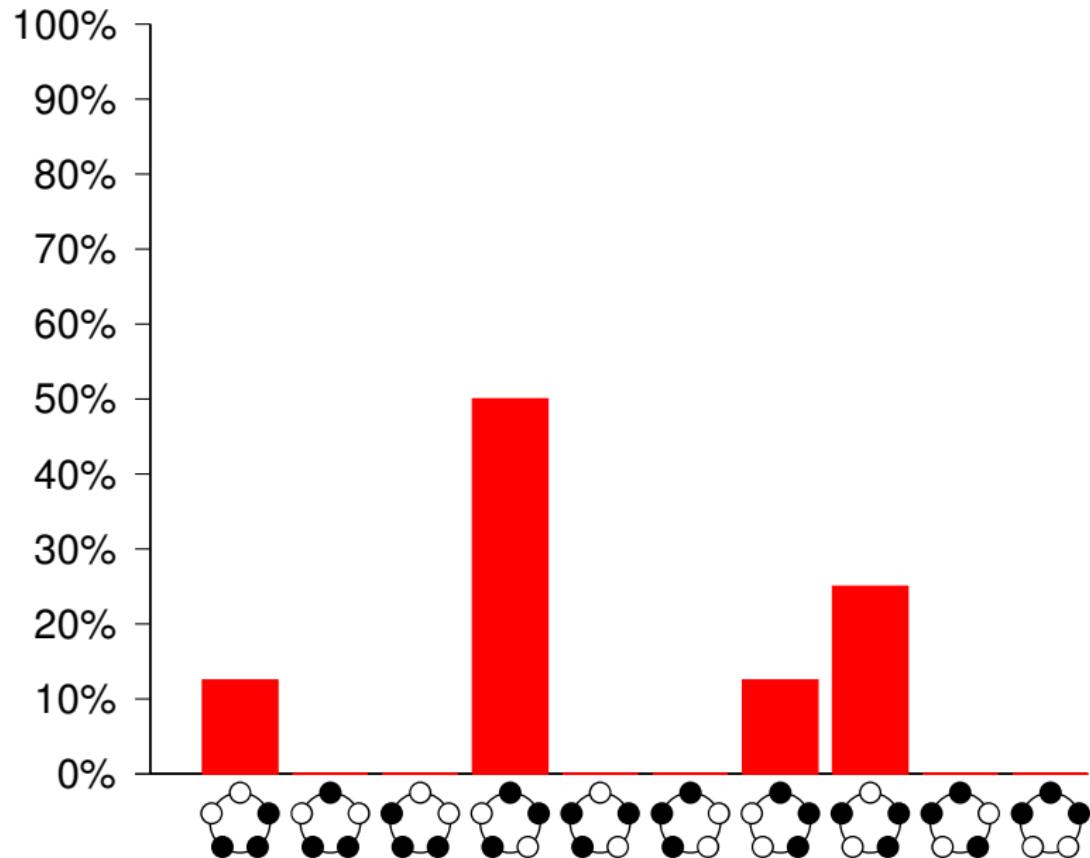
Stationary distribution



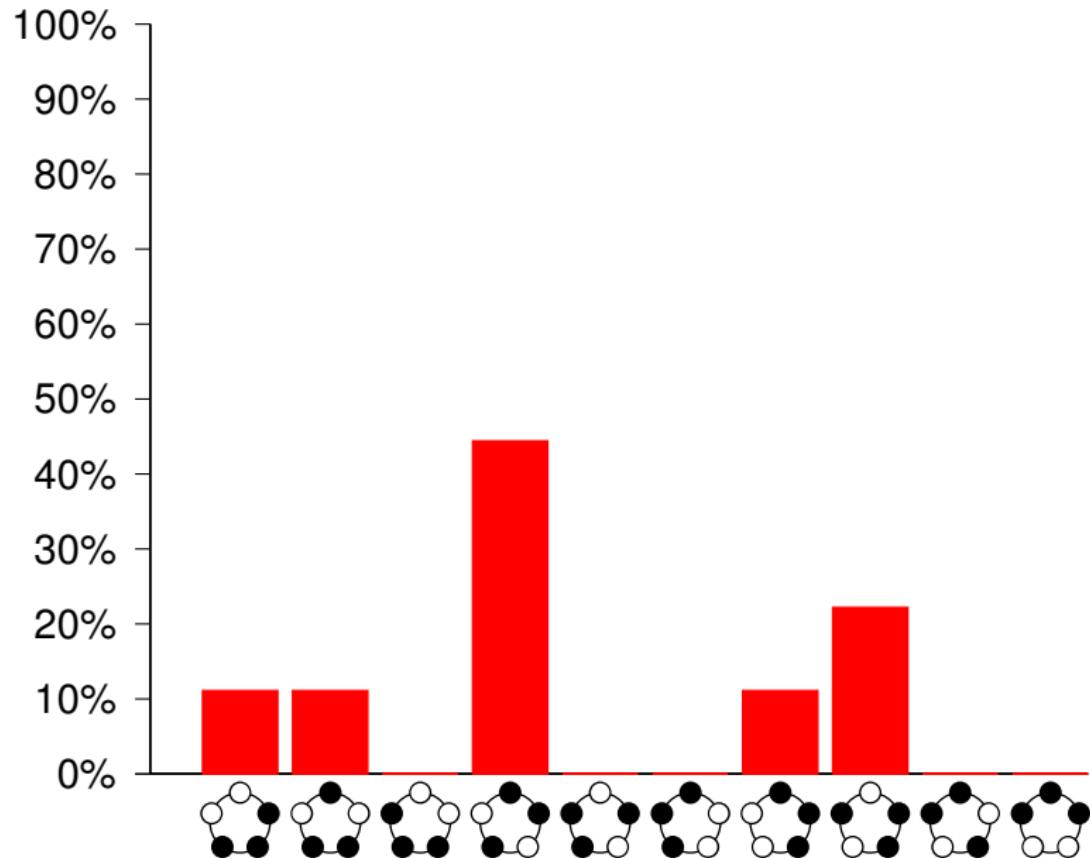
Stationary distribution



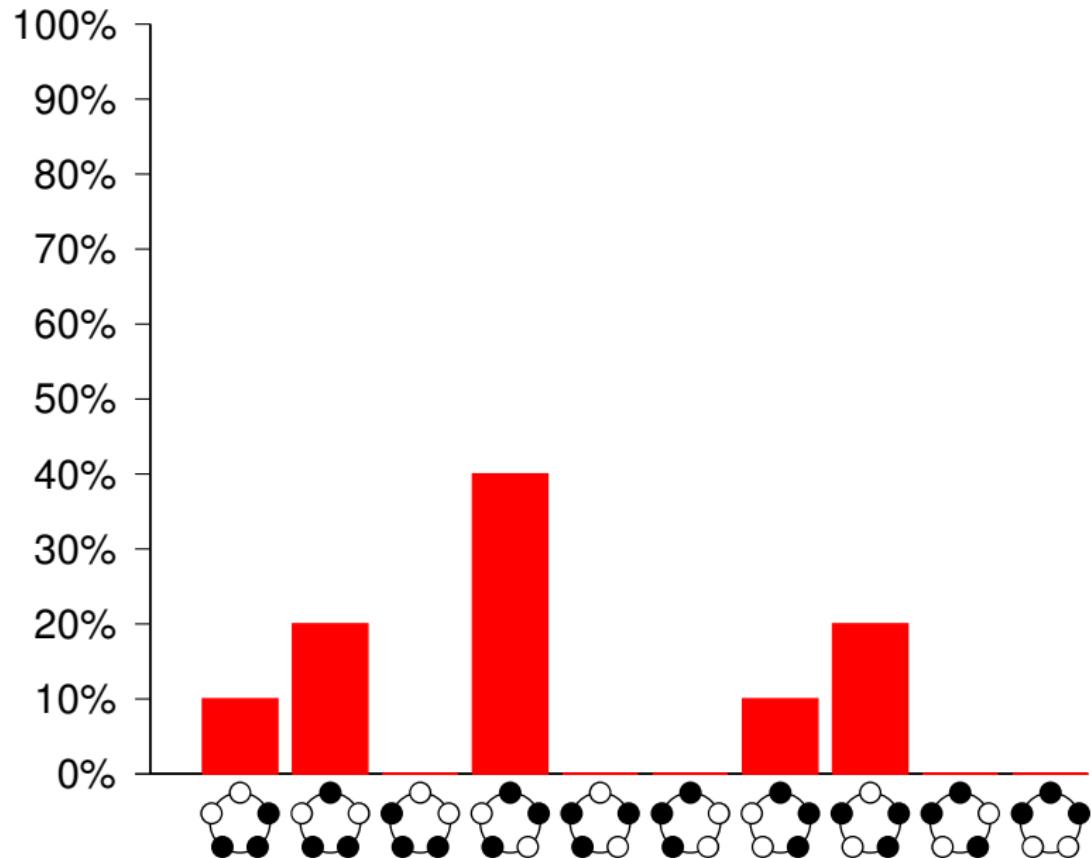
Stationary distribution



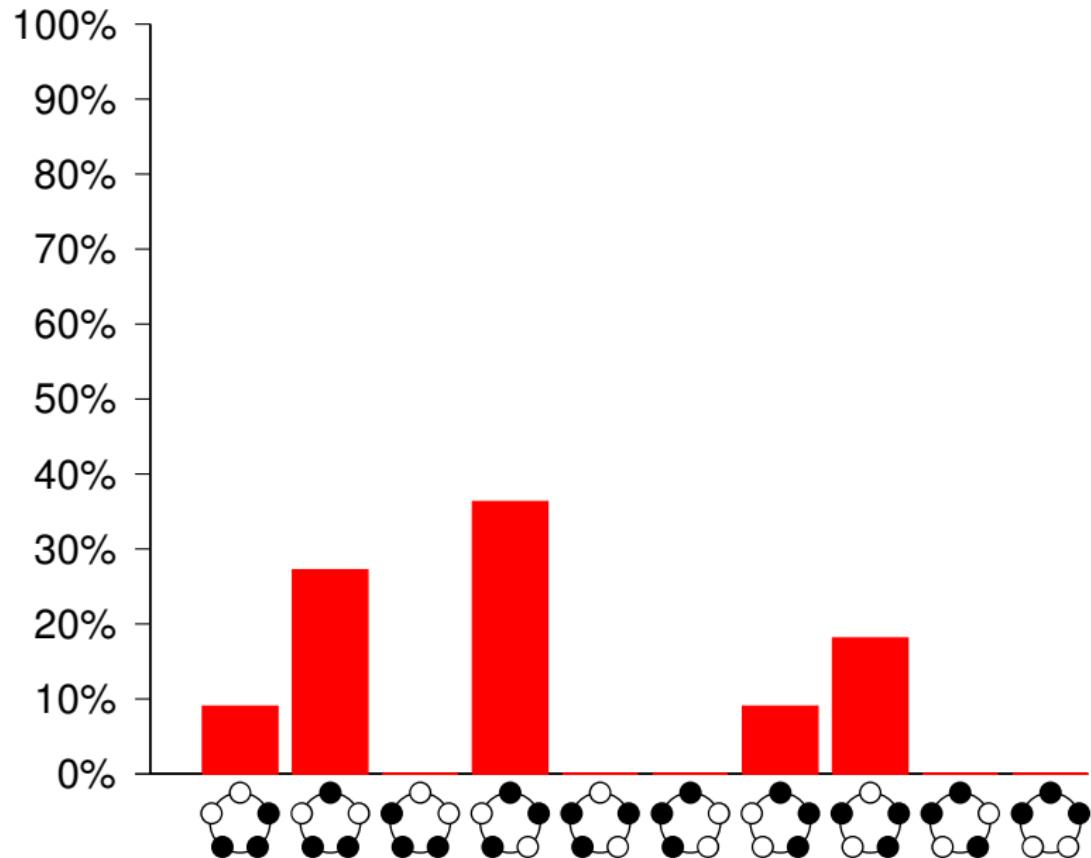
Stationary distribution



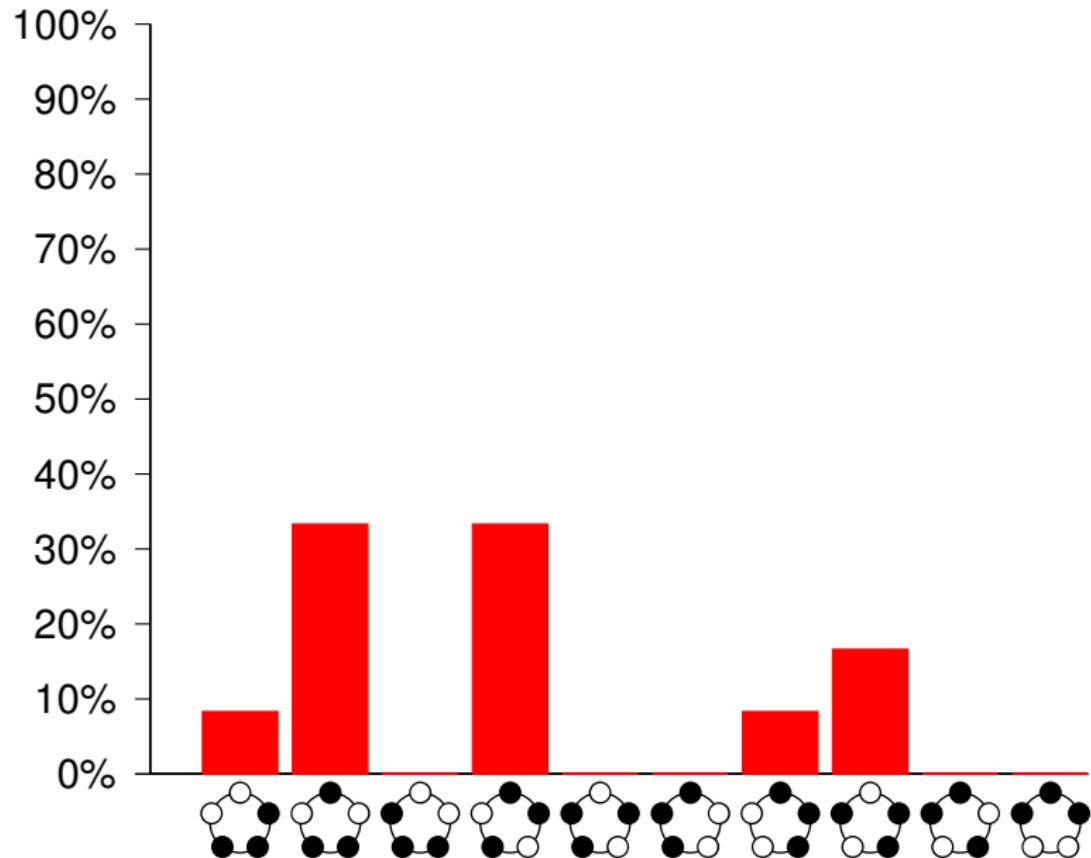
Stationary distribution



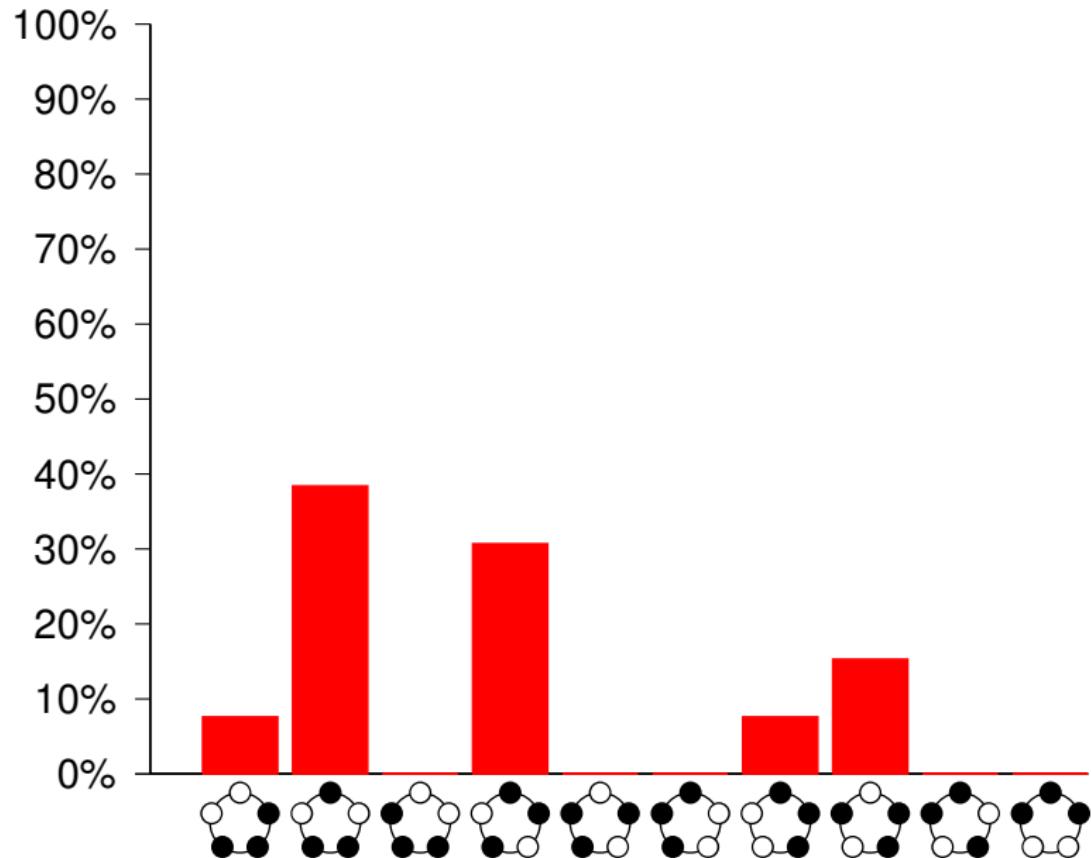
Stationary distribution



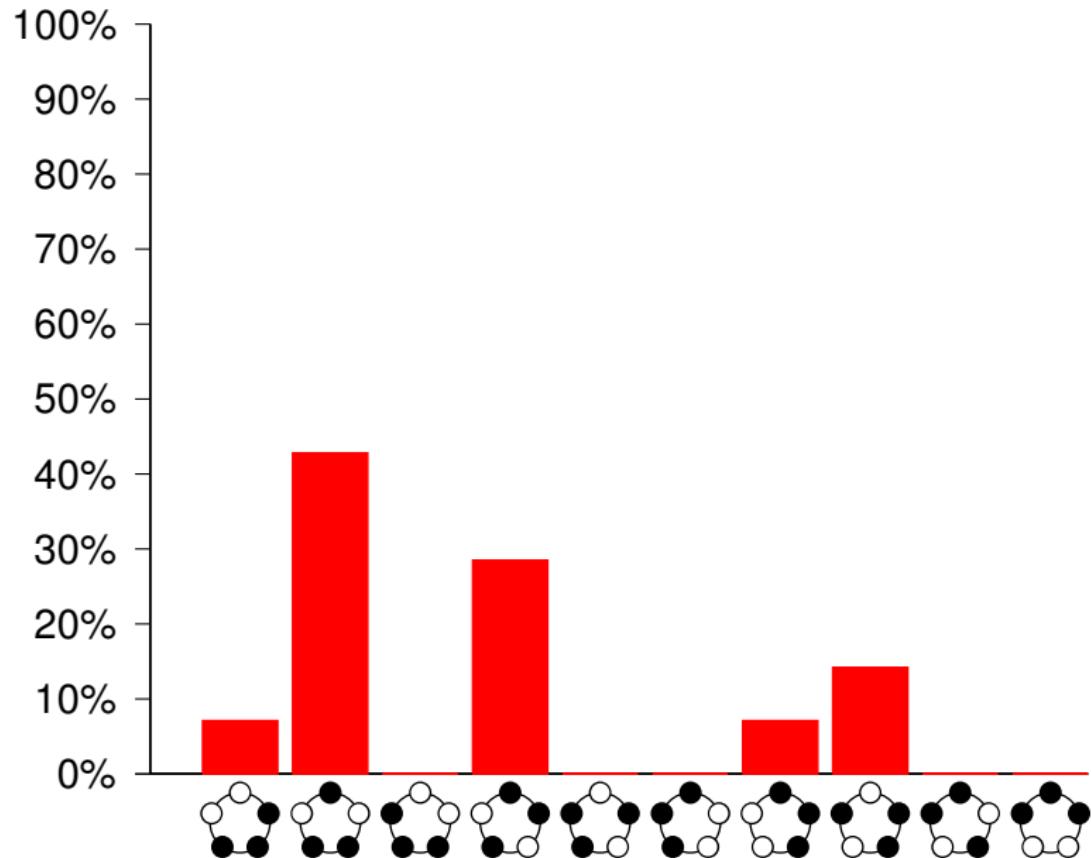
Stationary distribution



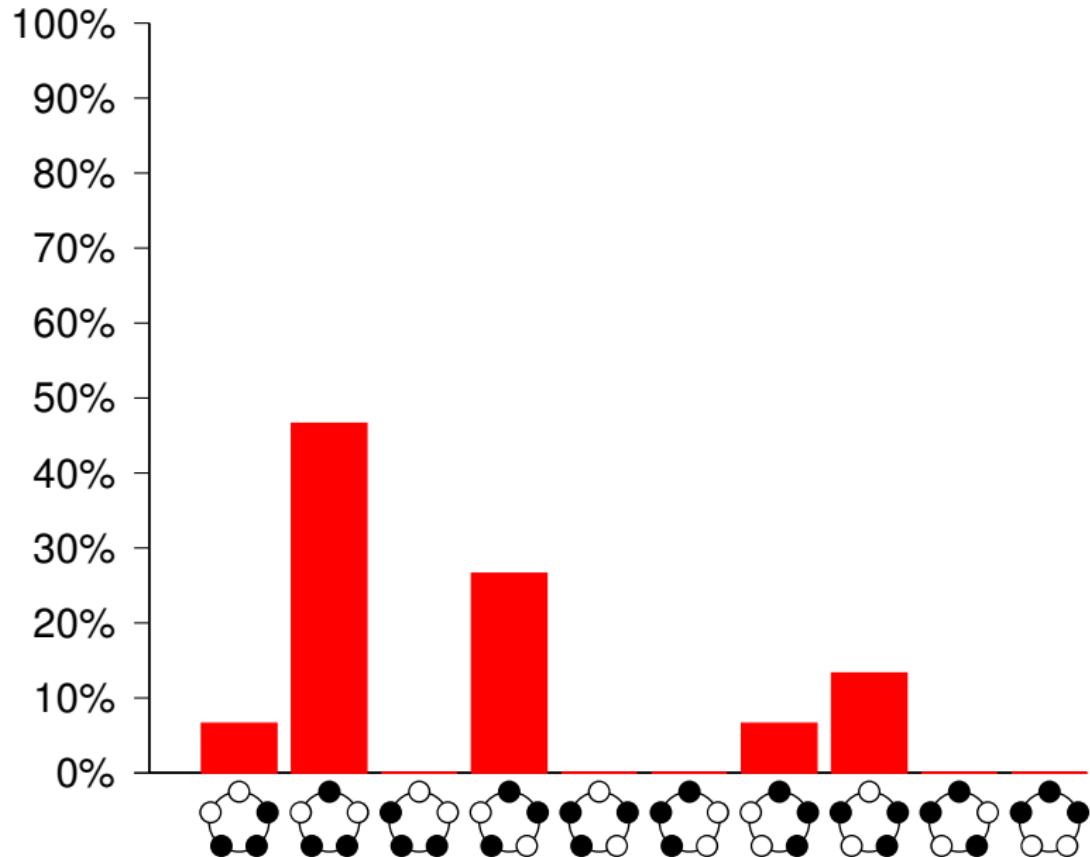
Stationary distribution



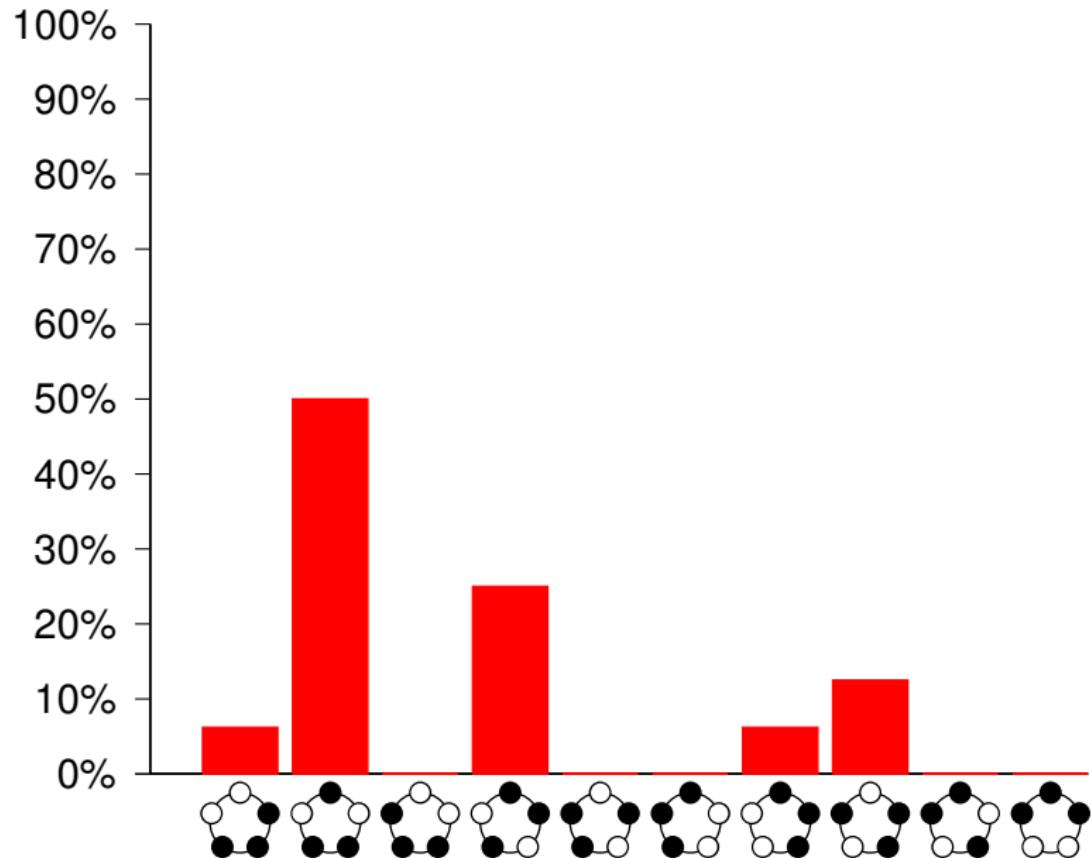
Stationary distribution



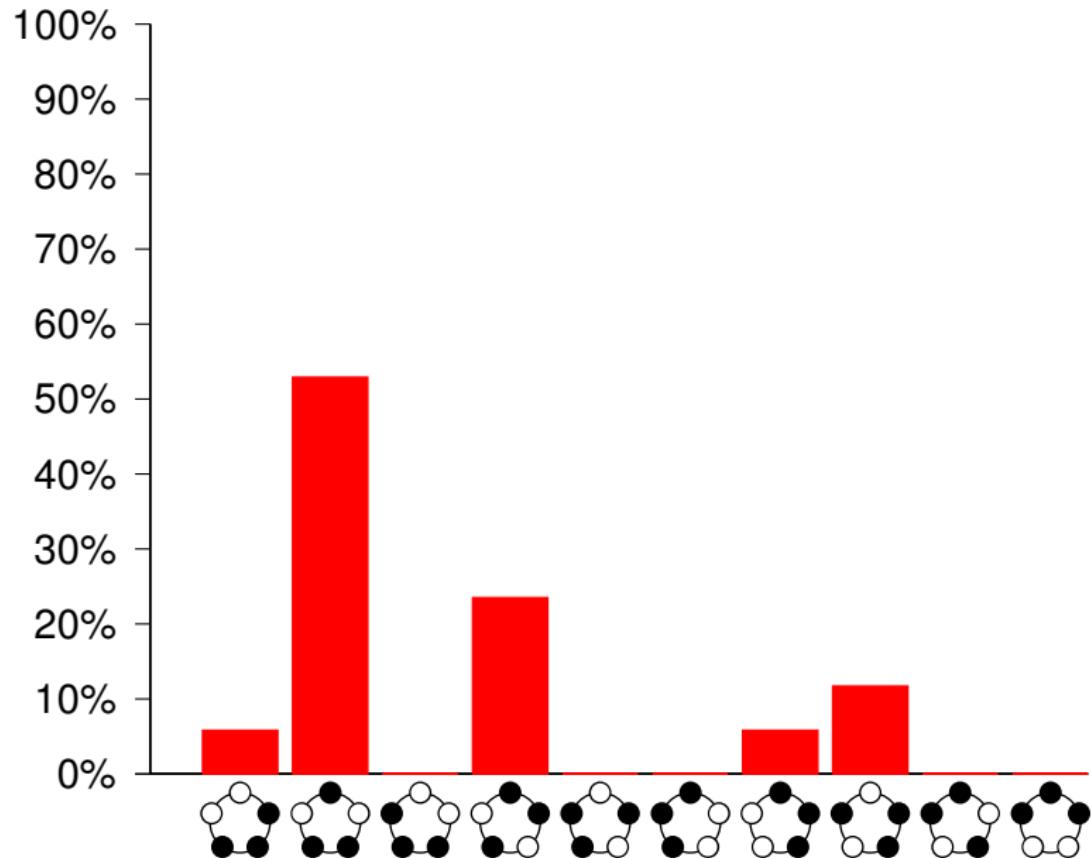
Stationary distribution



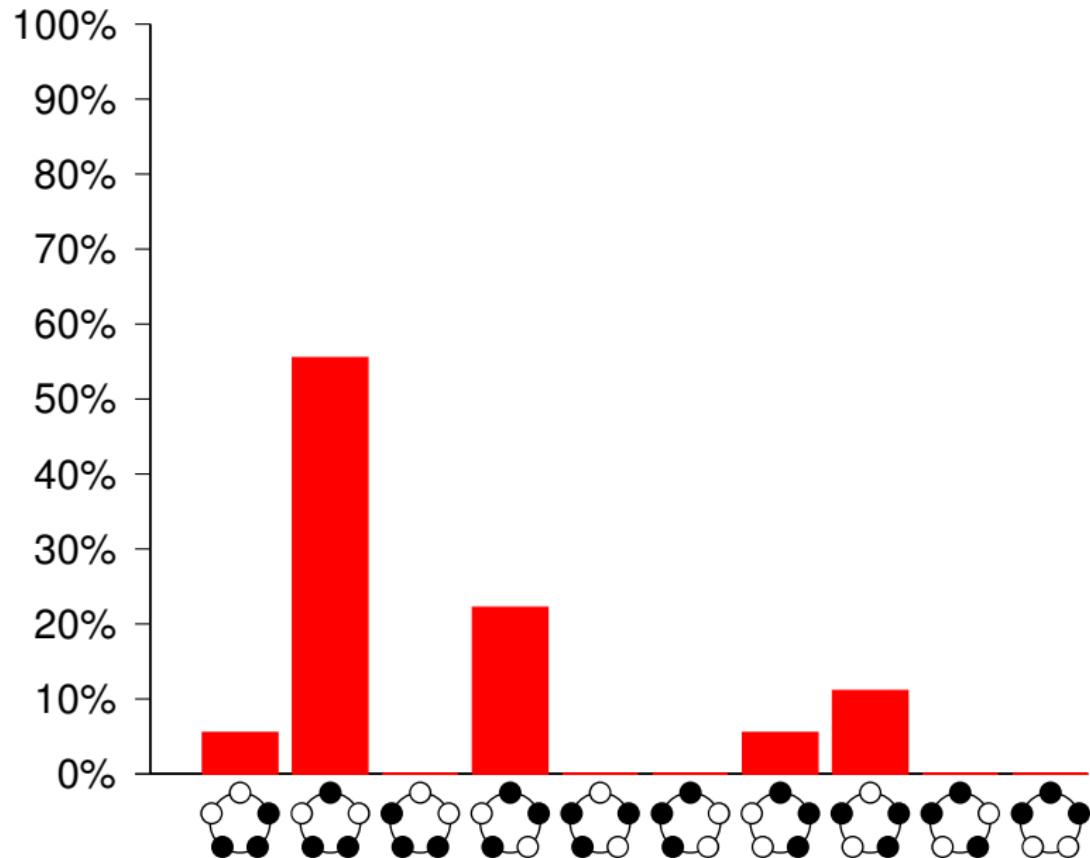
Stationary distribution



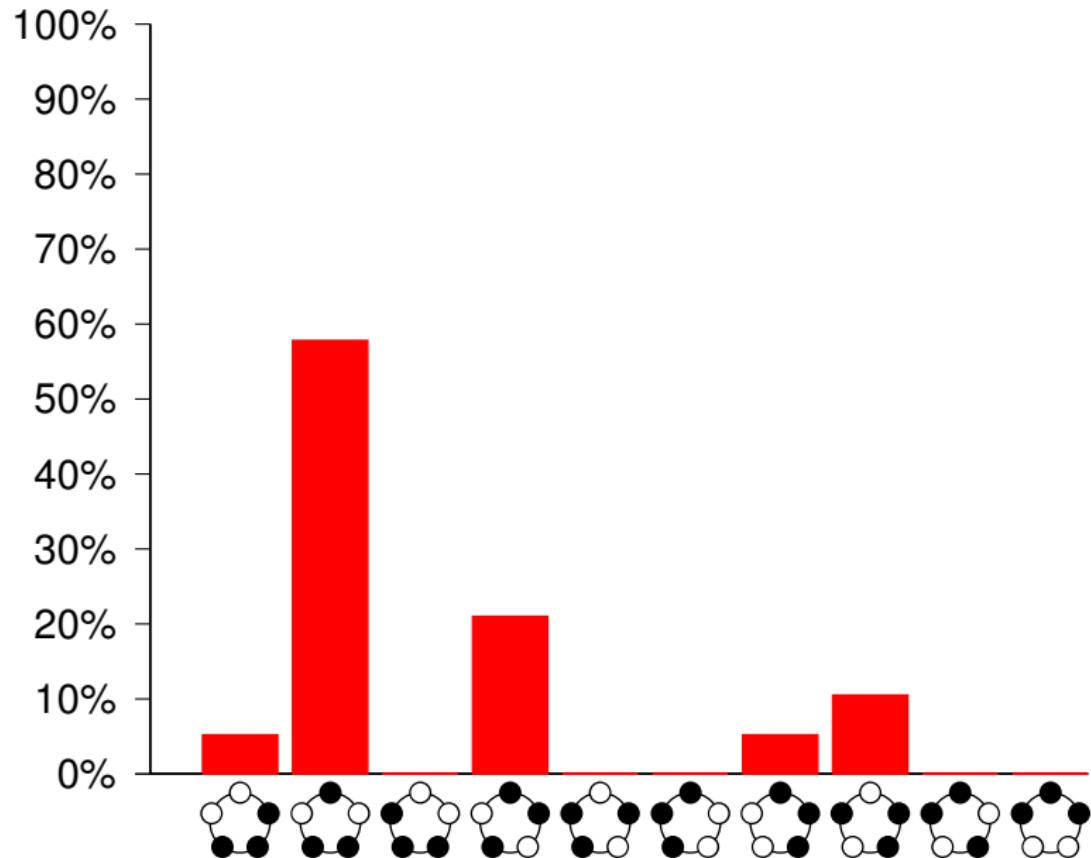
Stationary distribution



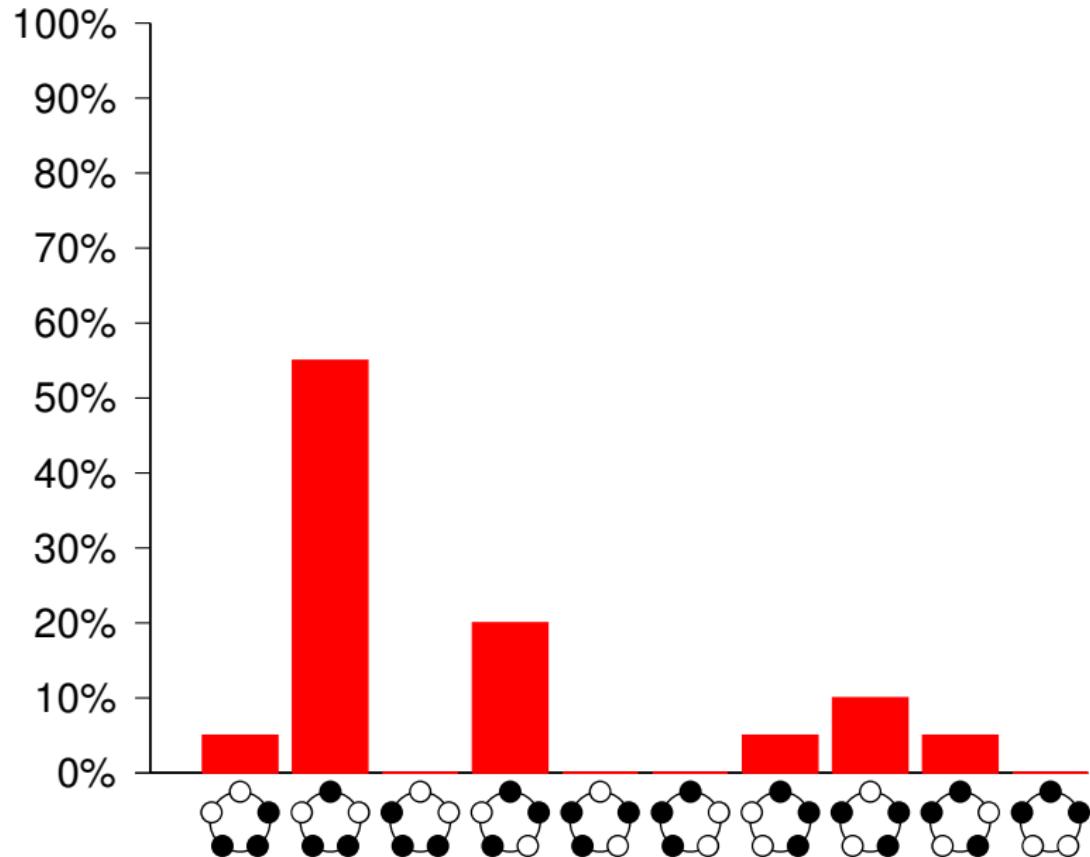
Stationary distribution



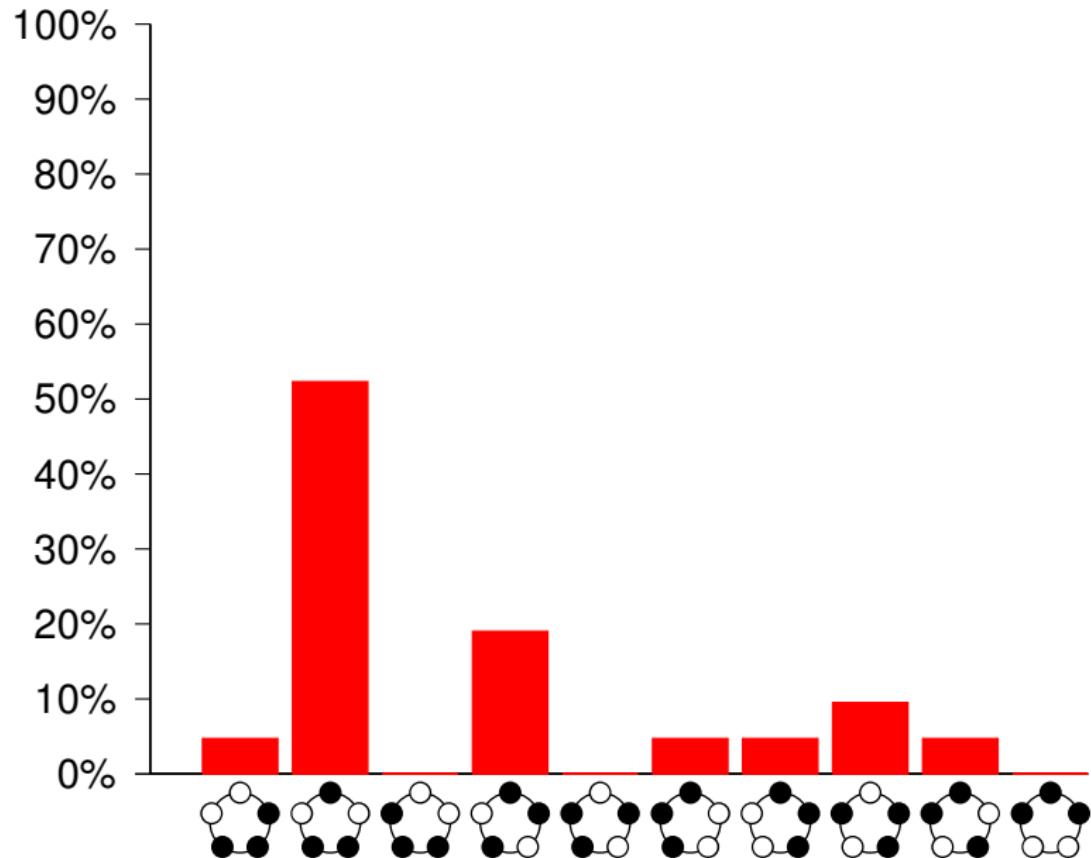
Stationary distribution



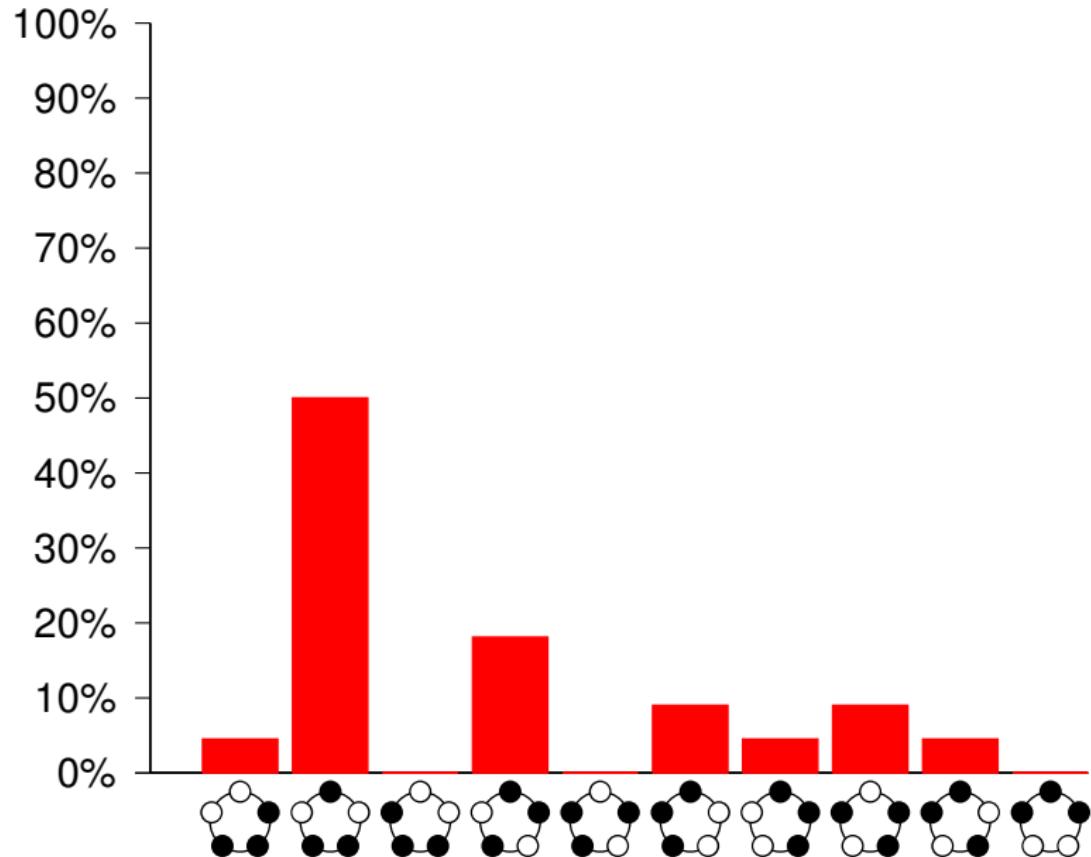
Stationary distribution



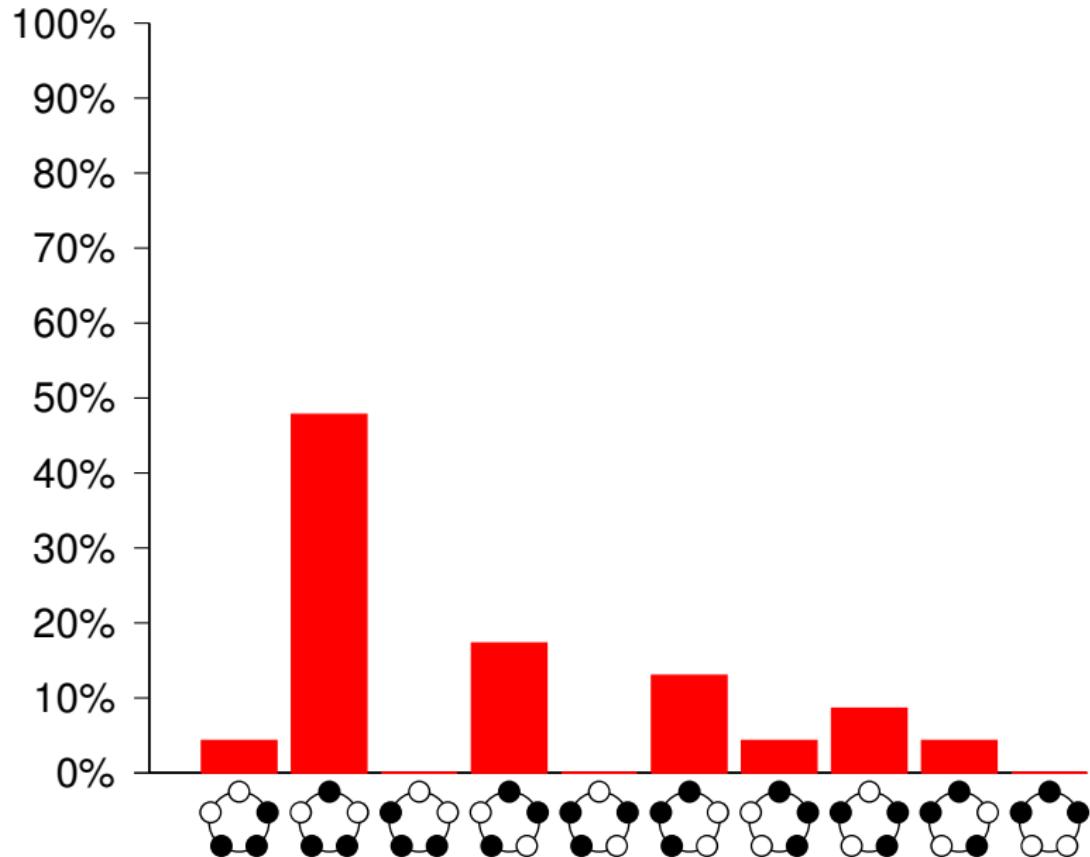
Stationary distribution



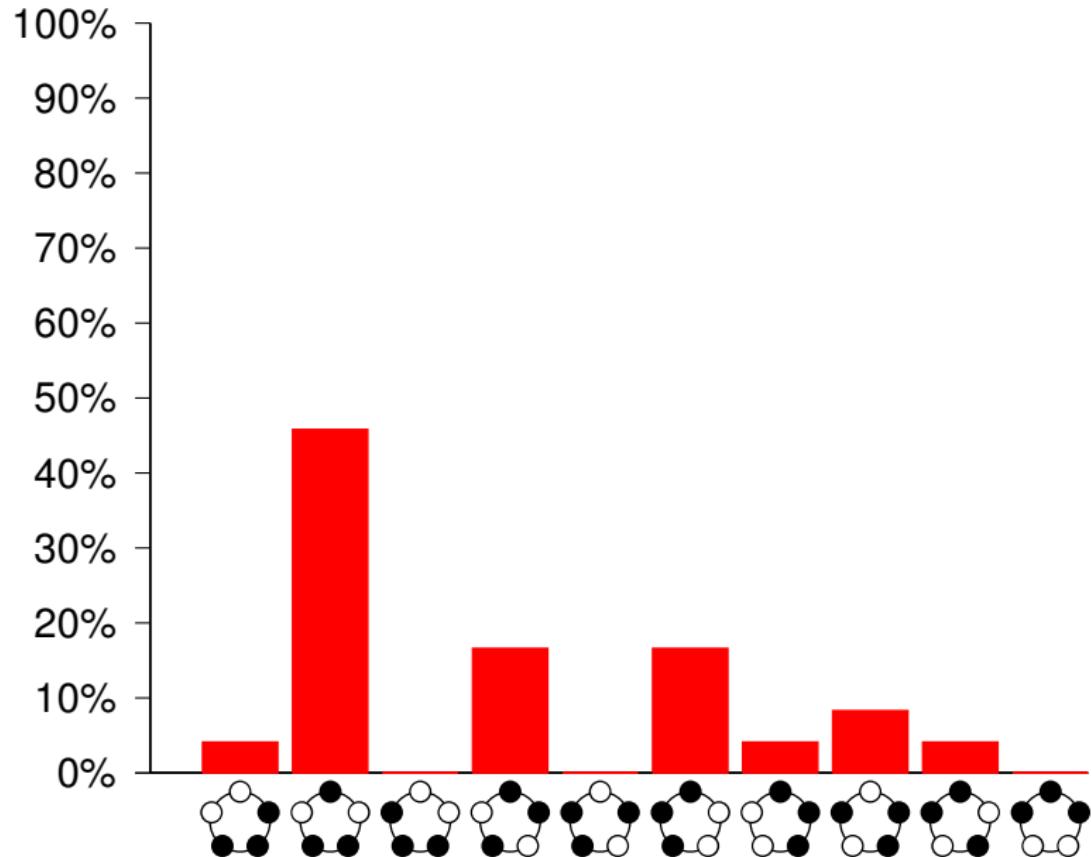
Stationary distribution



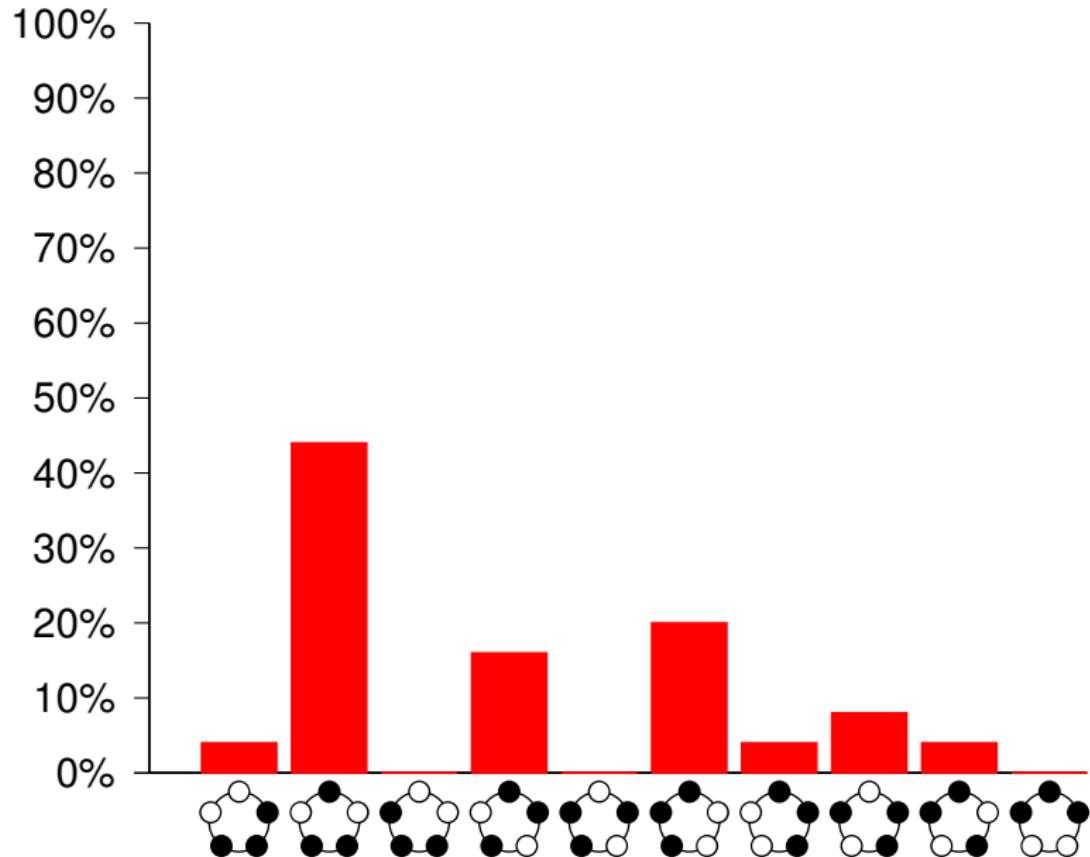
Stationary distribution



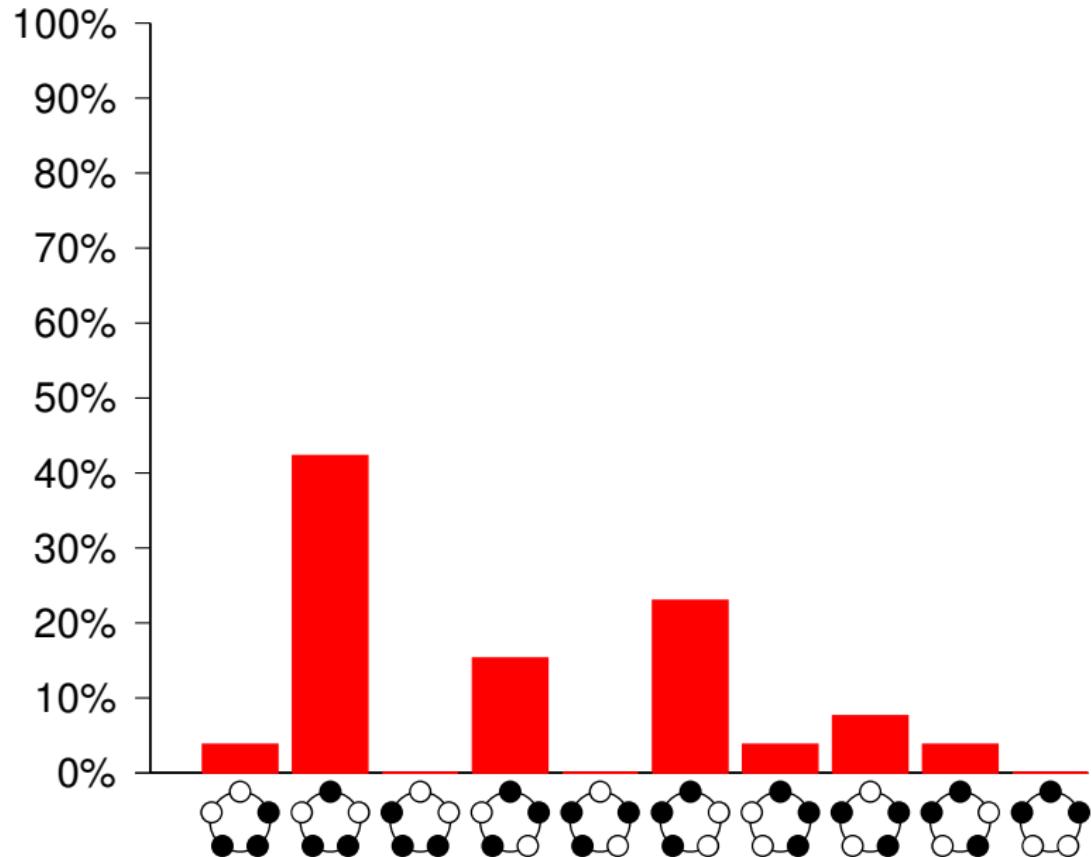
Stationary distribution



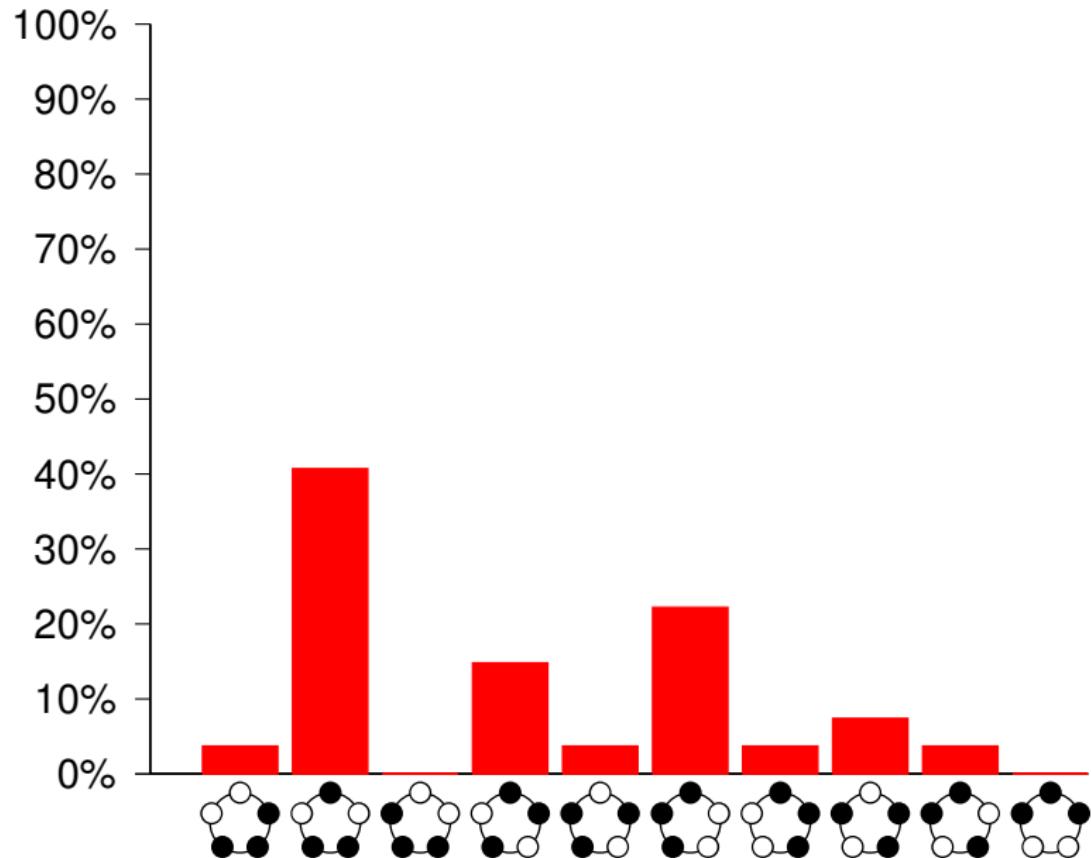
Stationary distribution



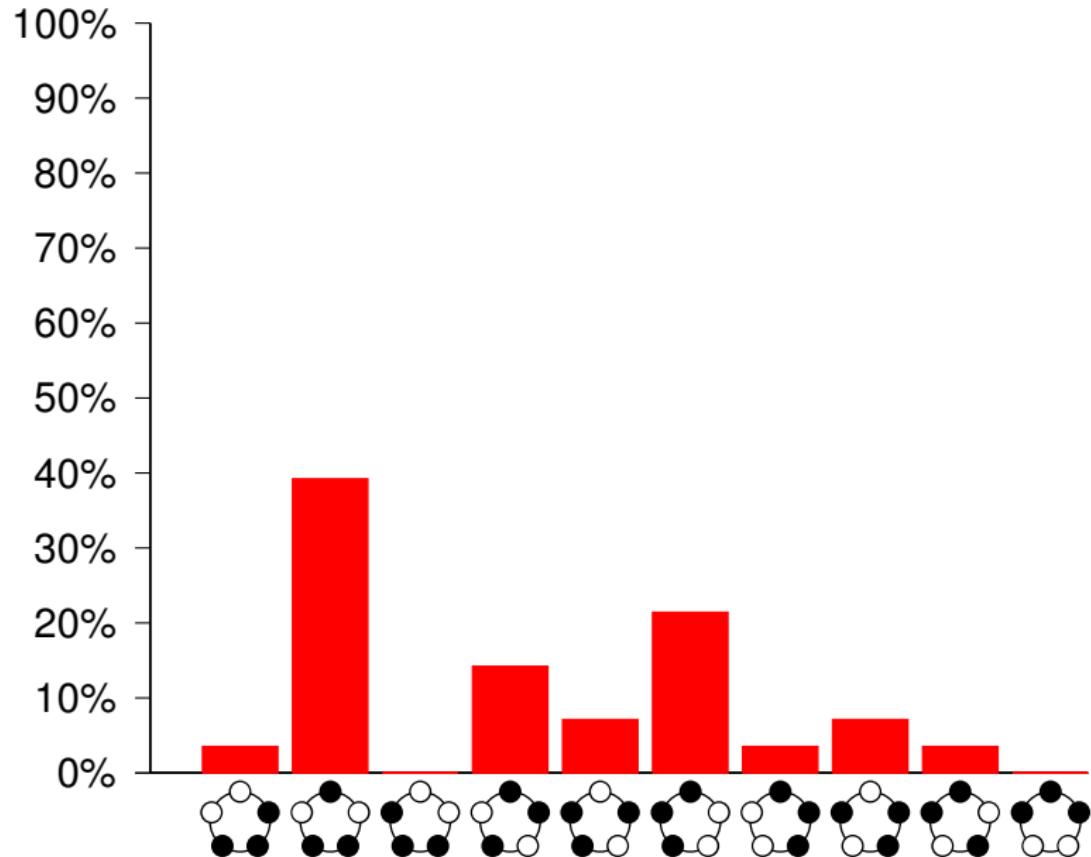
Stationary distribution



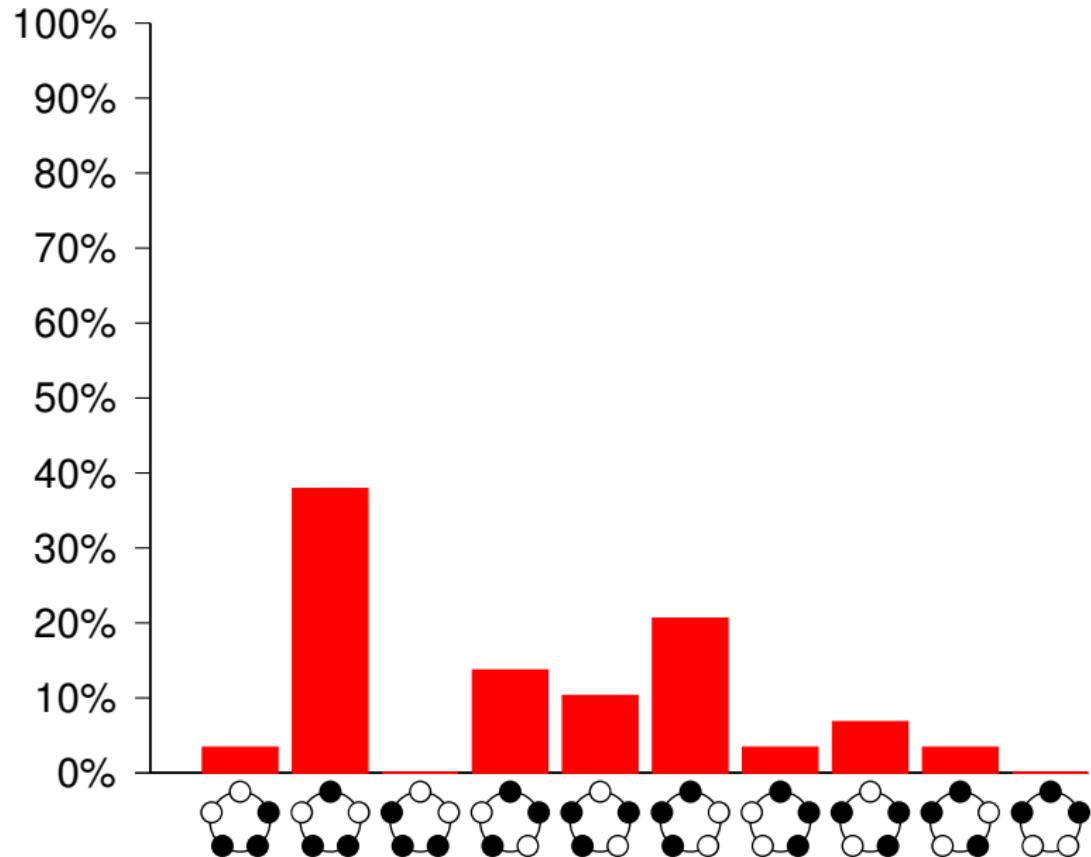
Stationary distribution



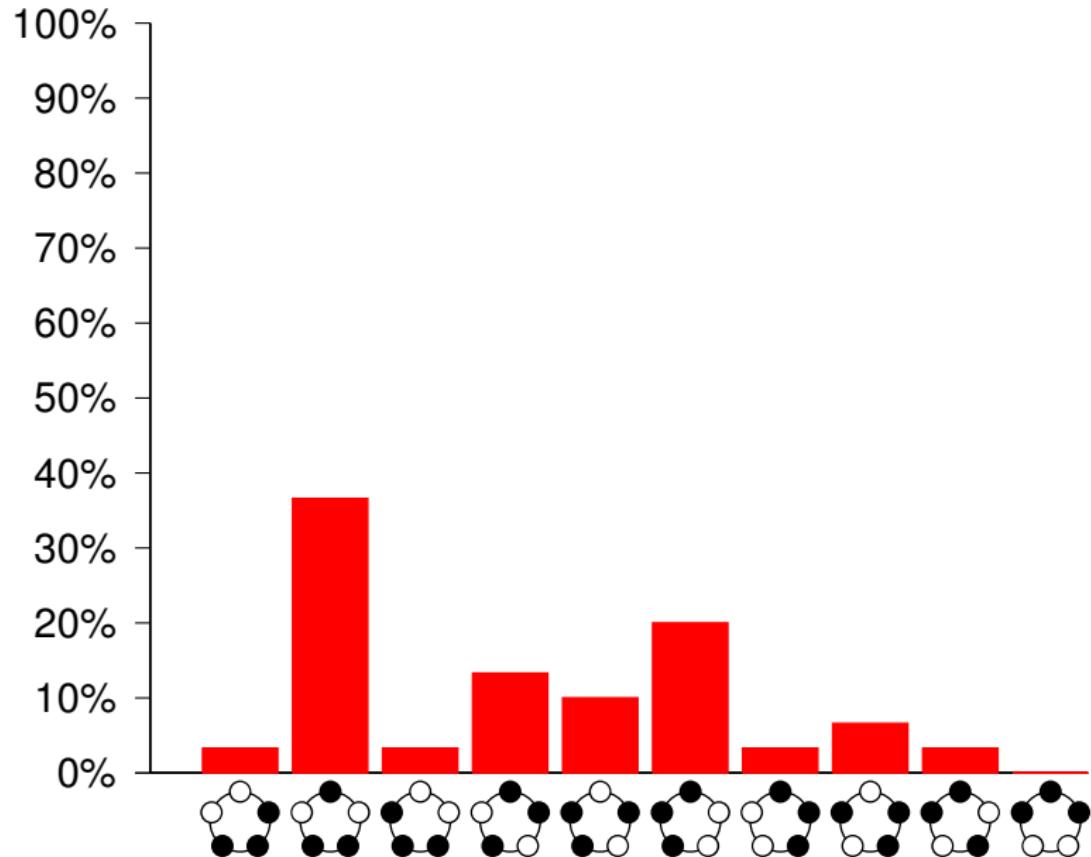
Stationary distribution



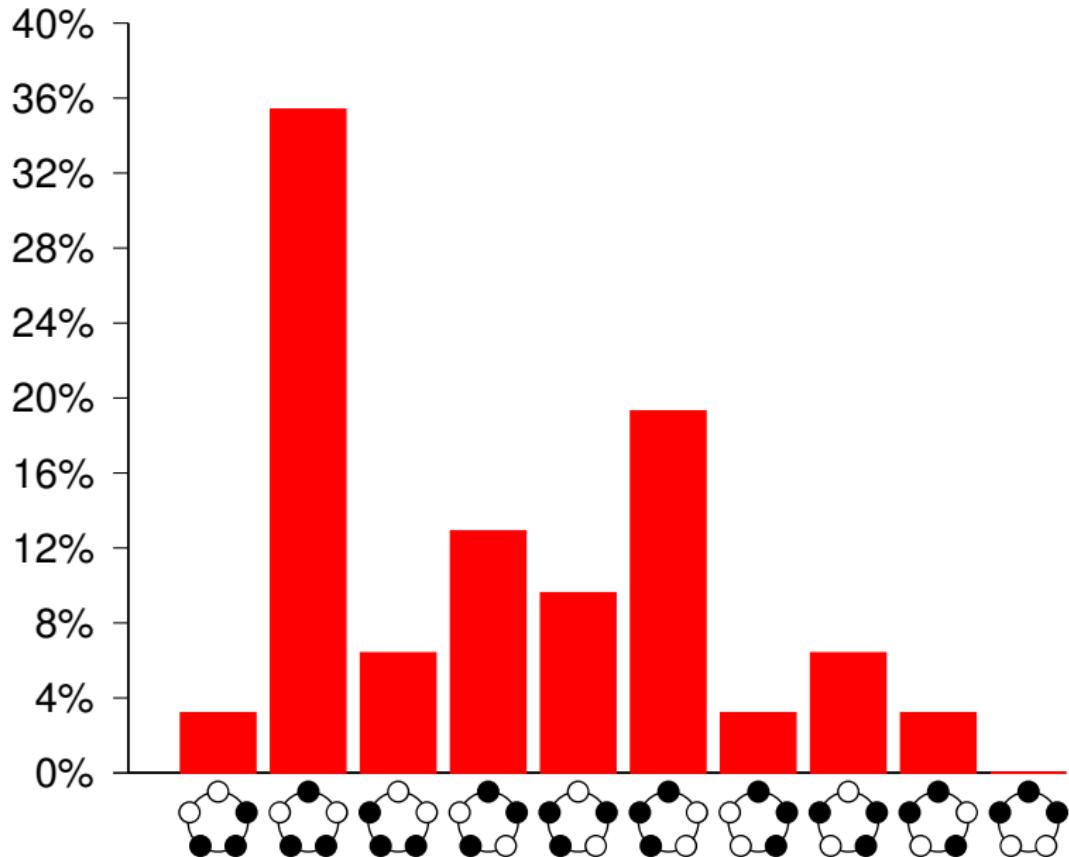
Stationary distribution



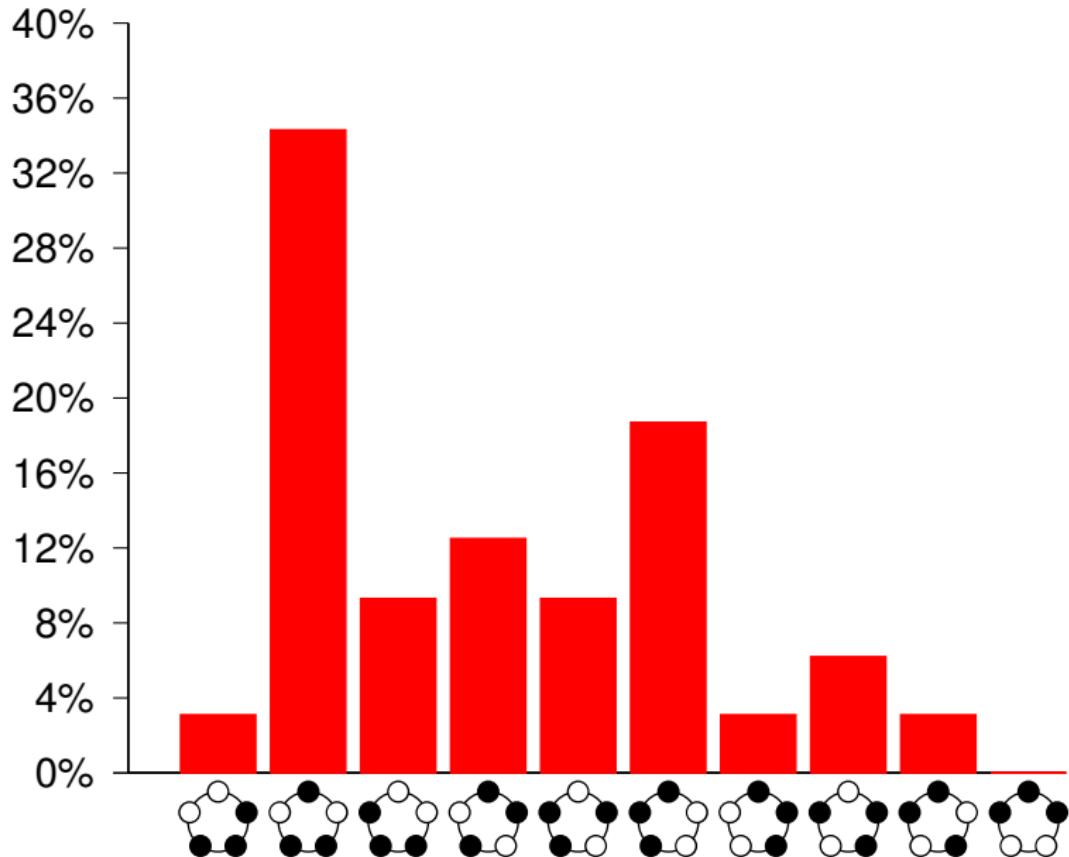
Stationary distribution



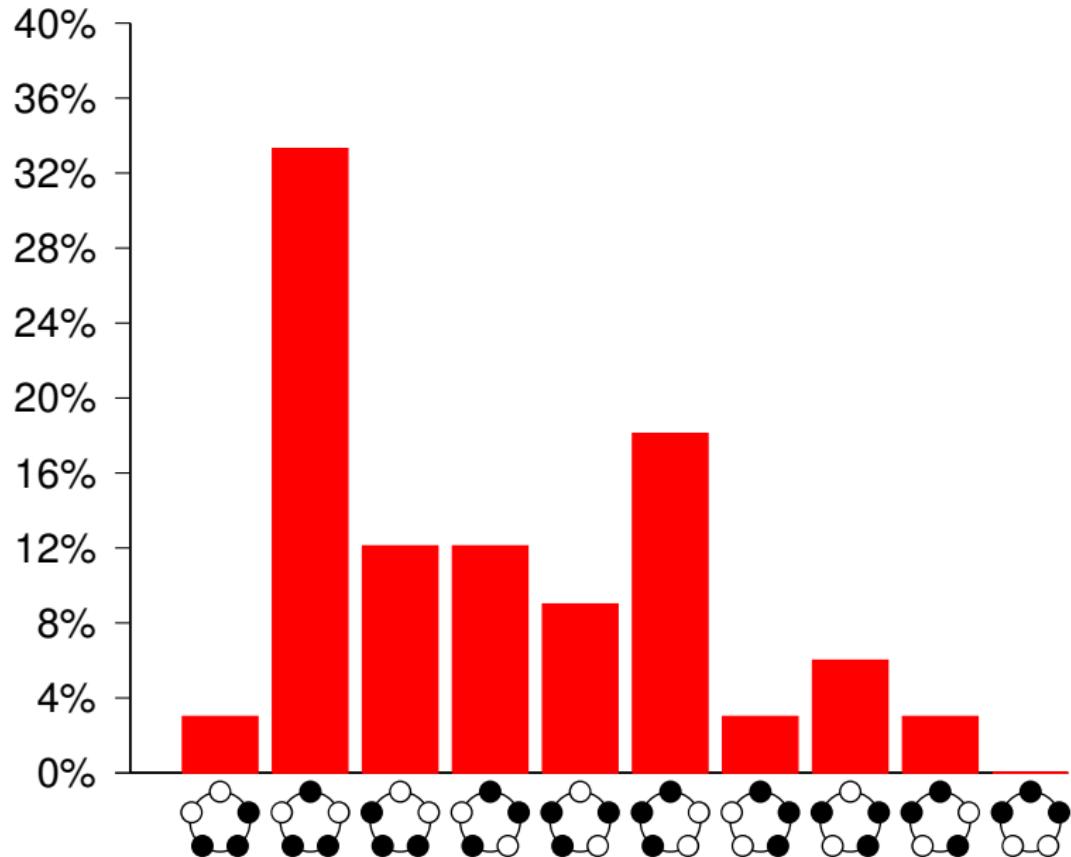
Stationary distribution



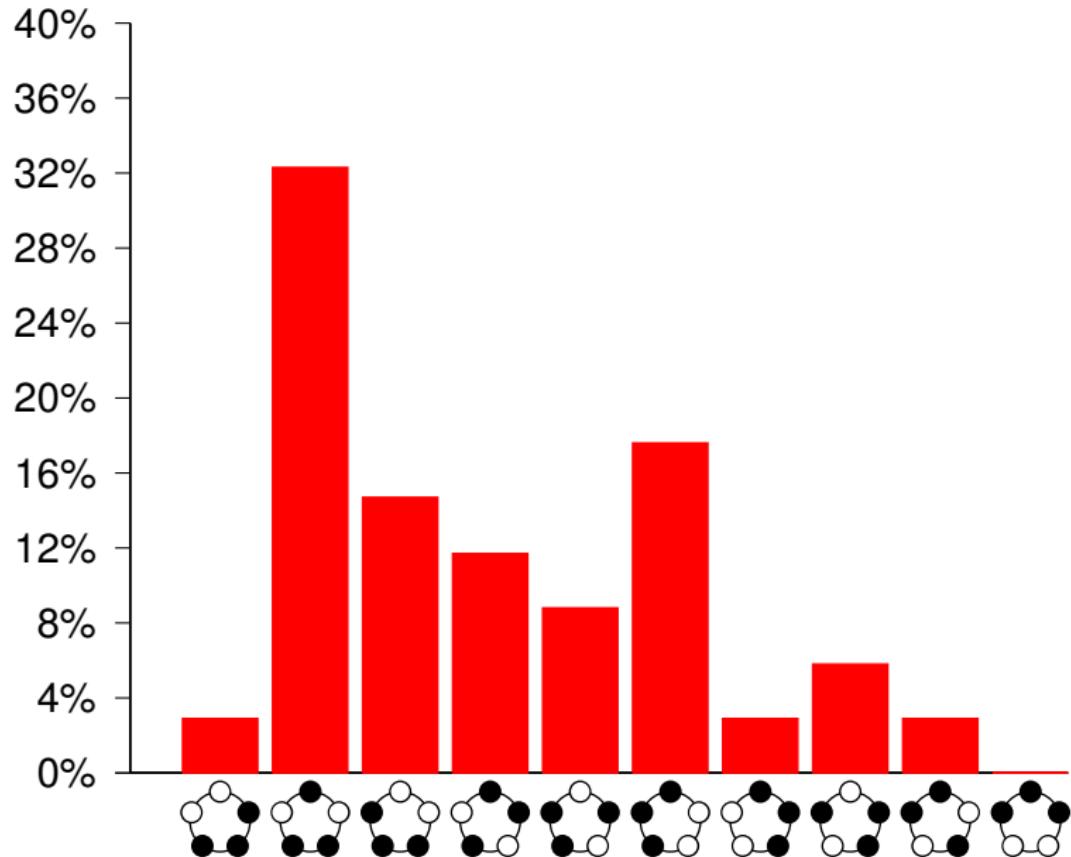
Stationary distribution



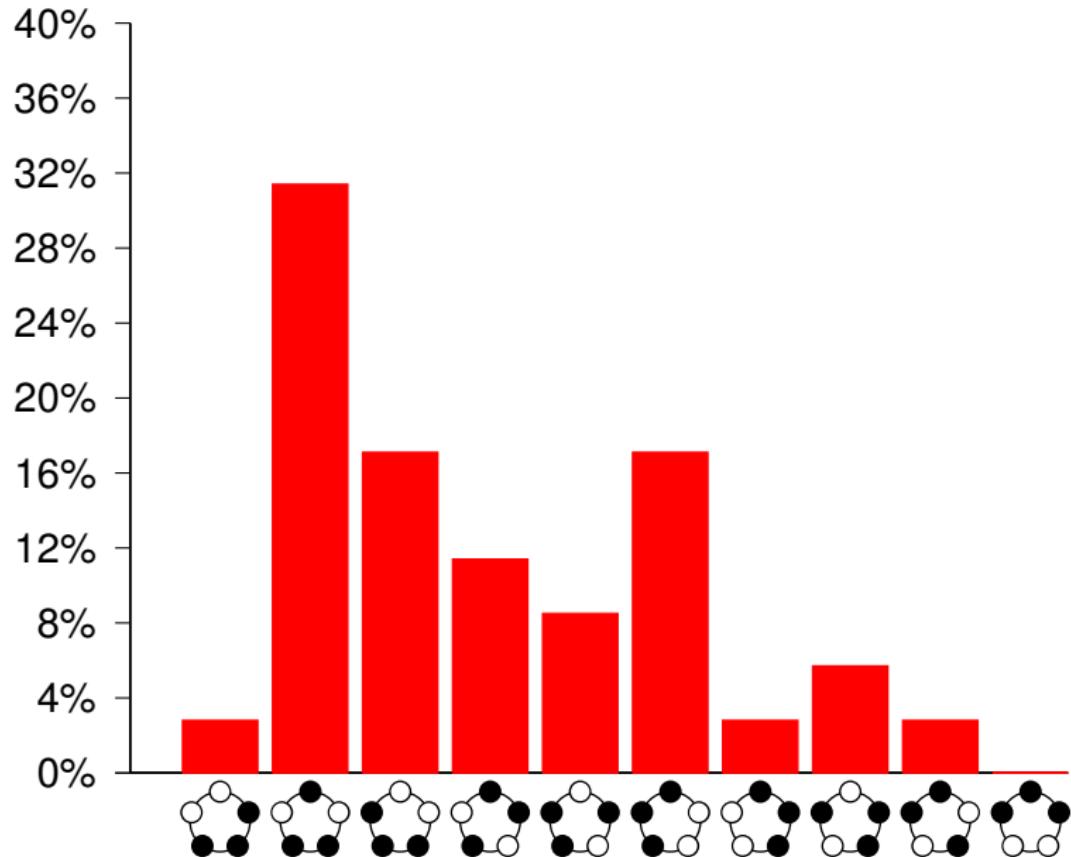
Stationary distribution



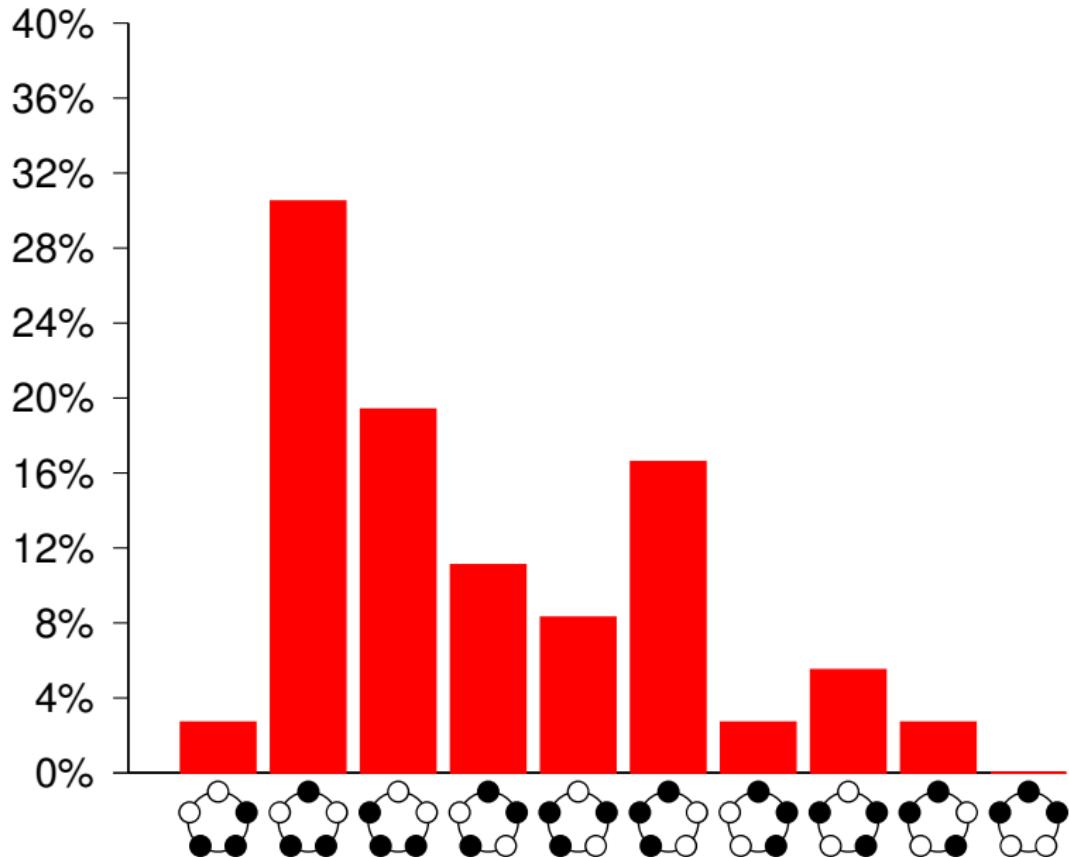
Stationary distribution



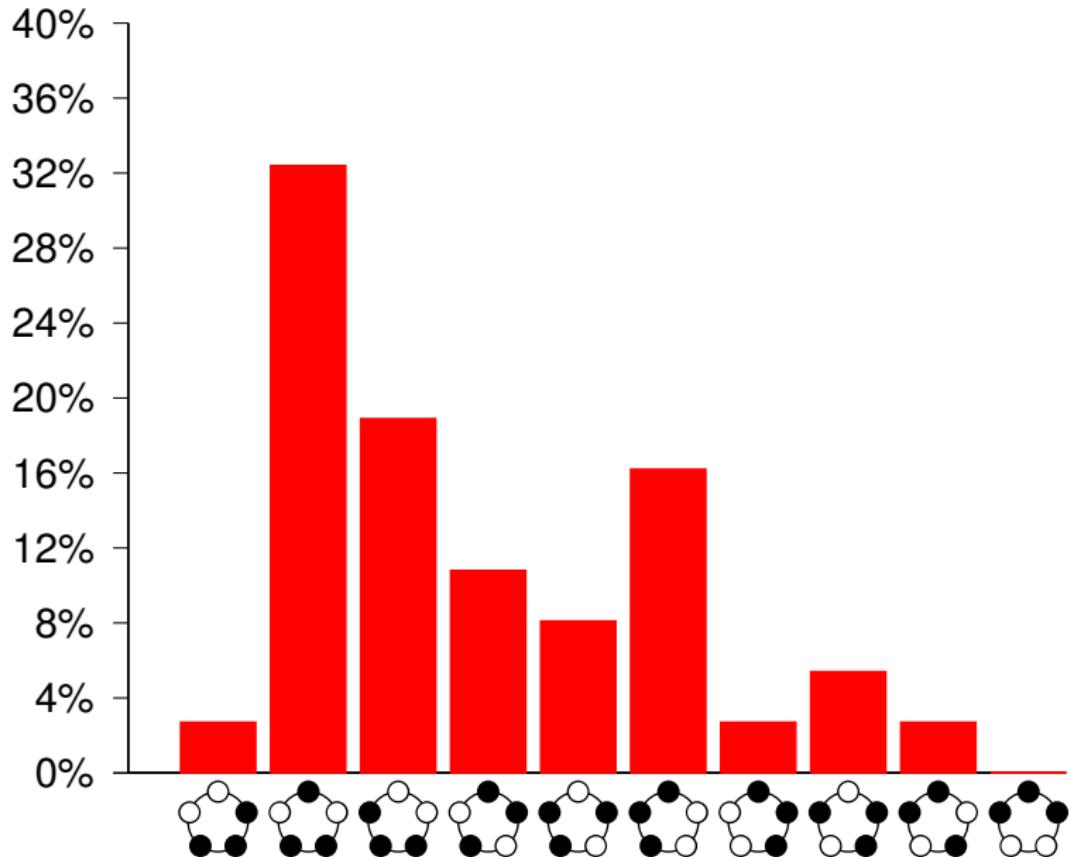
Stationary distribution



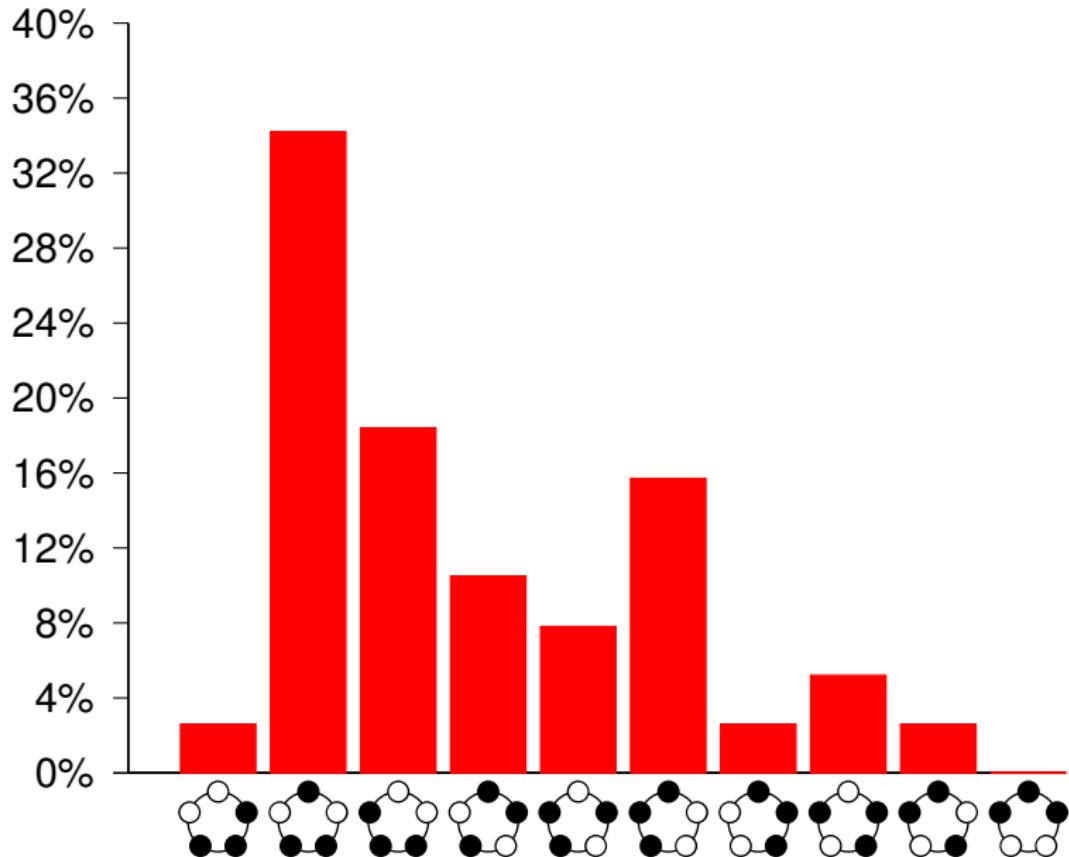
Stationary distribution



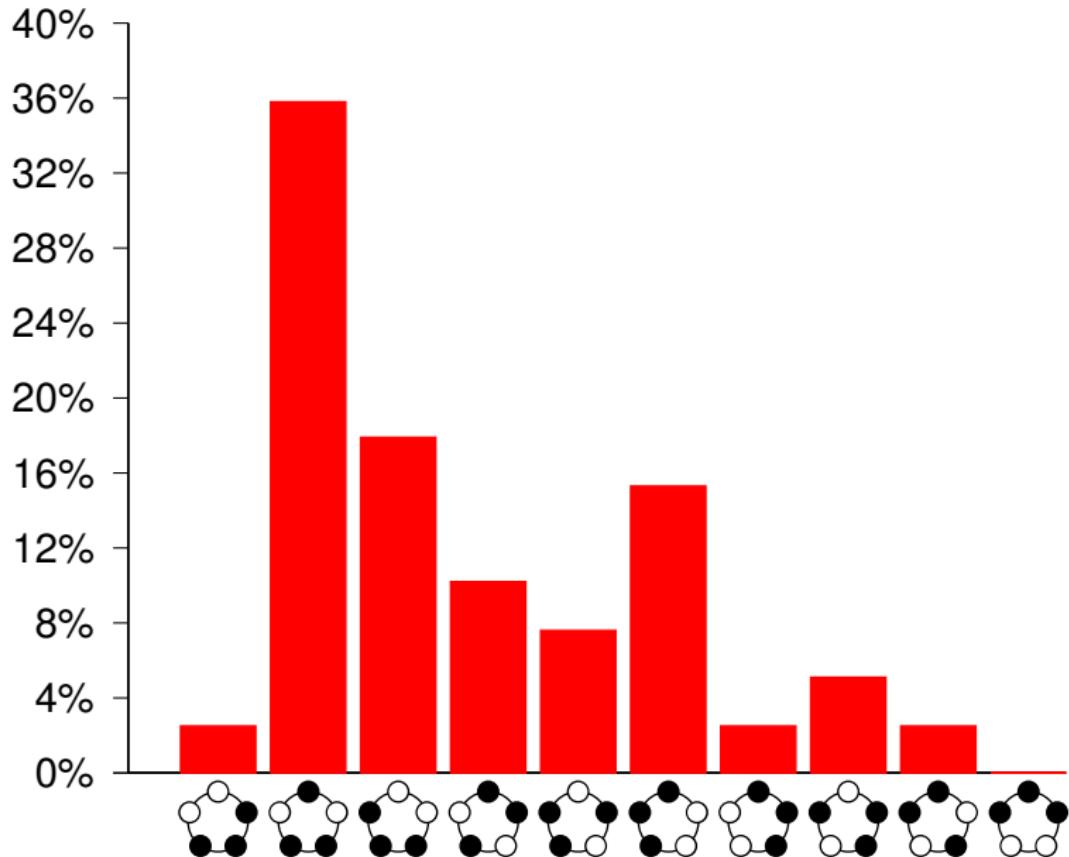
Stationary distribution



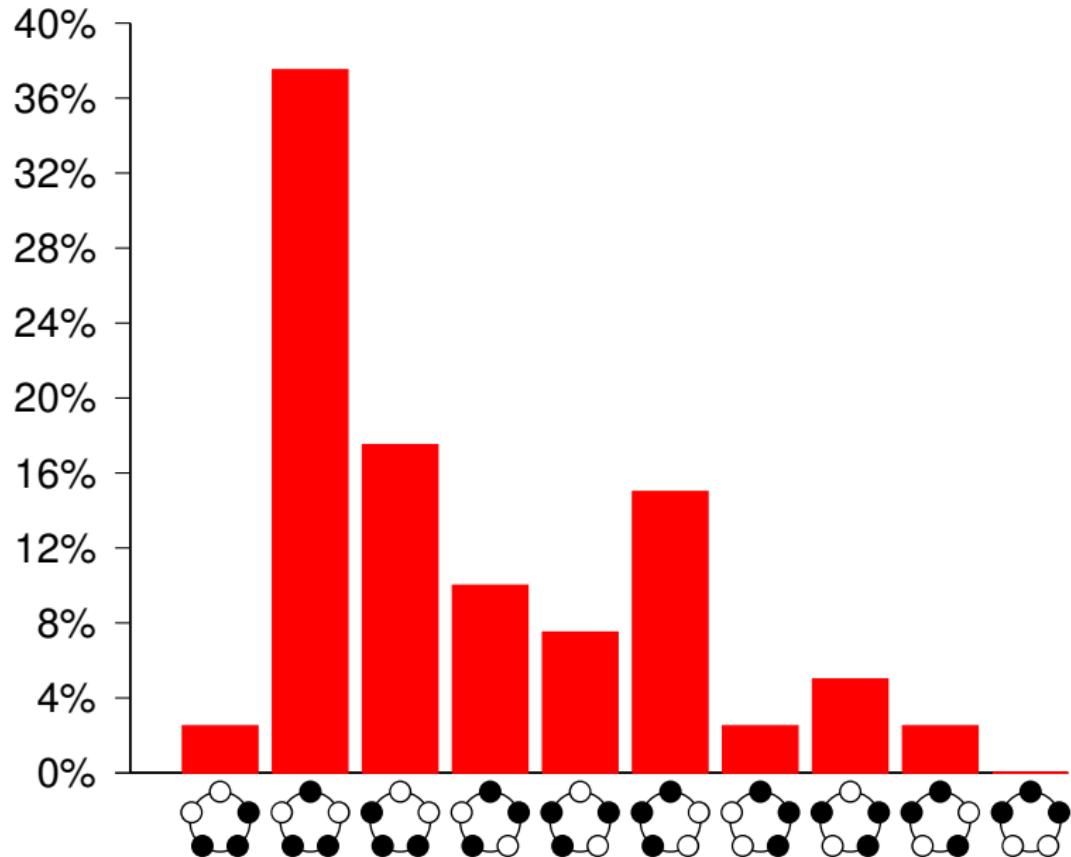
Stationary distribution



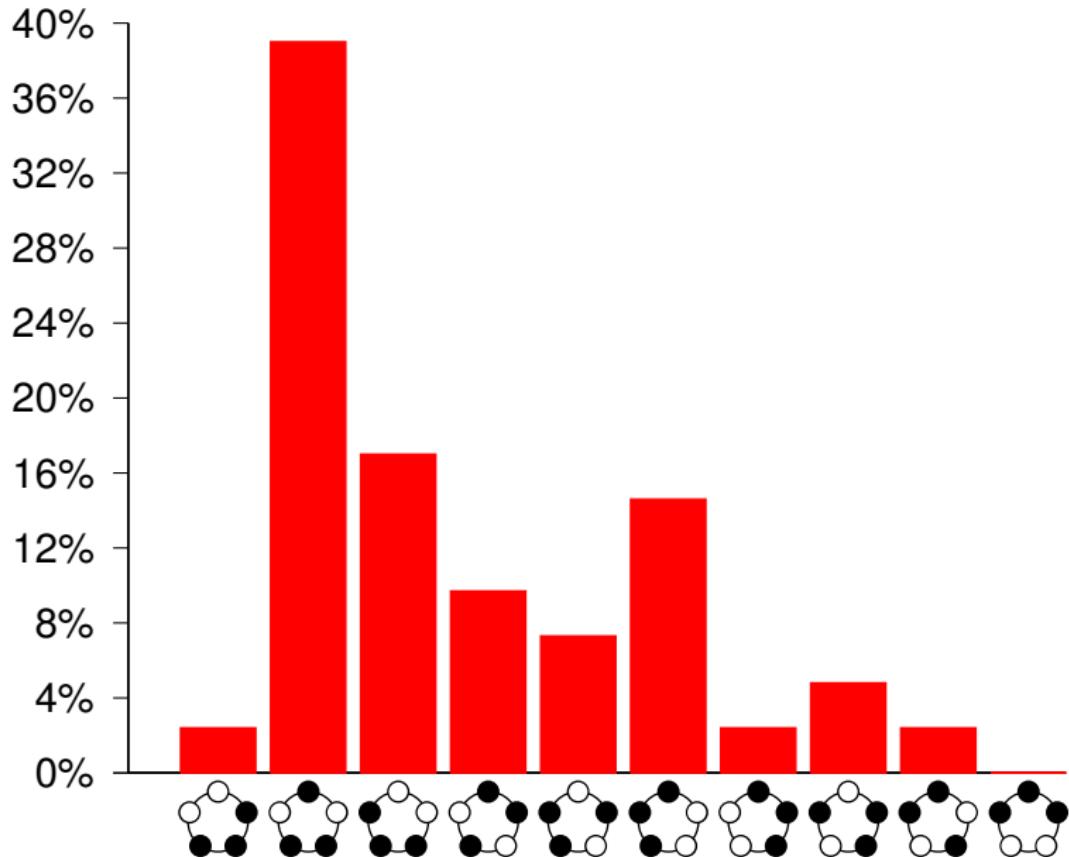
Stationary distribution



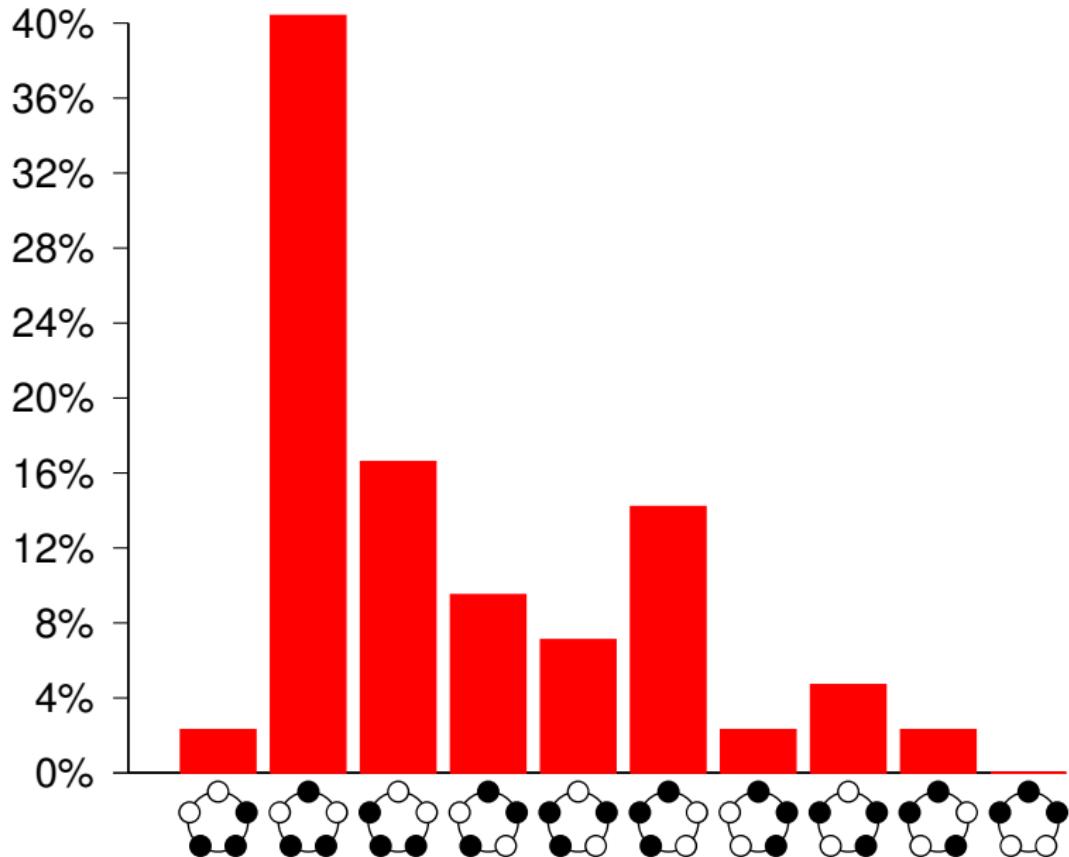
Stationary distribution



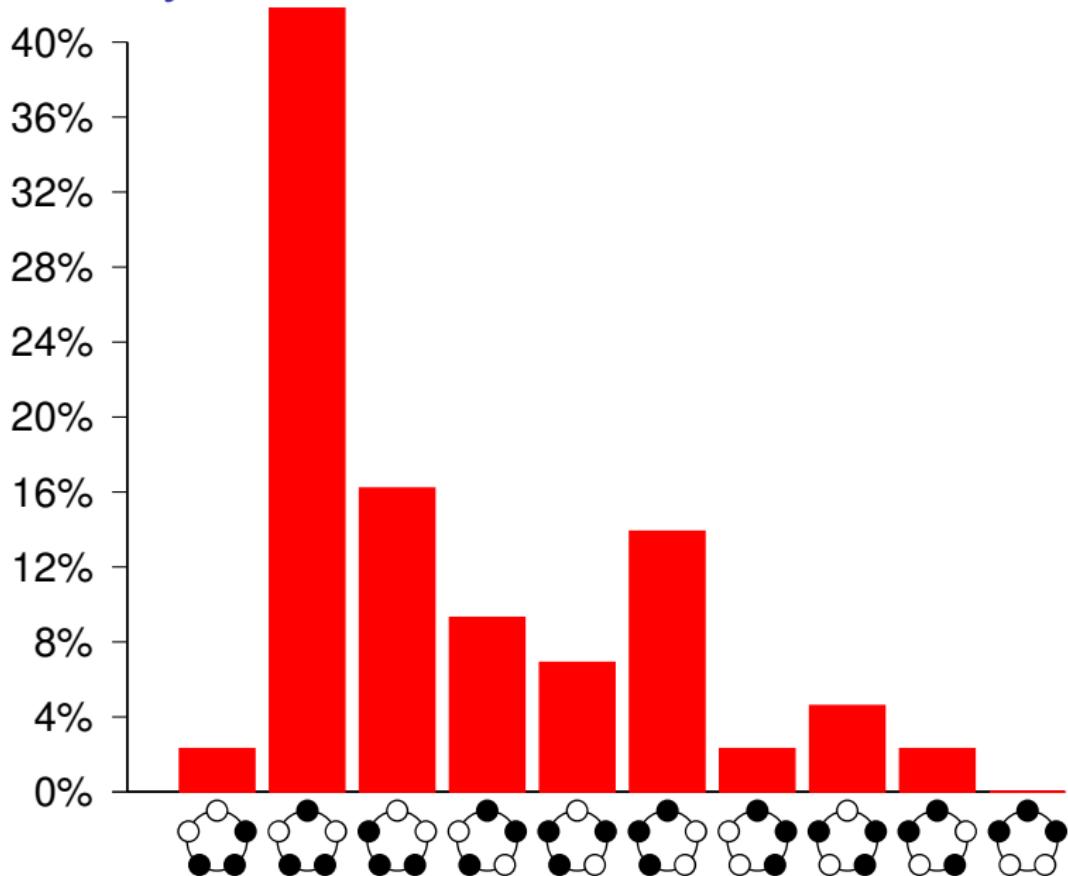
Stationary distribution



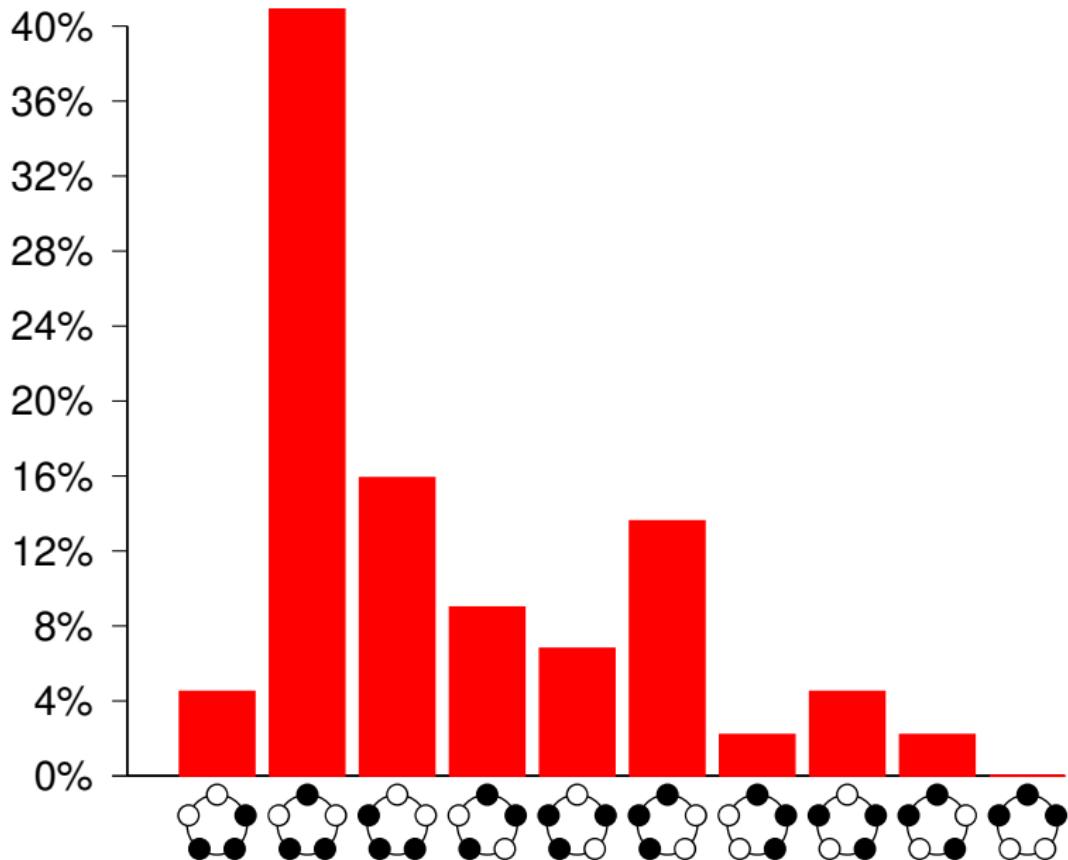
Stationary distribution



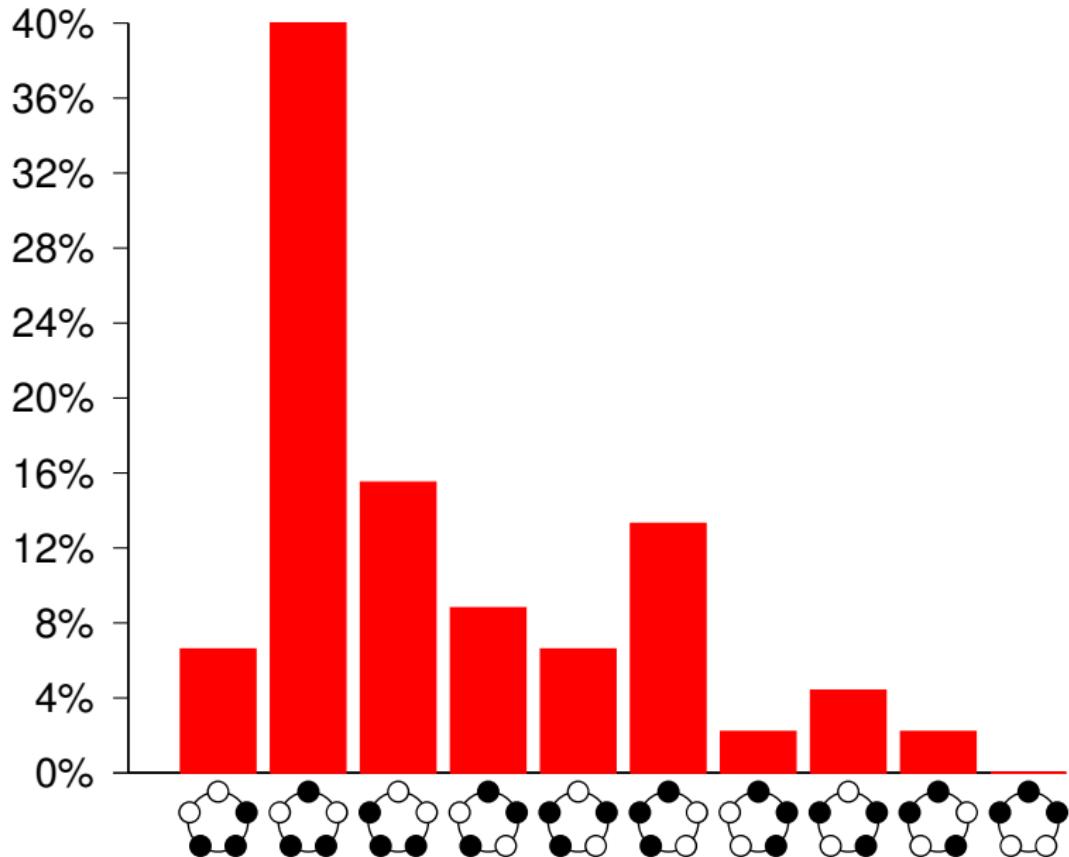
Stationary distribution



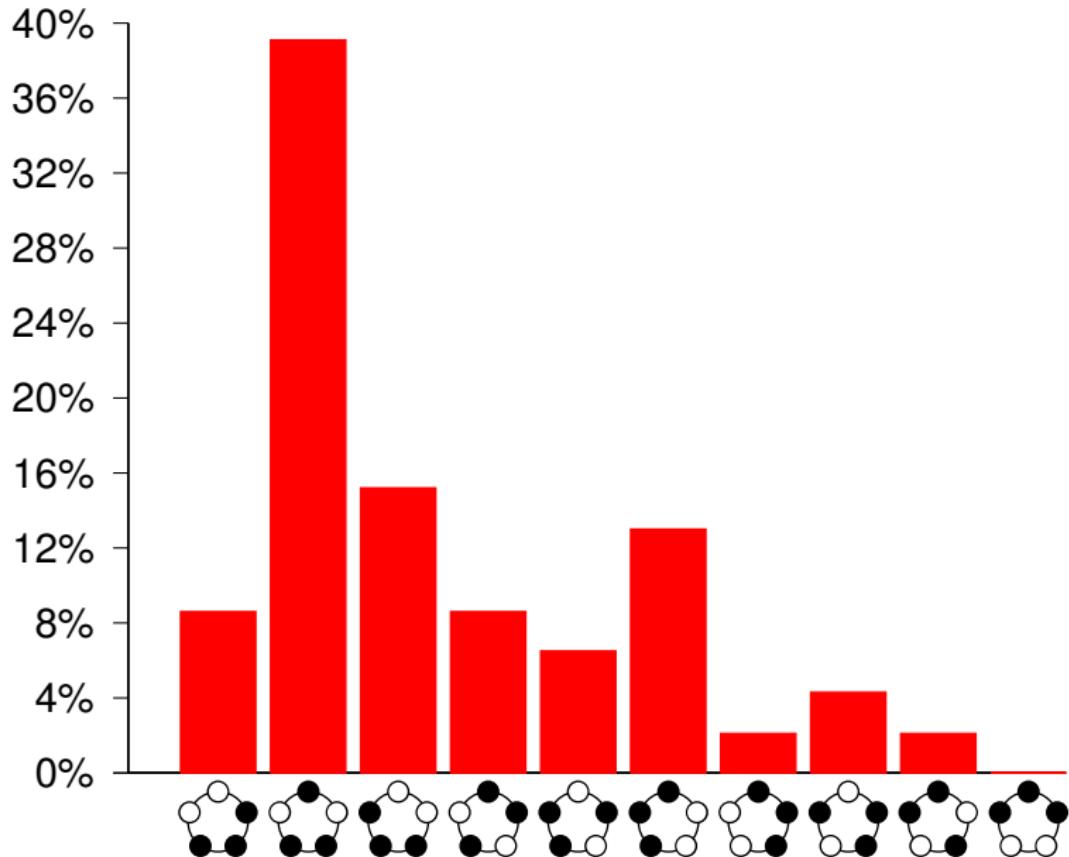
Stationary distribution



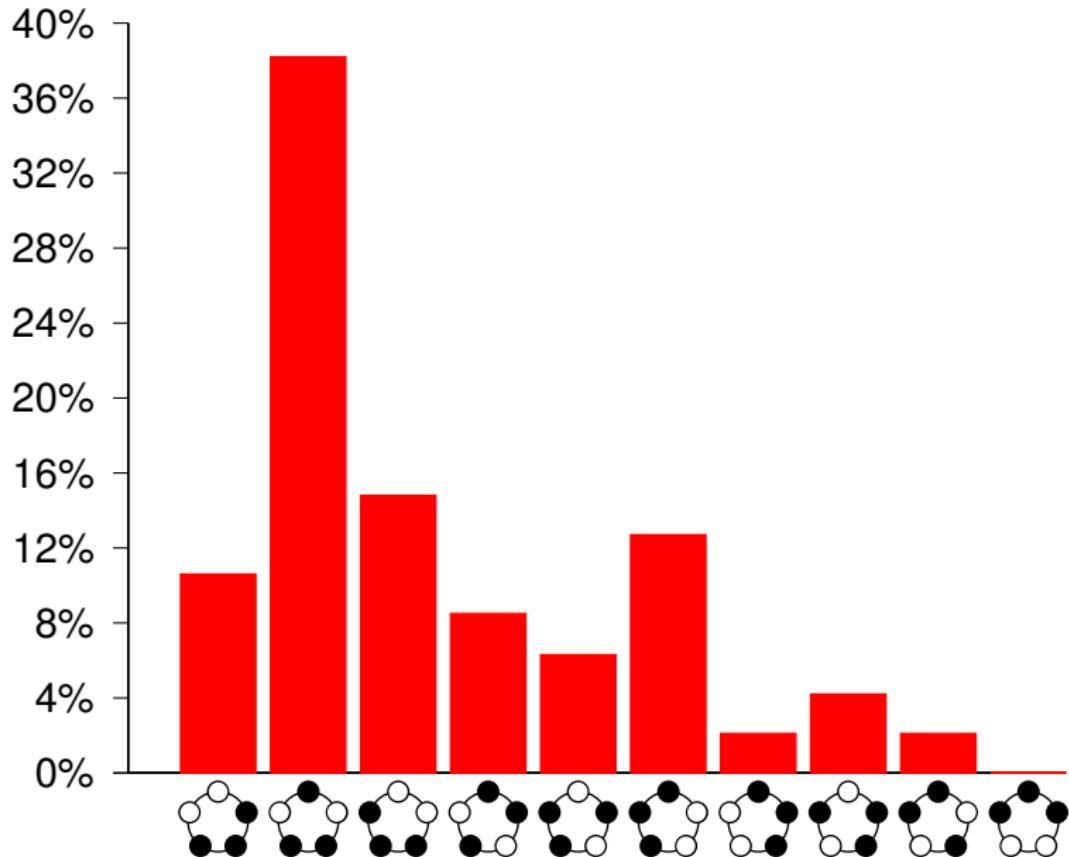
Stationary distribution



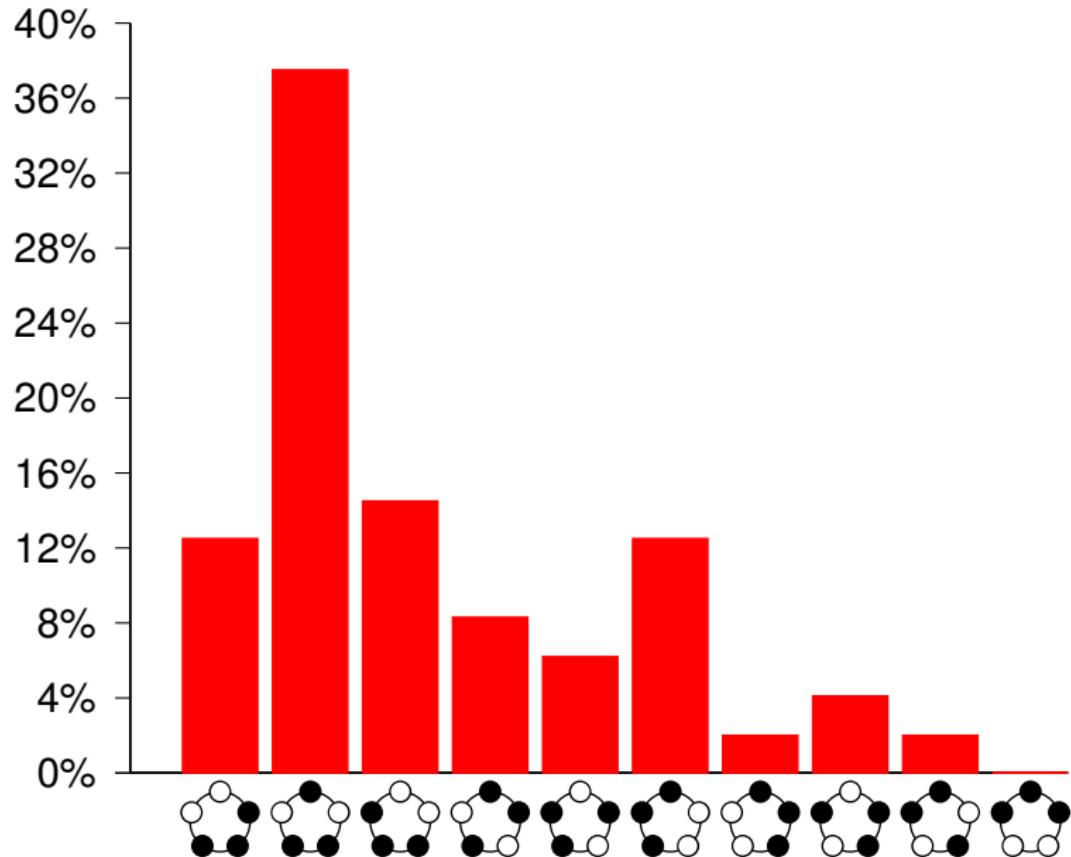
Stationary distribution



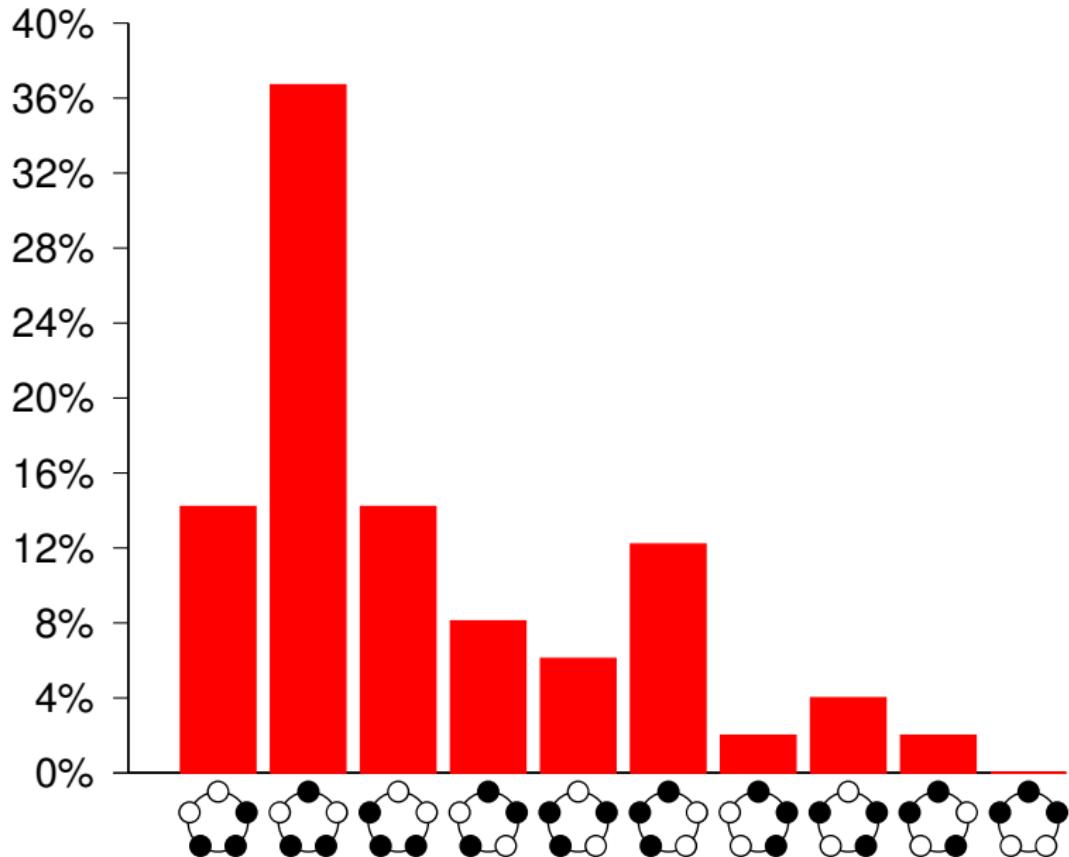
Stationary distribution



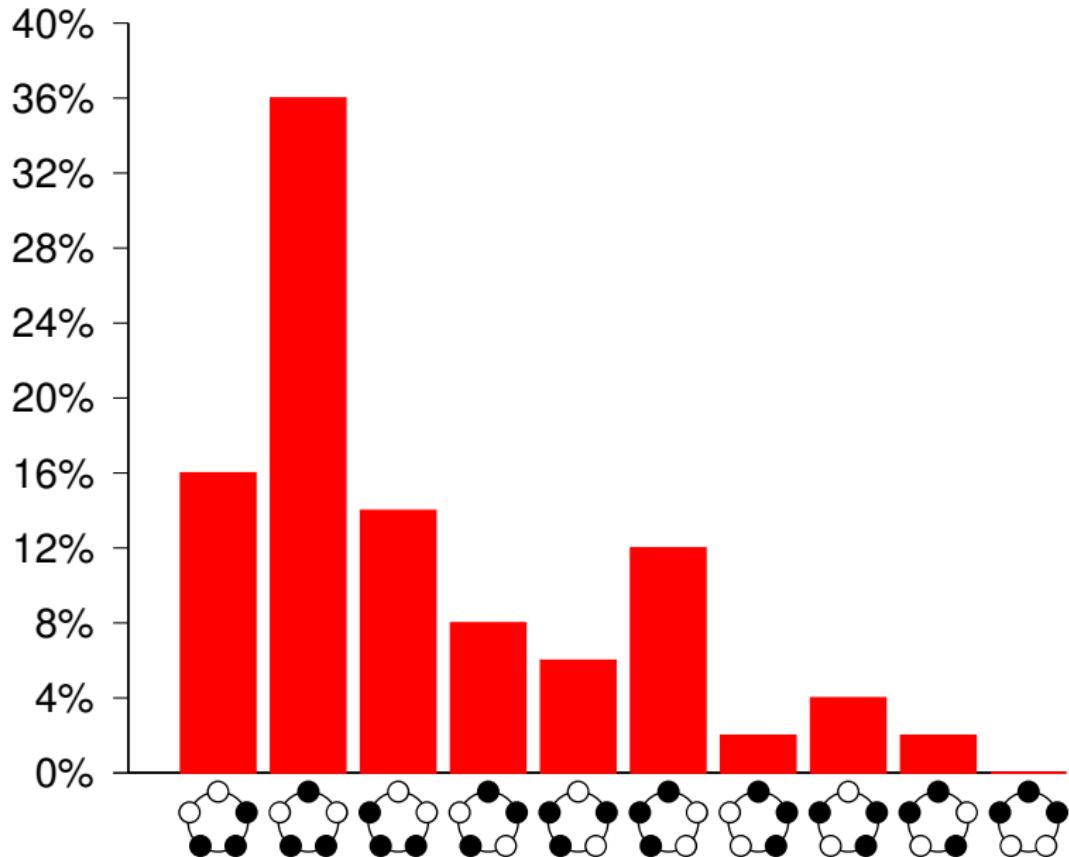
Stationary distribution



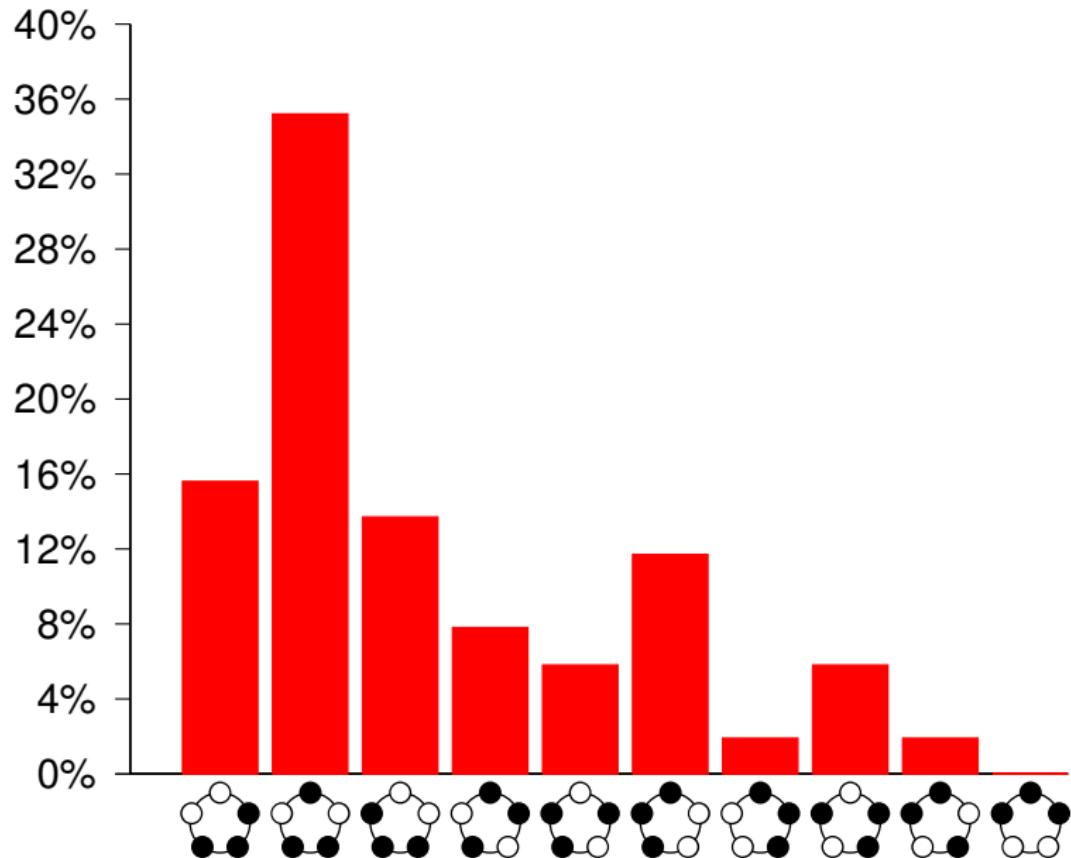
Stationary distribution



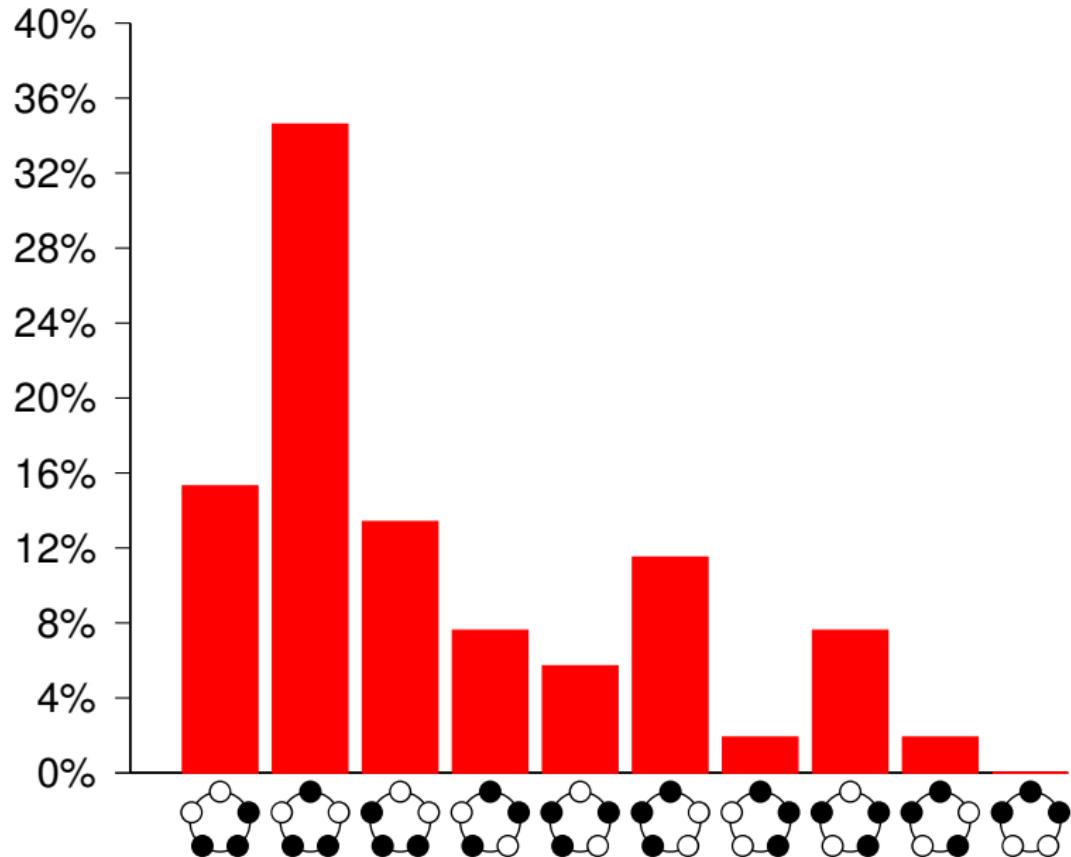
Stationary distribution



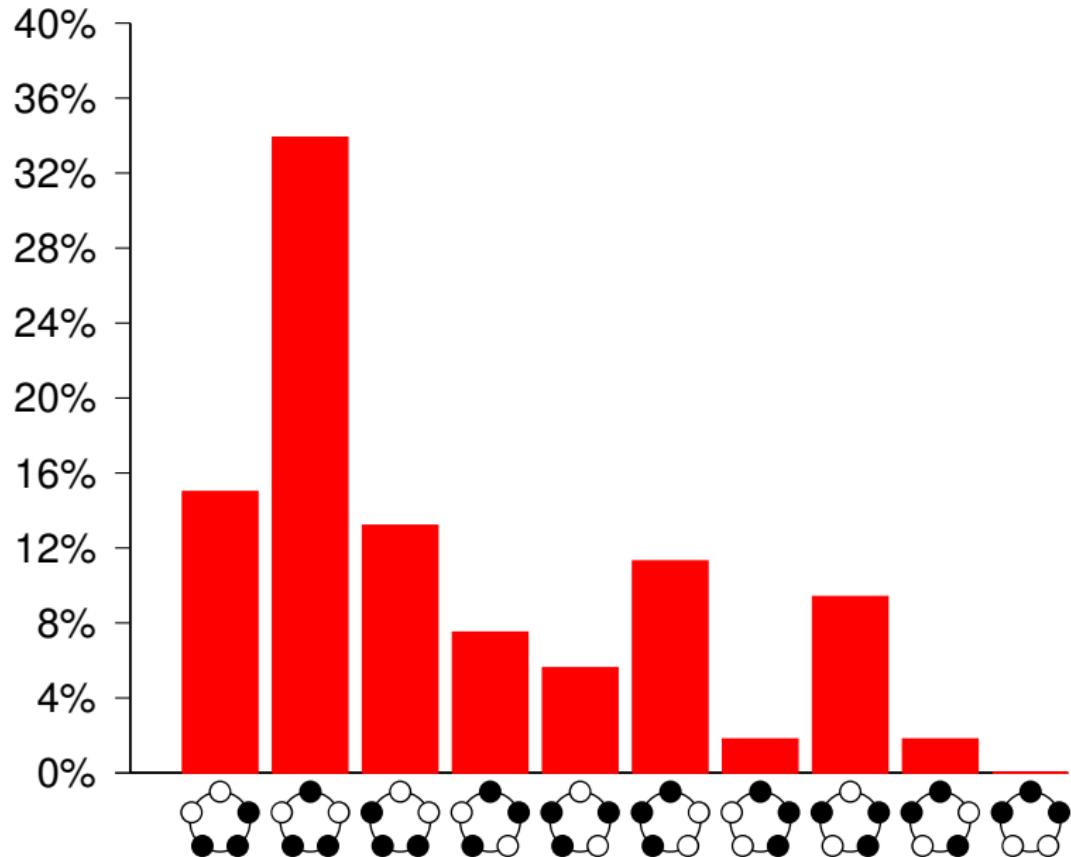
Stationary distribution



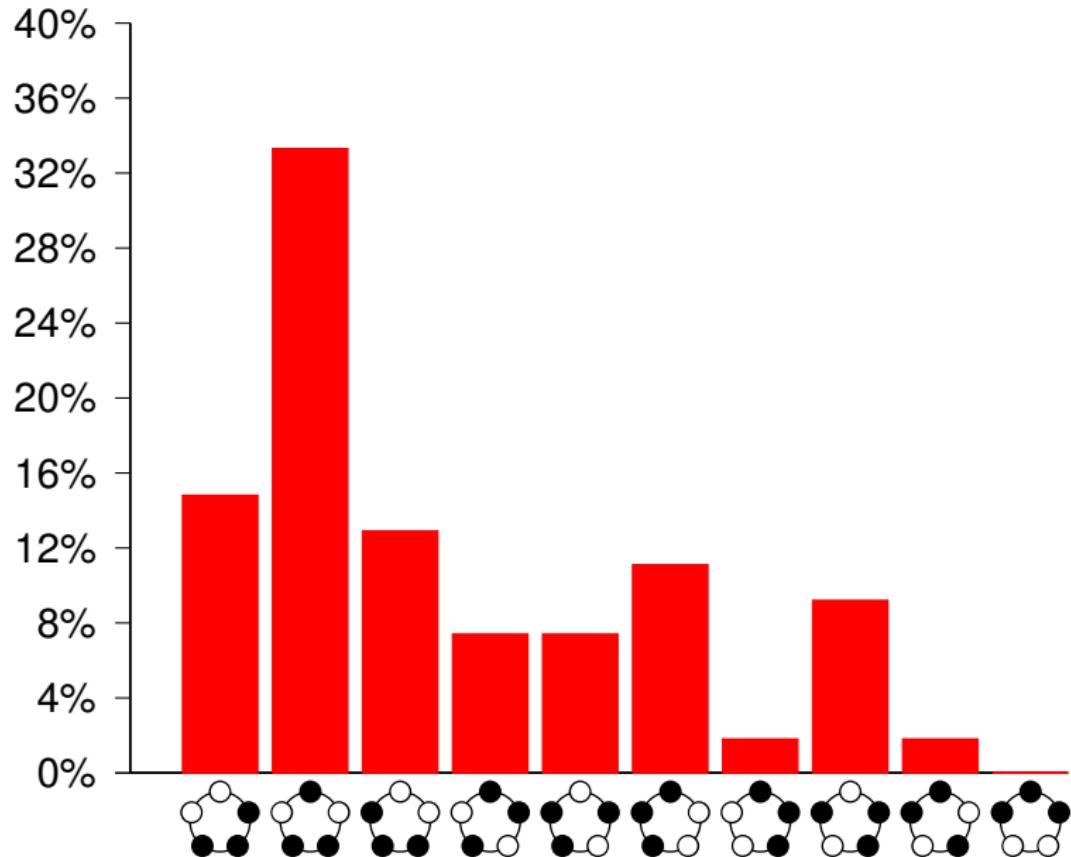
Stationary distribution



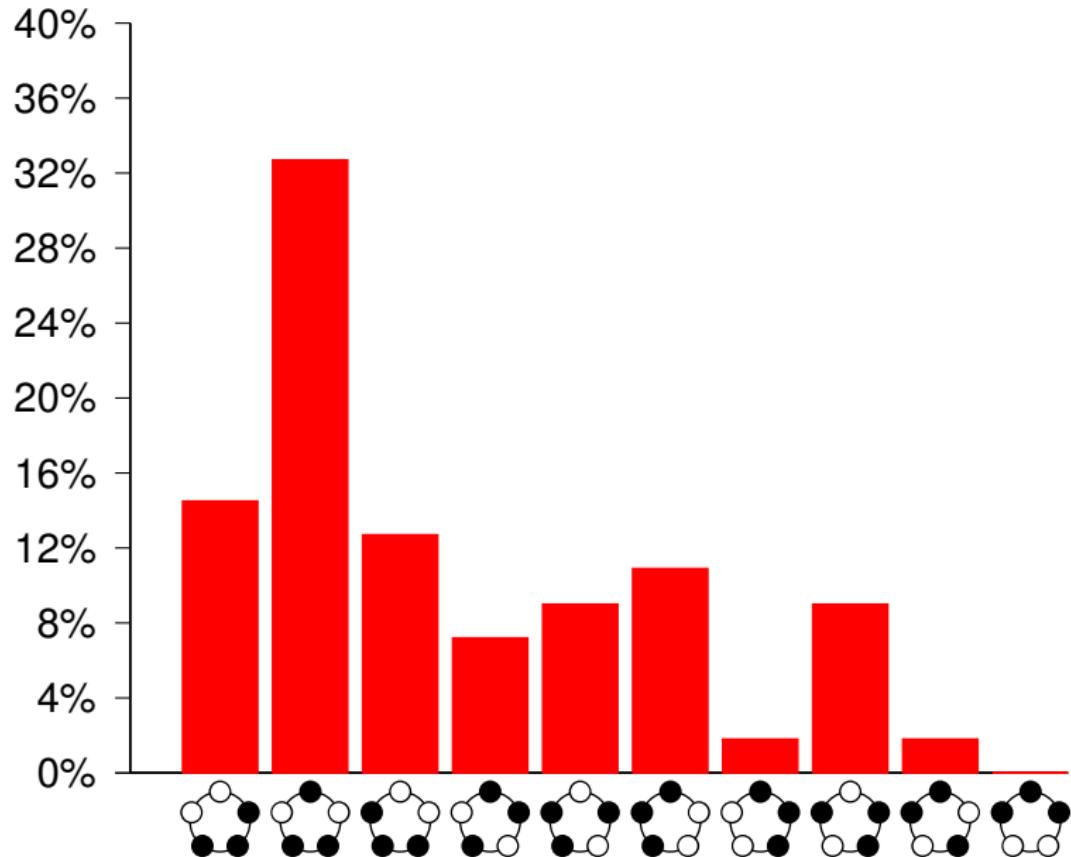
Stationary distribution



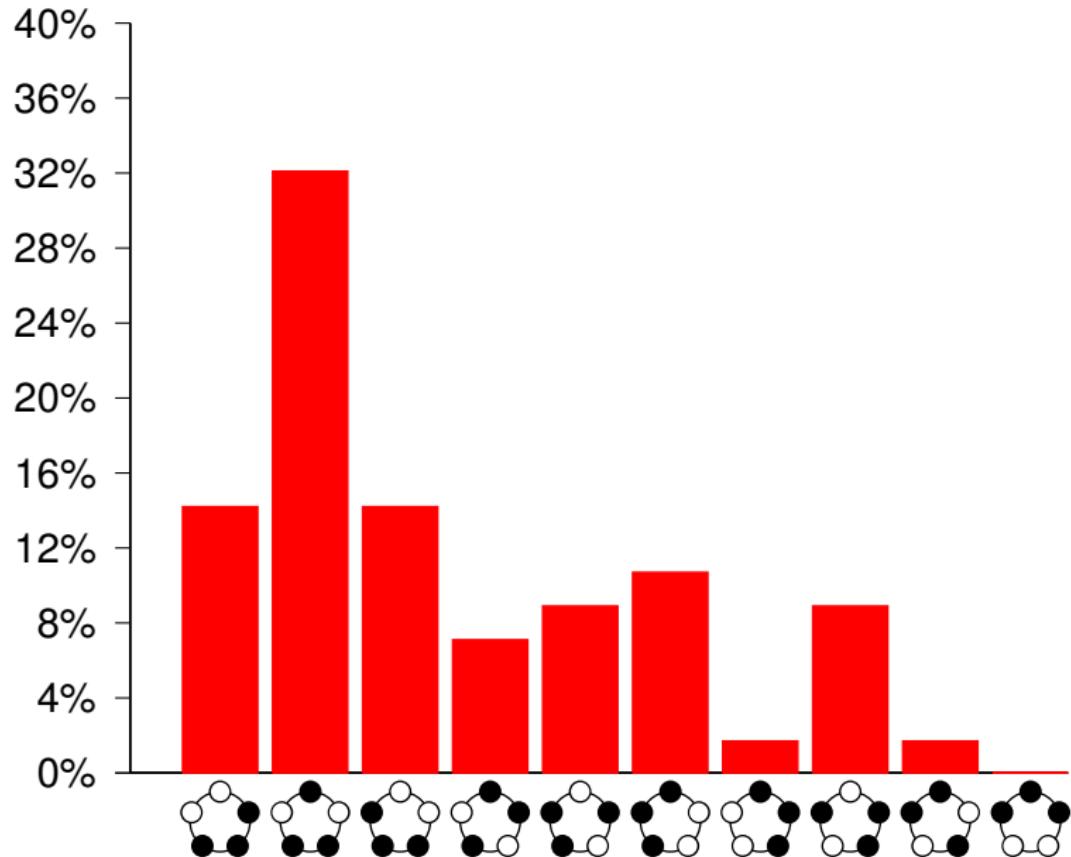
Stationary distribution



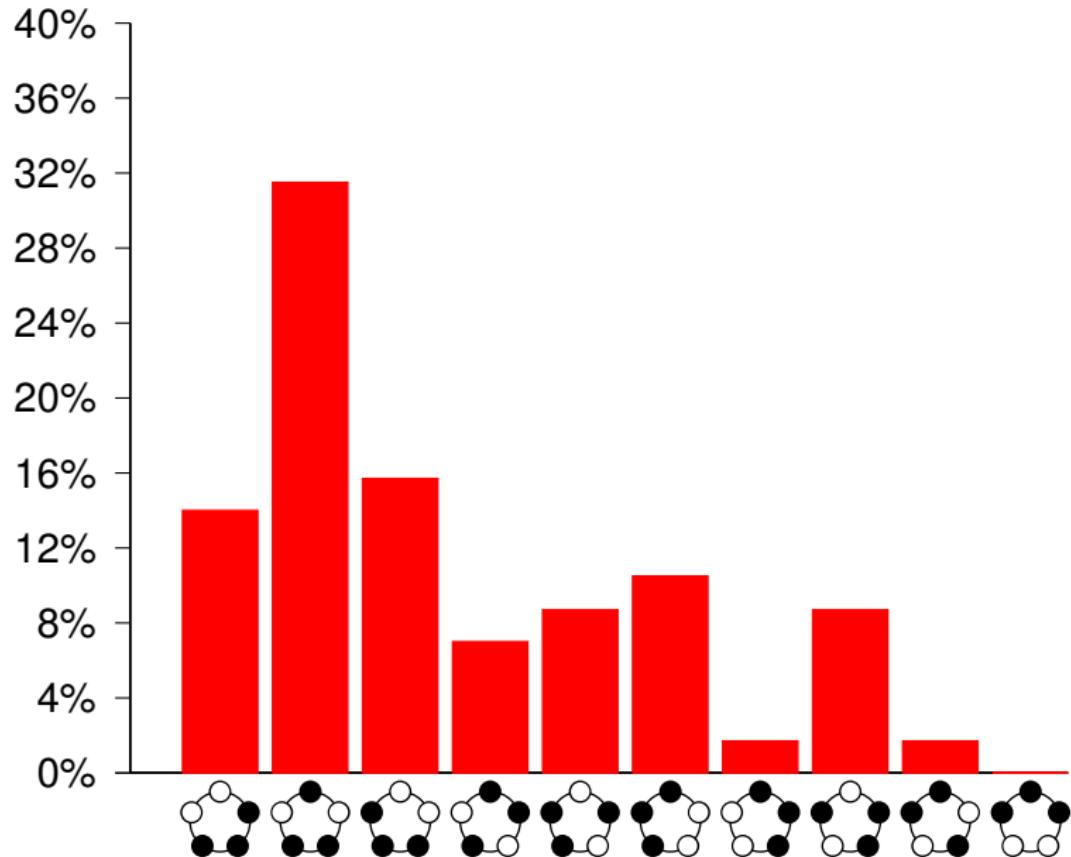
Stationary distribution



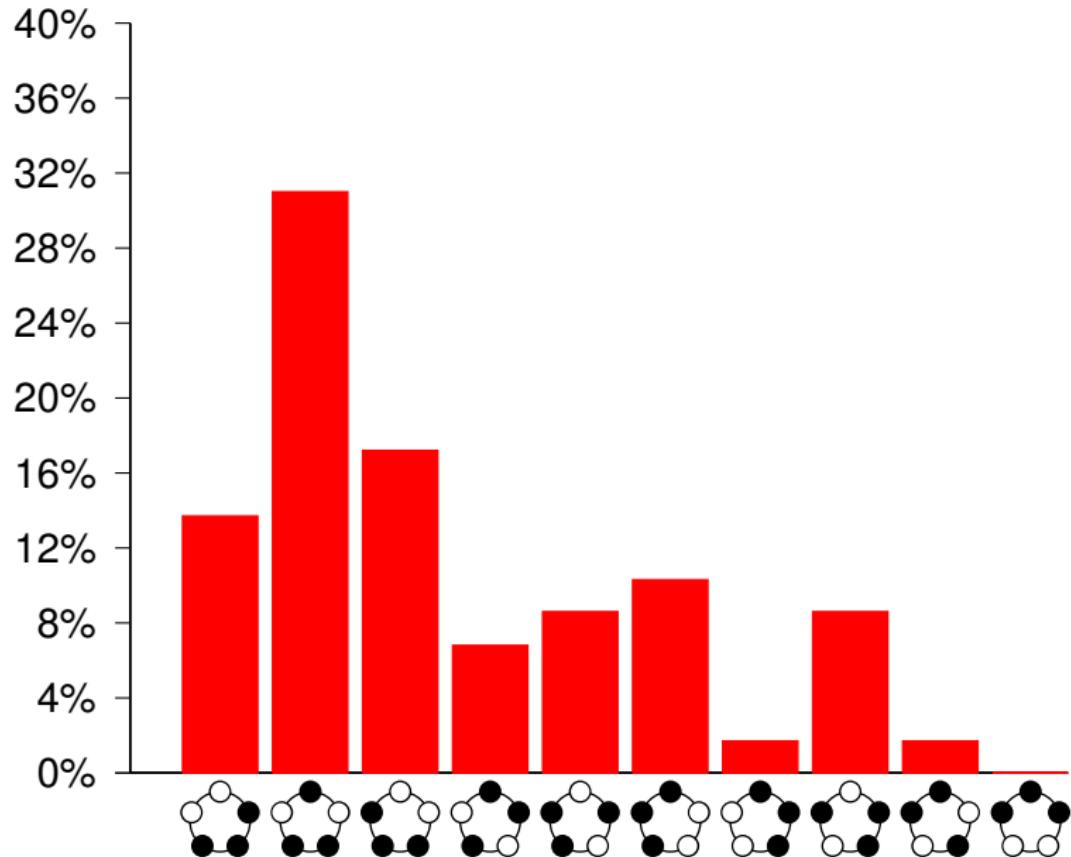
Stationary distribution



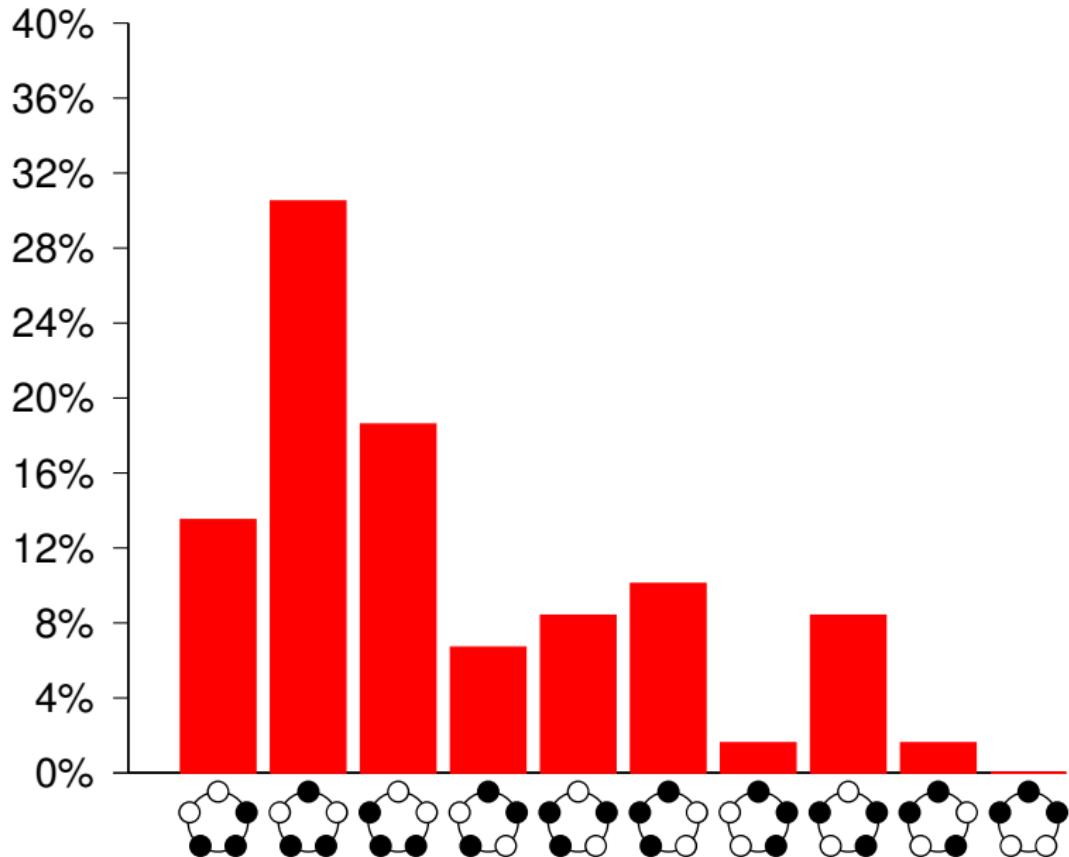
Stationary distribution



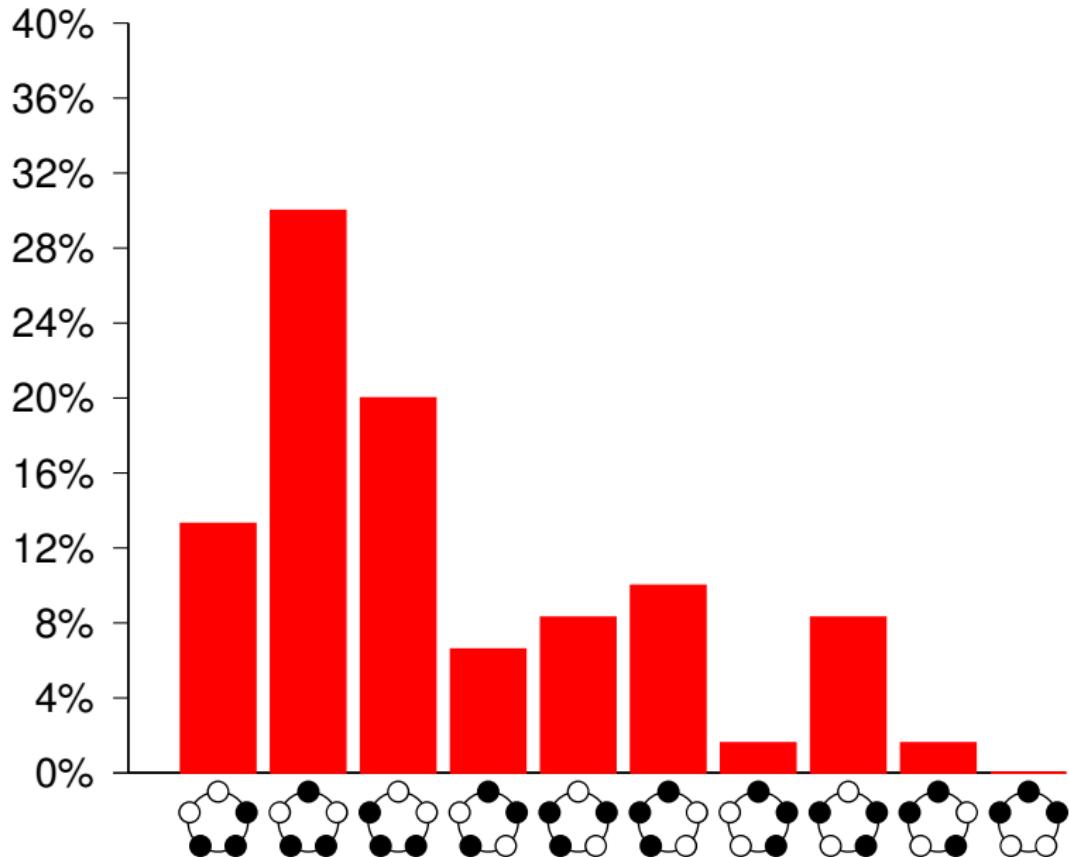
Stationary distribution



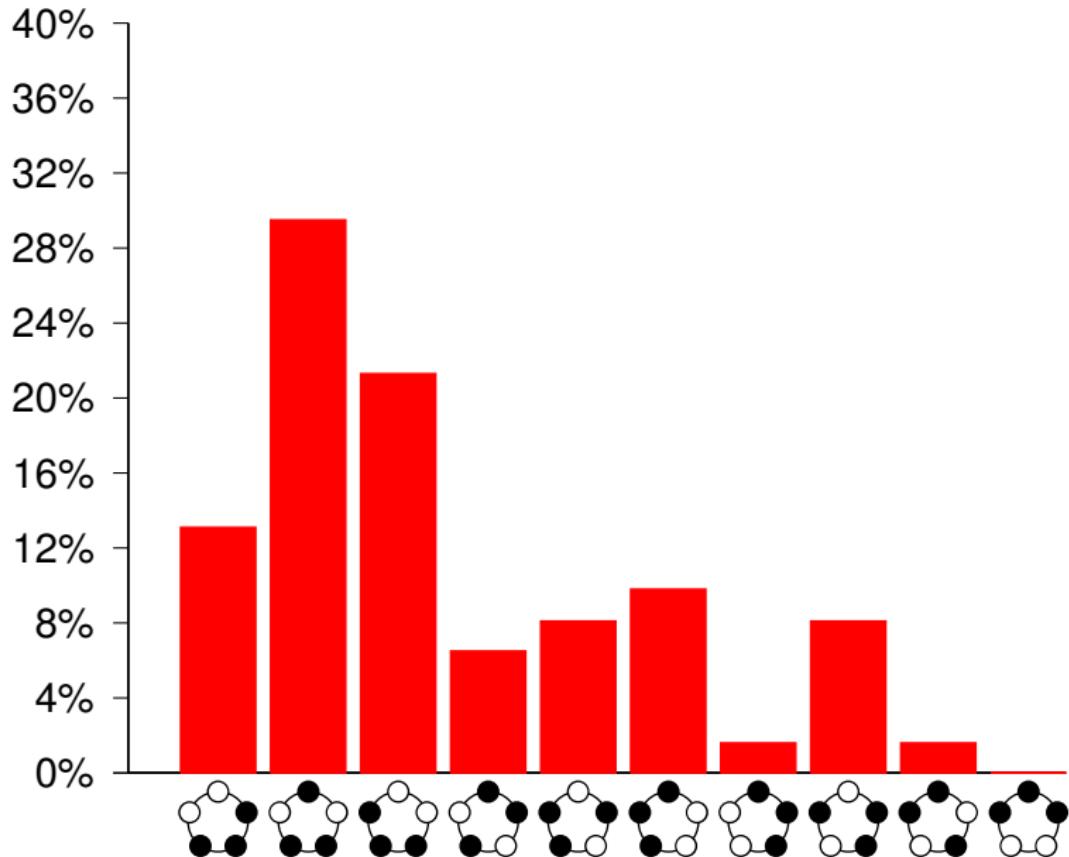
Stationary distribution



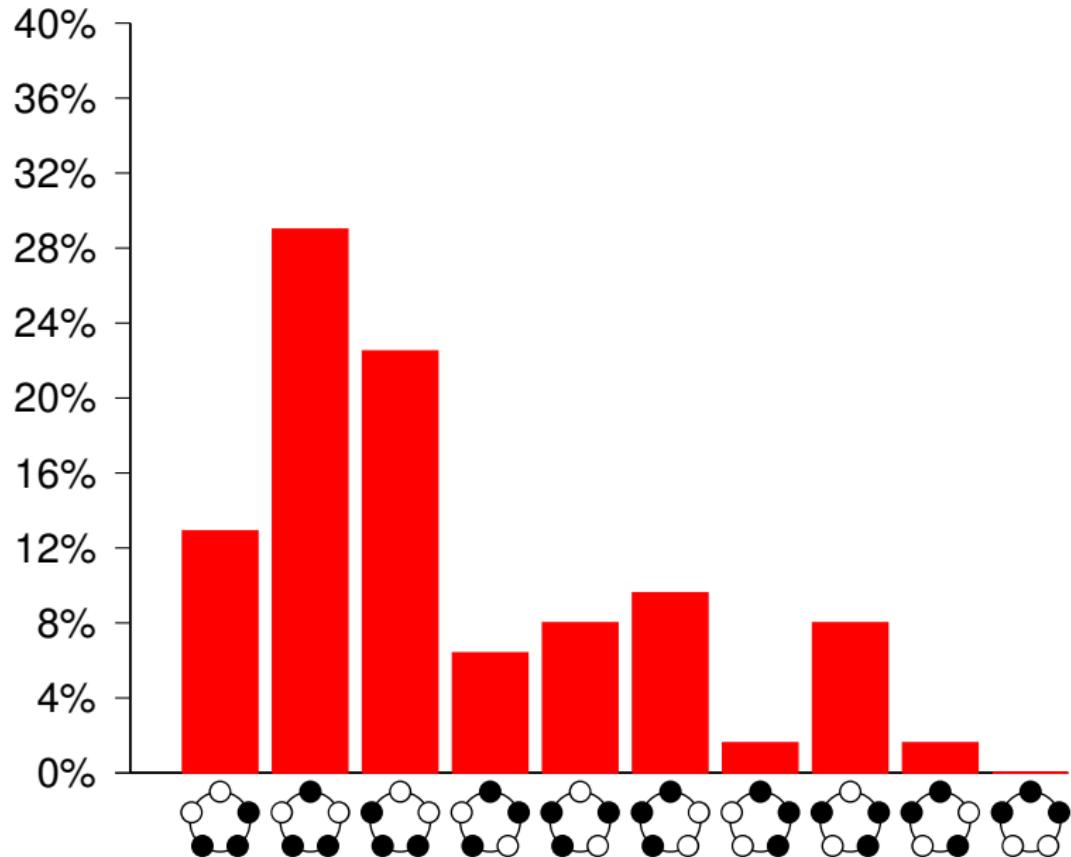
Stationary distribution



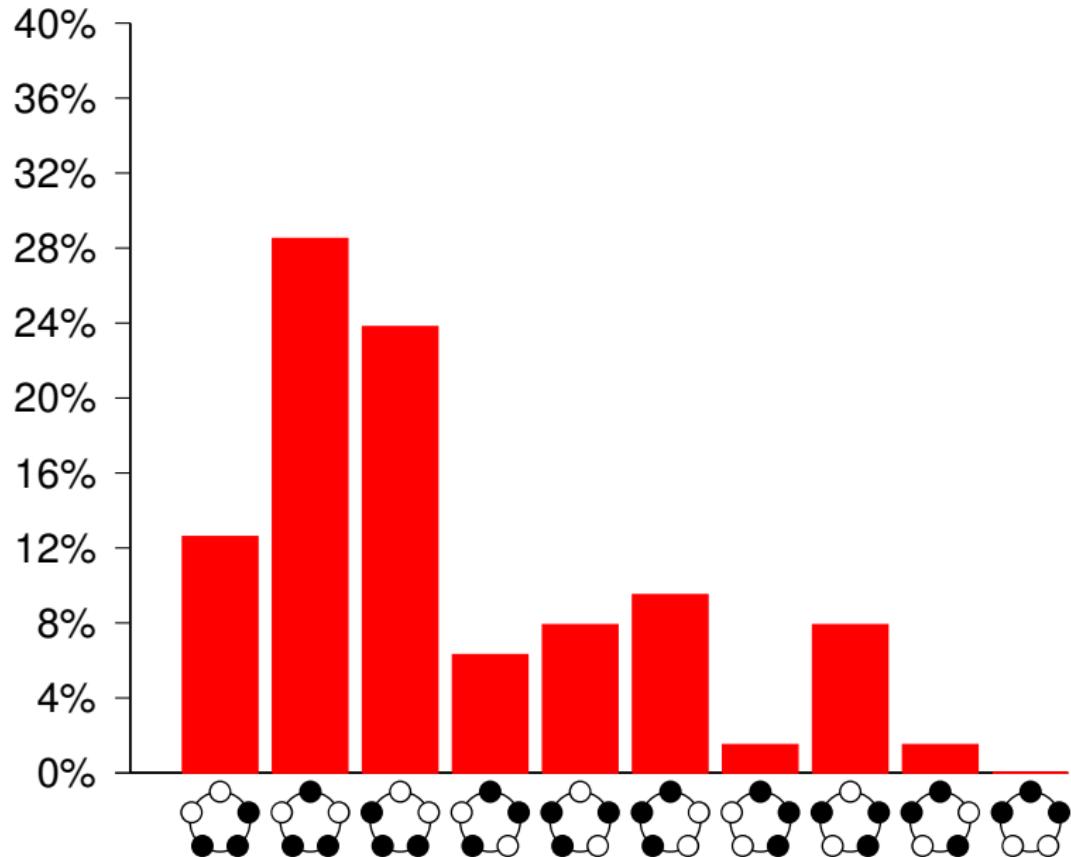
Stationary distribution



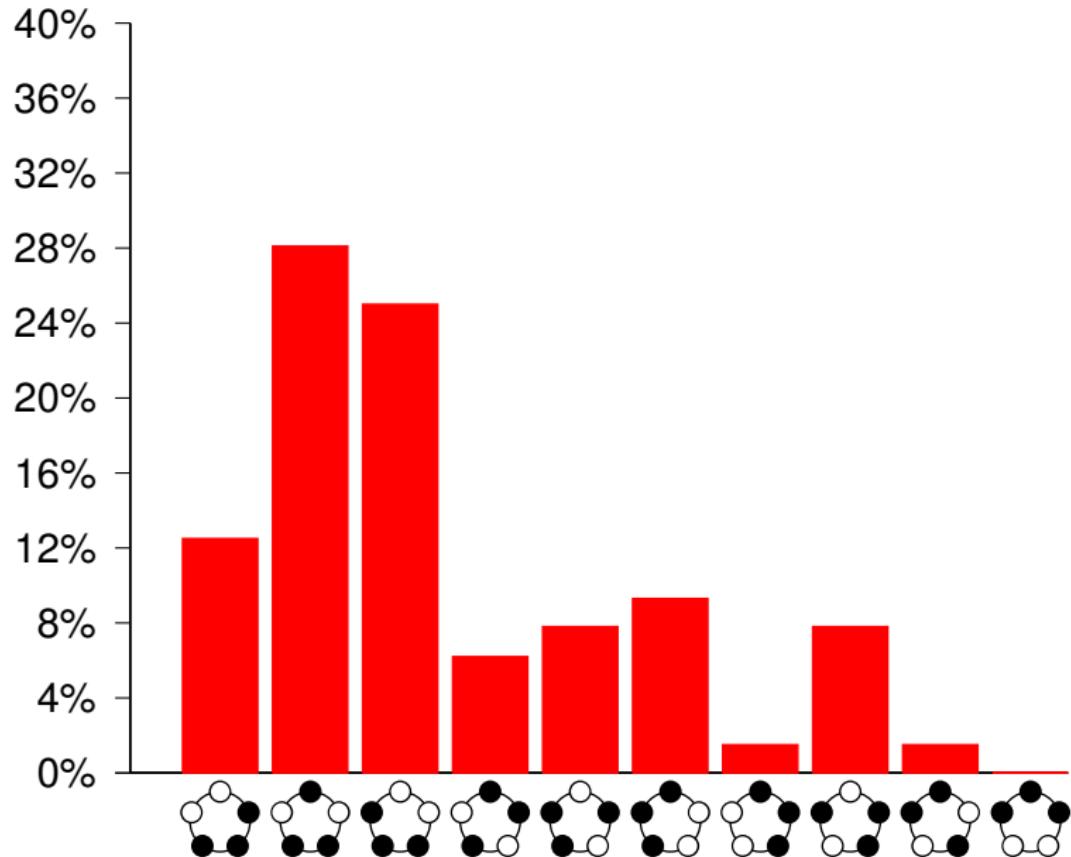
Stationary distribution



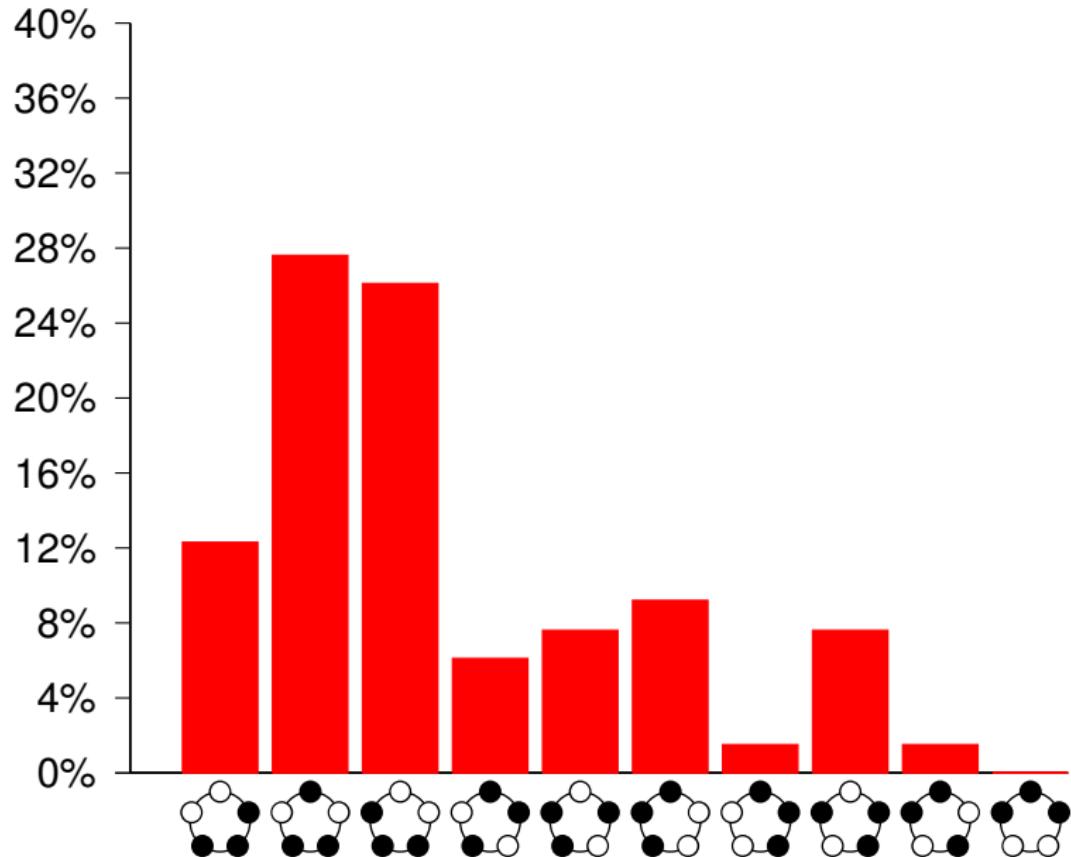
Stationary distribution



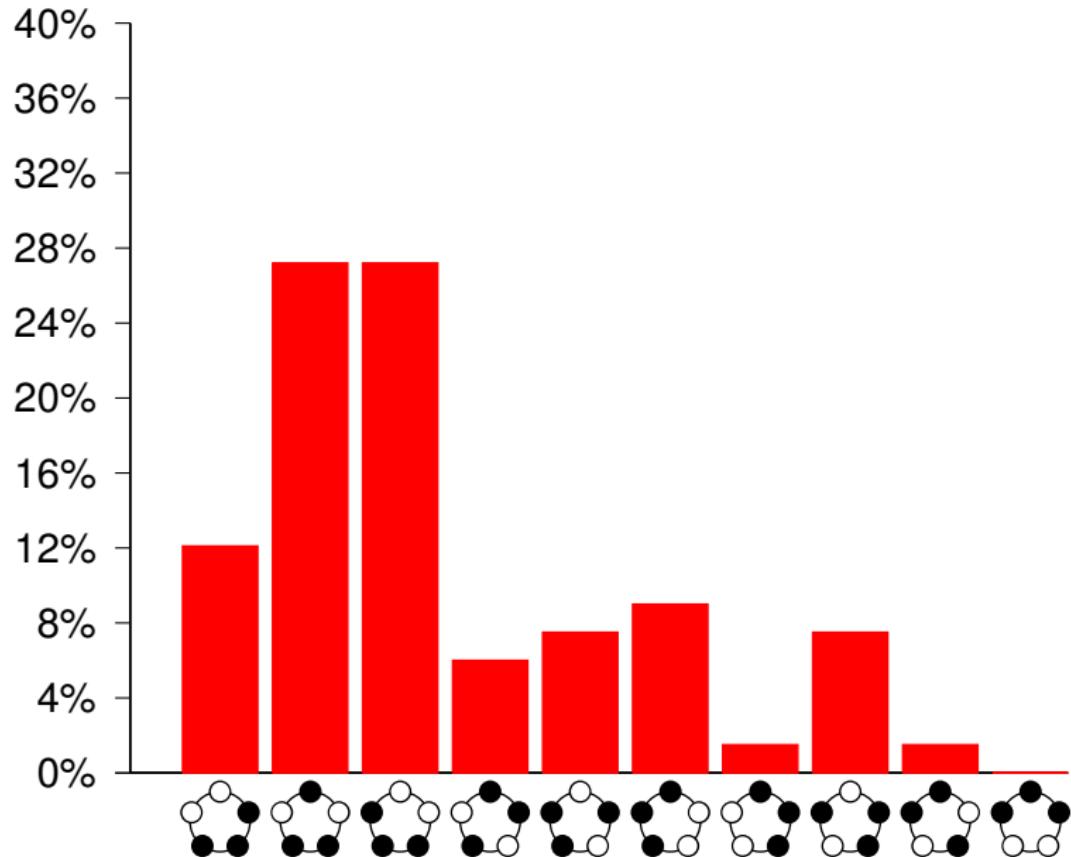
Stationary distribution



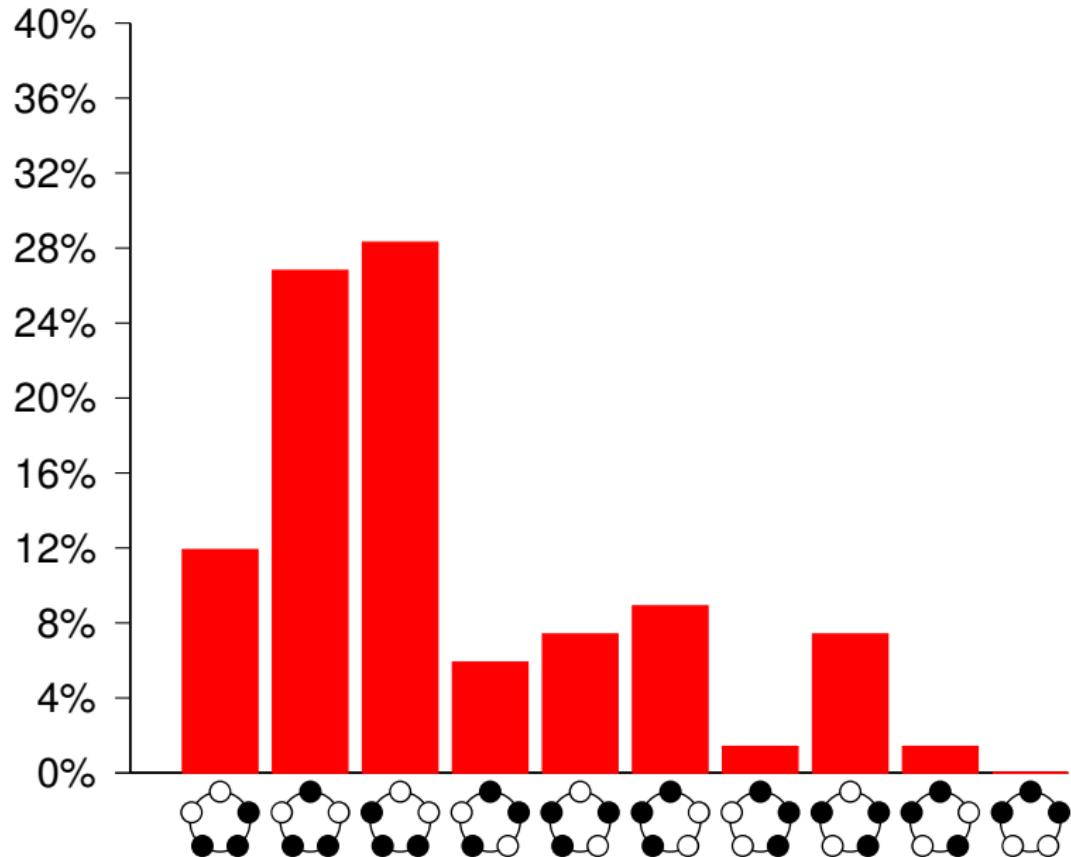
Stationary distribution



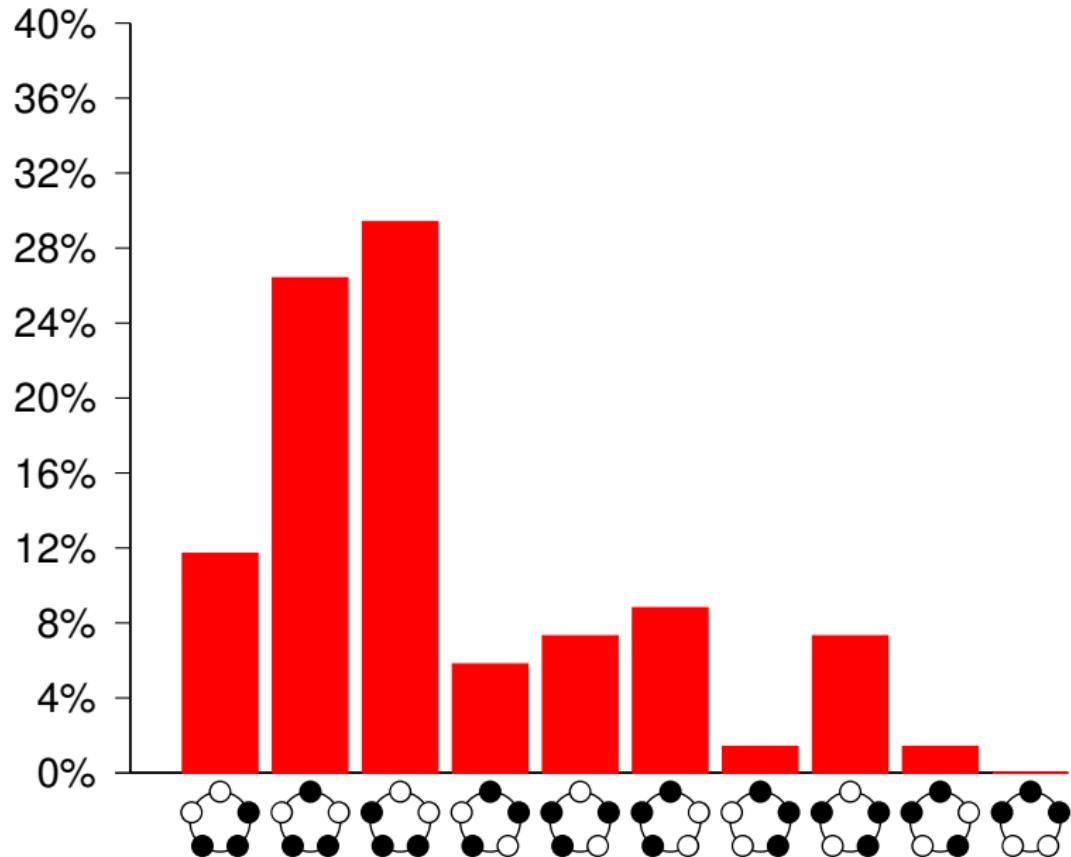
Stationary distribution



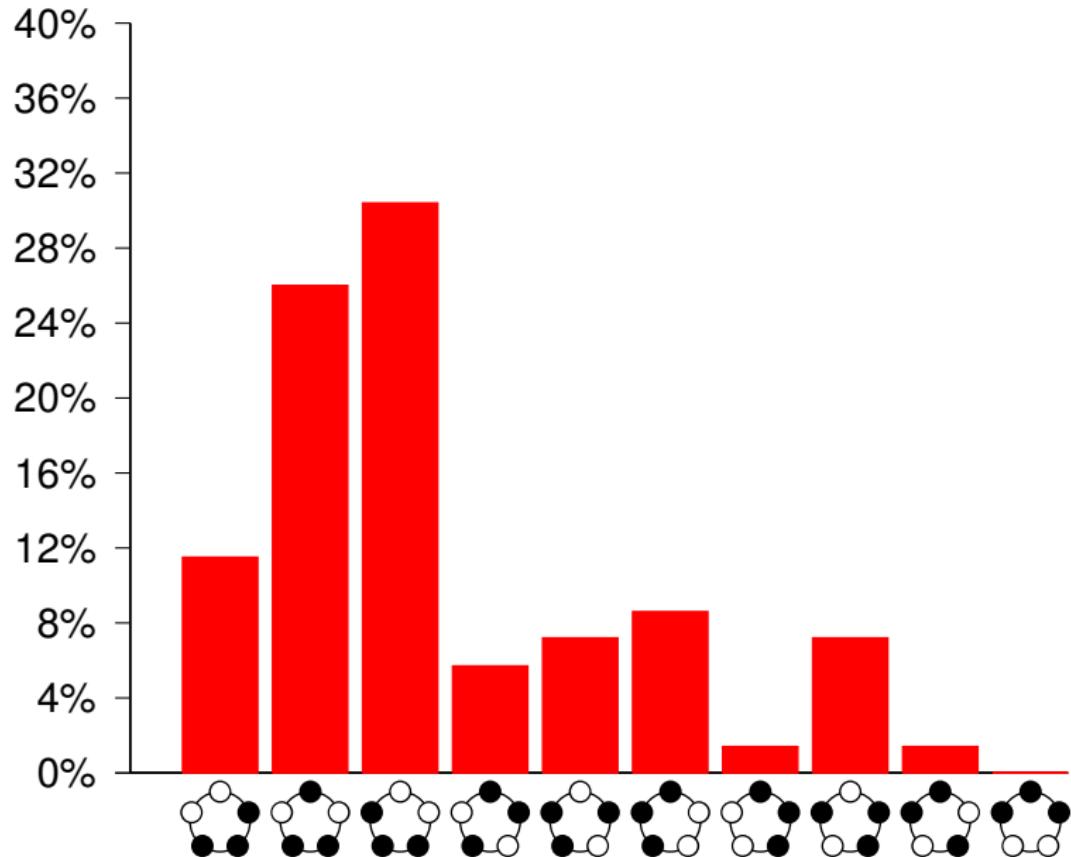
Stationary distribution



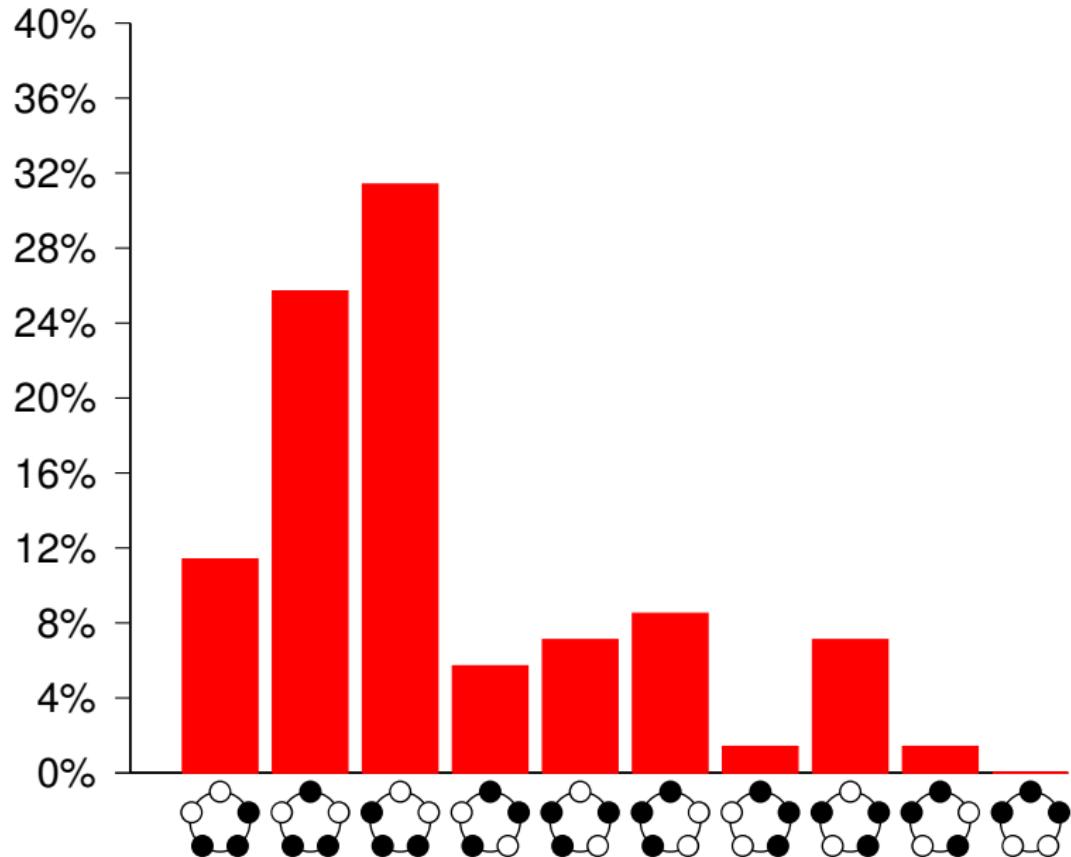
Stationary distribution



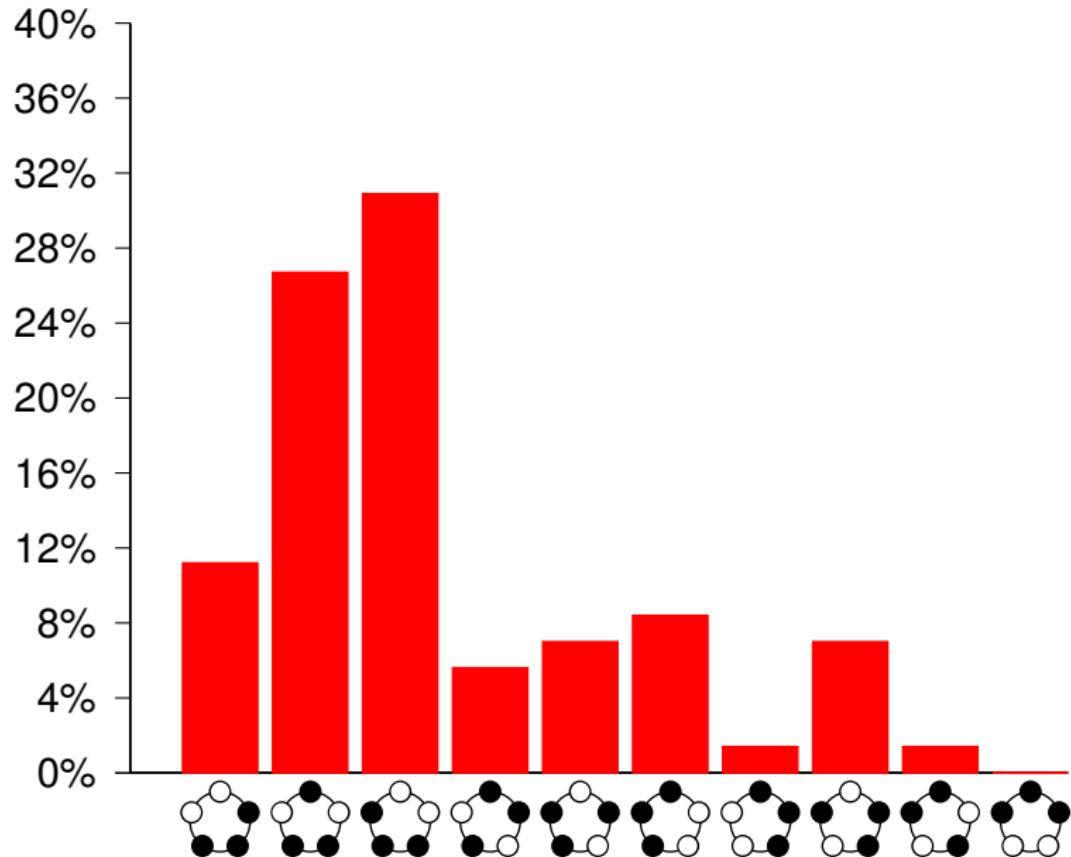
Stationary distribution



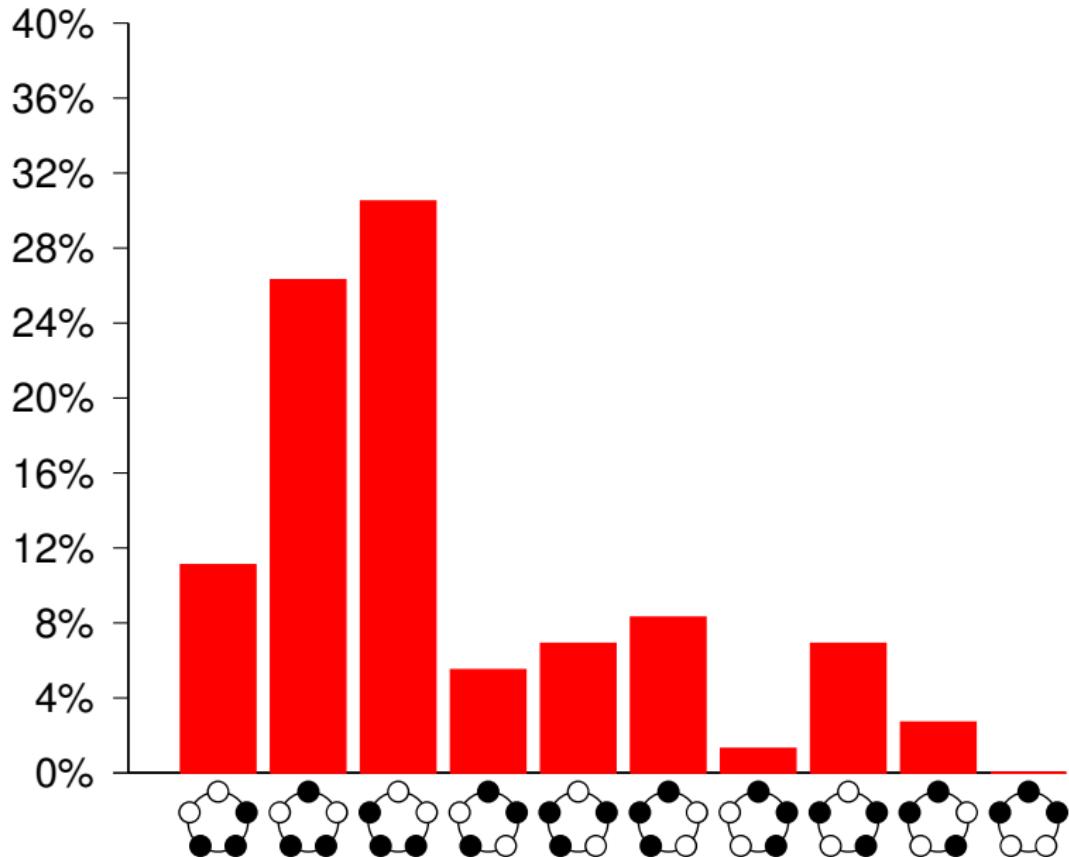
Stationary distribution



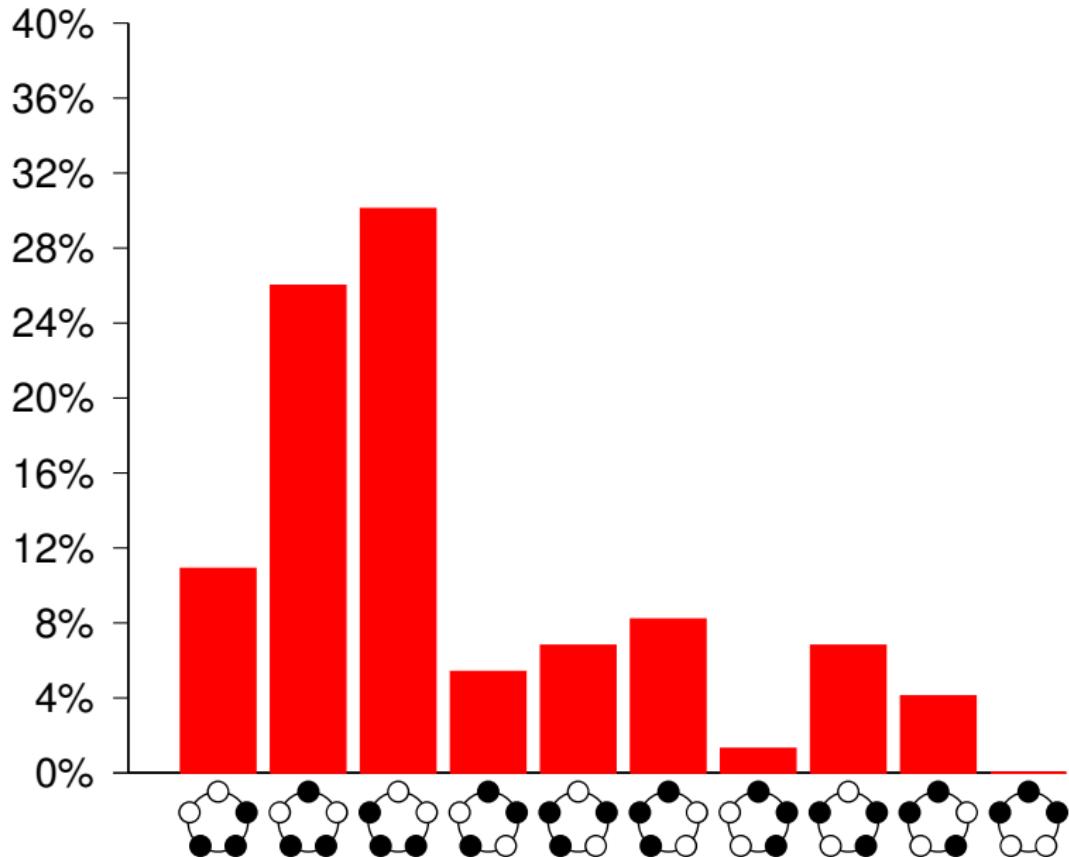
Stationary distribution



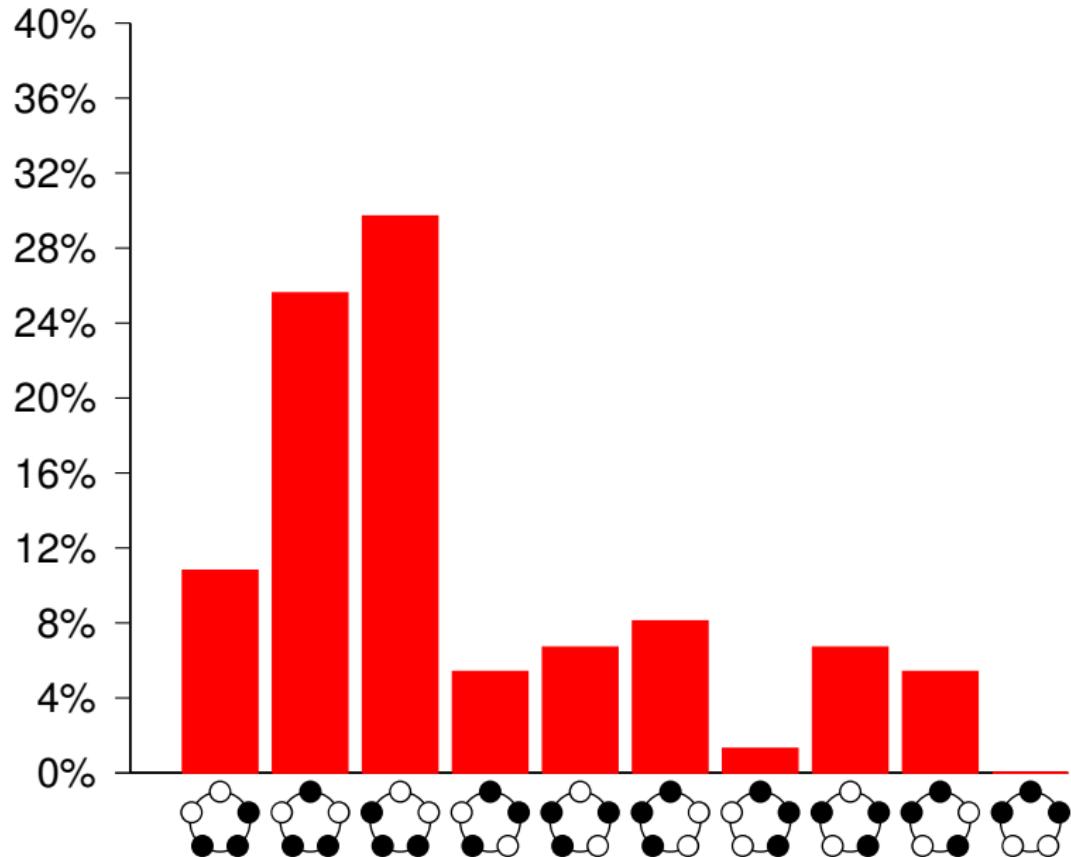
Stationary distribution



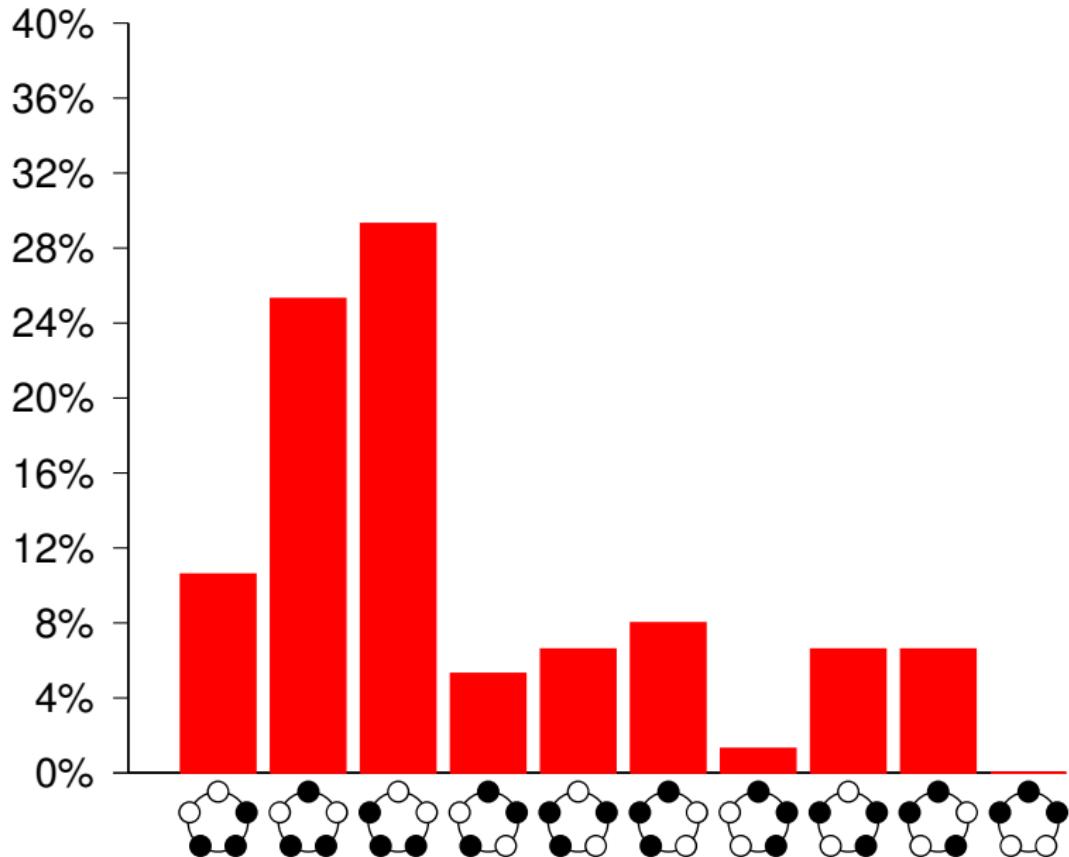
Stationary distribution



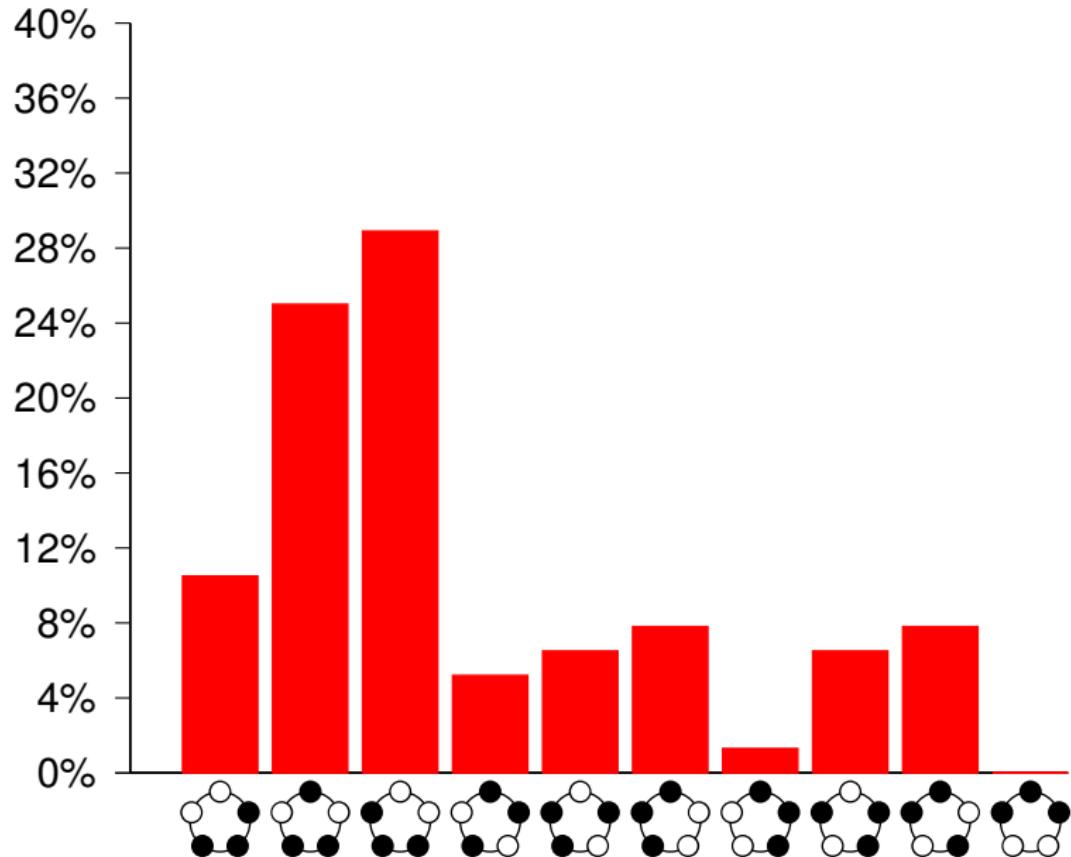
Stationary distribution



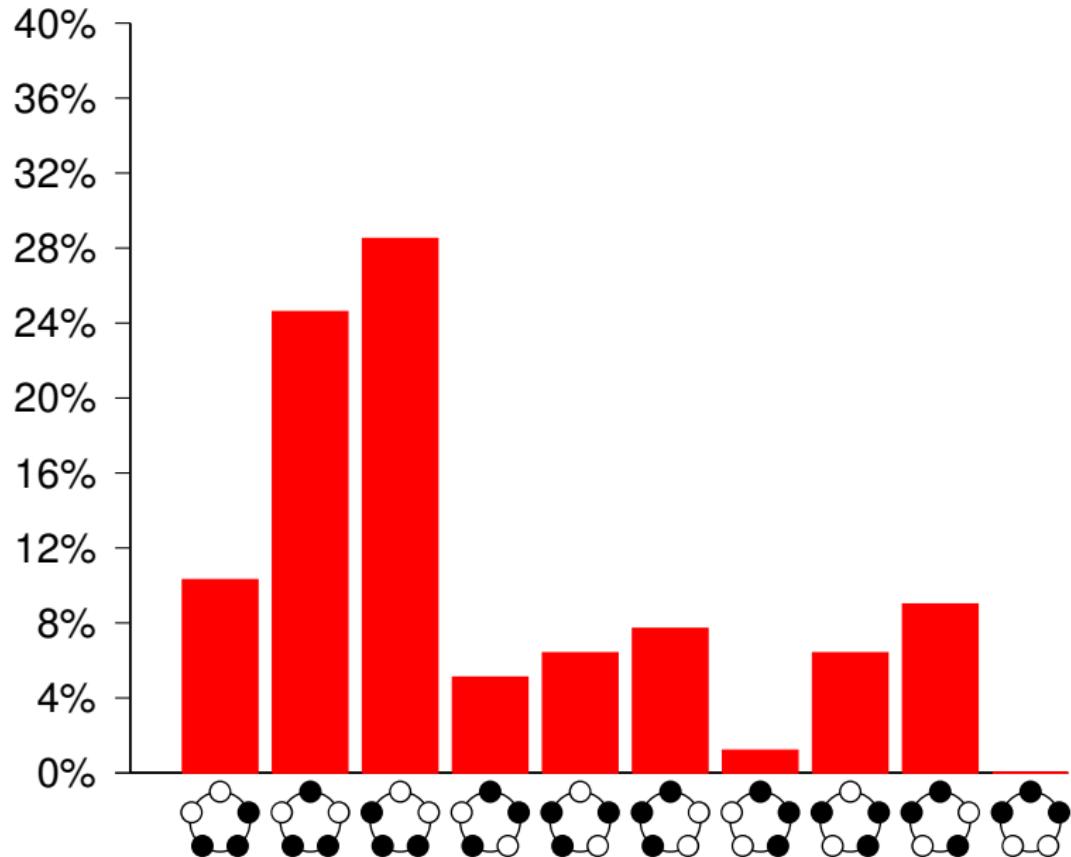
Stationary distribution



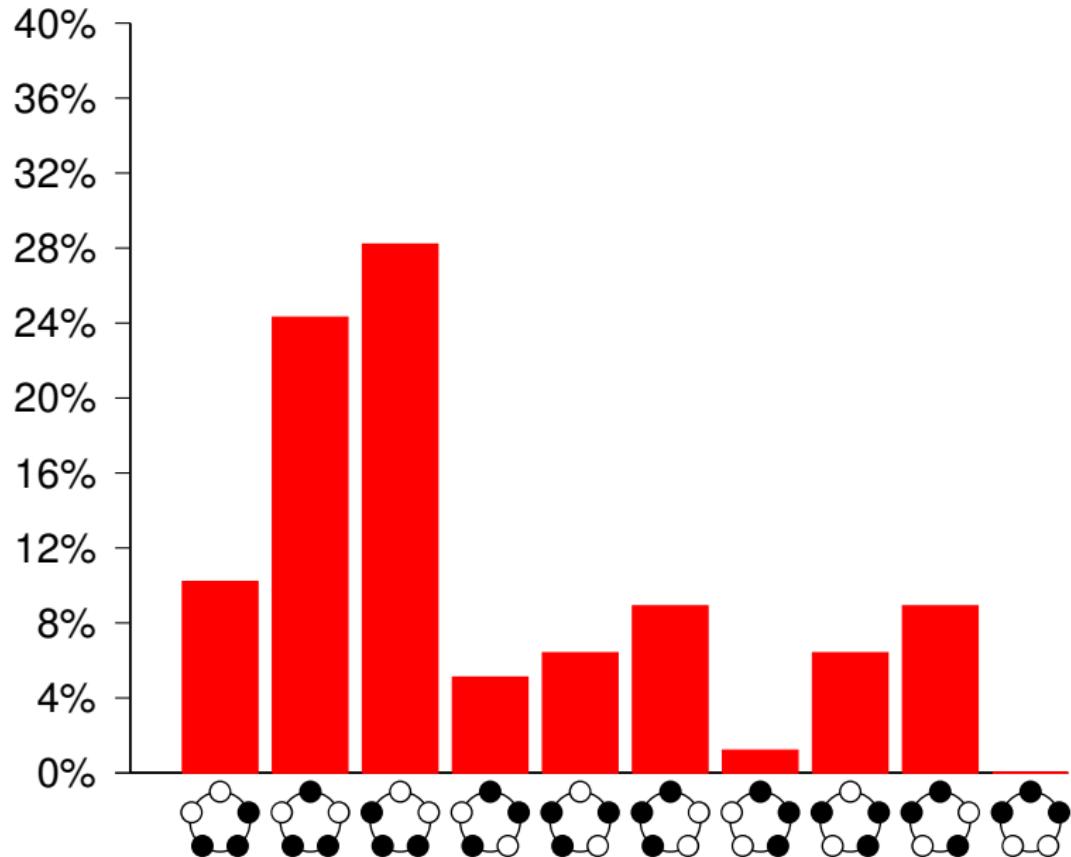
Stationary distribution



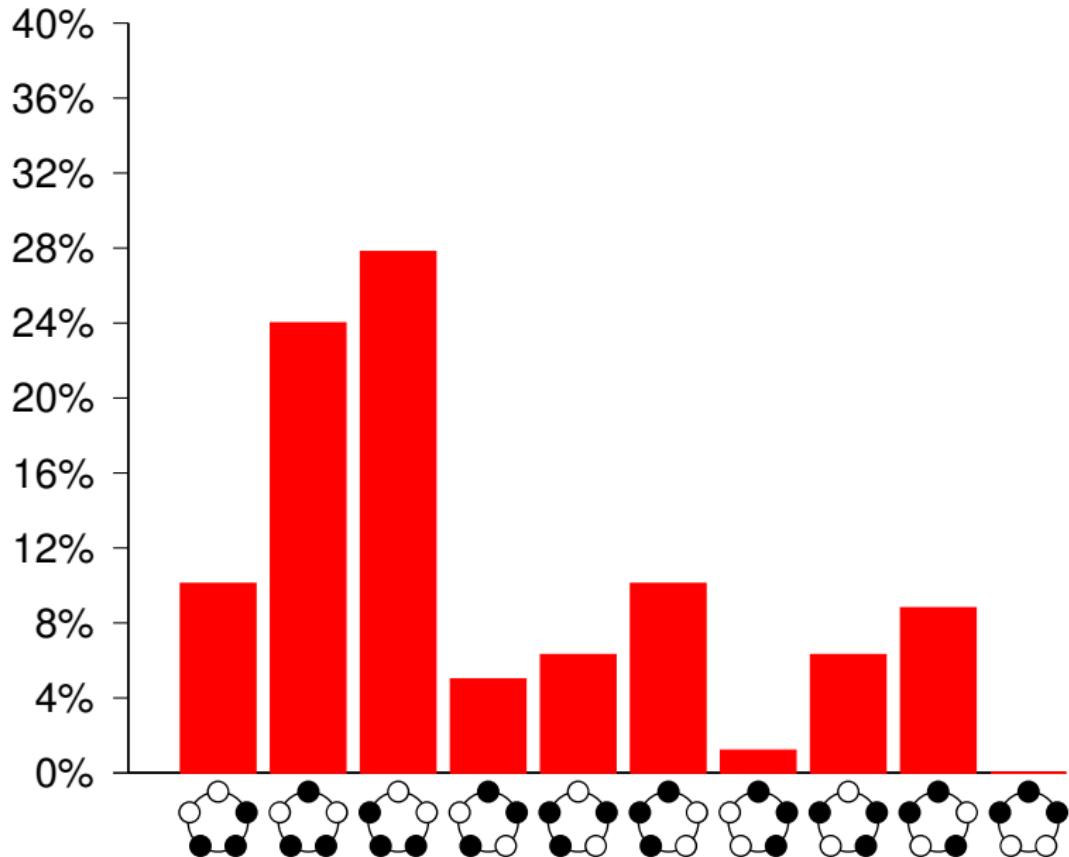
Stationary distribution



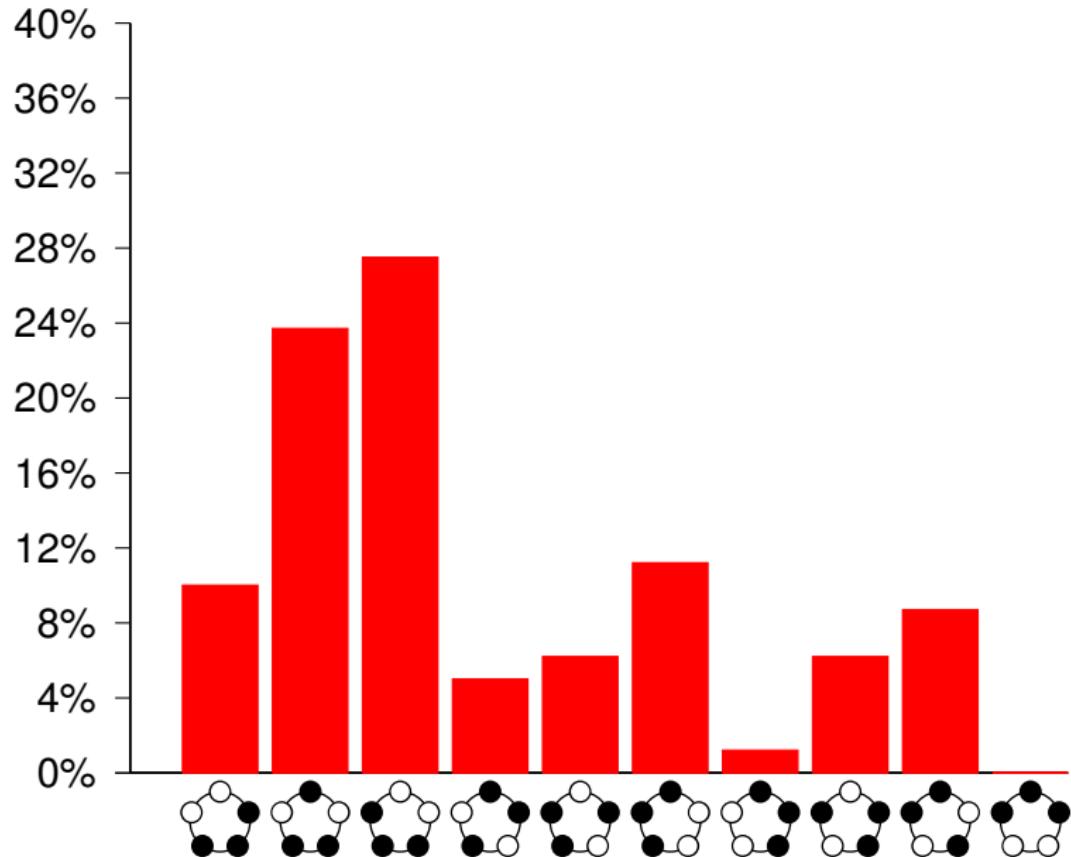
Stationary distribution



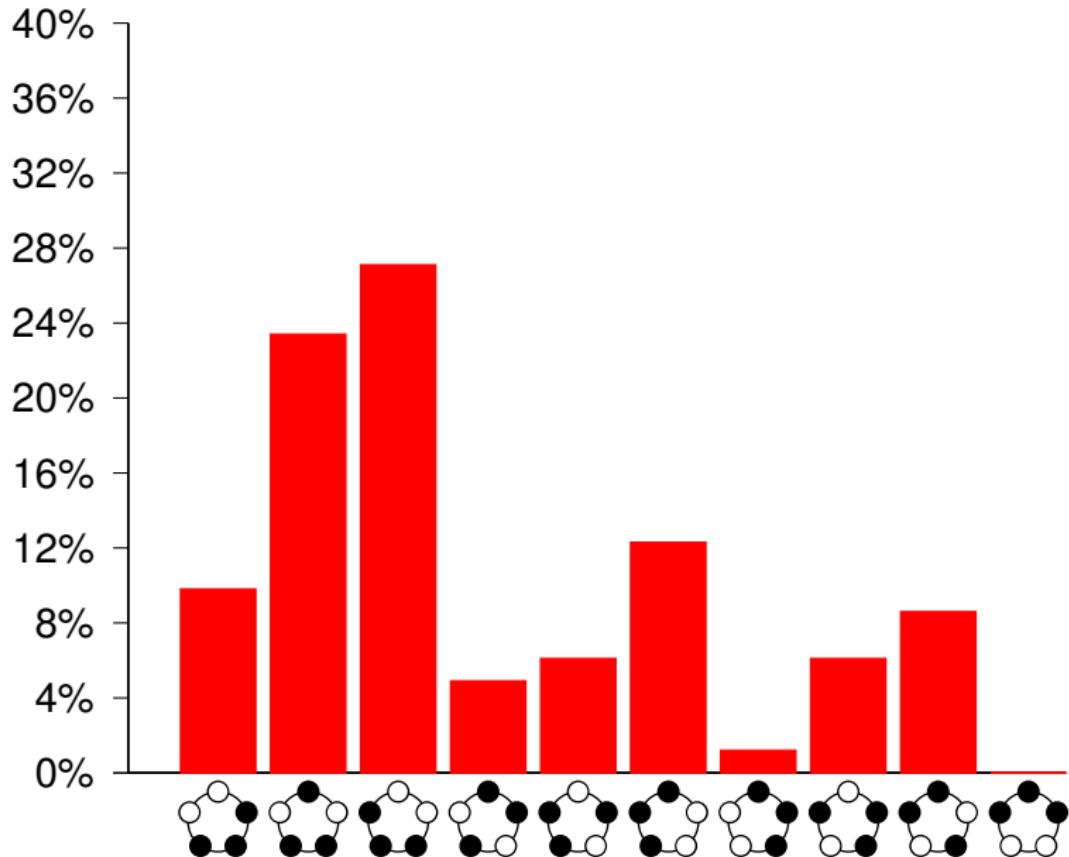
Stationary distribution



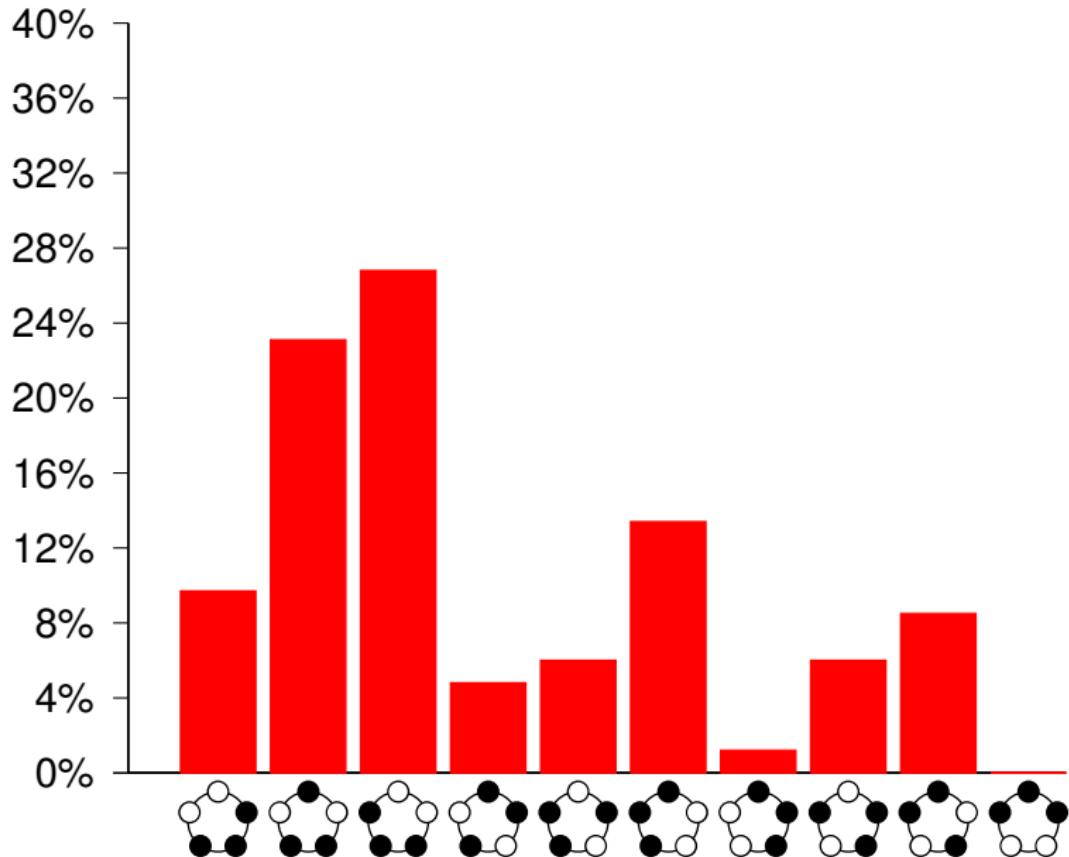
Stationary distribution



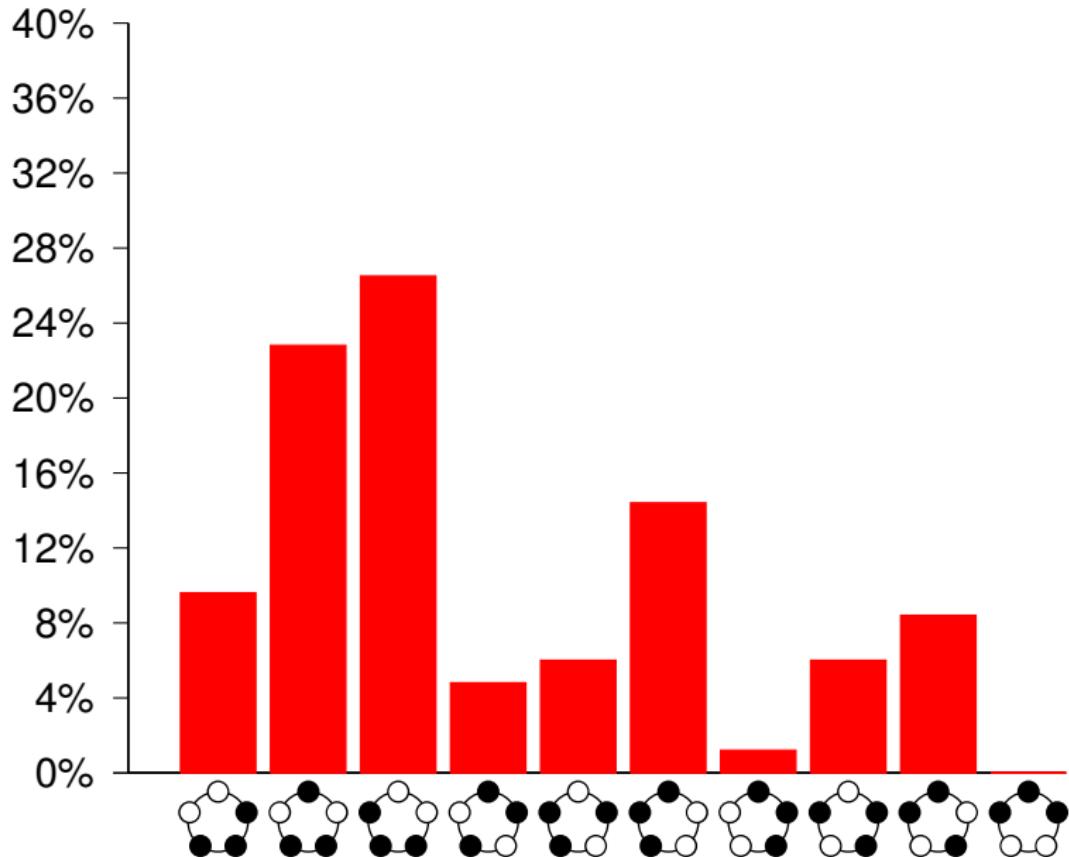
Stationary distribution



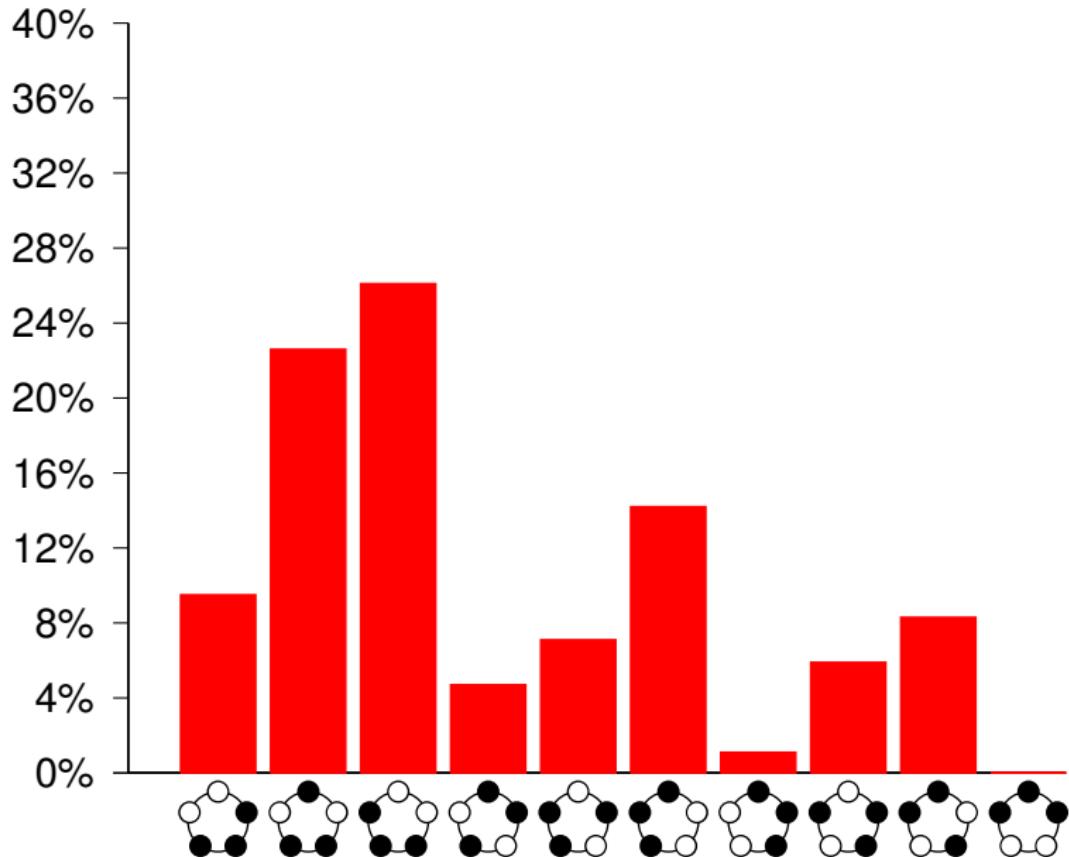
Stationary distribution



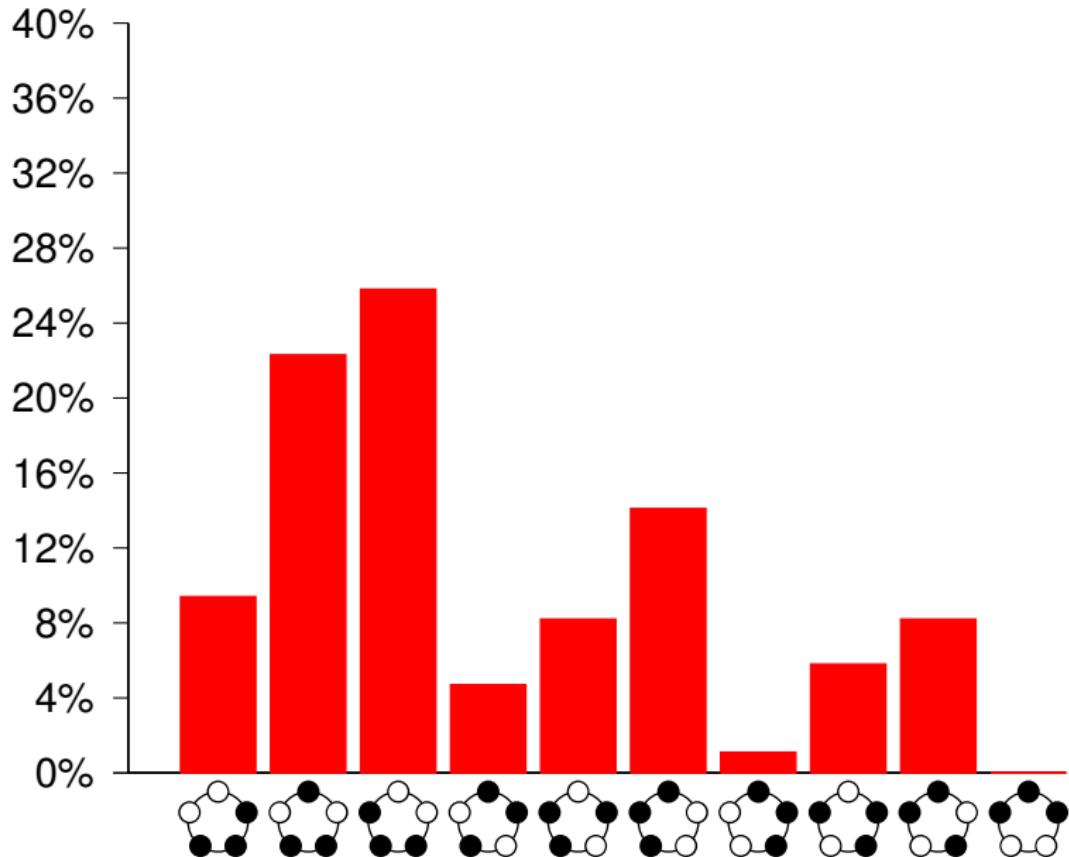
Stationary distribution



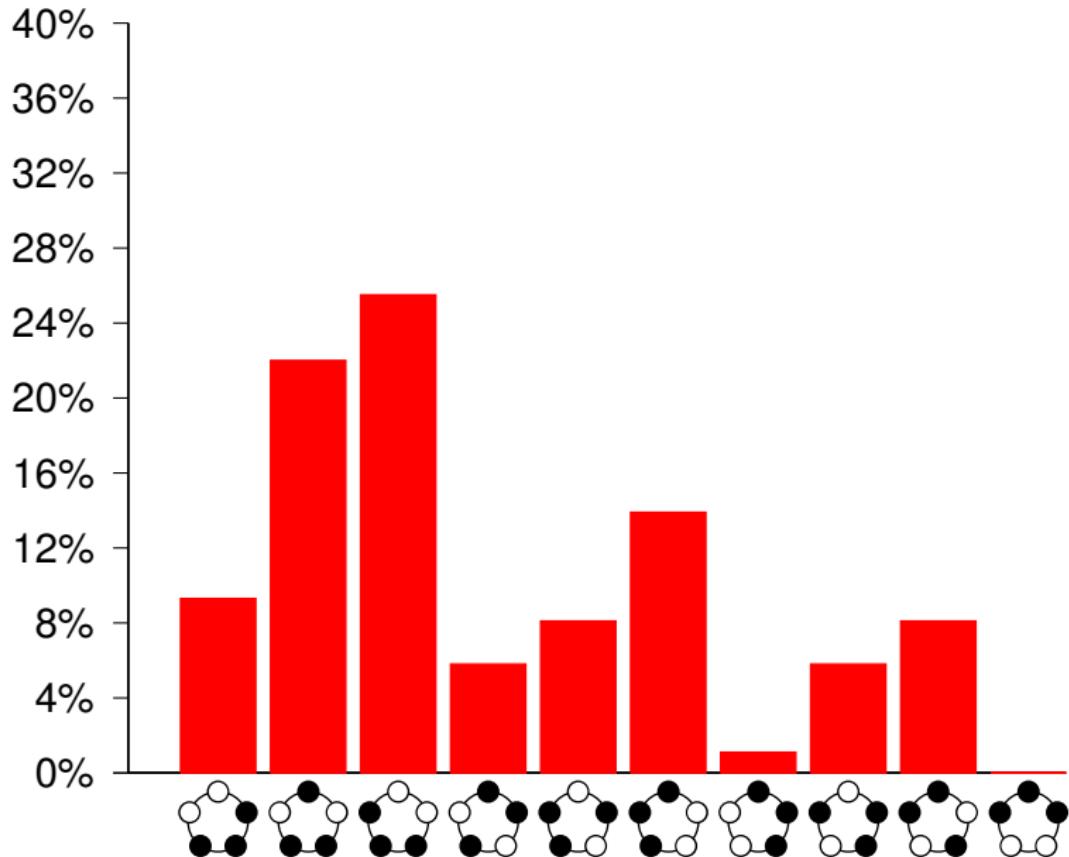
Stationary distribution



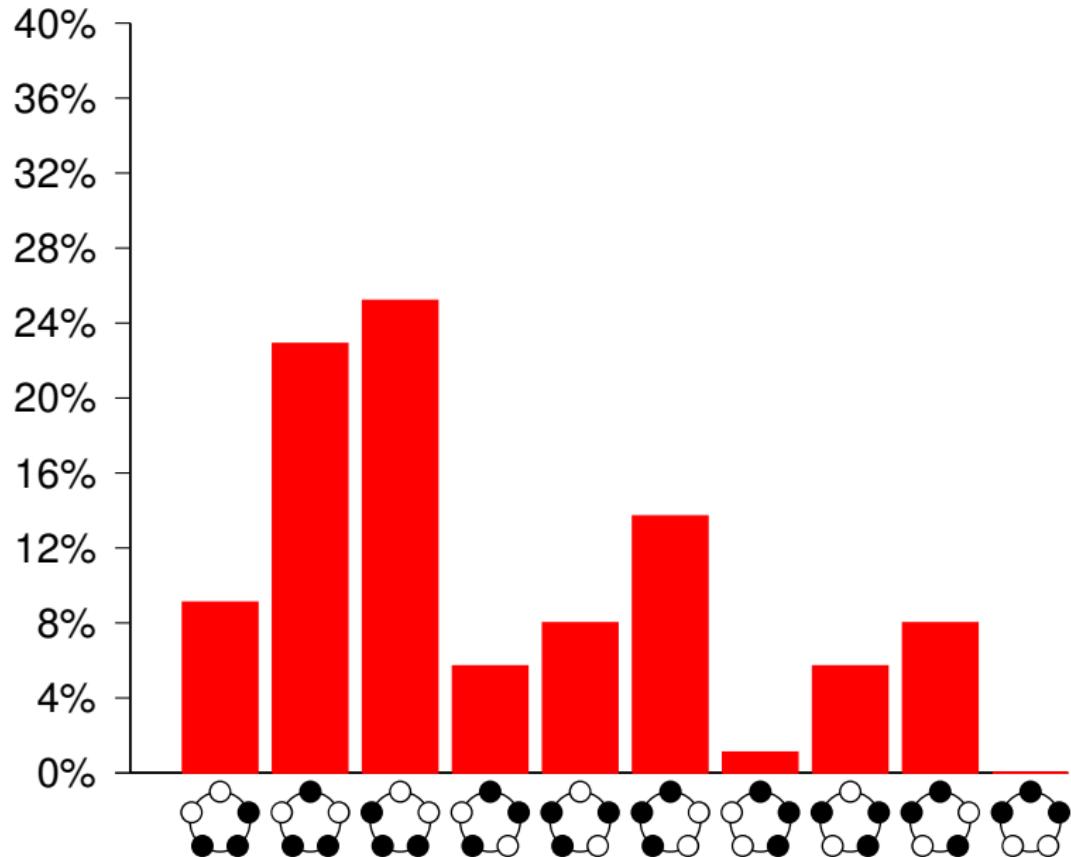
Stationary distribution



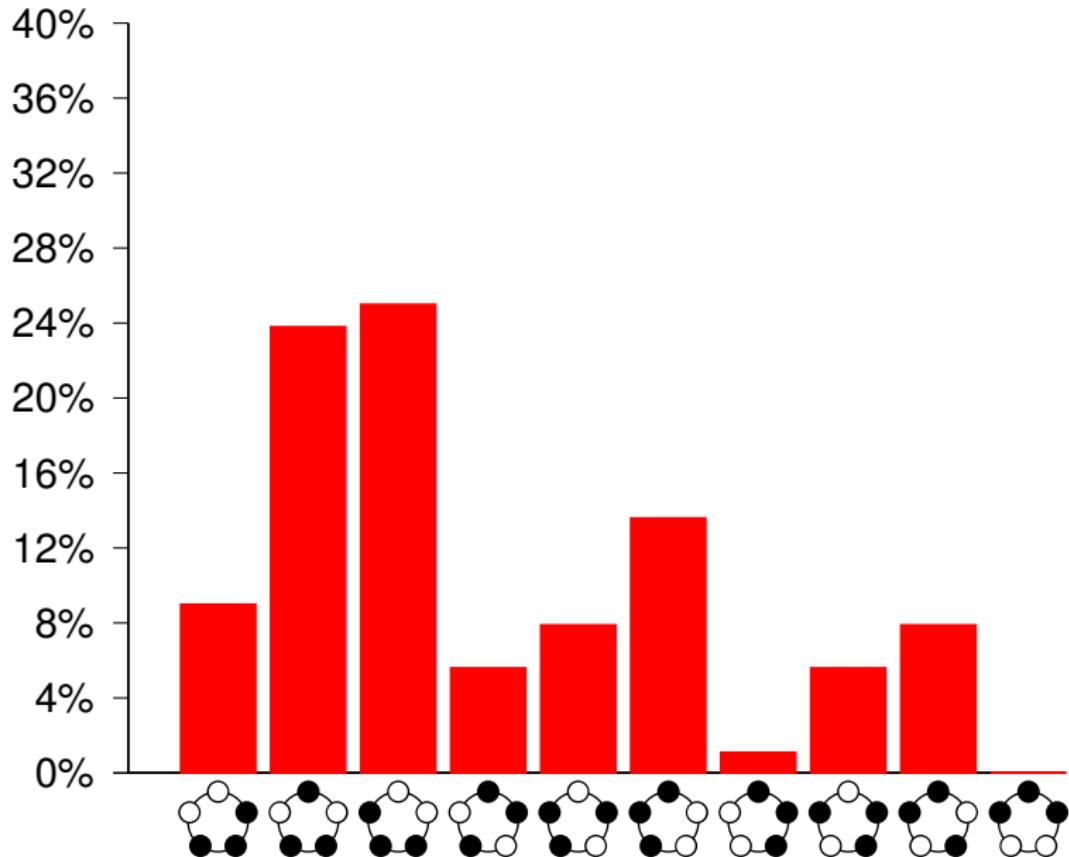
Stationary distribution



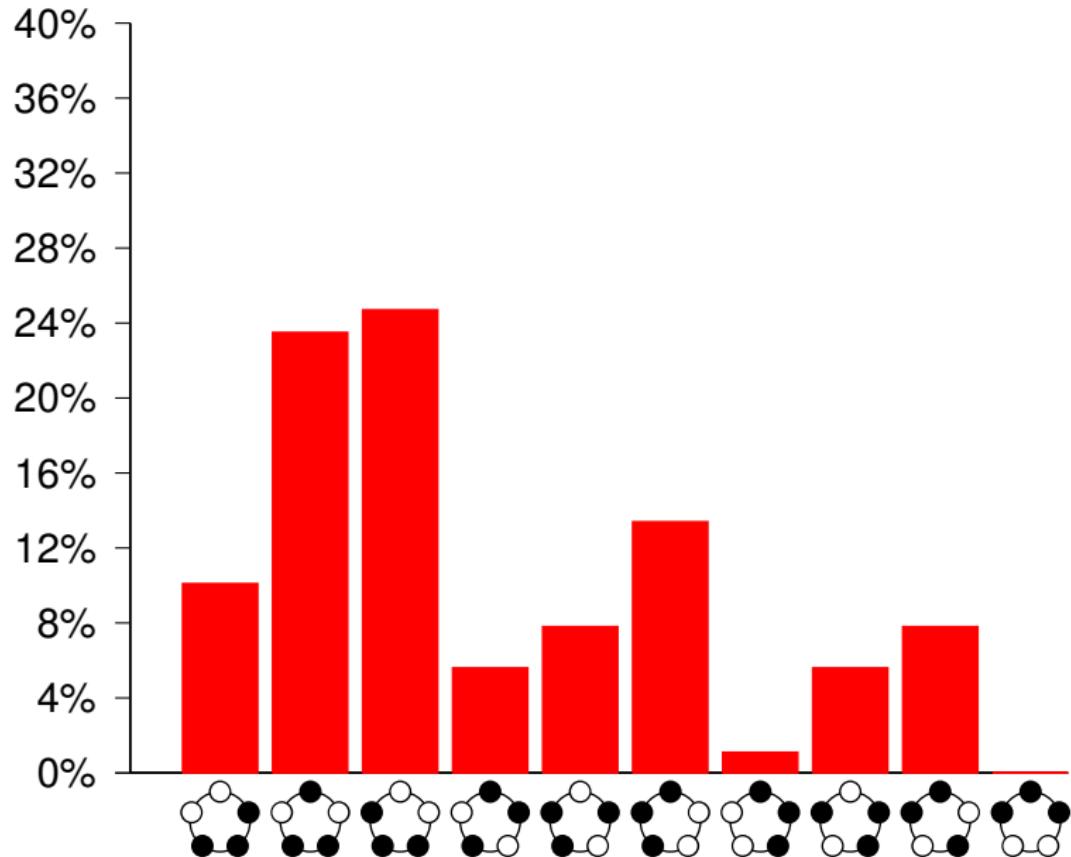
Stationary distribution



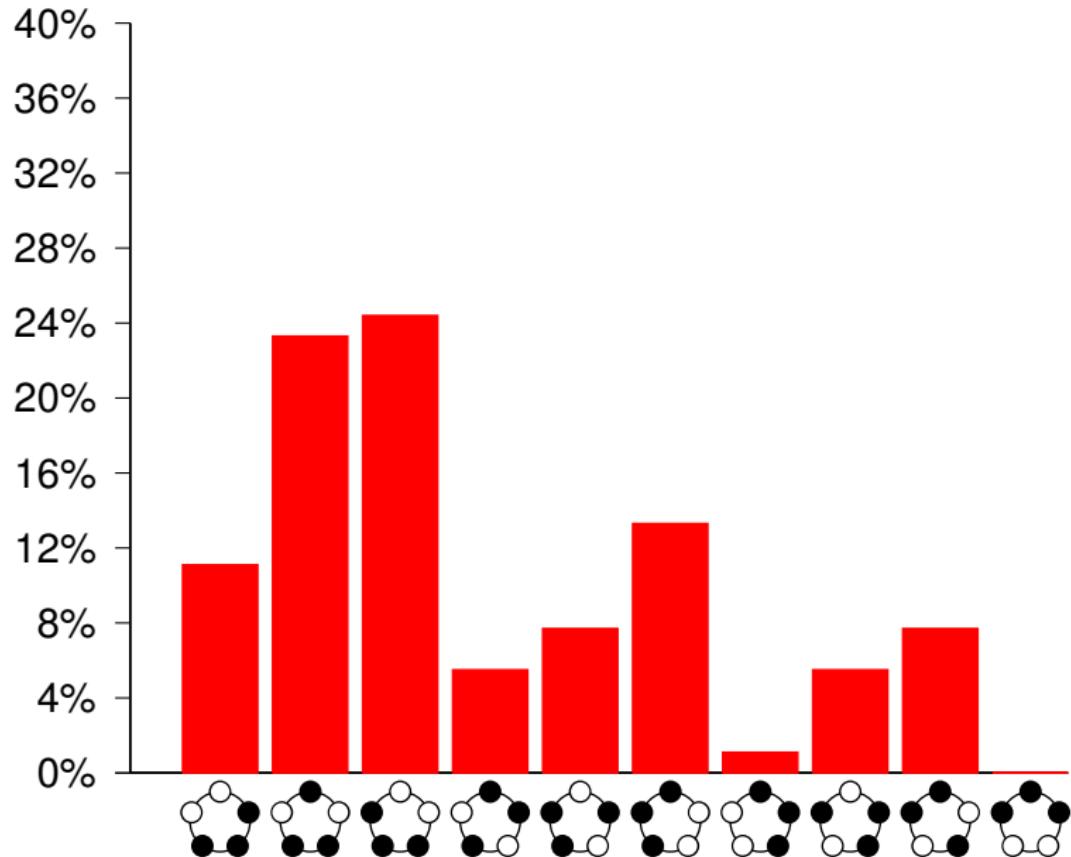
Stationary distribution



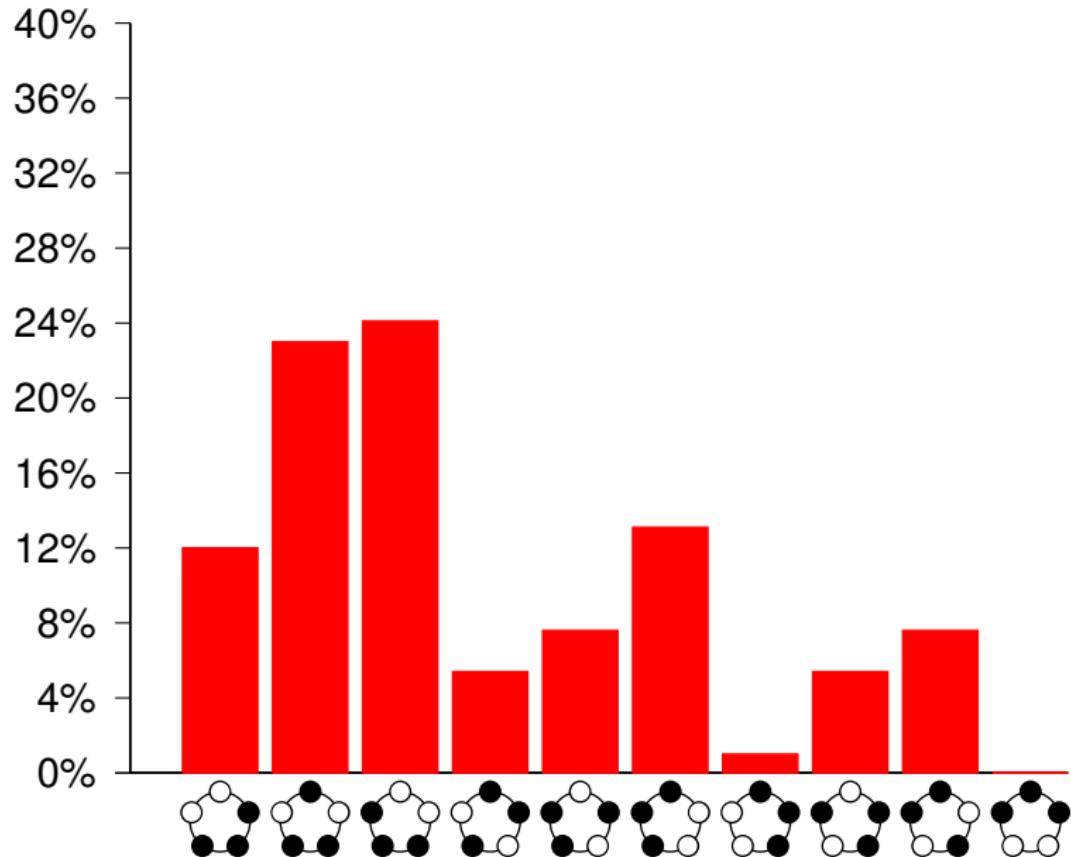
Stationary distribution



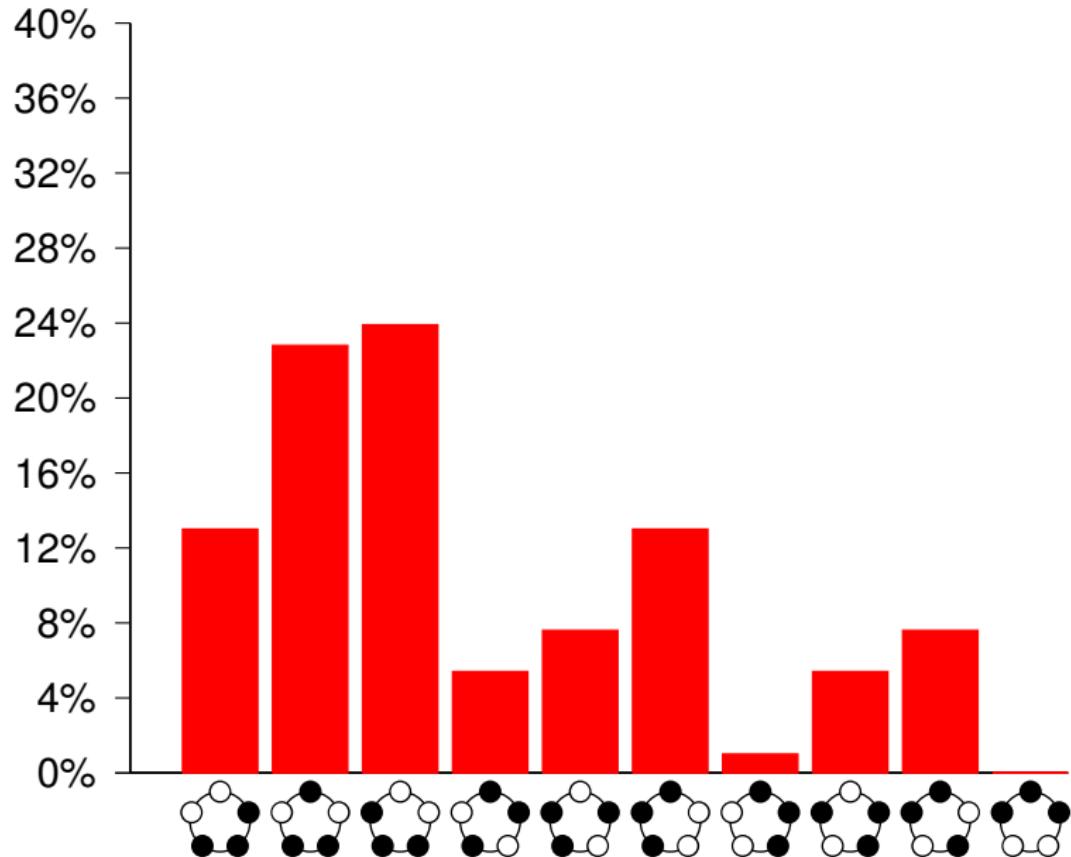
Stationary distribution



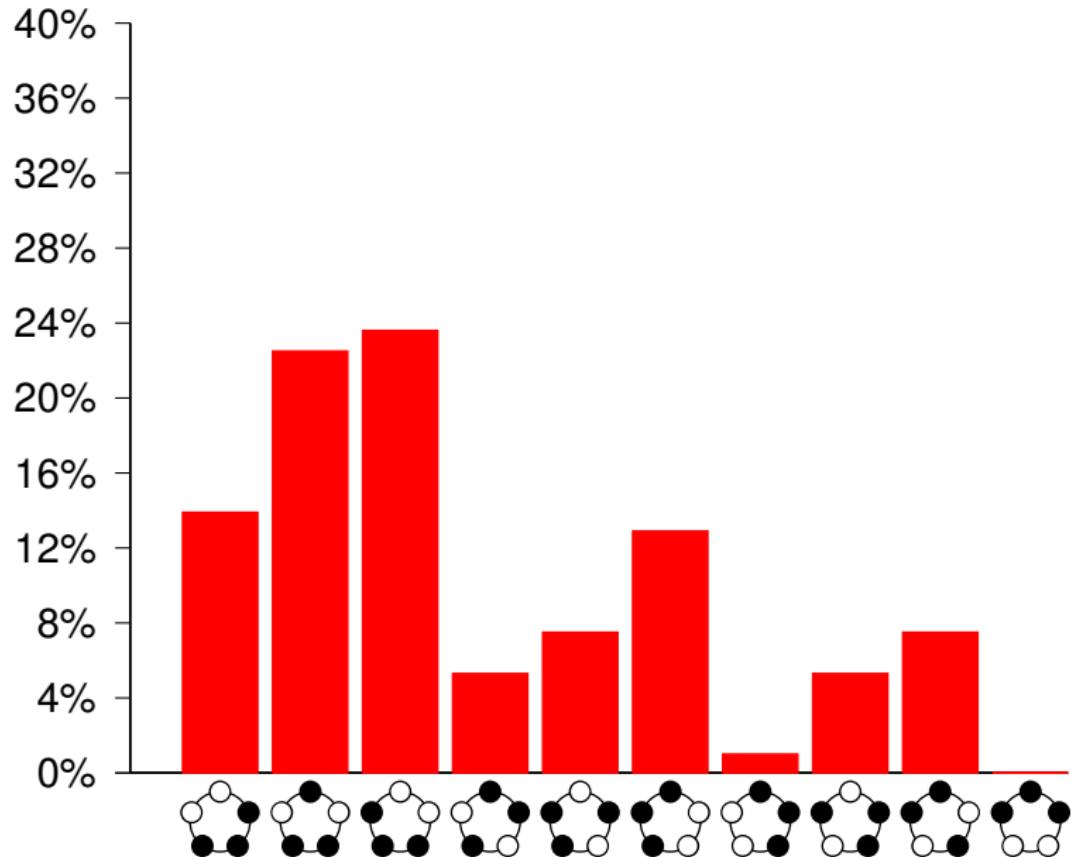
Stationary distribution



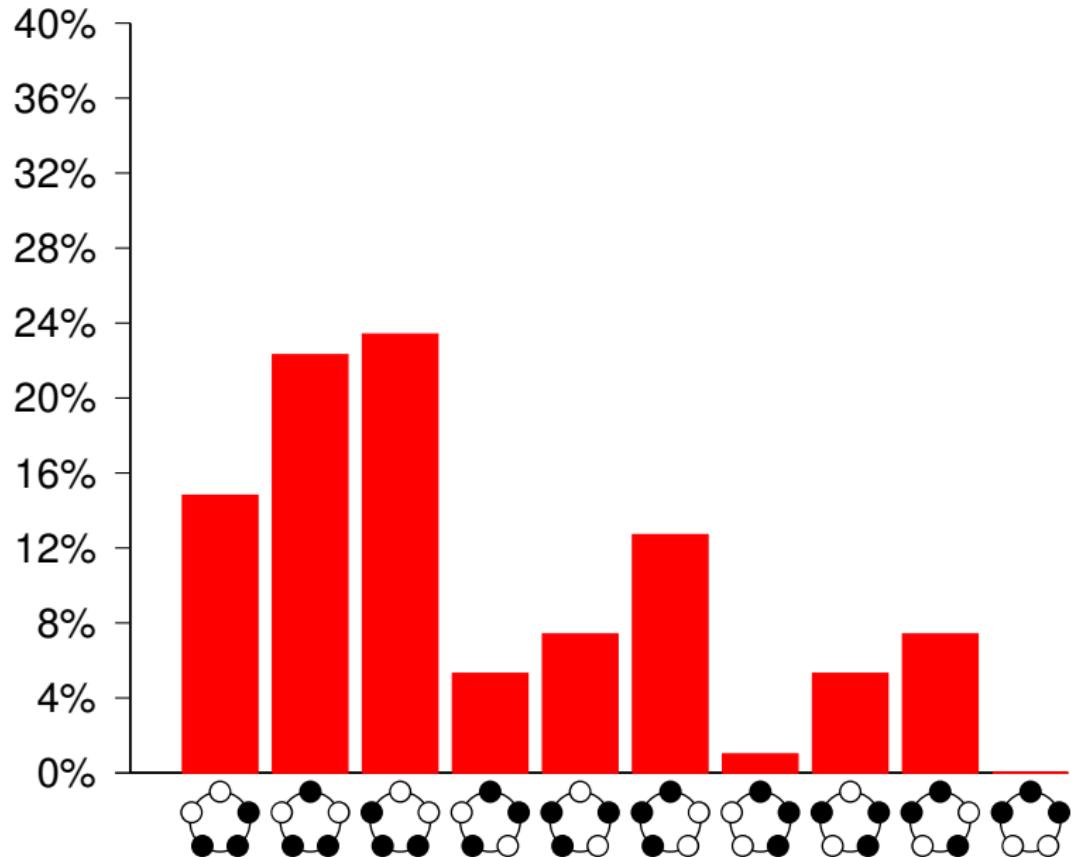
Stationary distribution



Stationary distribution



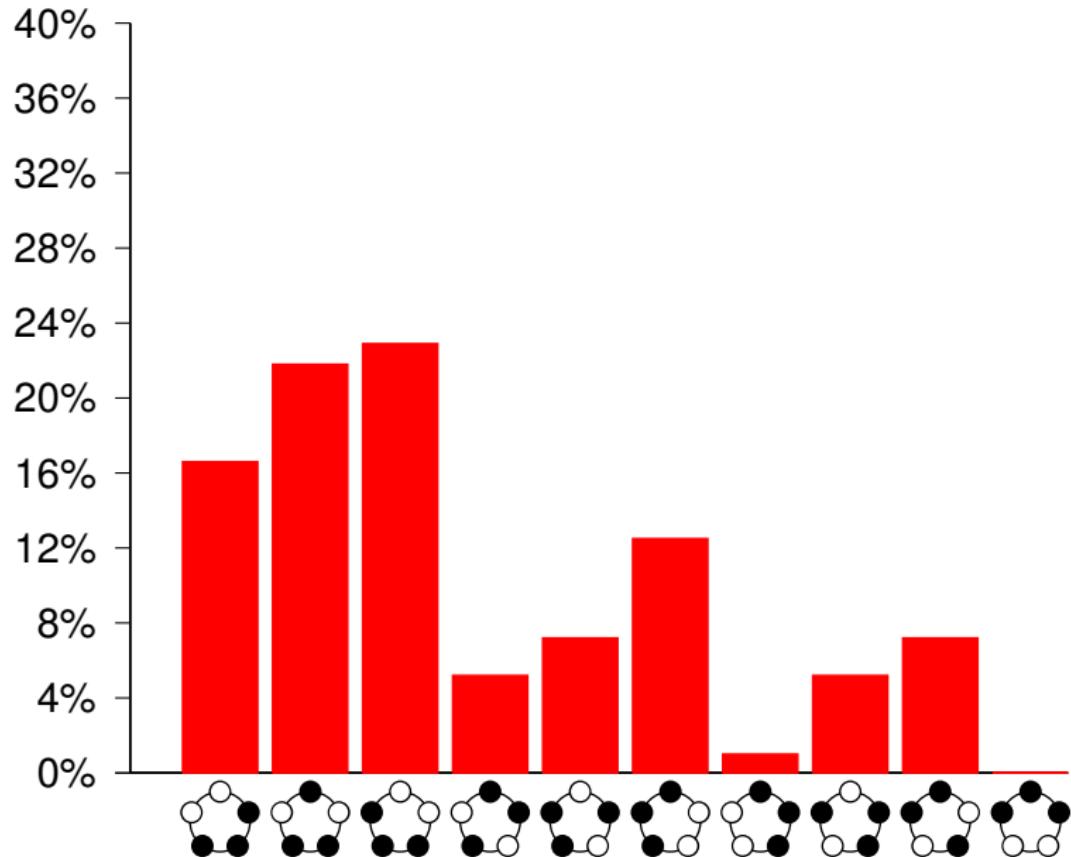
Stationary distribution



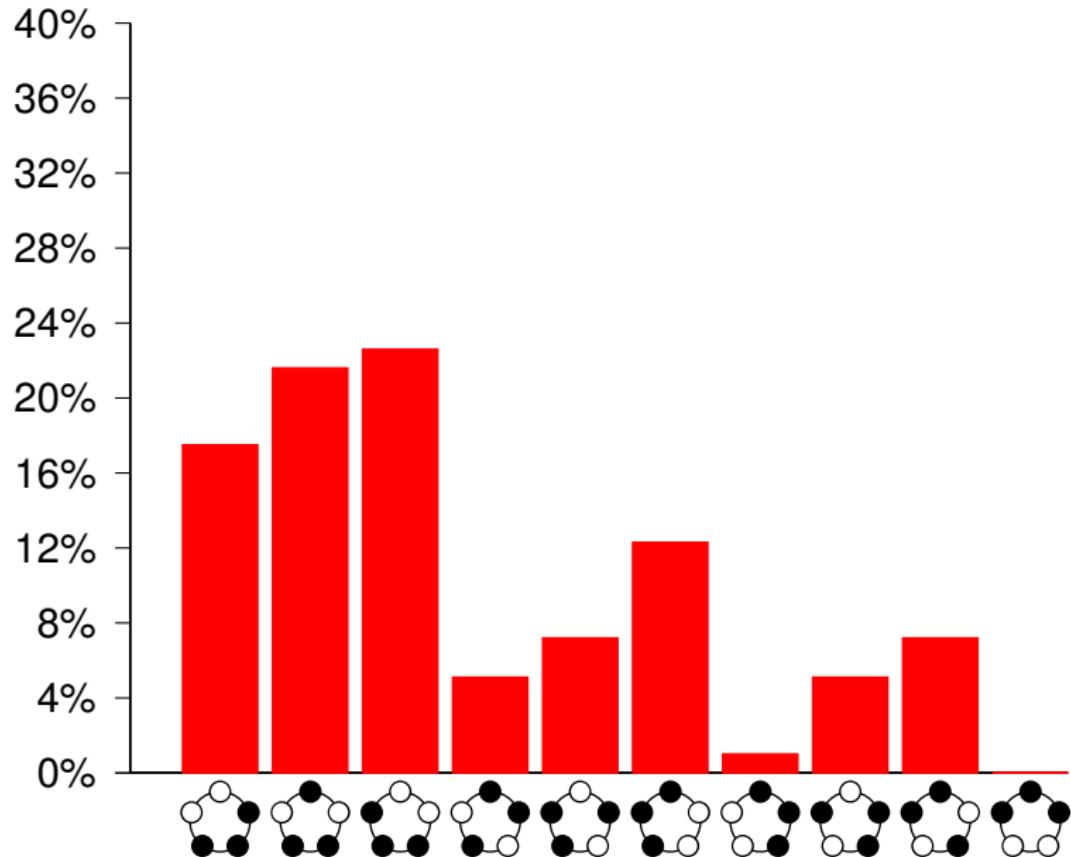
Stationary distribution



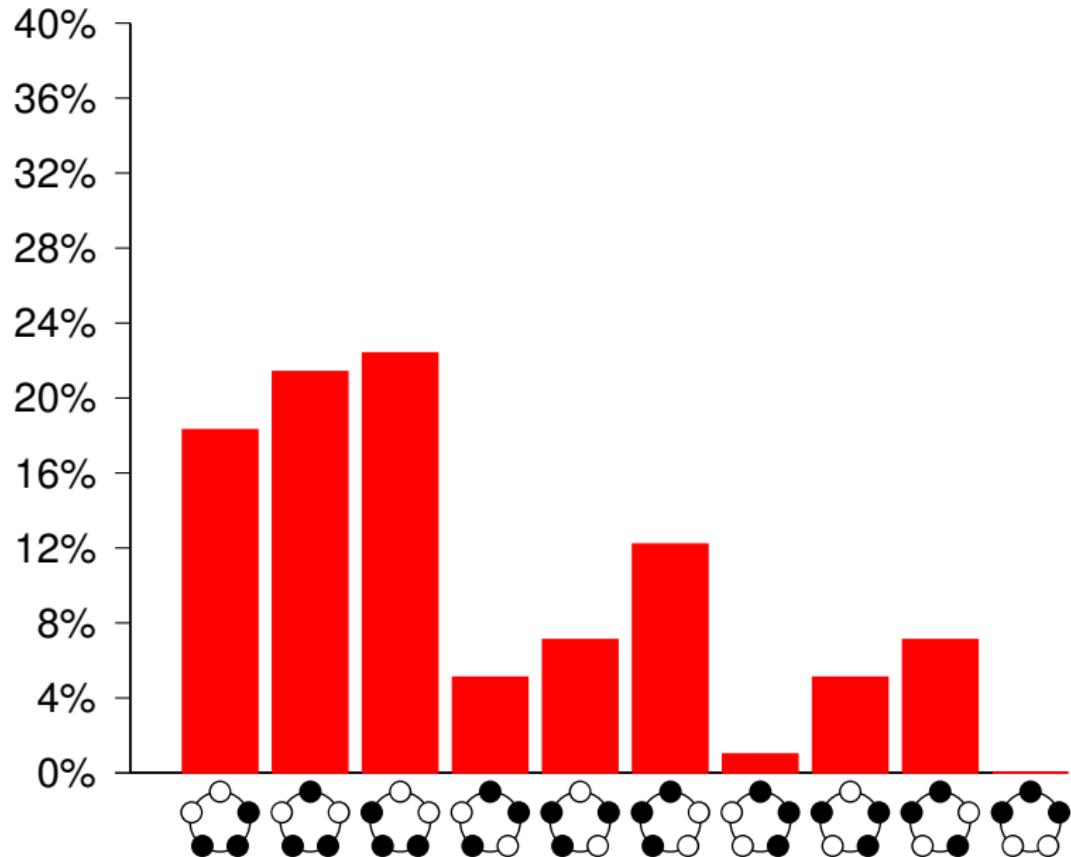
Stationary distribution



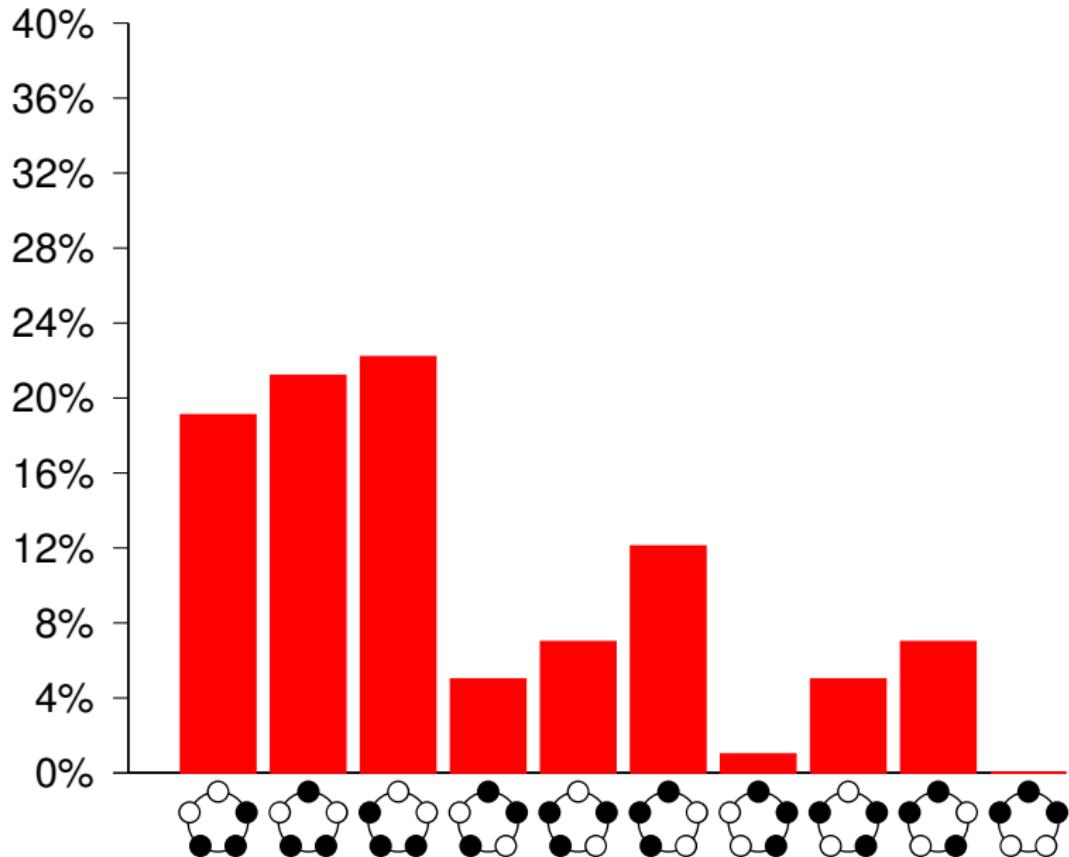
Stationary distribution



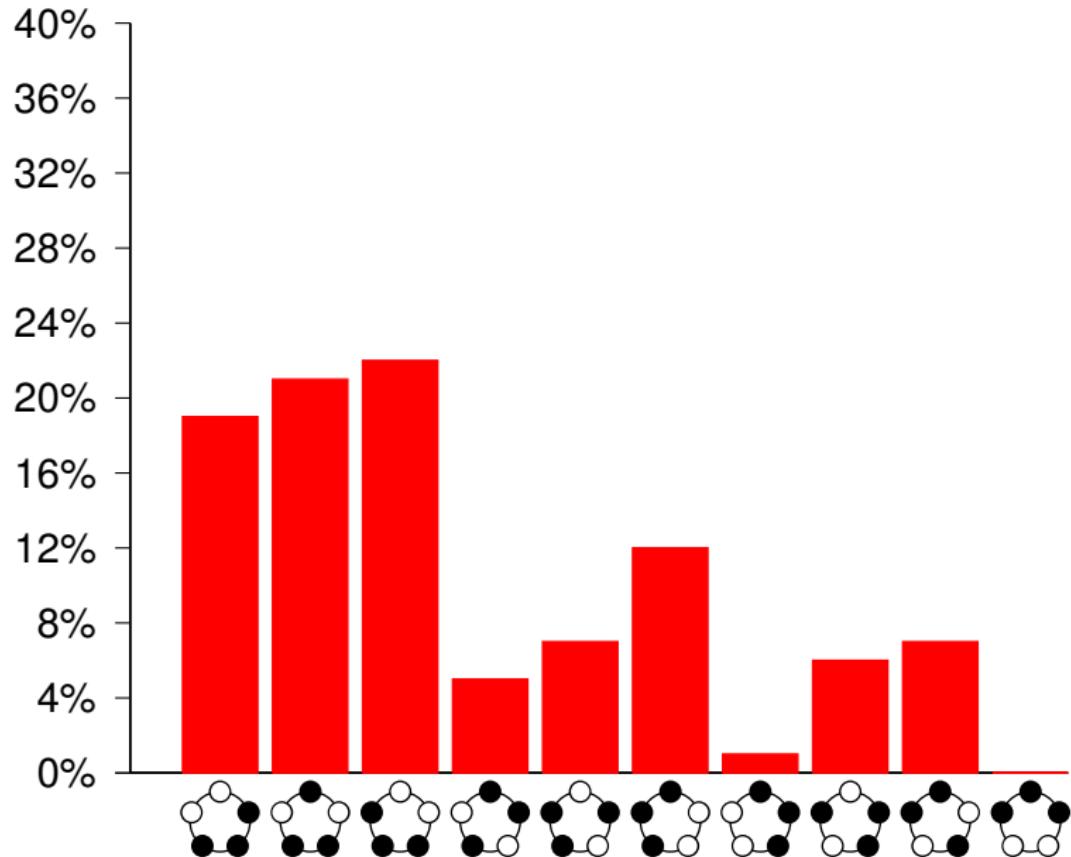
Stationary distribution



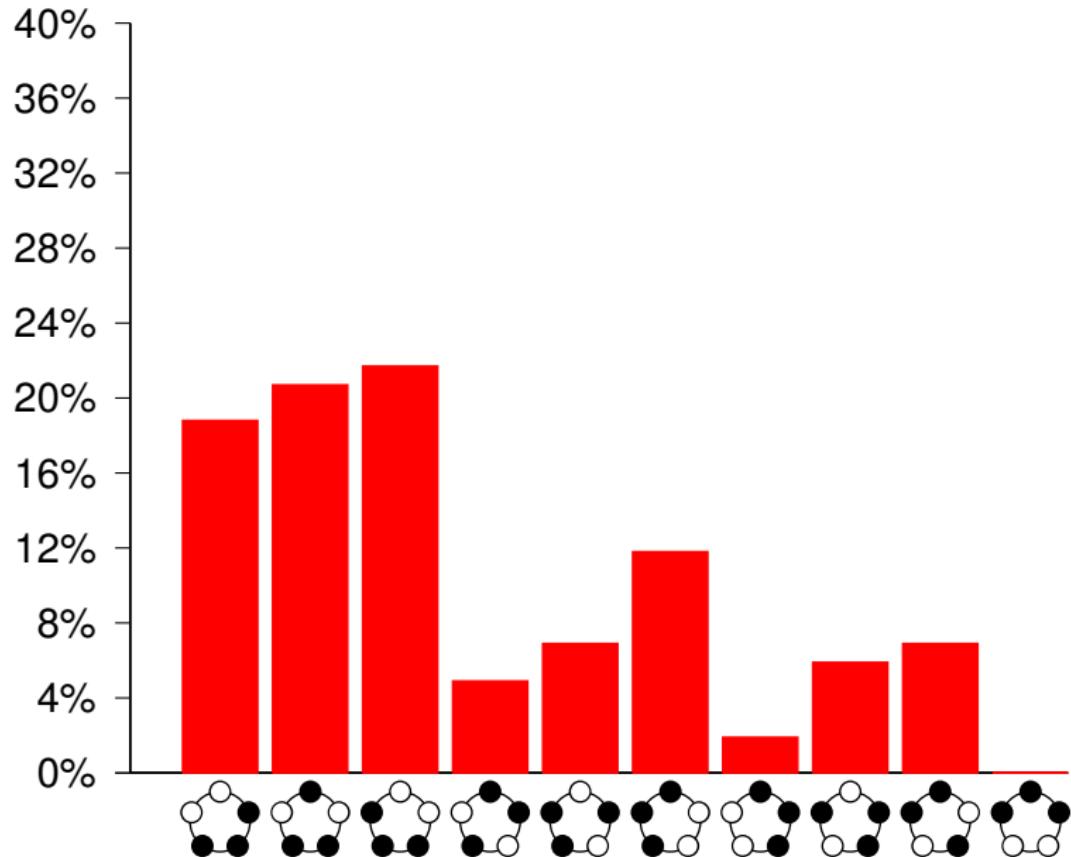
Stationary distribution



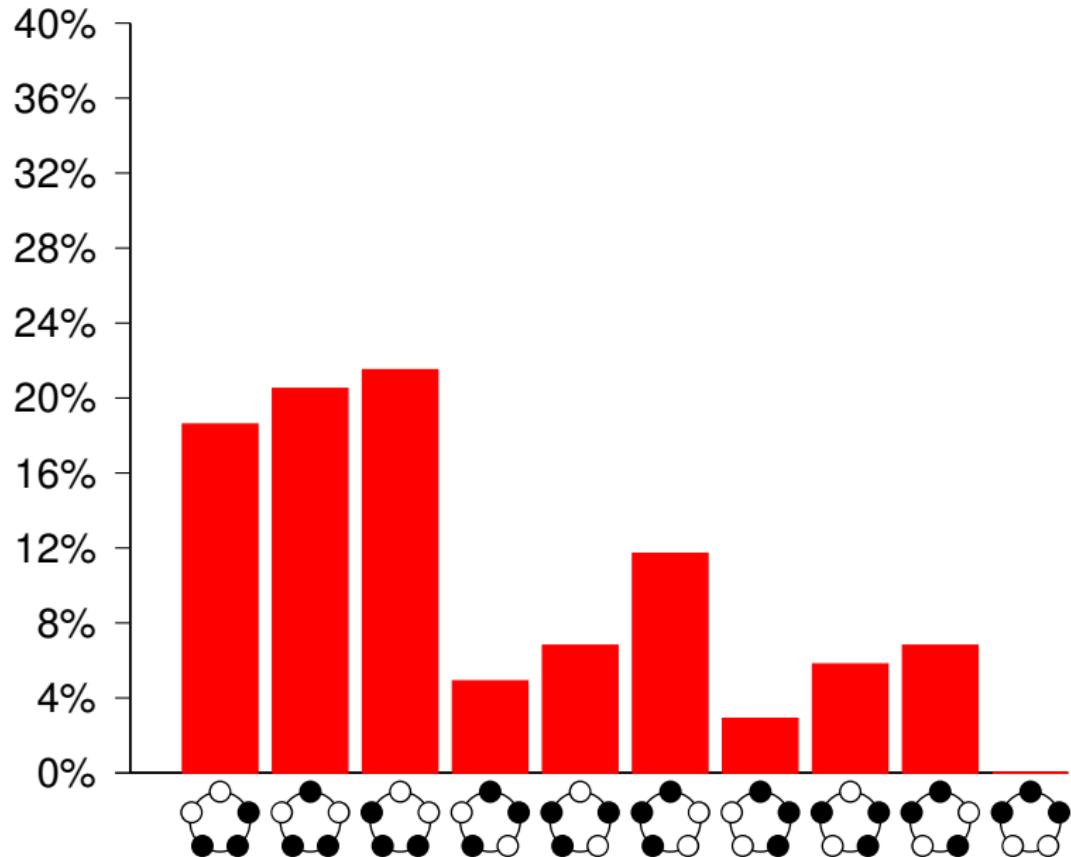
Stationary distribution



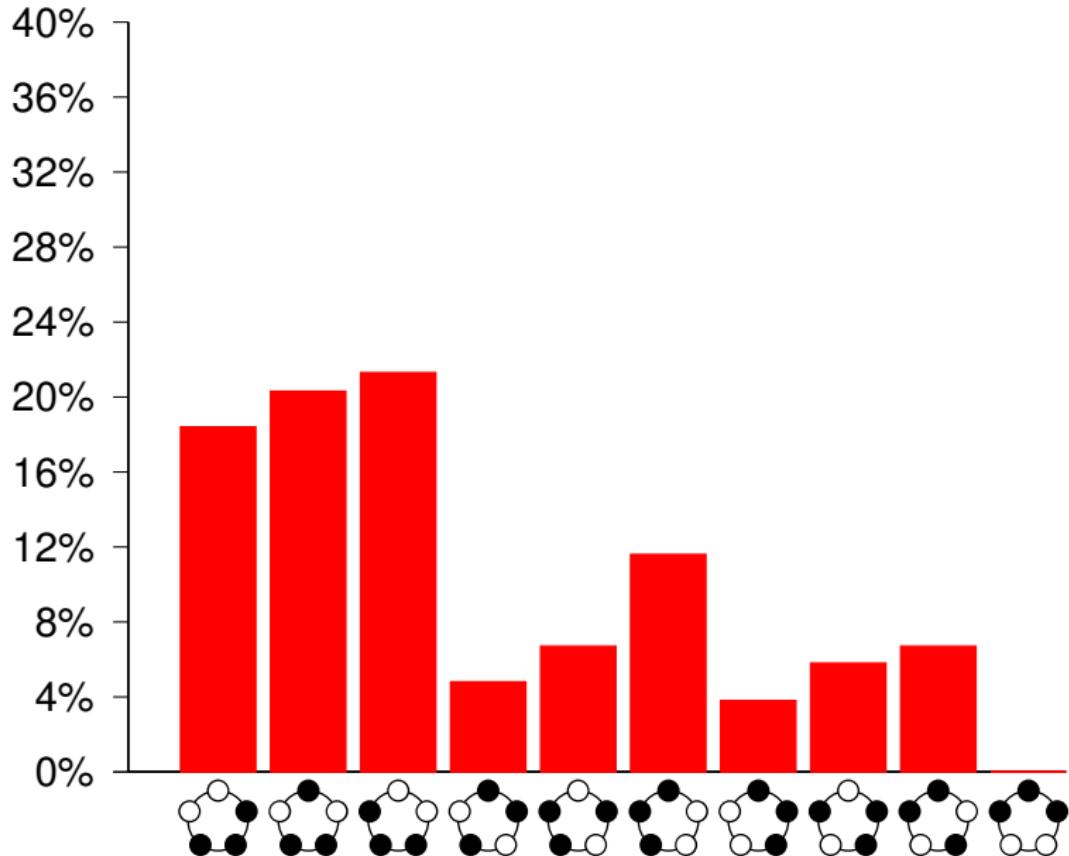
Stationary distribution



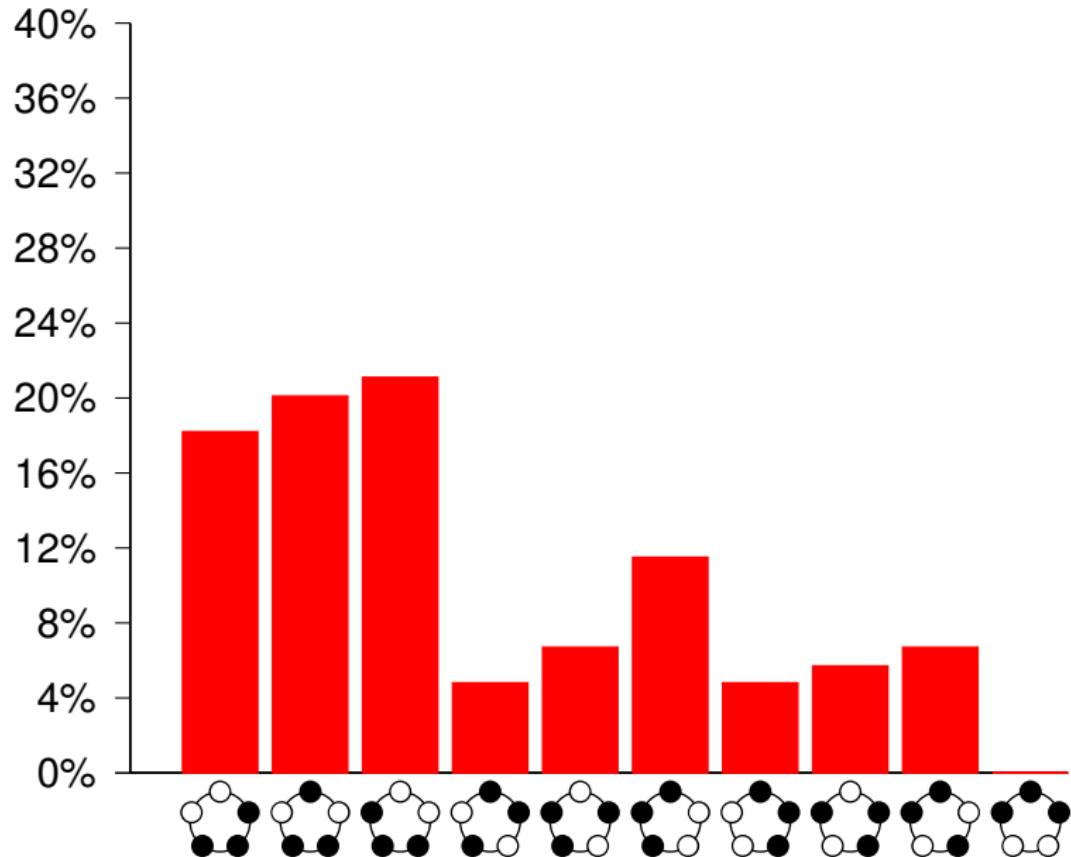
Stationary distribution



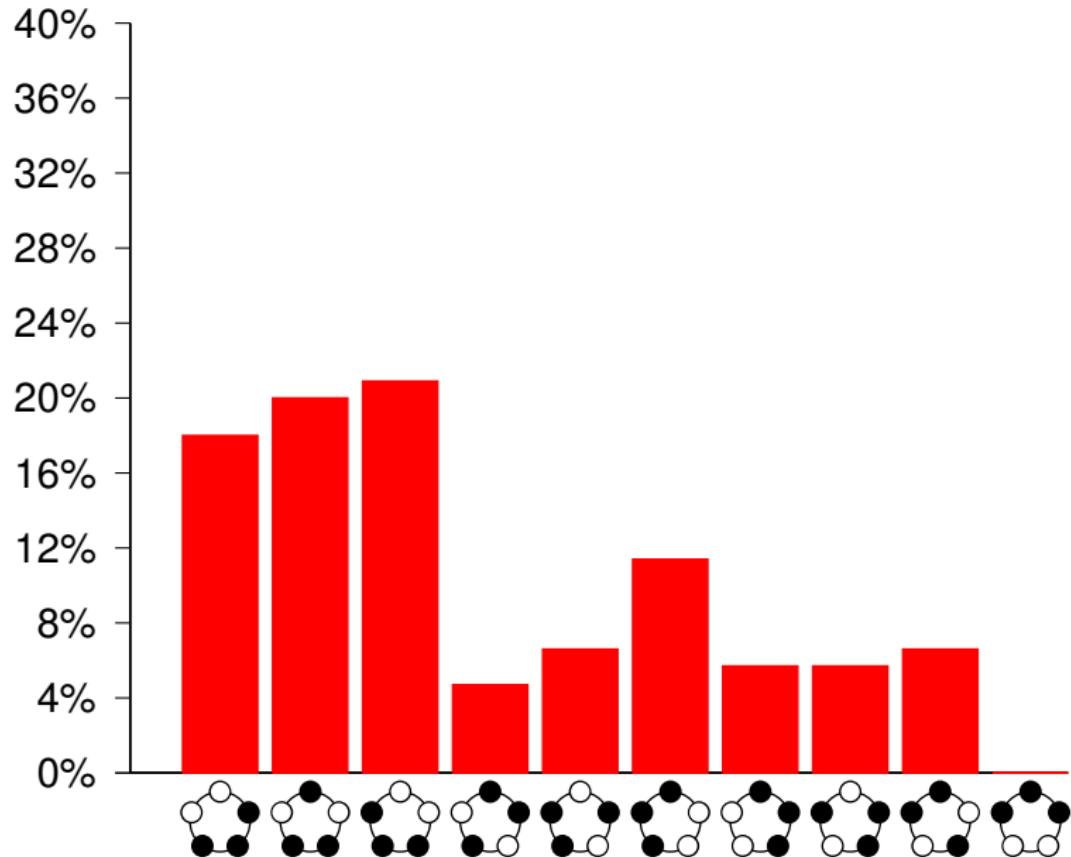
Stationary distribution



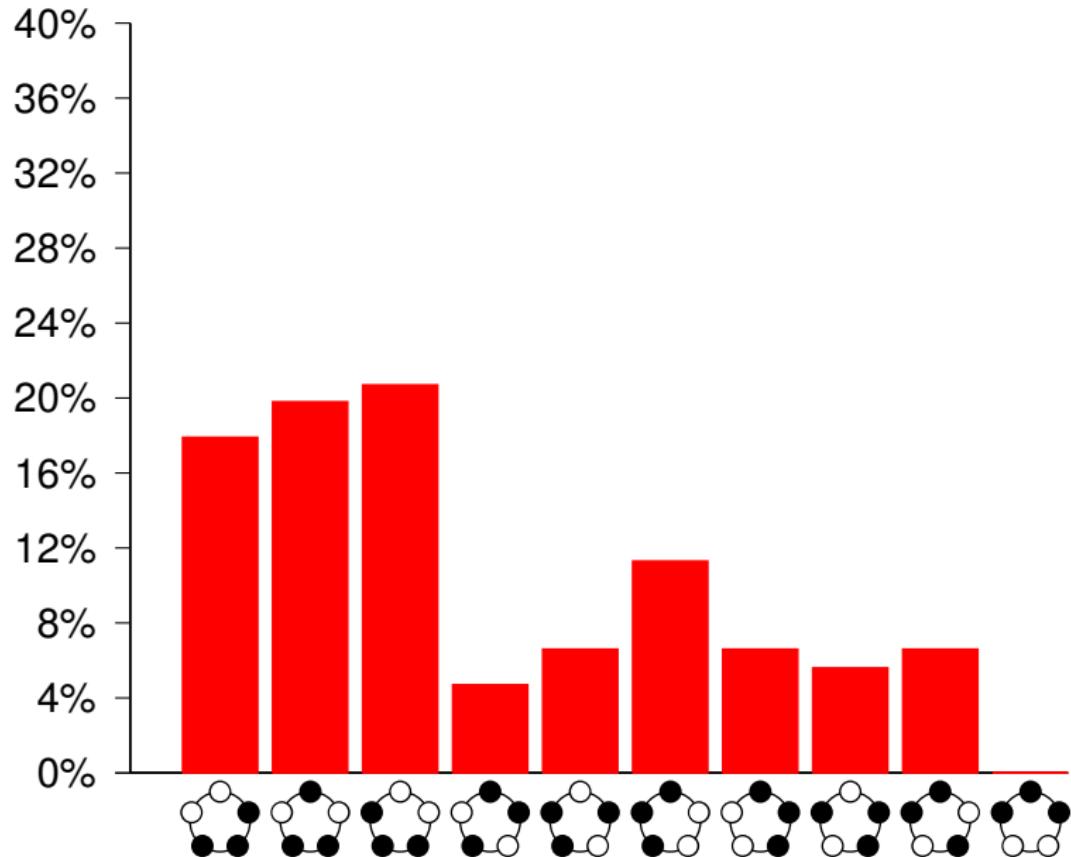
Stationary distribution



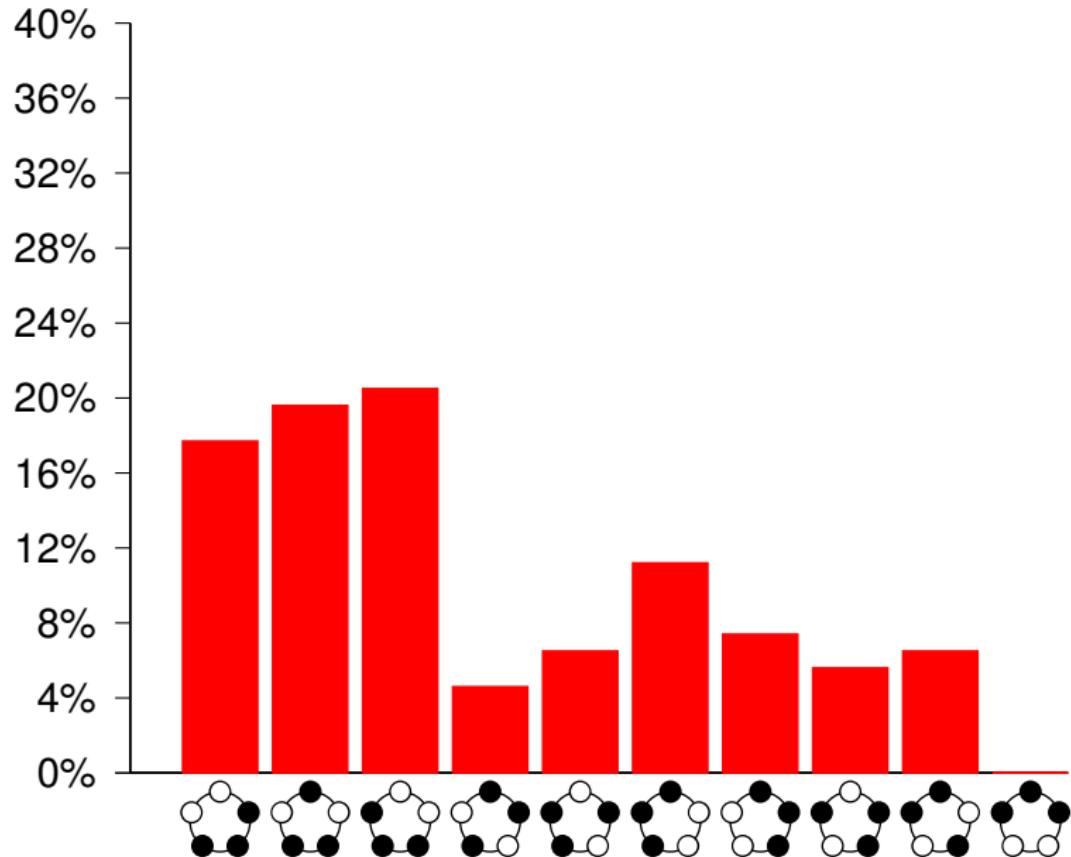
Stationary distribution



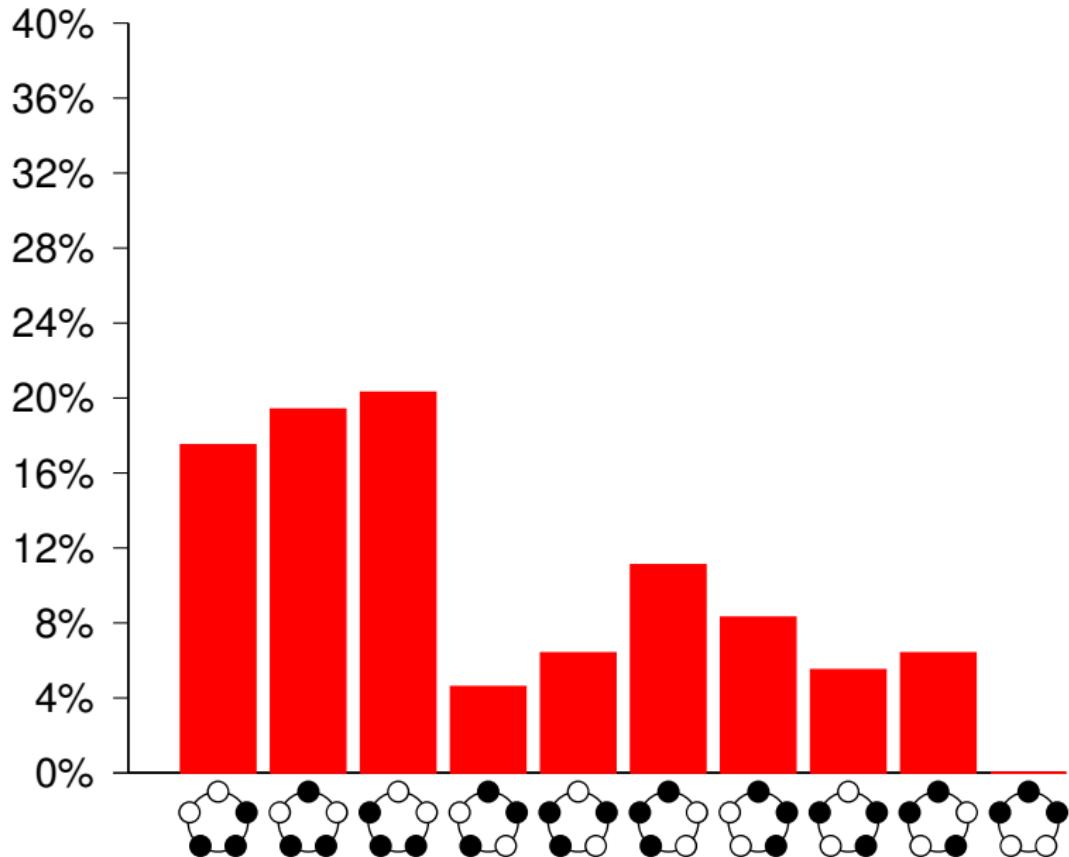
Stationary distribution



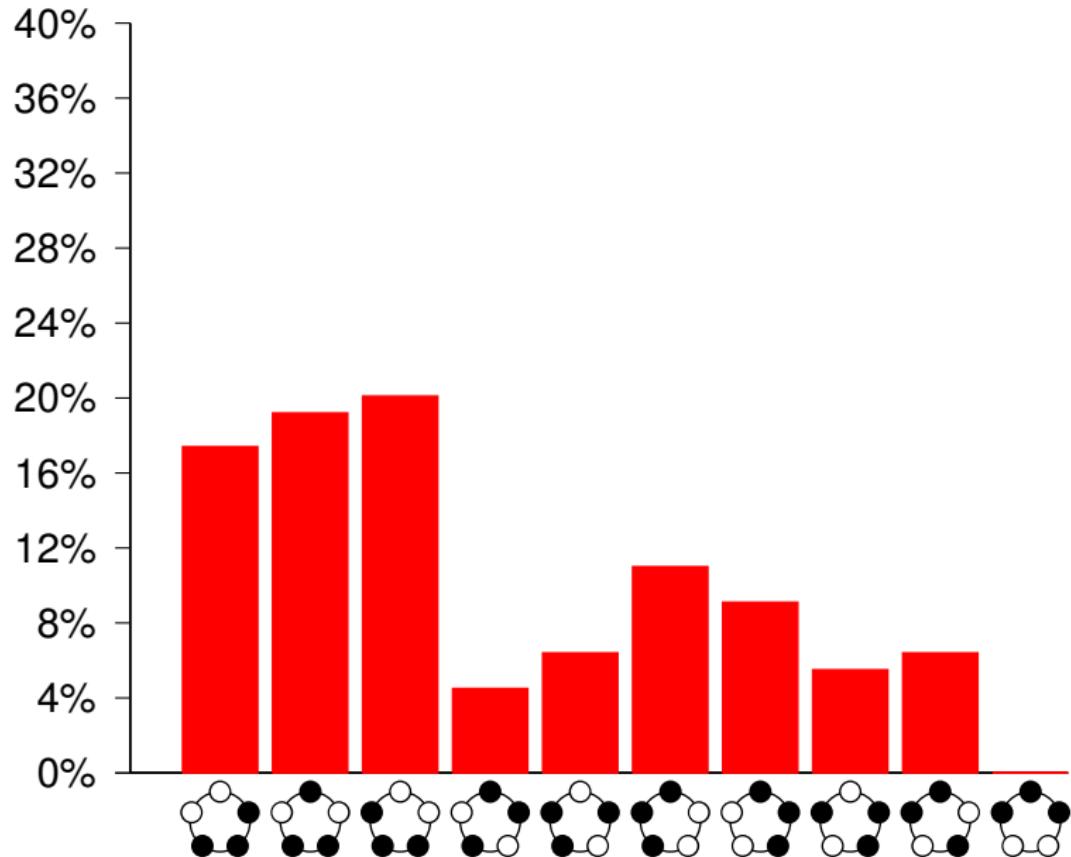
Stationary distribution



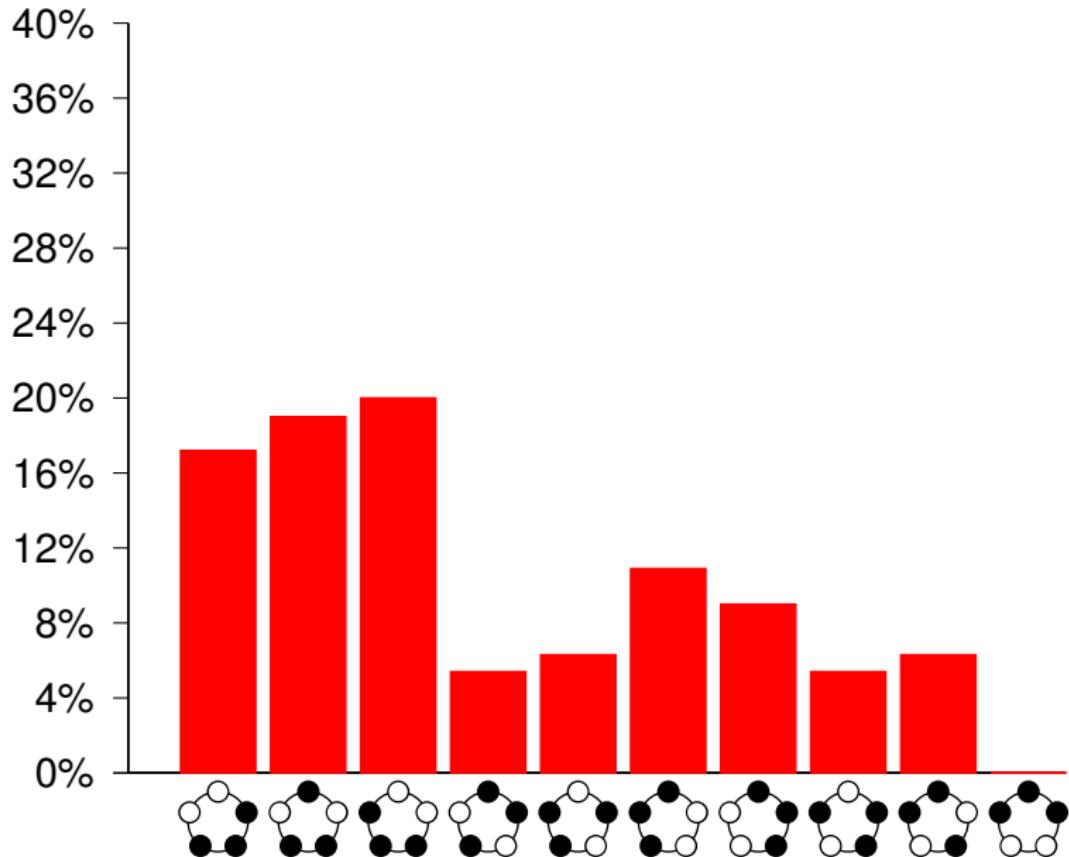
Stationary distribution



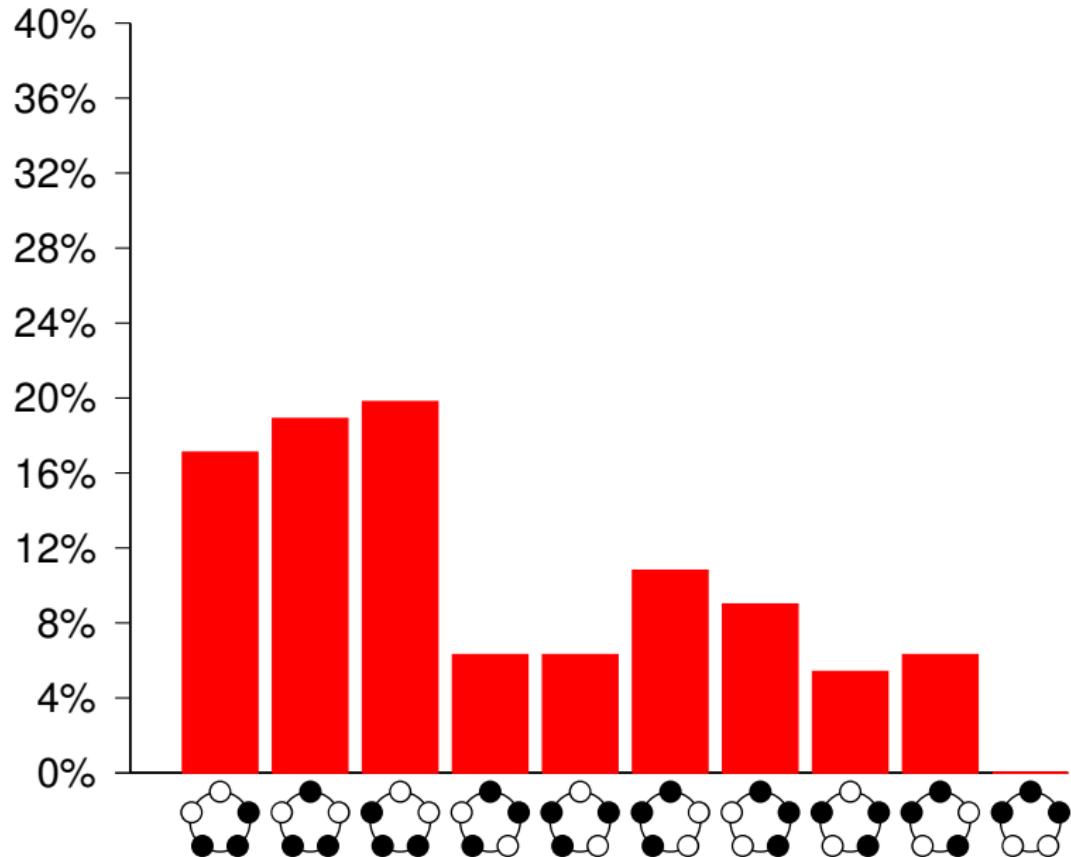
Stationary distribution



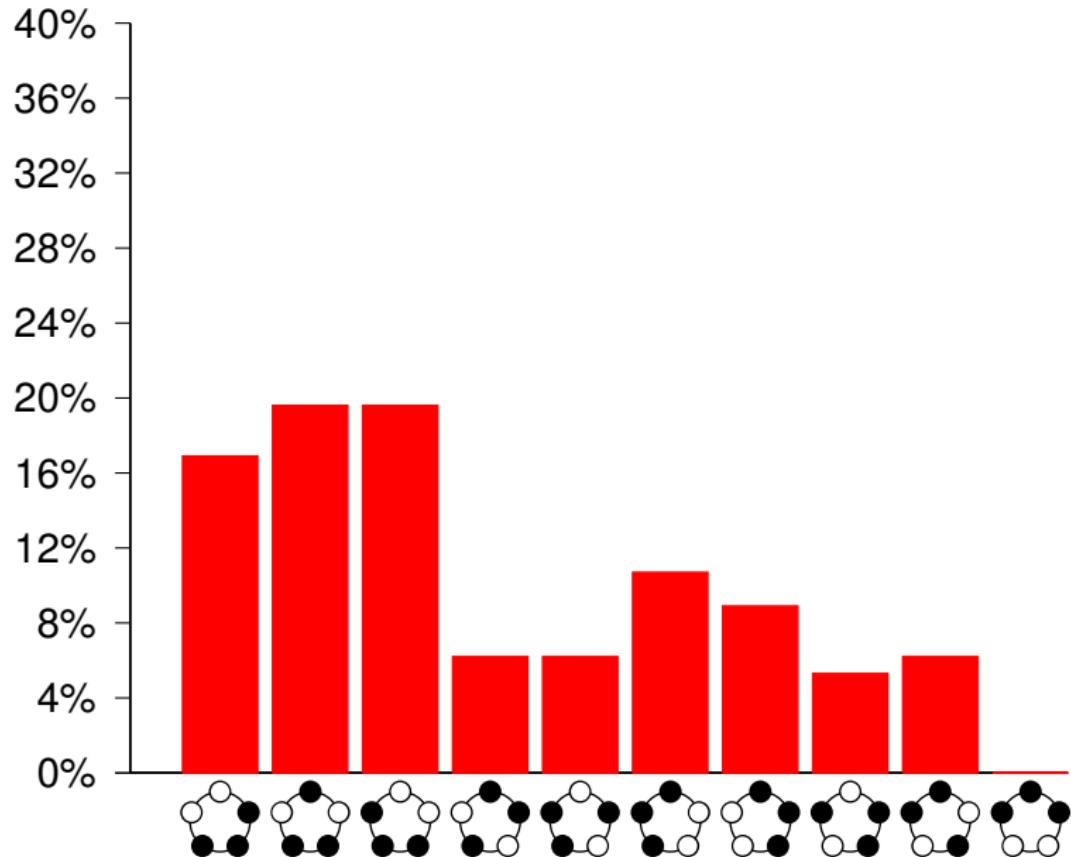
Stationary distribution



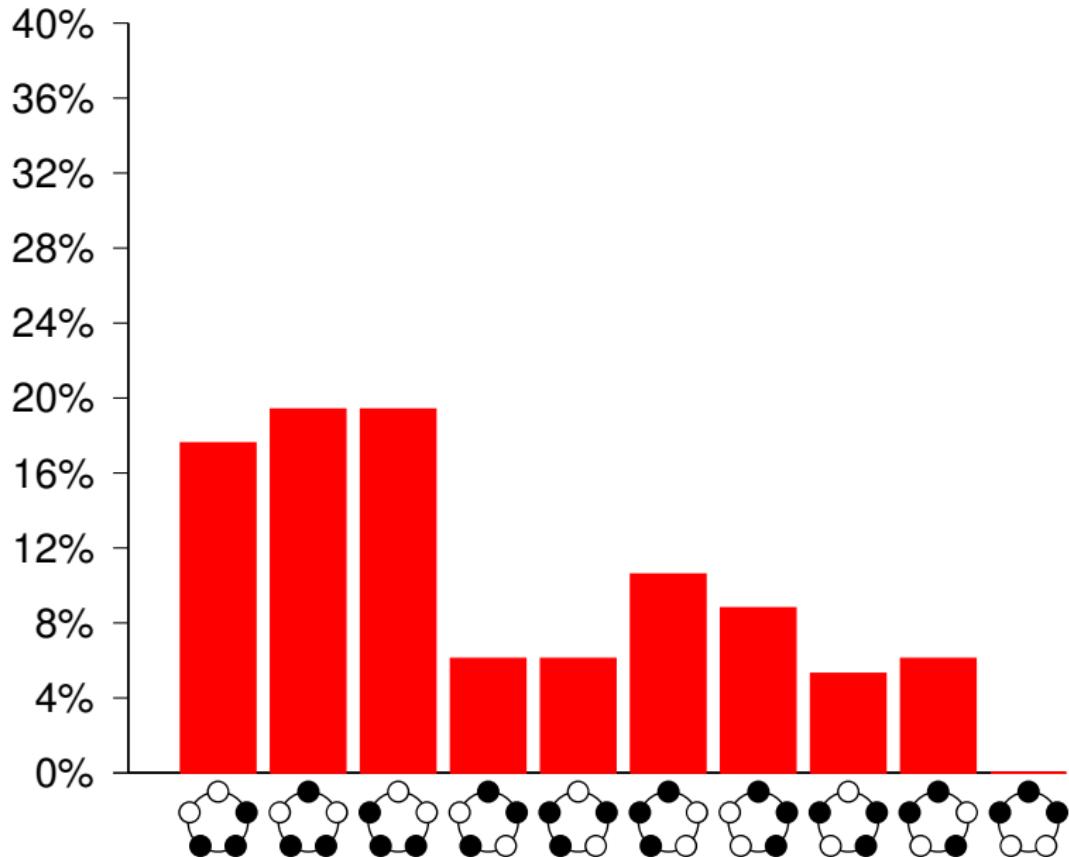
Stationary distribution



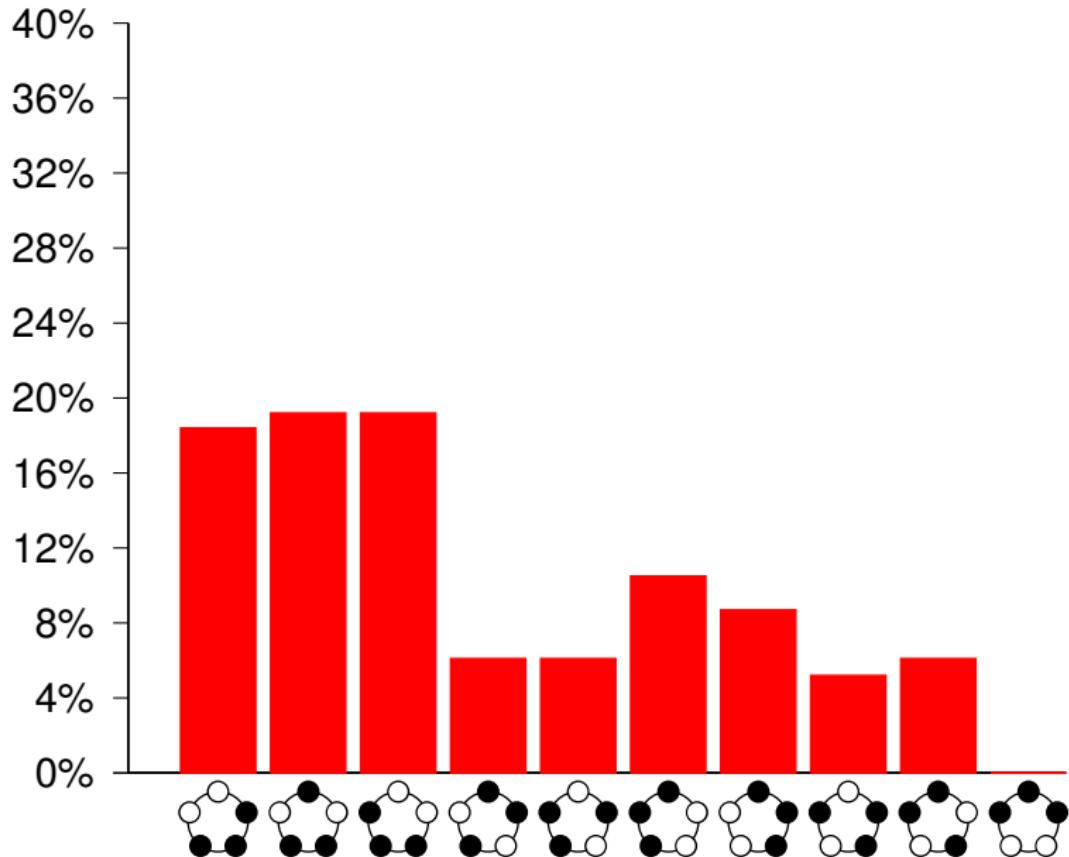
Stationary distribution



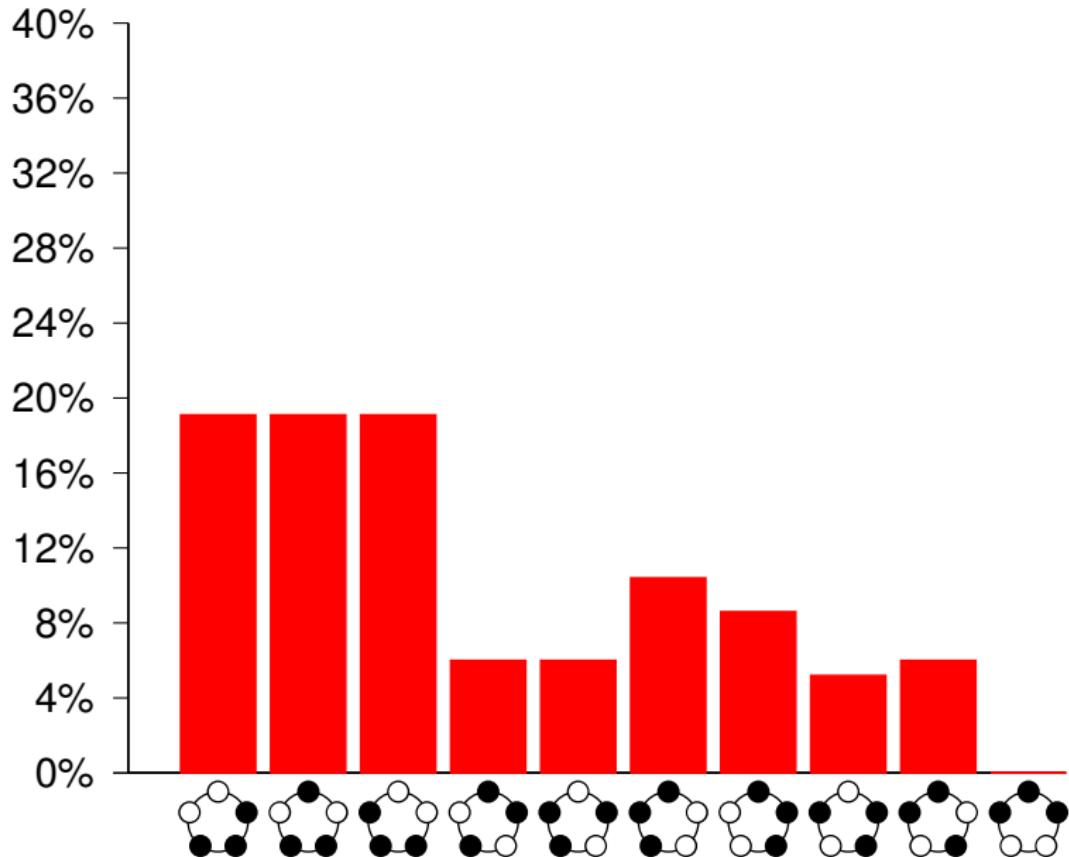
Stationary distribution



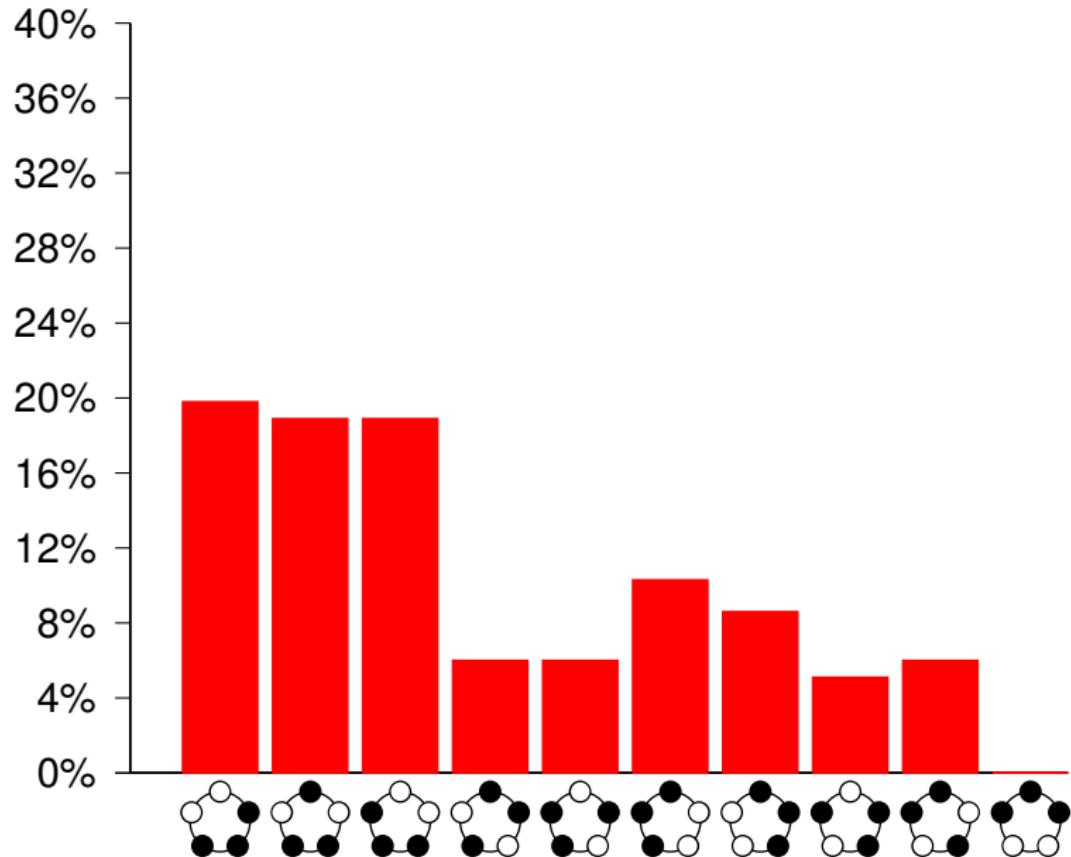
Stationary distribution



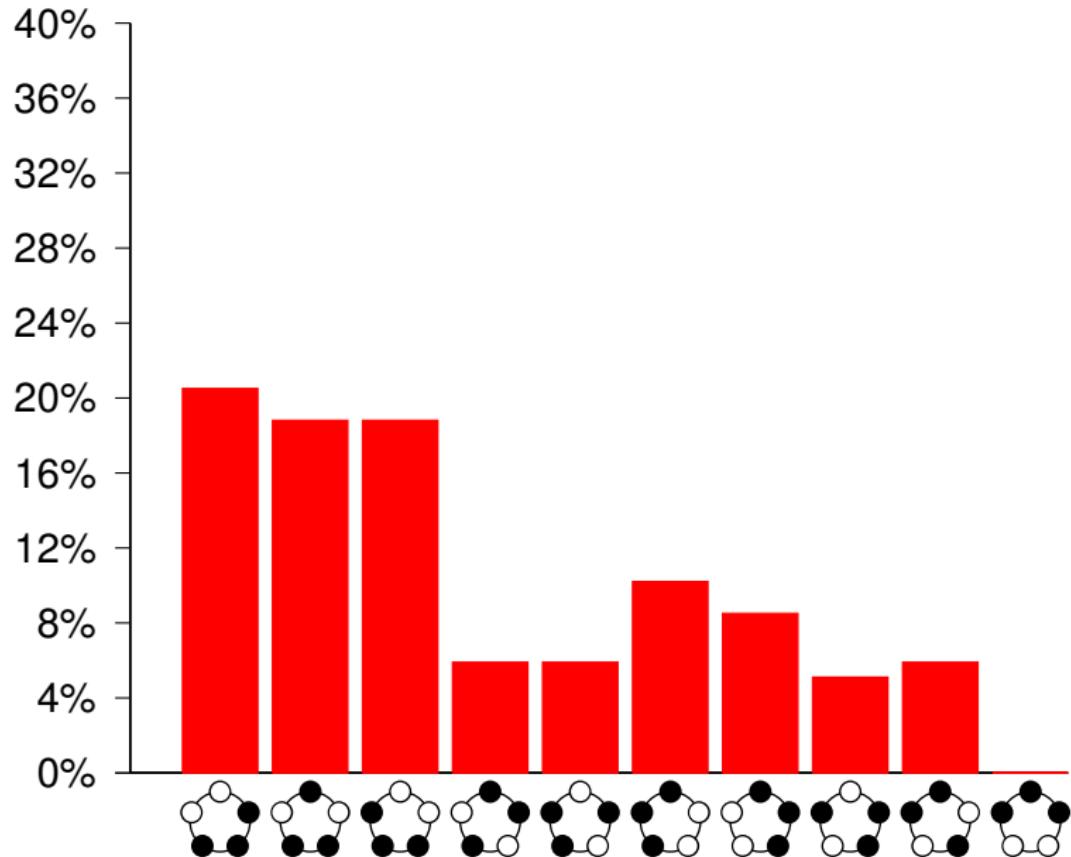
Stationary distribution



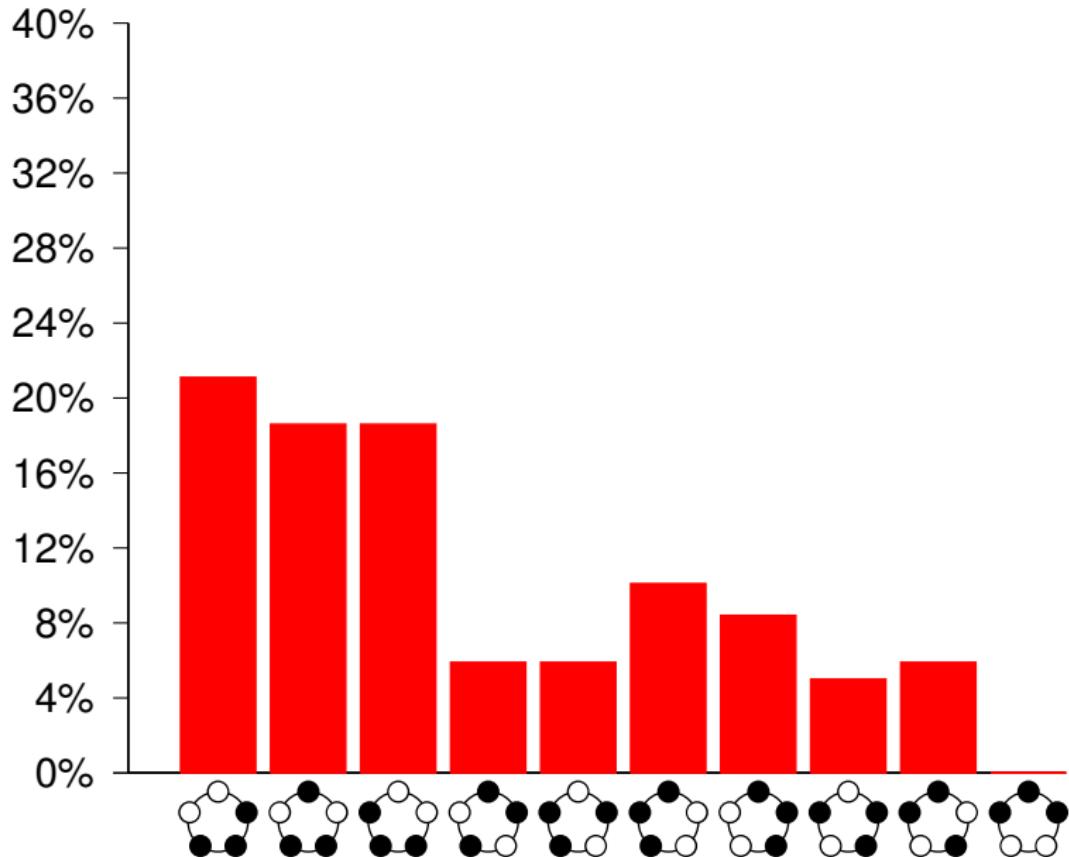
Stationary distribution



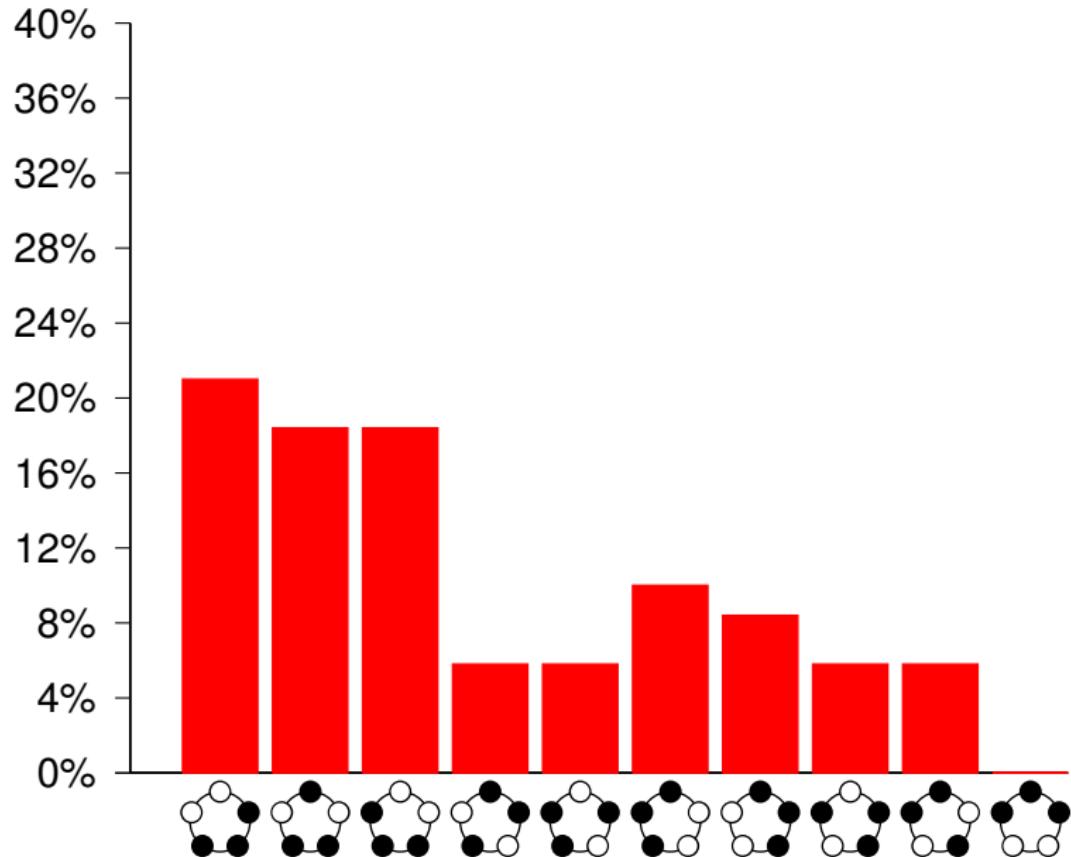
Stationary distribution



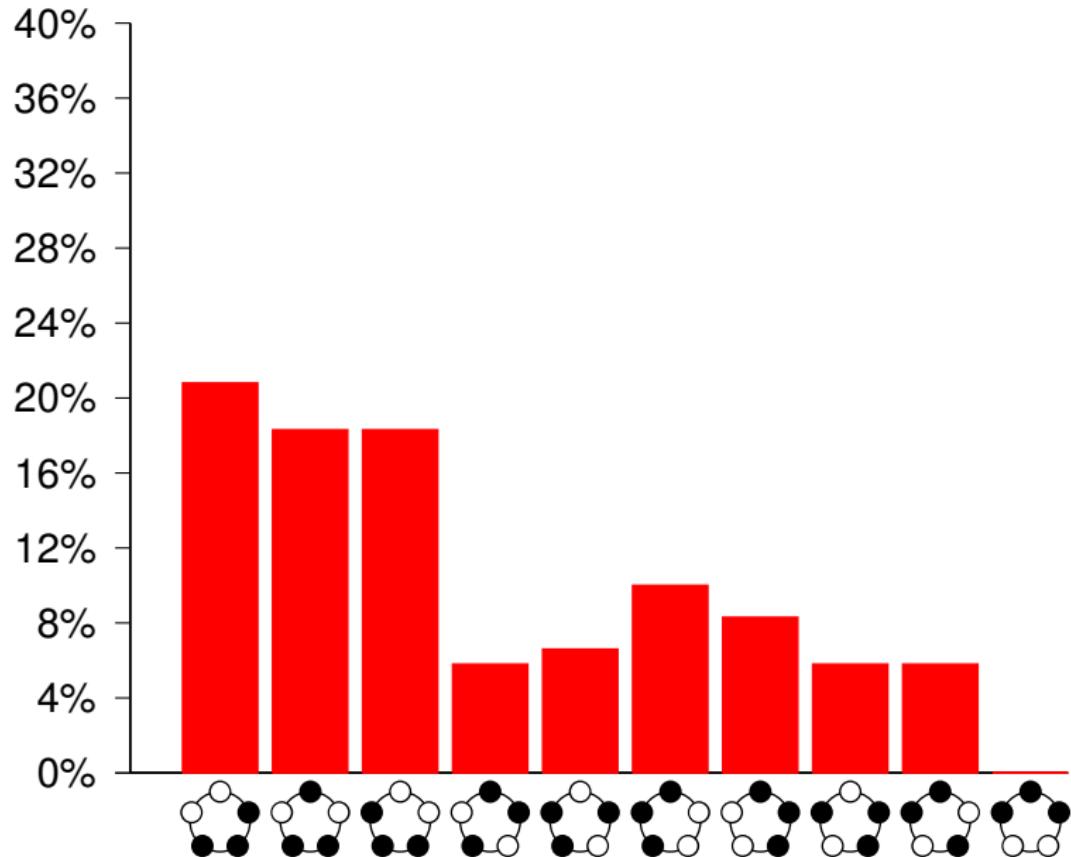
Stationary distribution



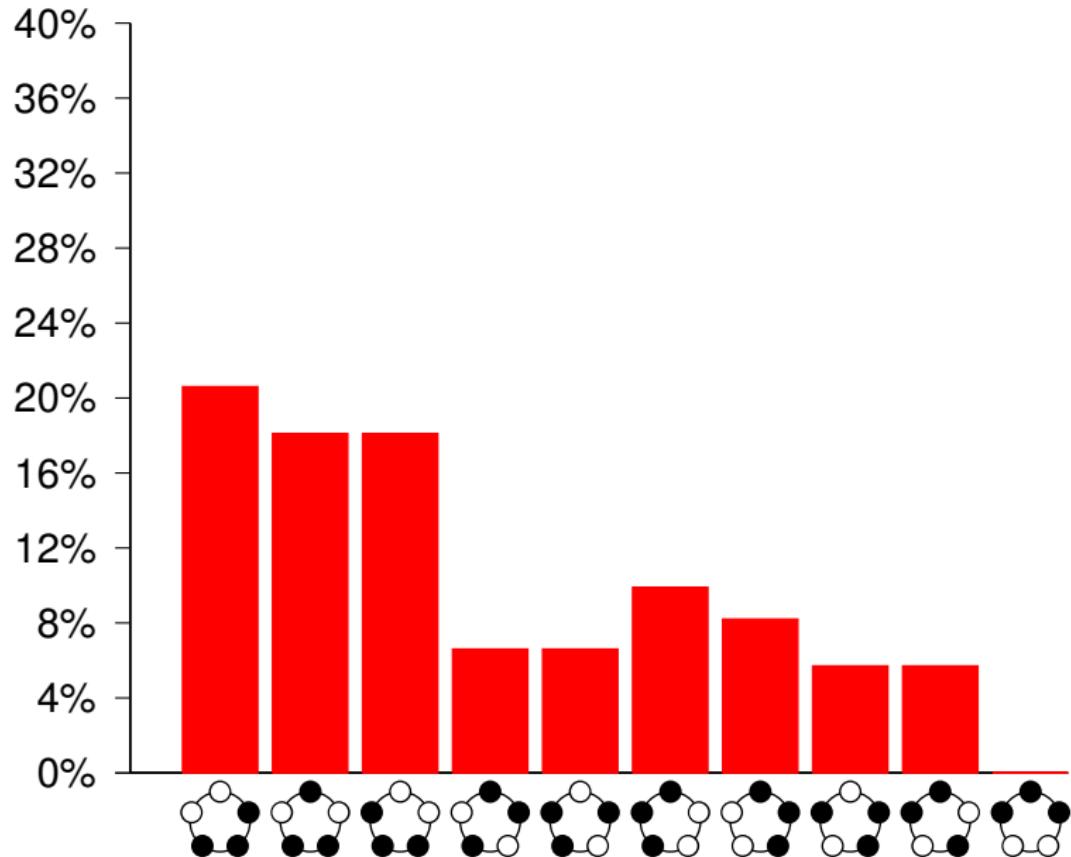
Stationary distribution



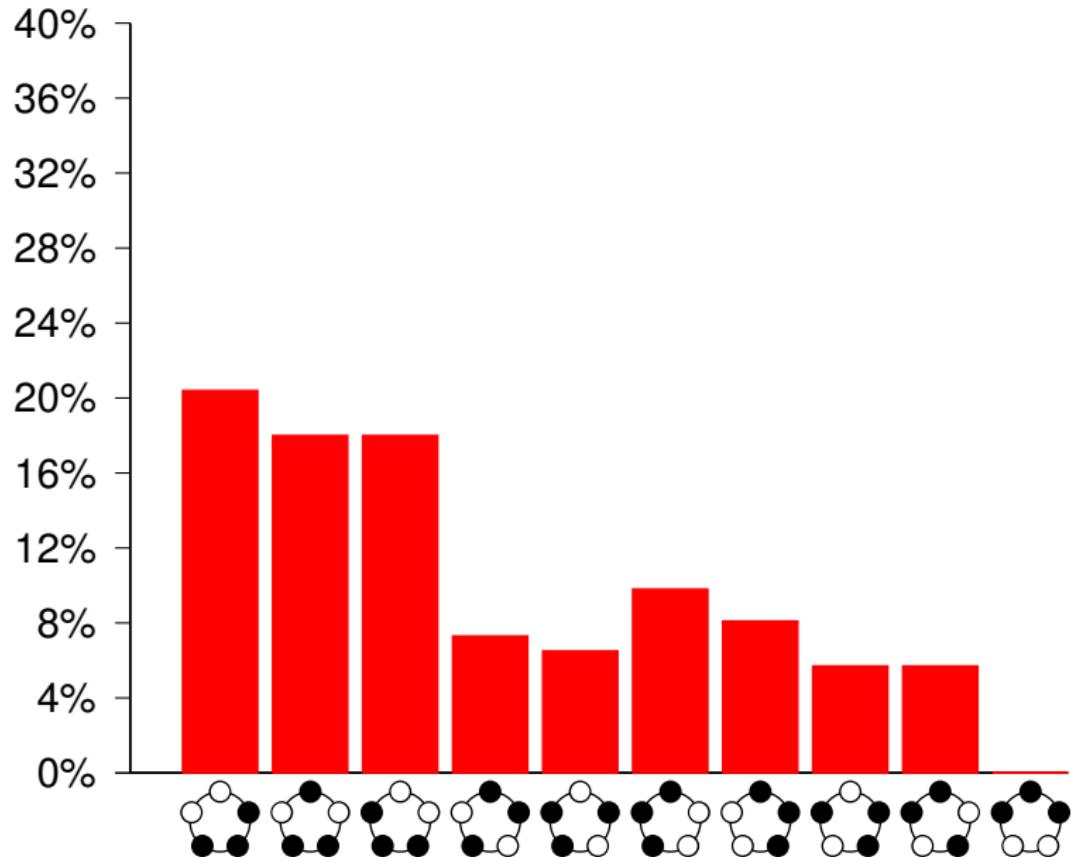
Stationary distribution



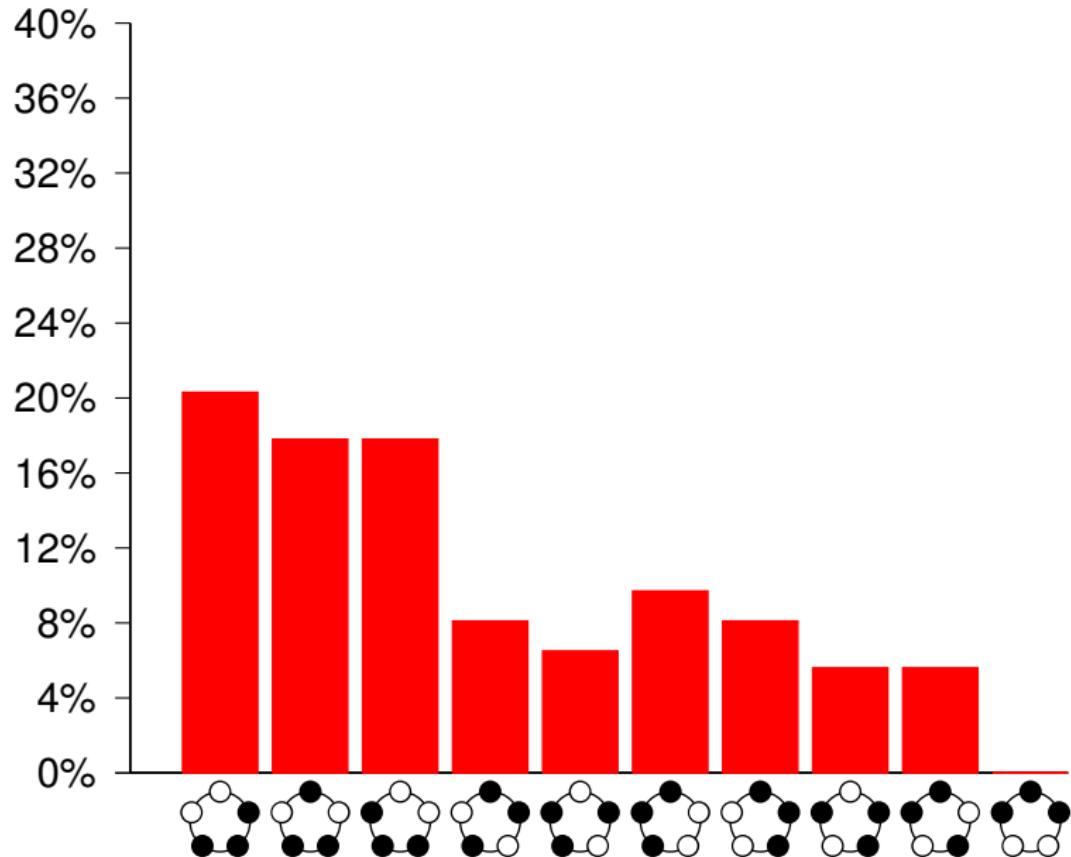
Stationary distribution



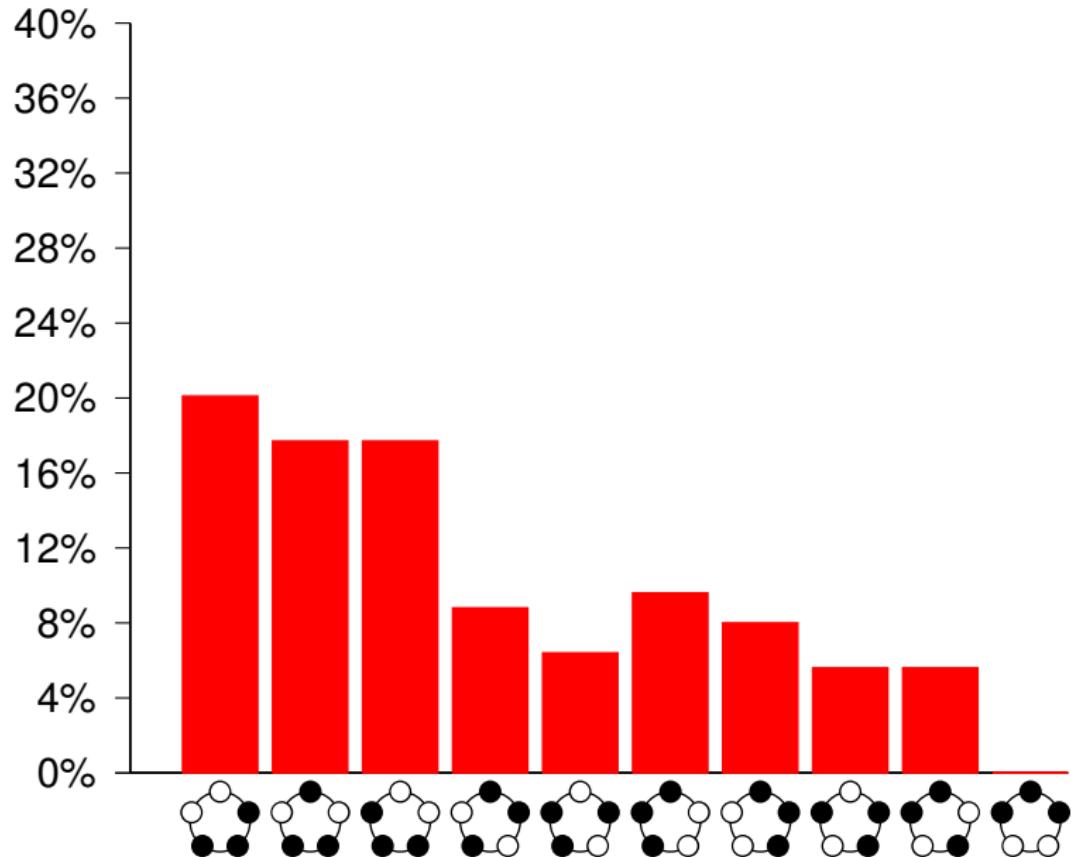
Stationary distribution



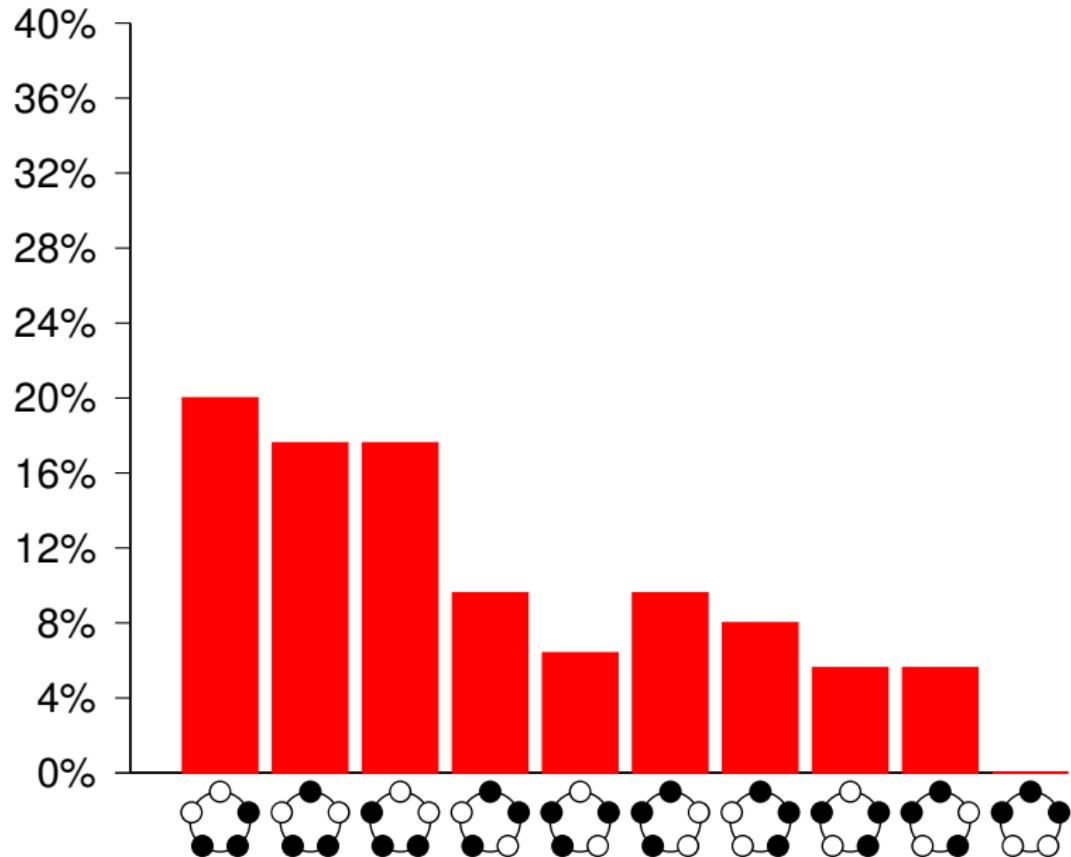
Stationary distribution



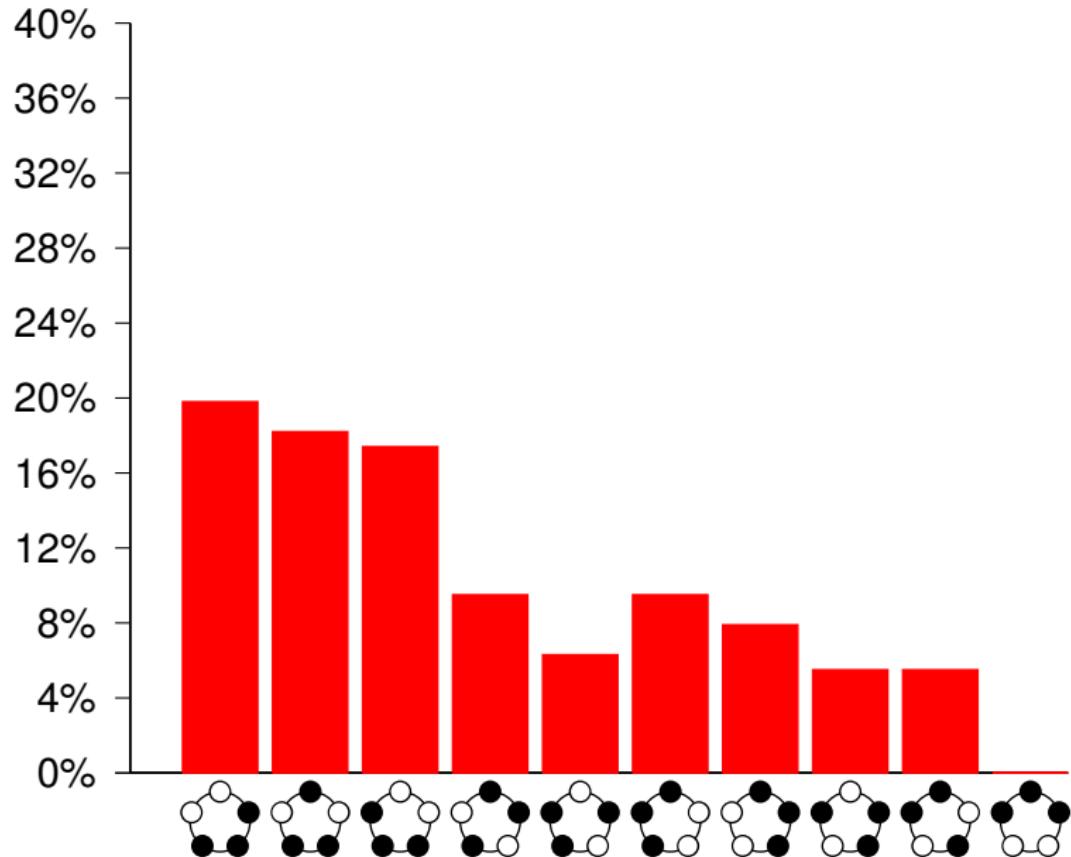
Stationary distribution



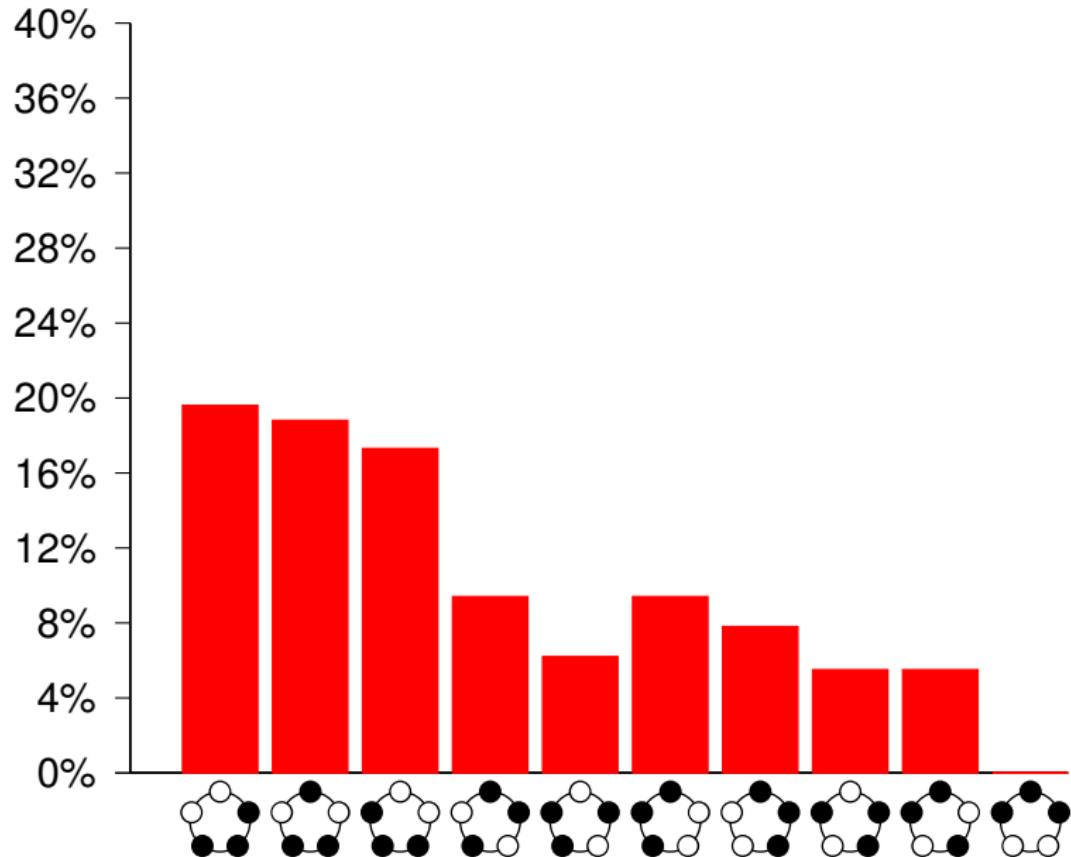
Stationary distribution



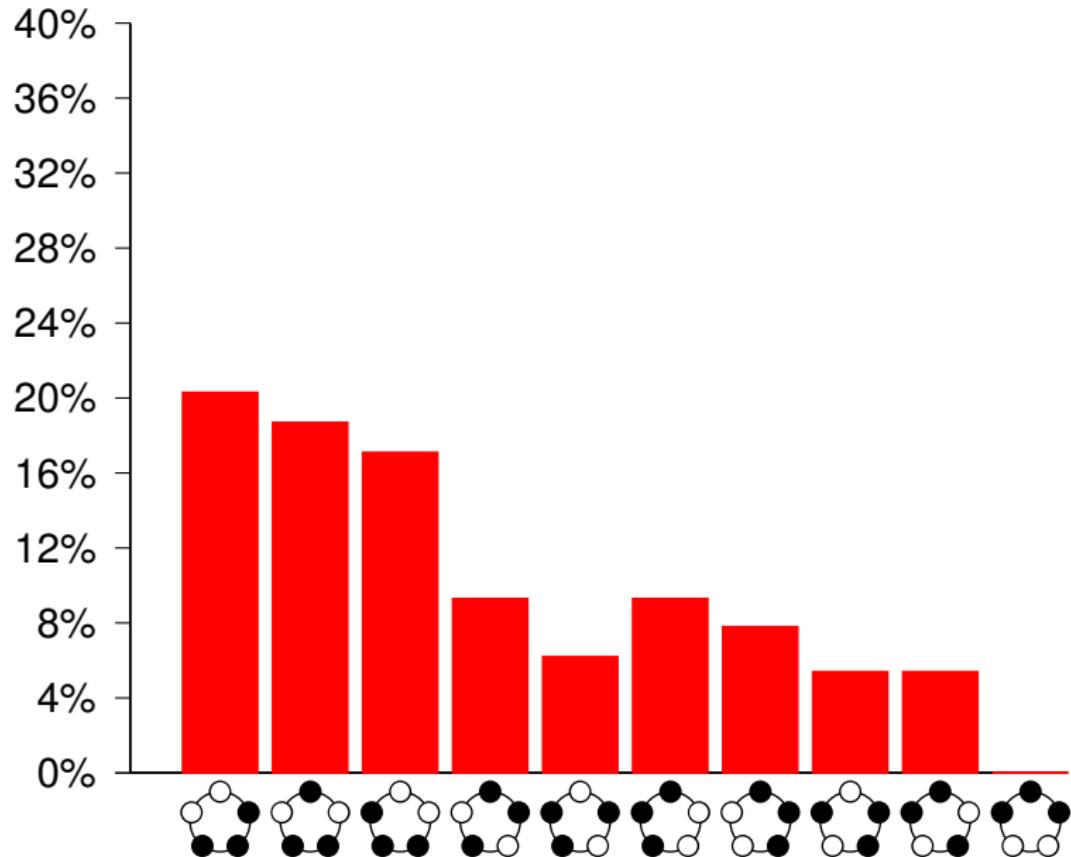
Stationary distribution



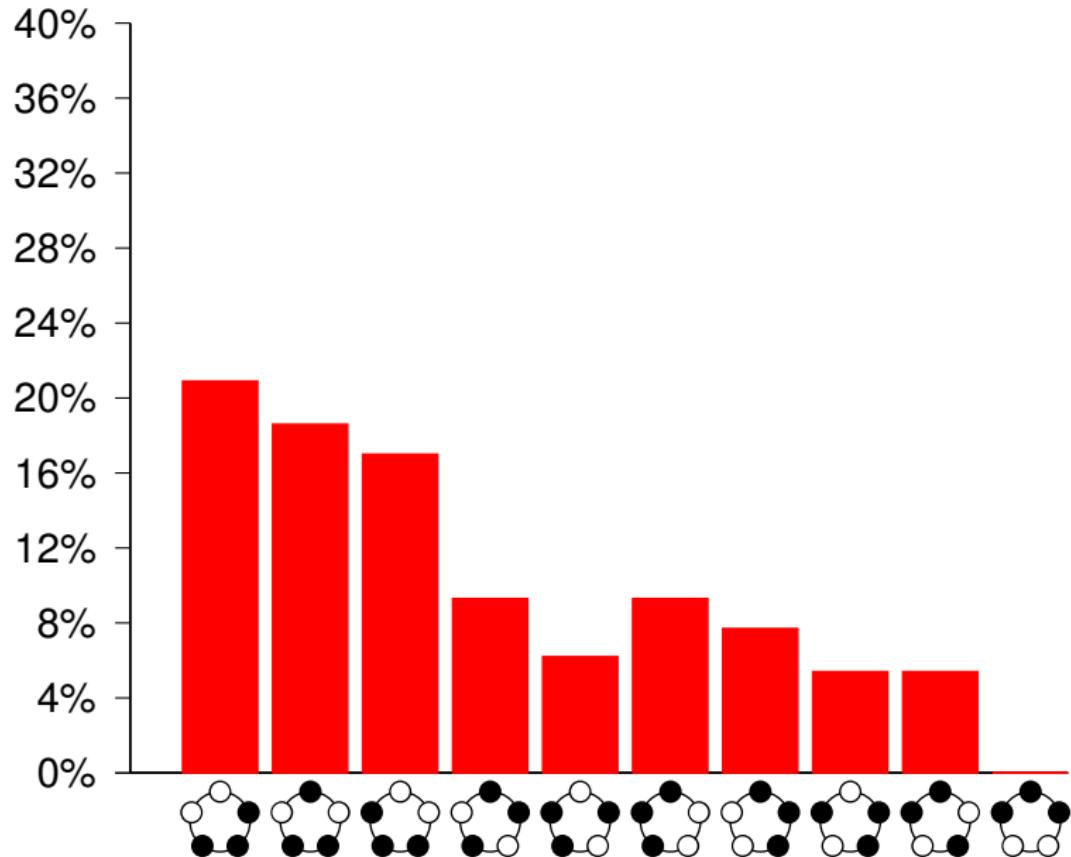
Stationary distribution



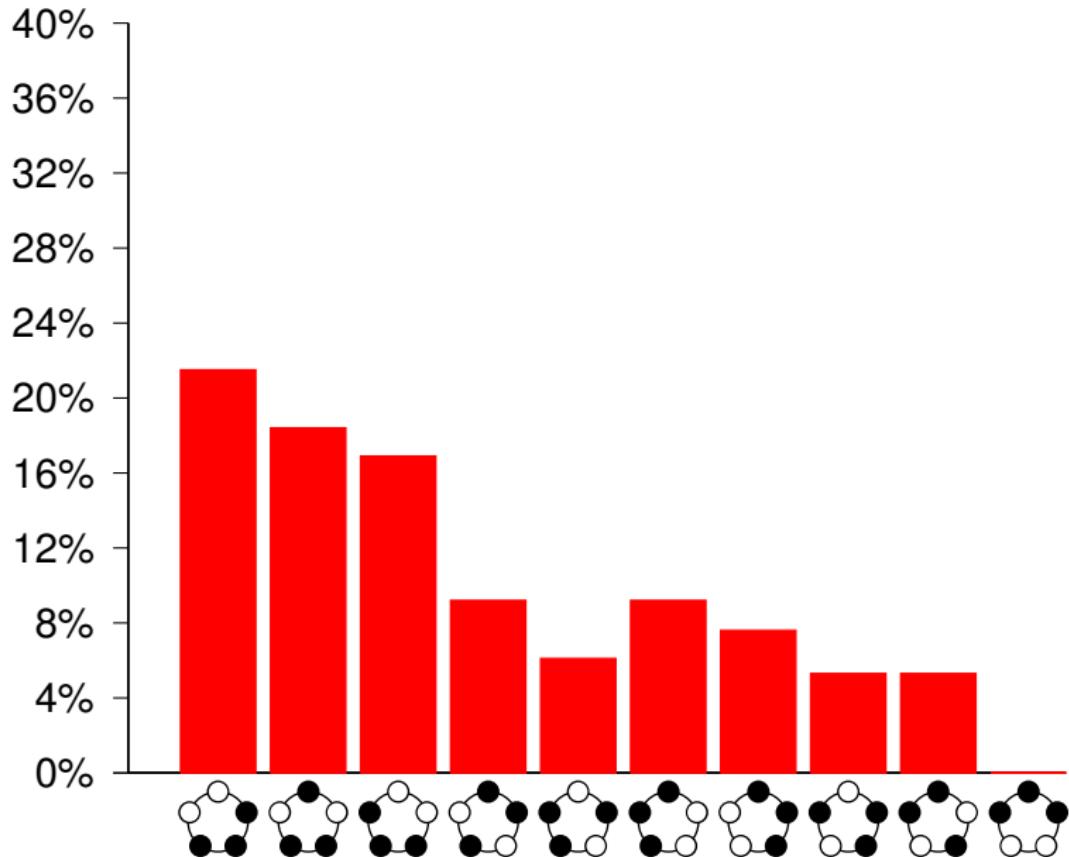
Stationary distribution



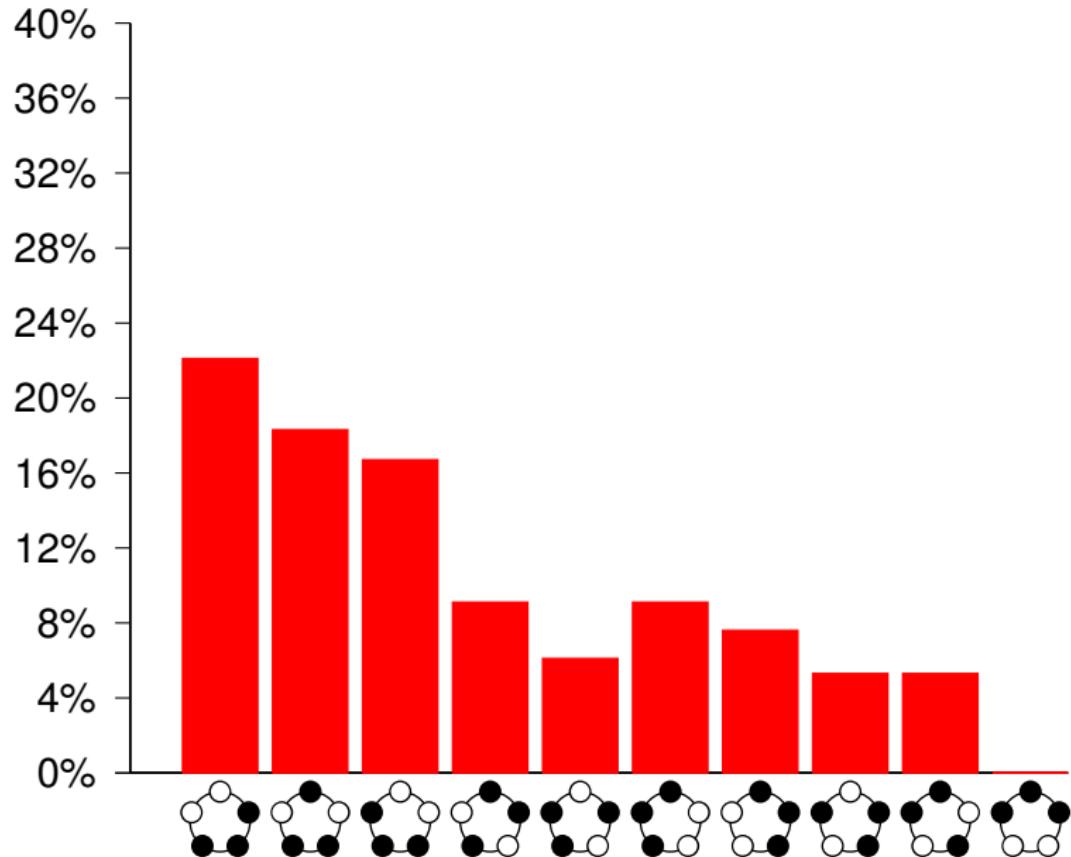
Stationary distribution



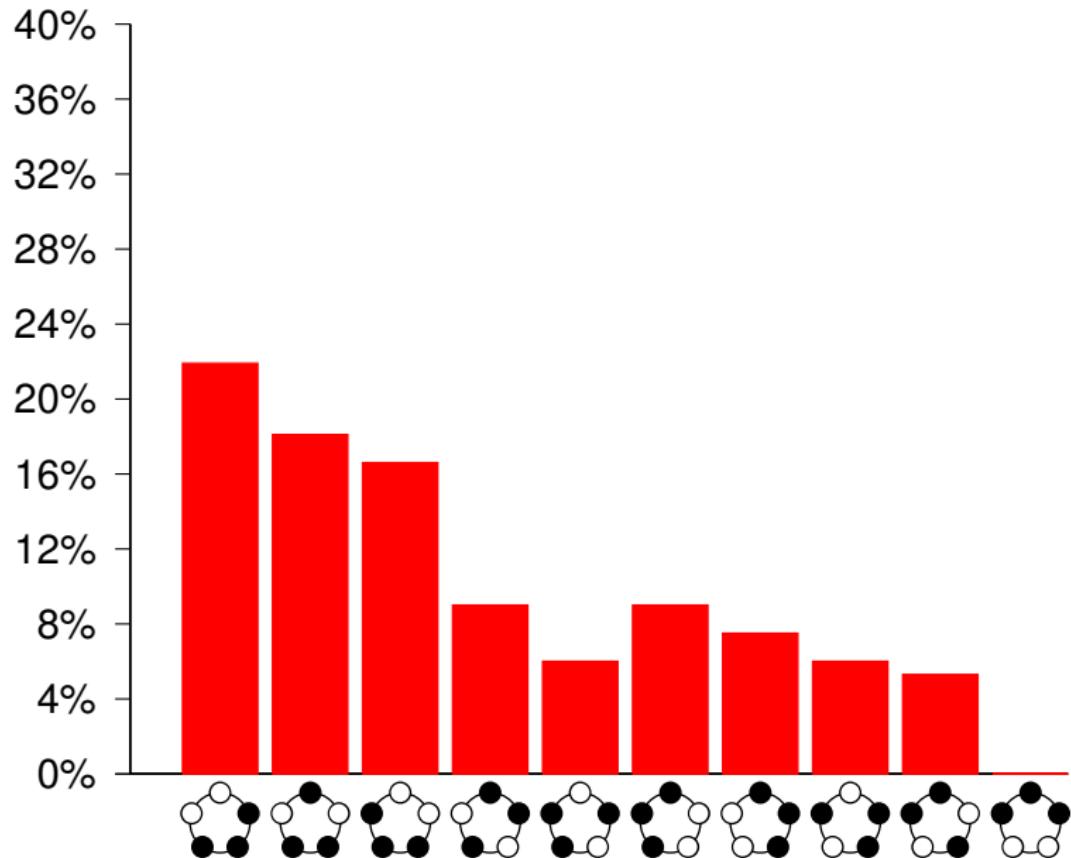
Stationary distribution



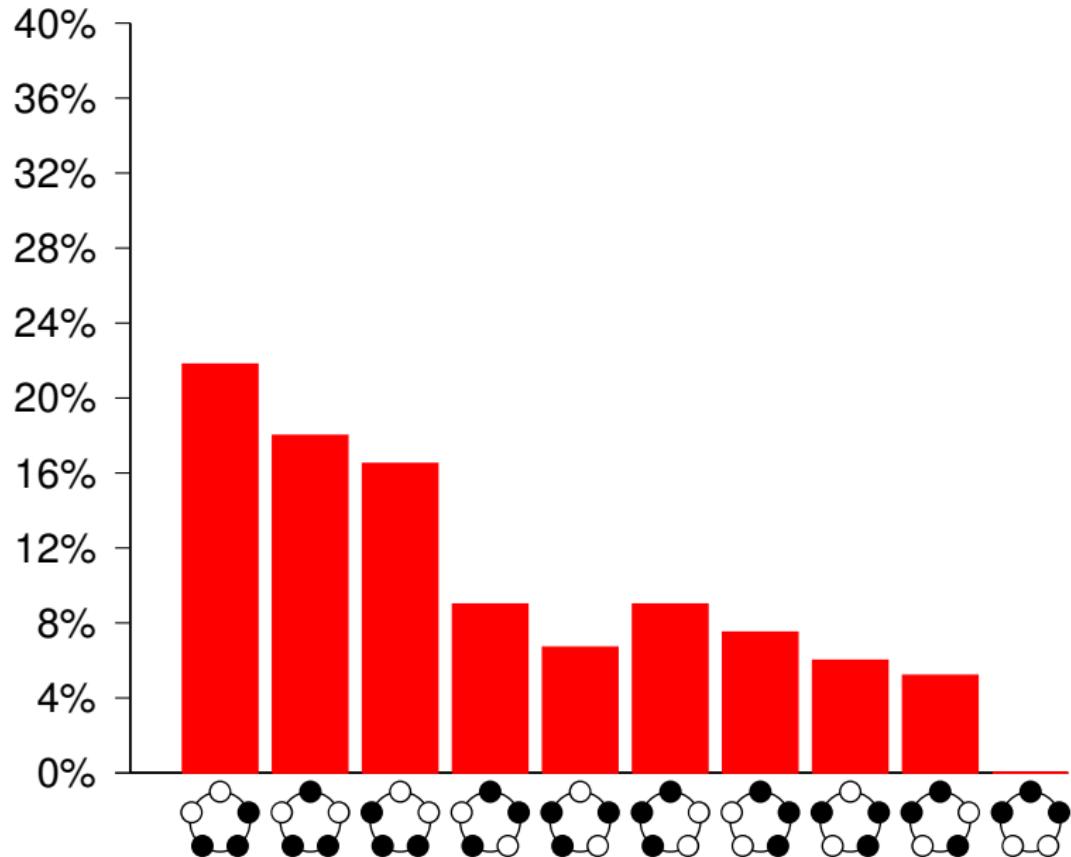
Stationary distribution



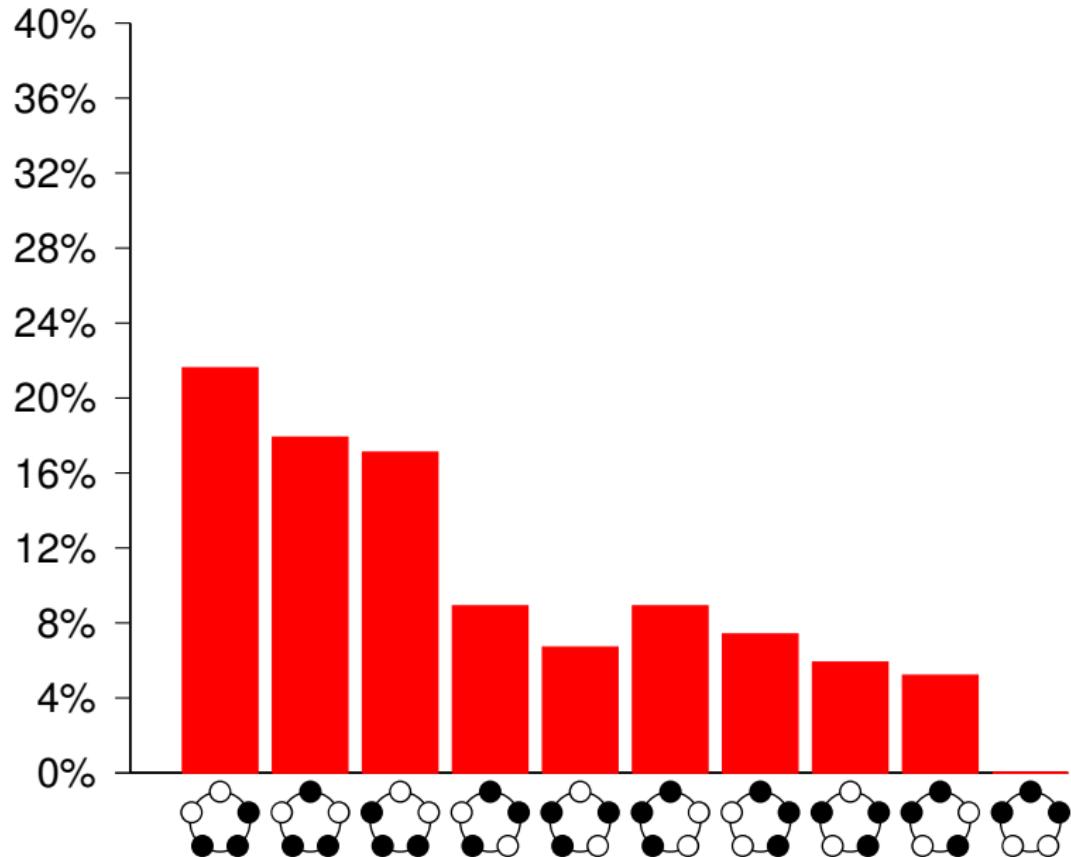
Stationary distribution



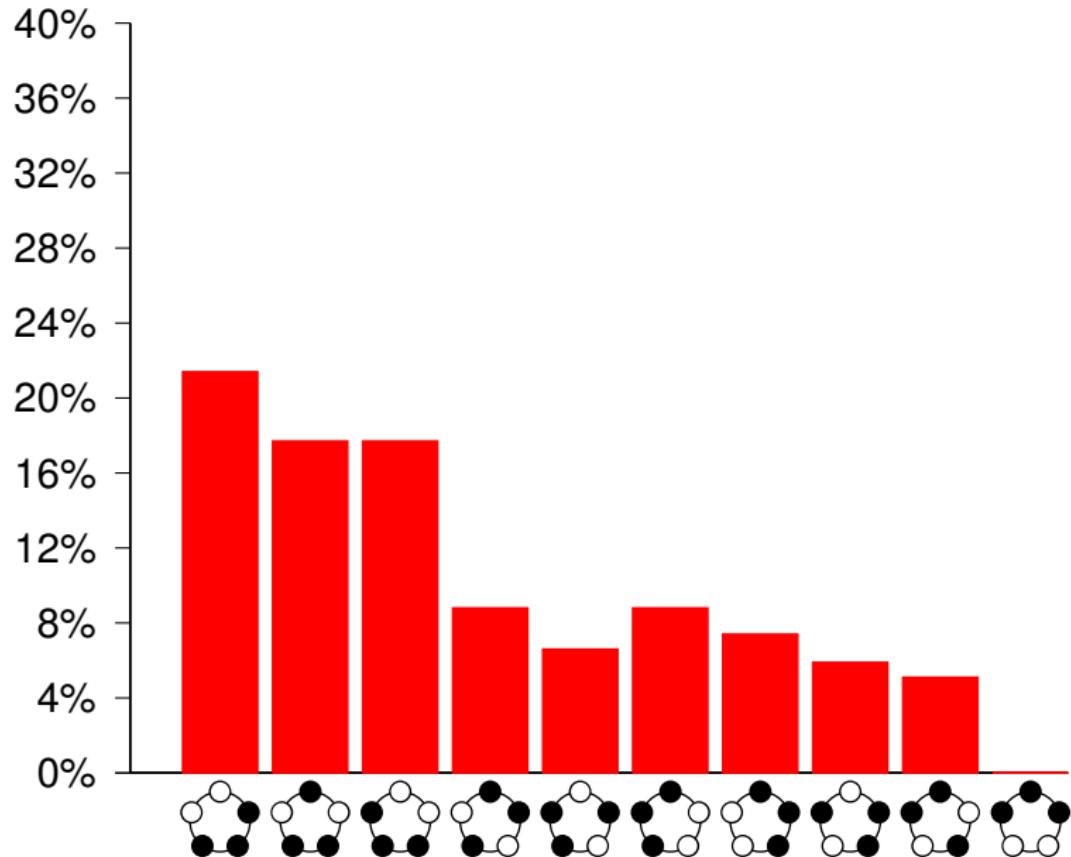
Stationary distribution



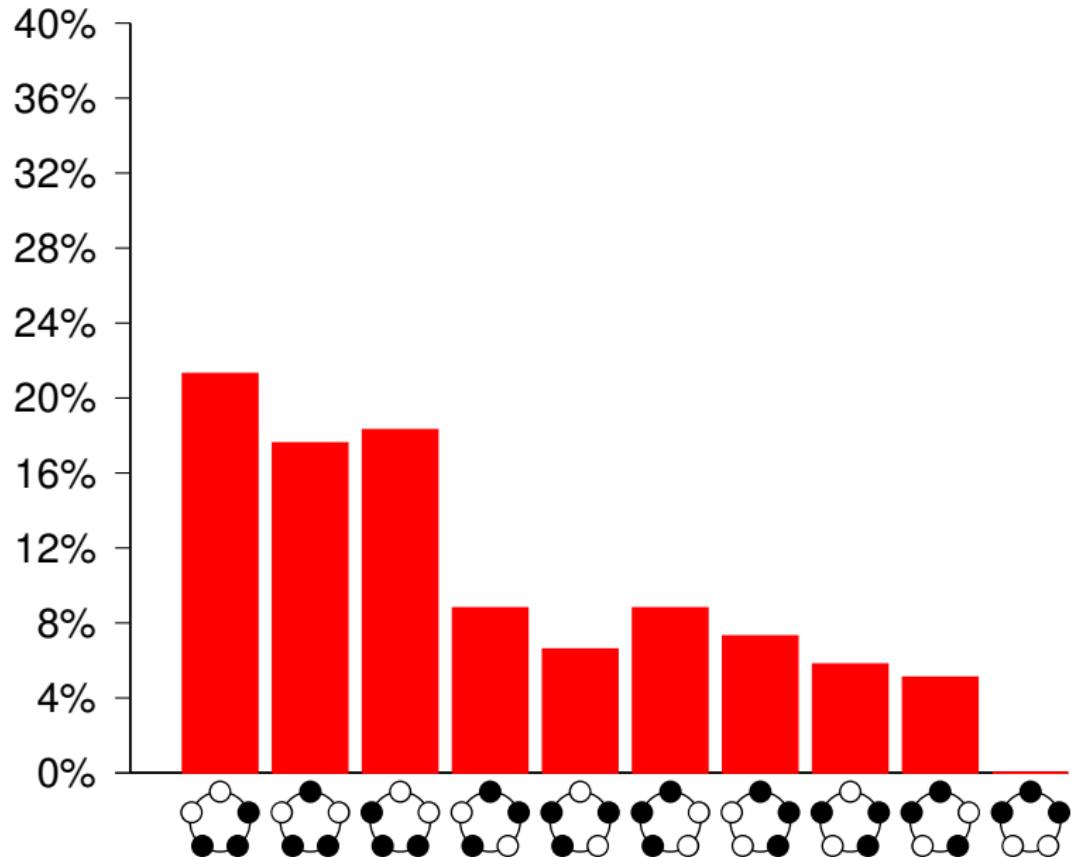
Stationary distribution



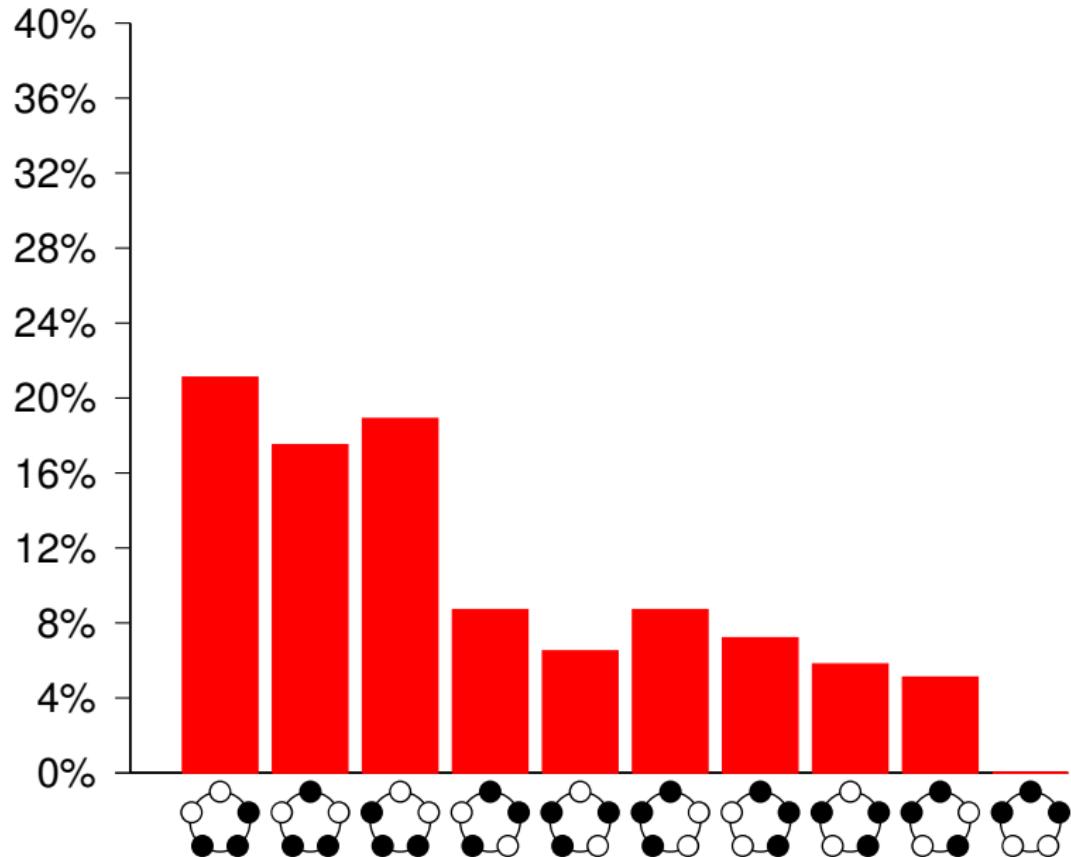
Stationary distribution



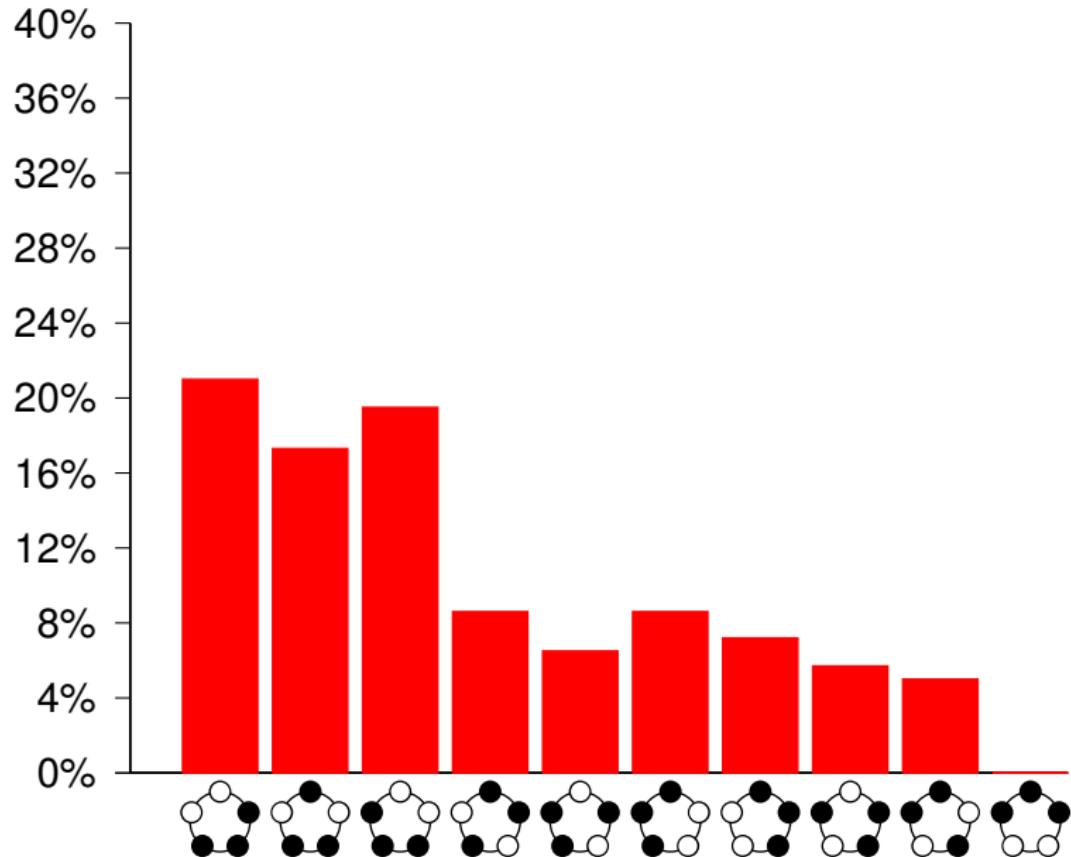
Stationary distribution



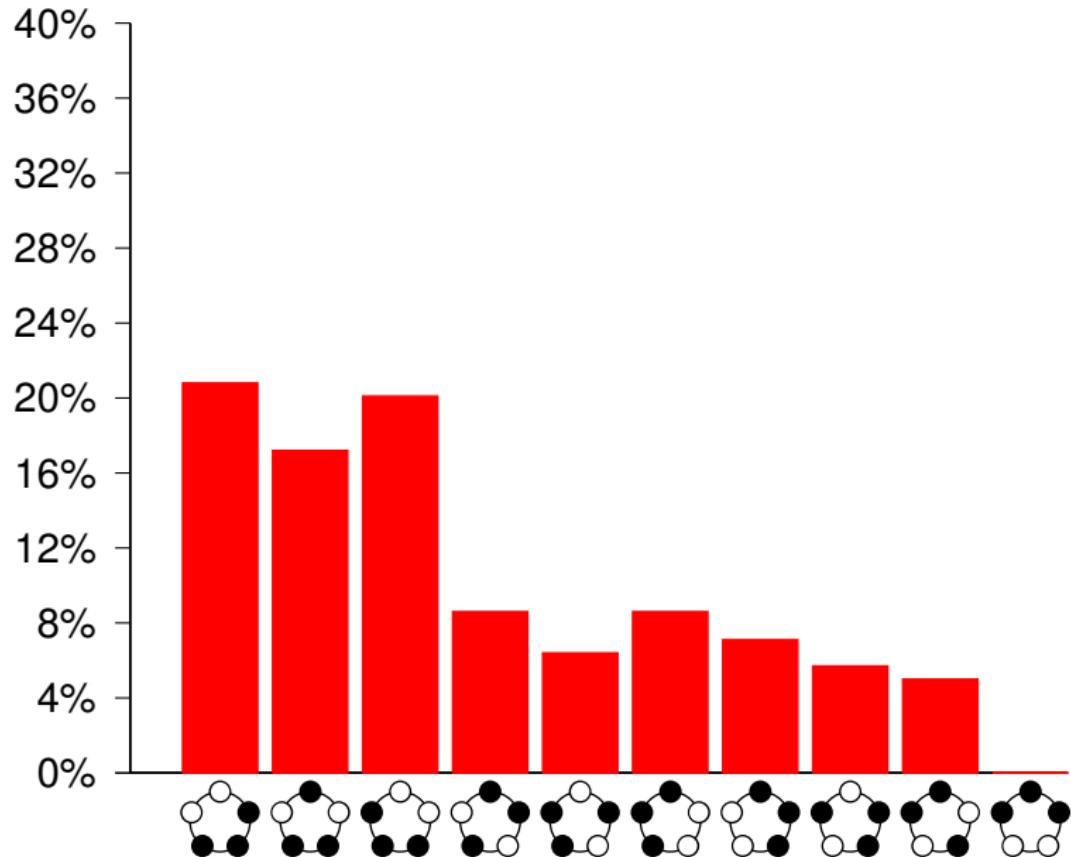
Stationary distribution



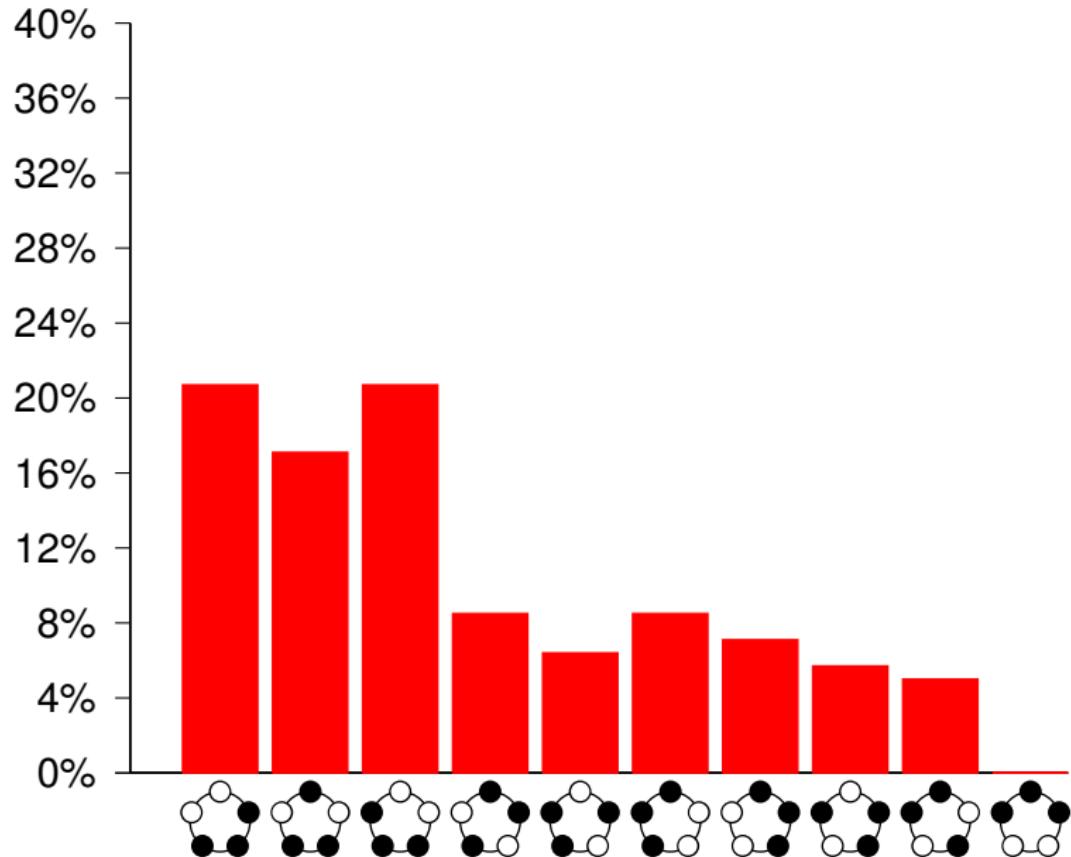
Stationary distribution



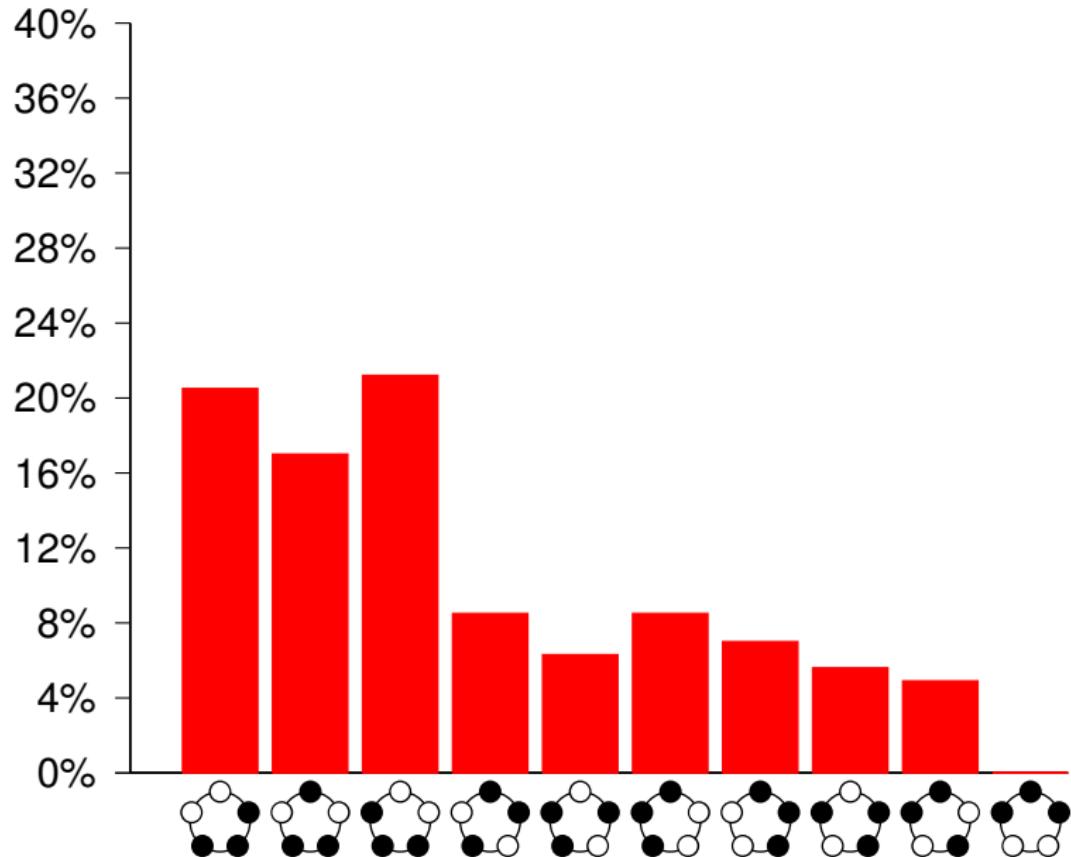
Stationary distribution



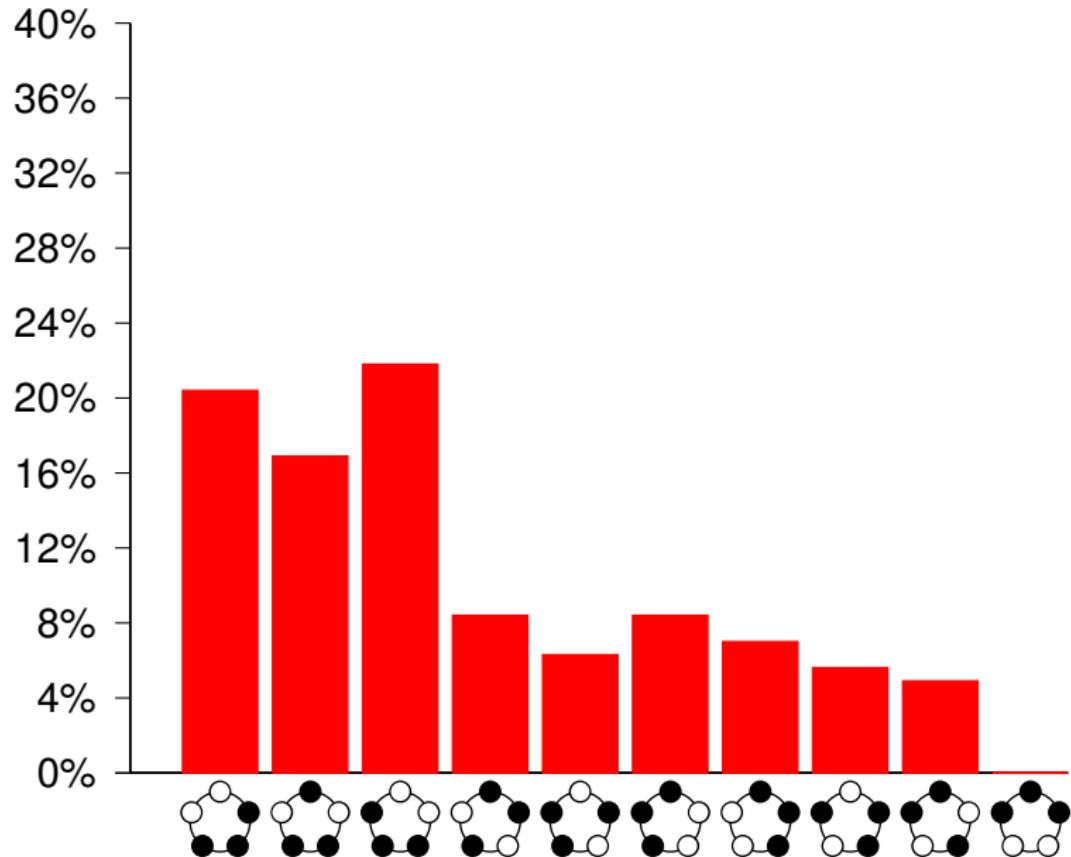
Stationary distribution



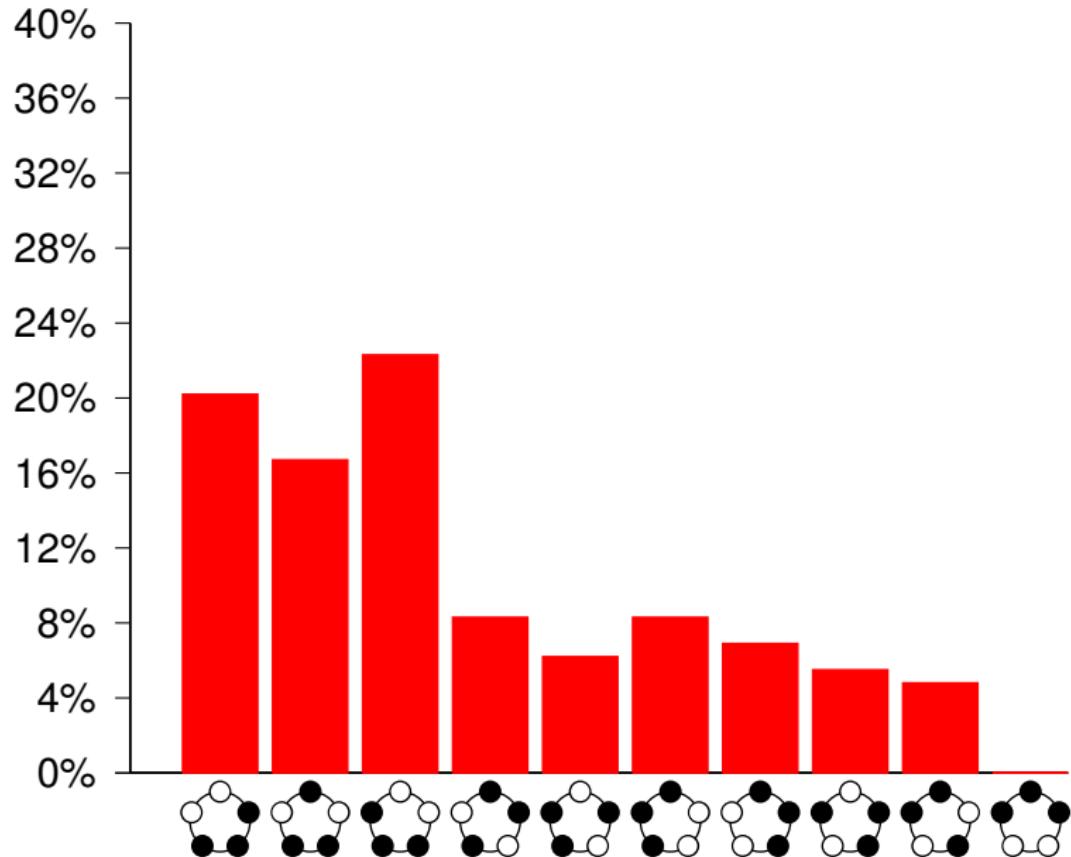
Stationary distribution



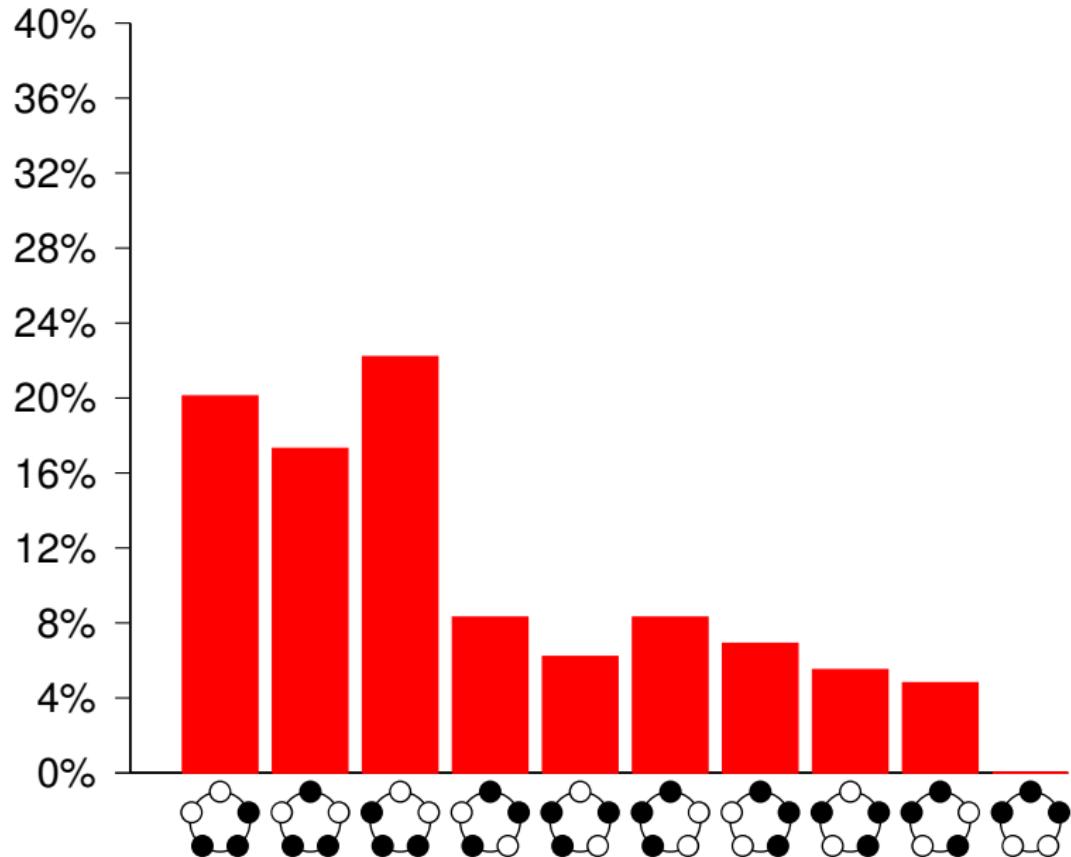
Stationary distribution



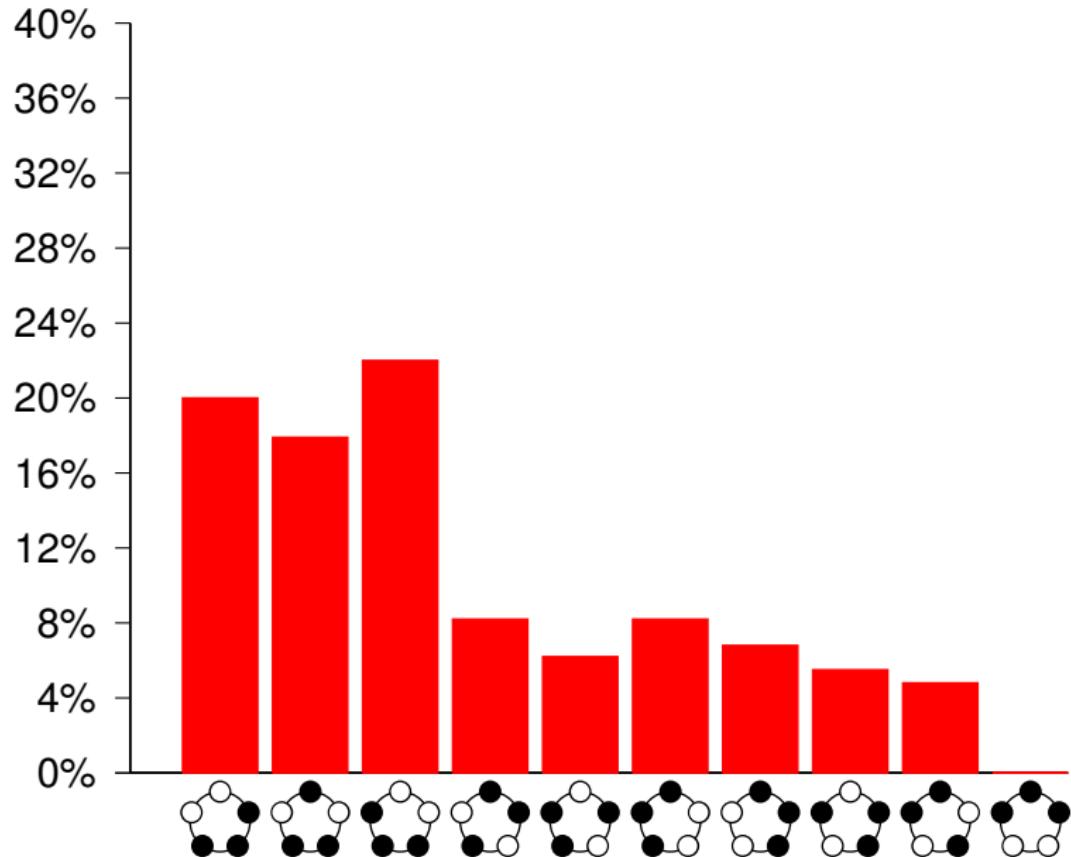
Stationary distribution



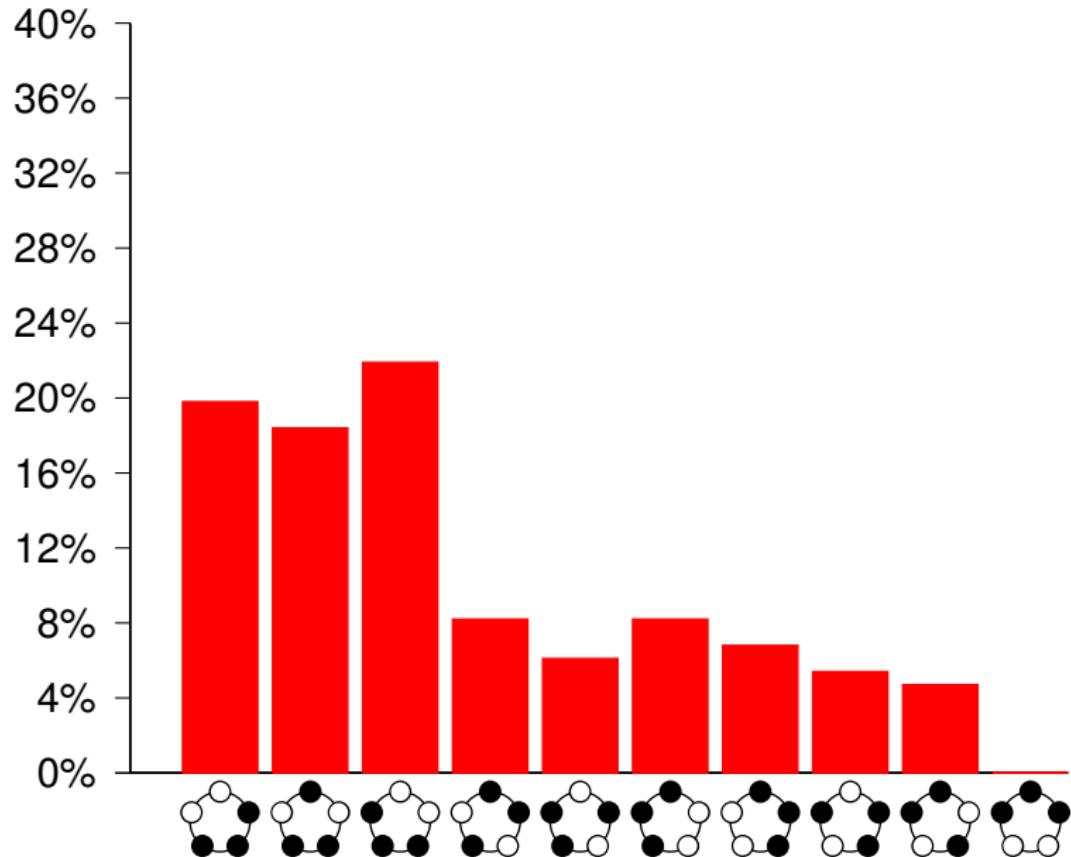
Stationary distribution



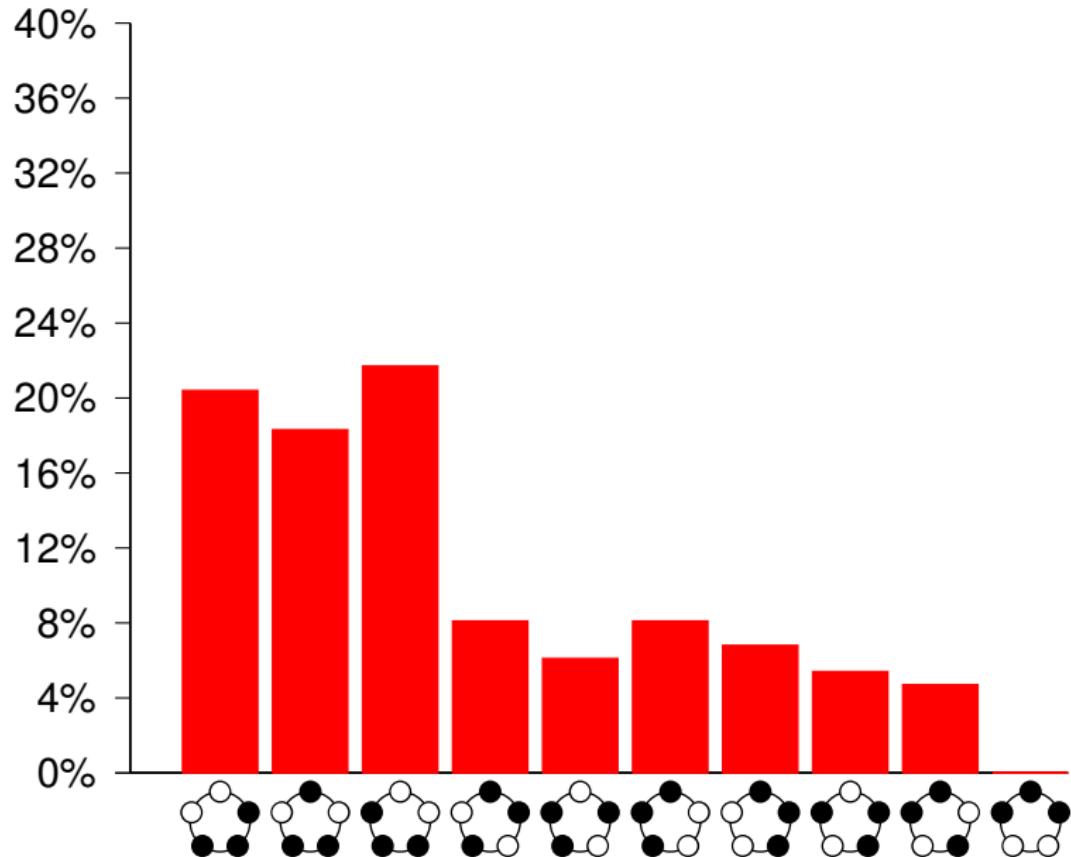
Stationary distribution



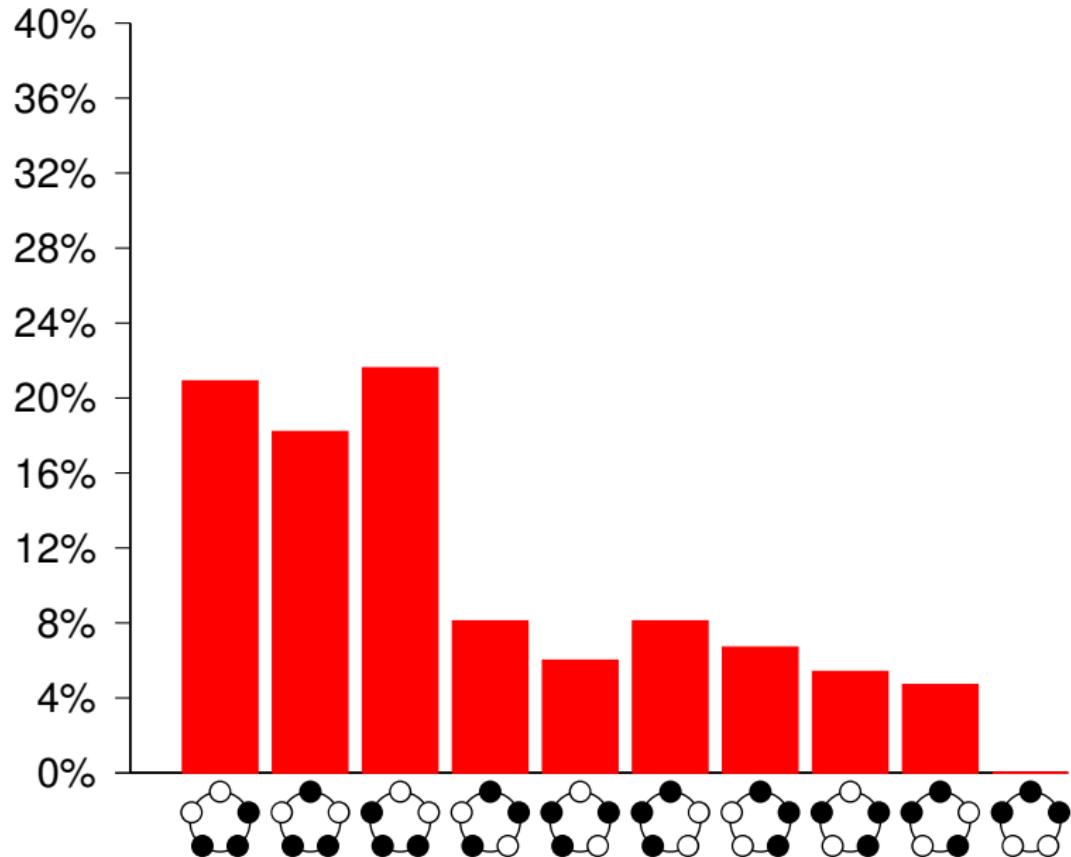
Stationary distribution



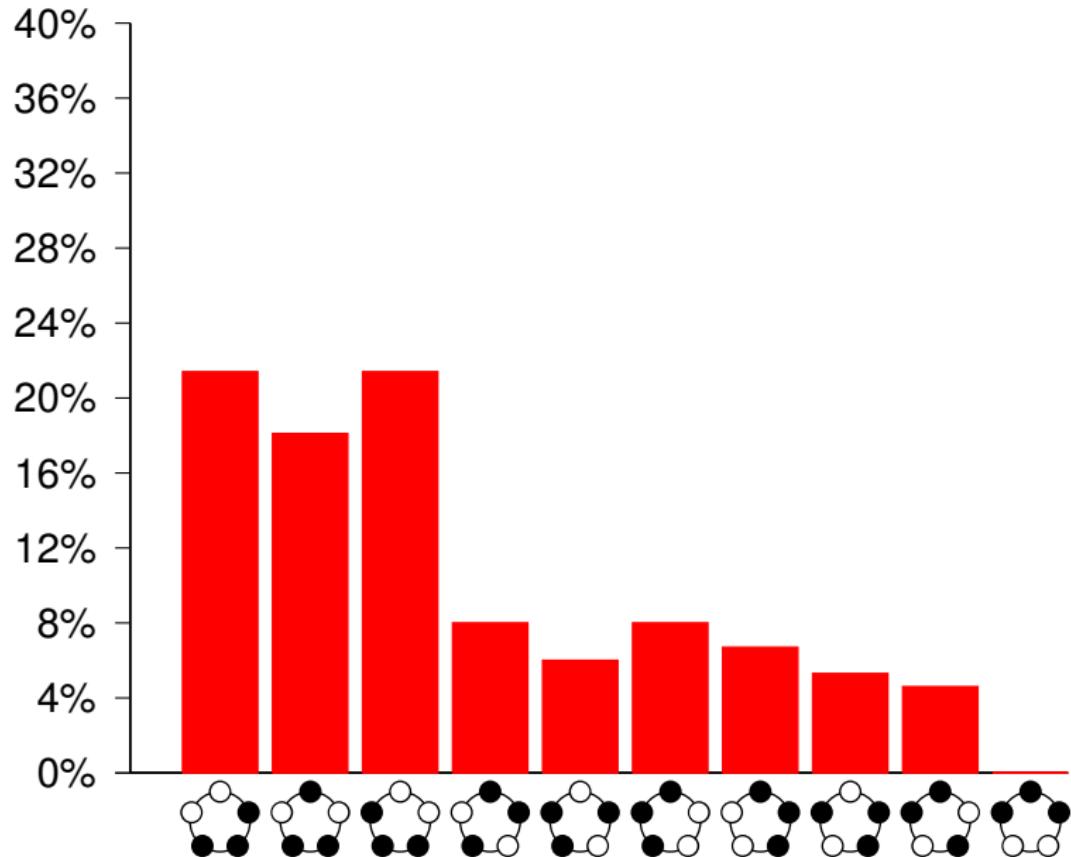
Stationary distribution



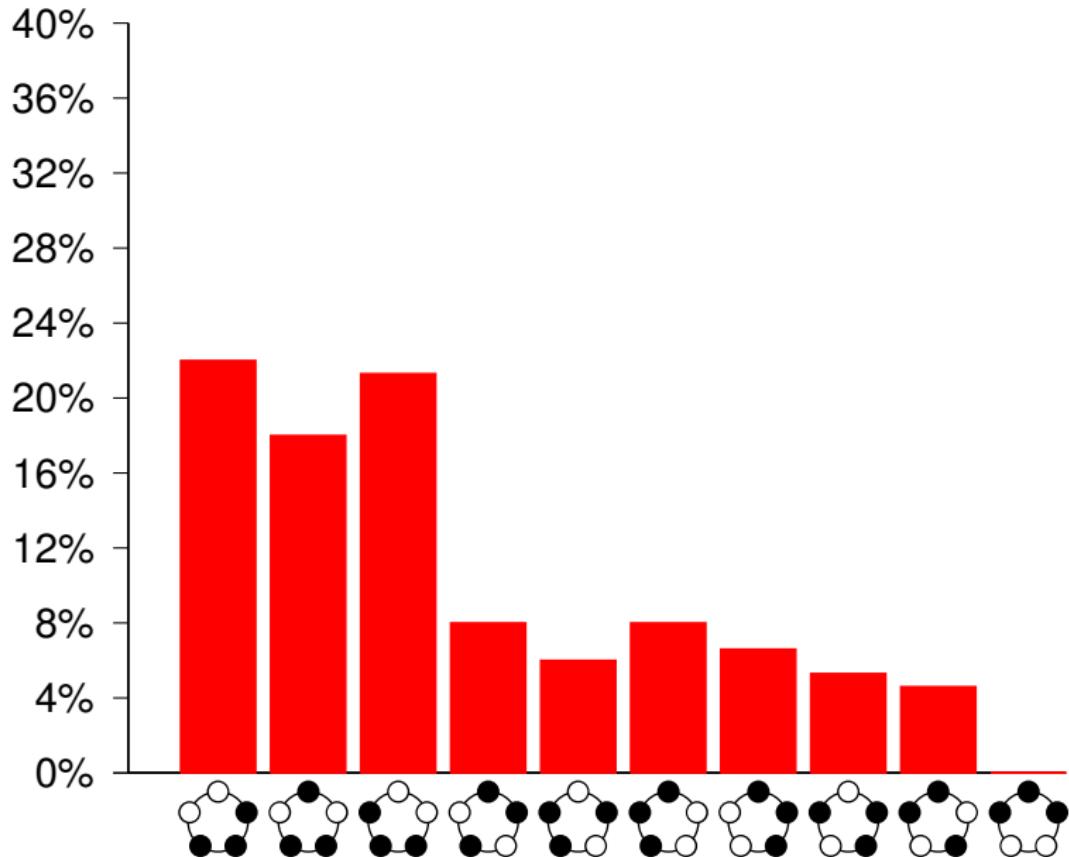
Stationary distribution



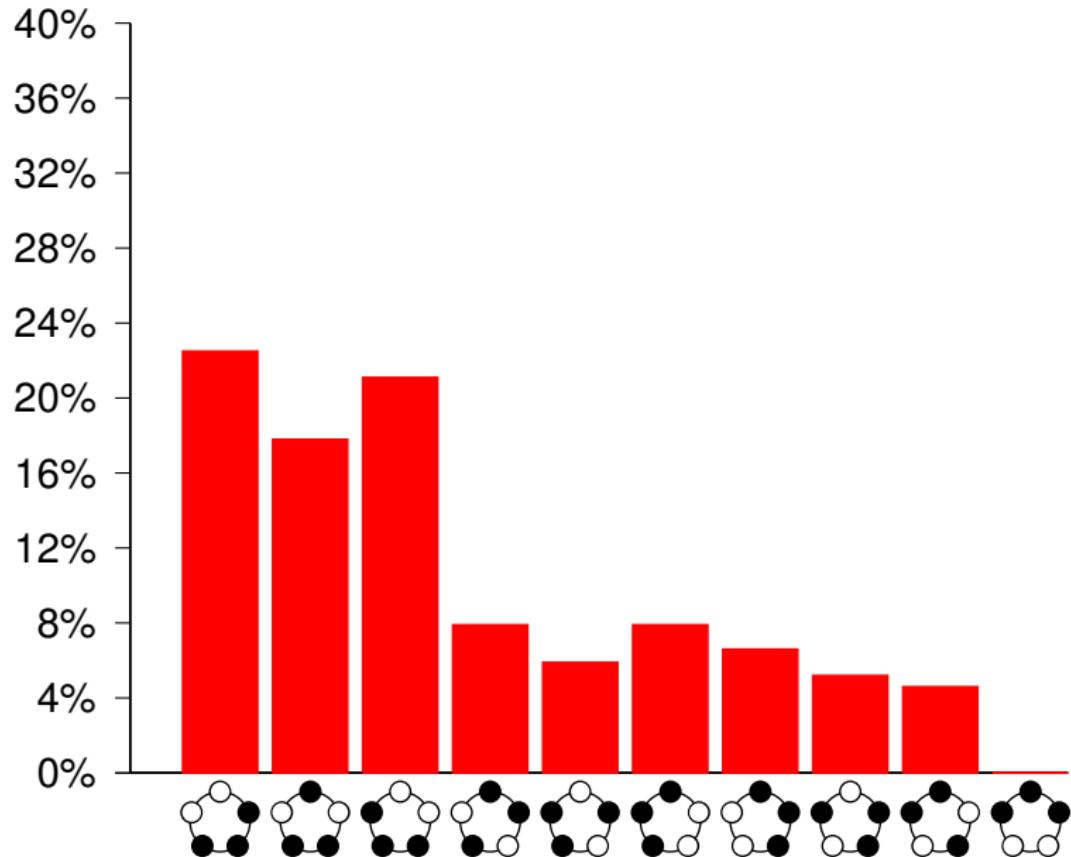
Stationary distribution



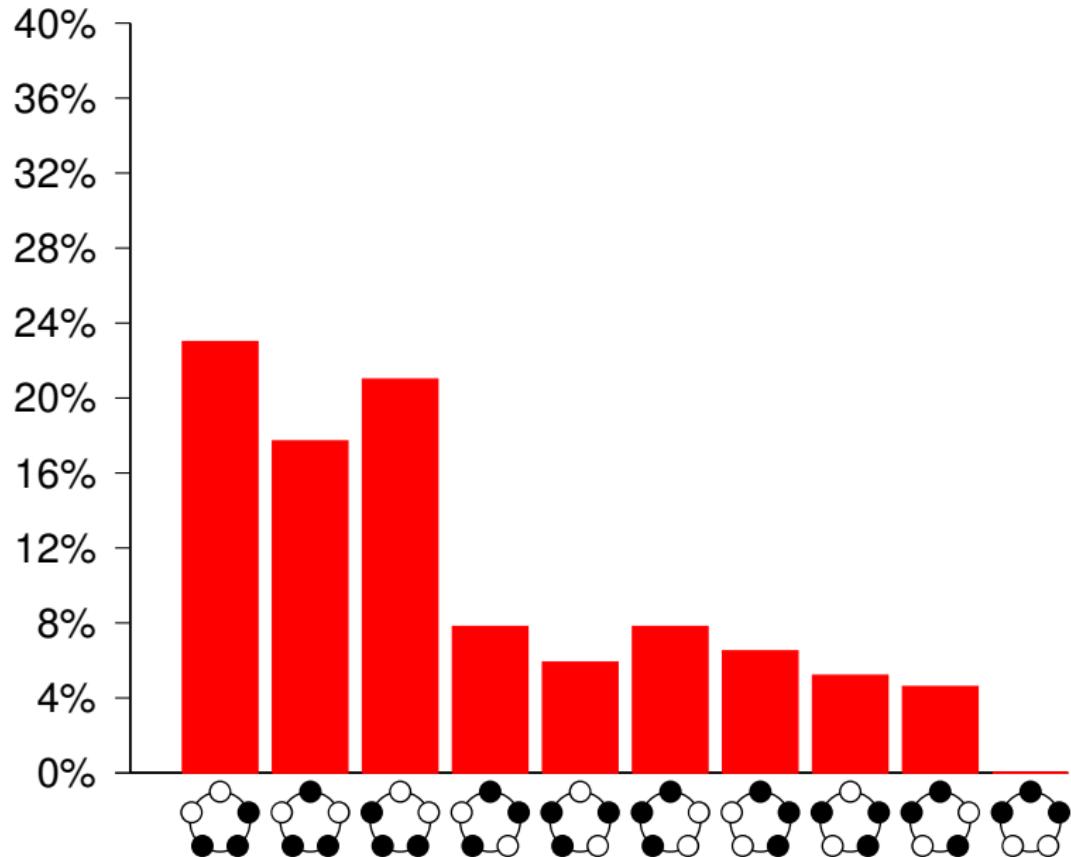
Stationary distribution



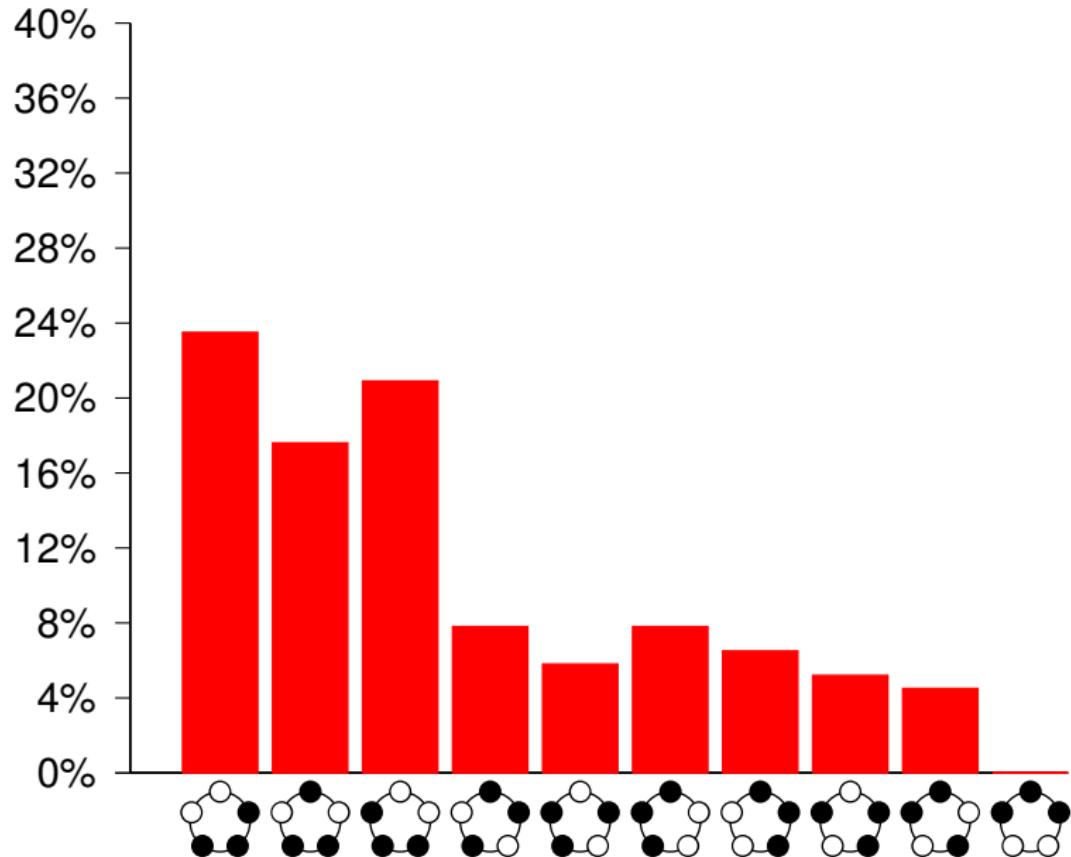
Stationary distribution



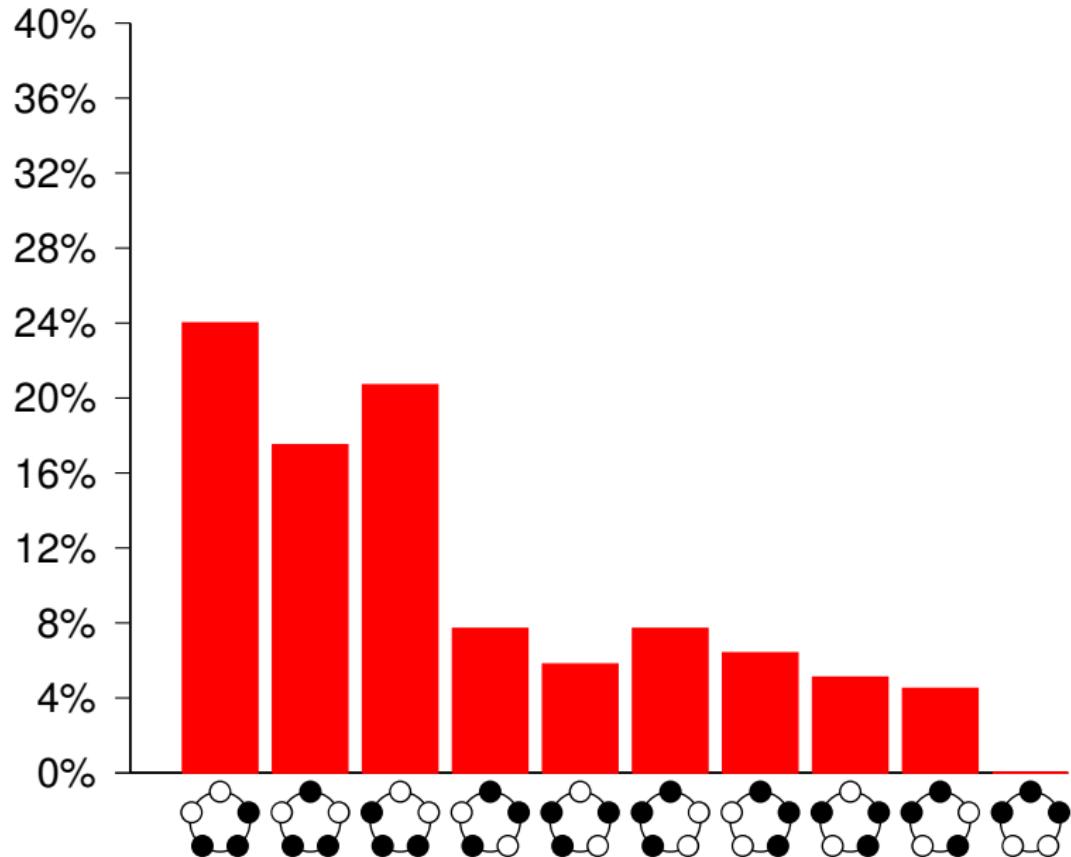
Stationary distribution



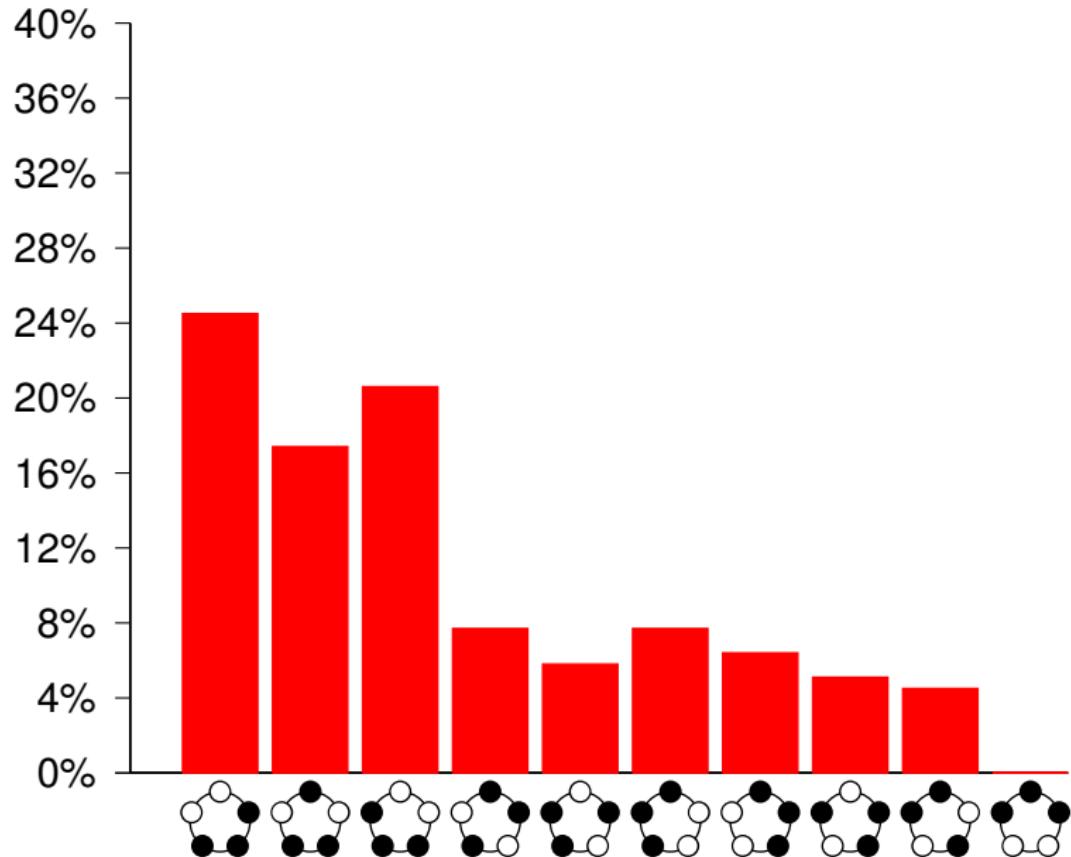
Stationary distribution



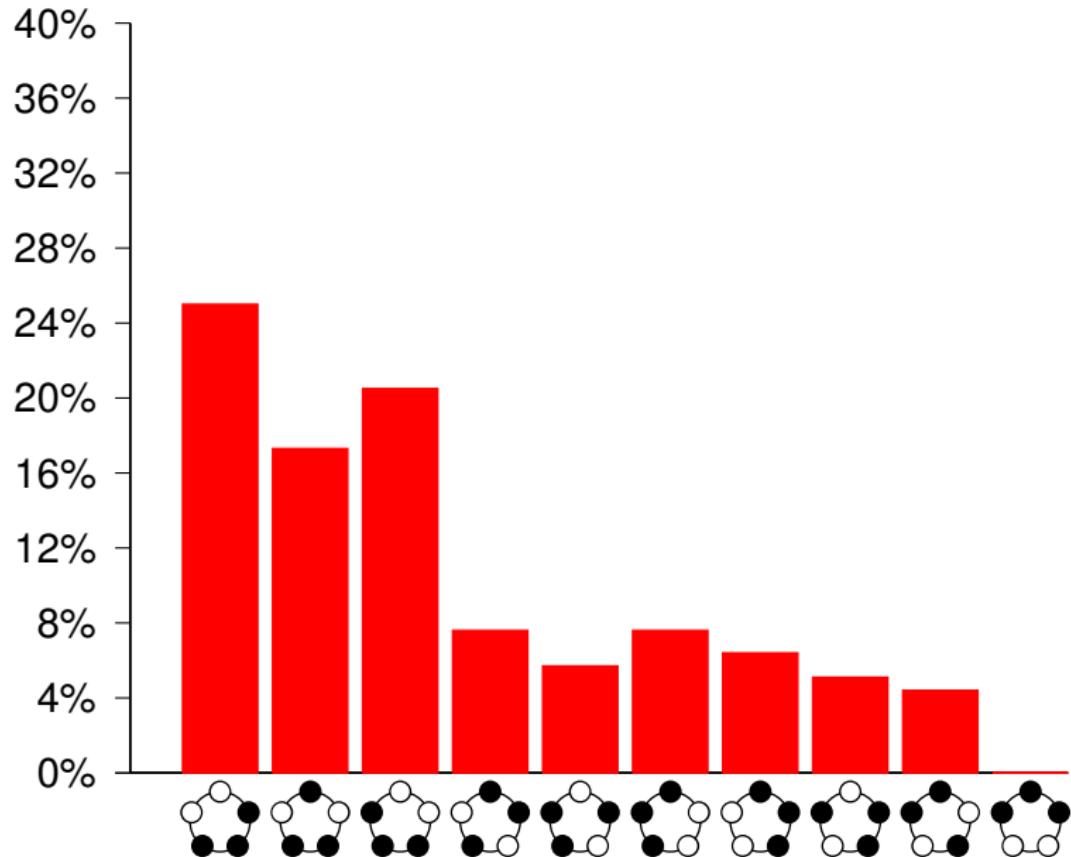
Stationary distribution



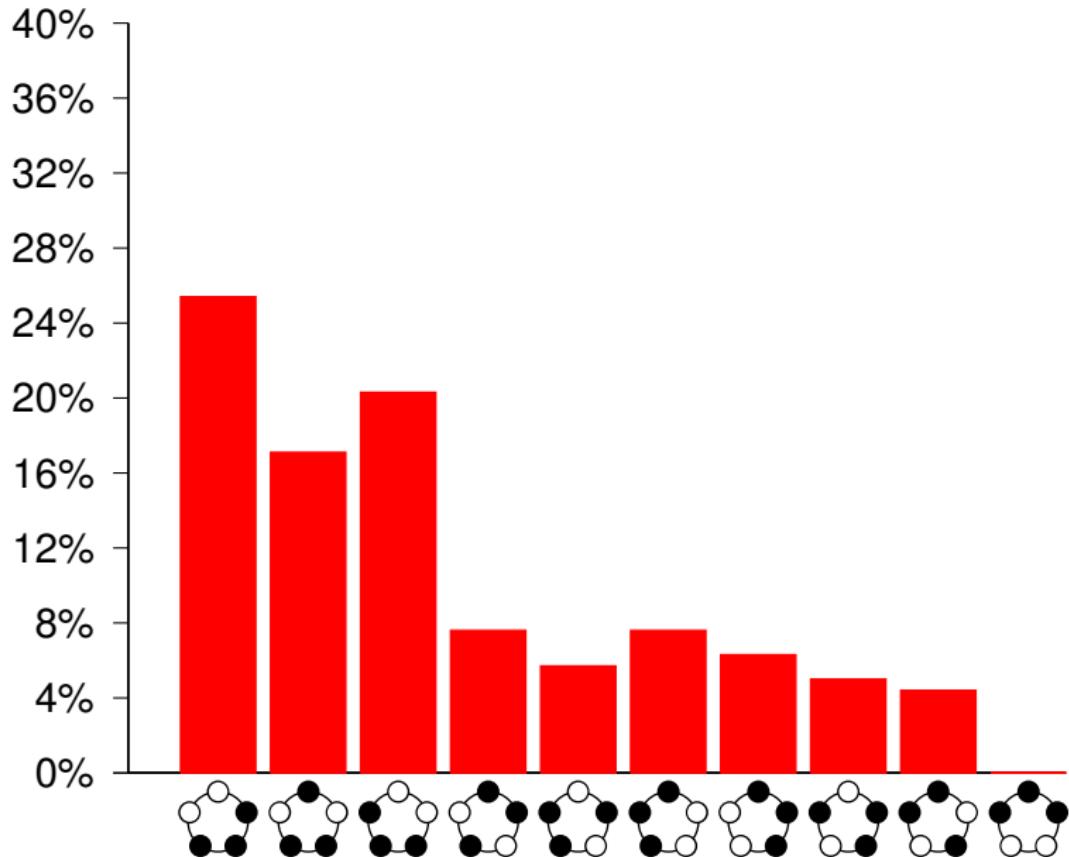
Stationary distribution



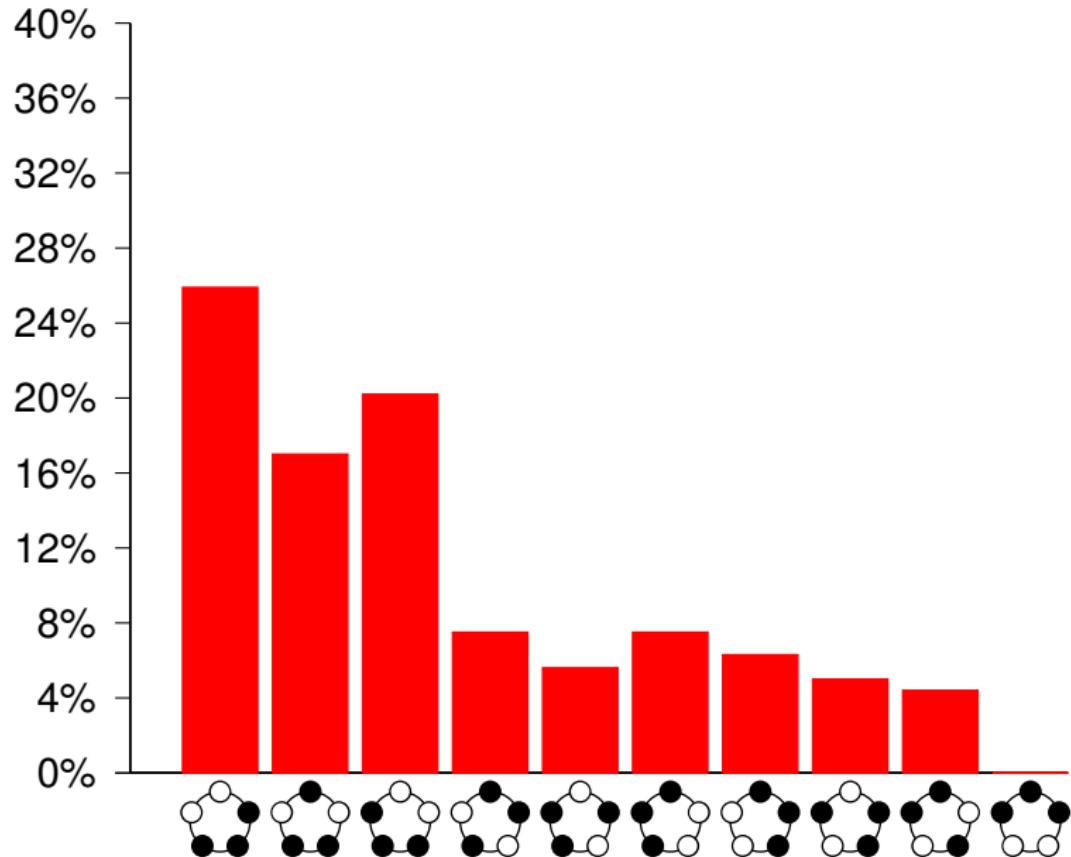
Stationary distribution



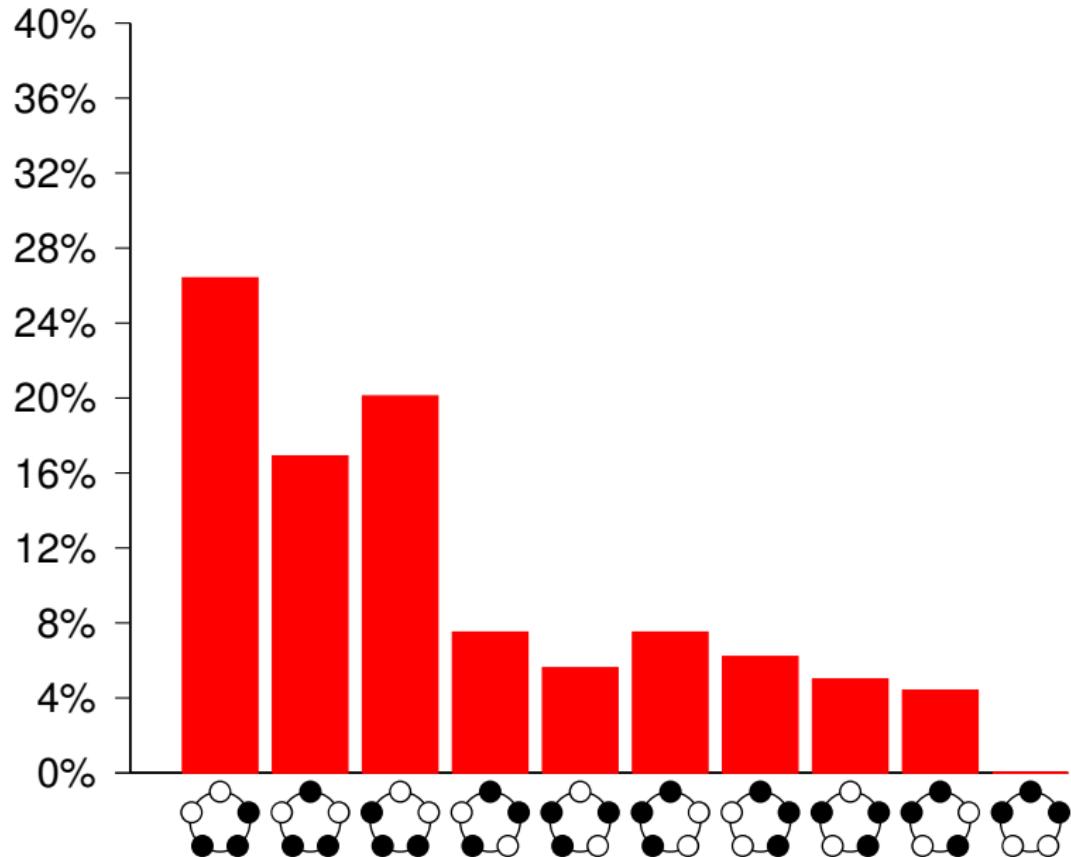
Stationary distribution



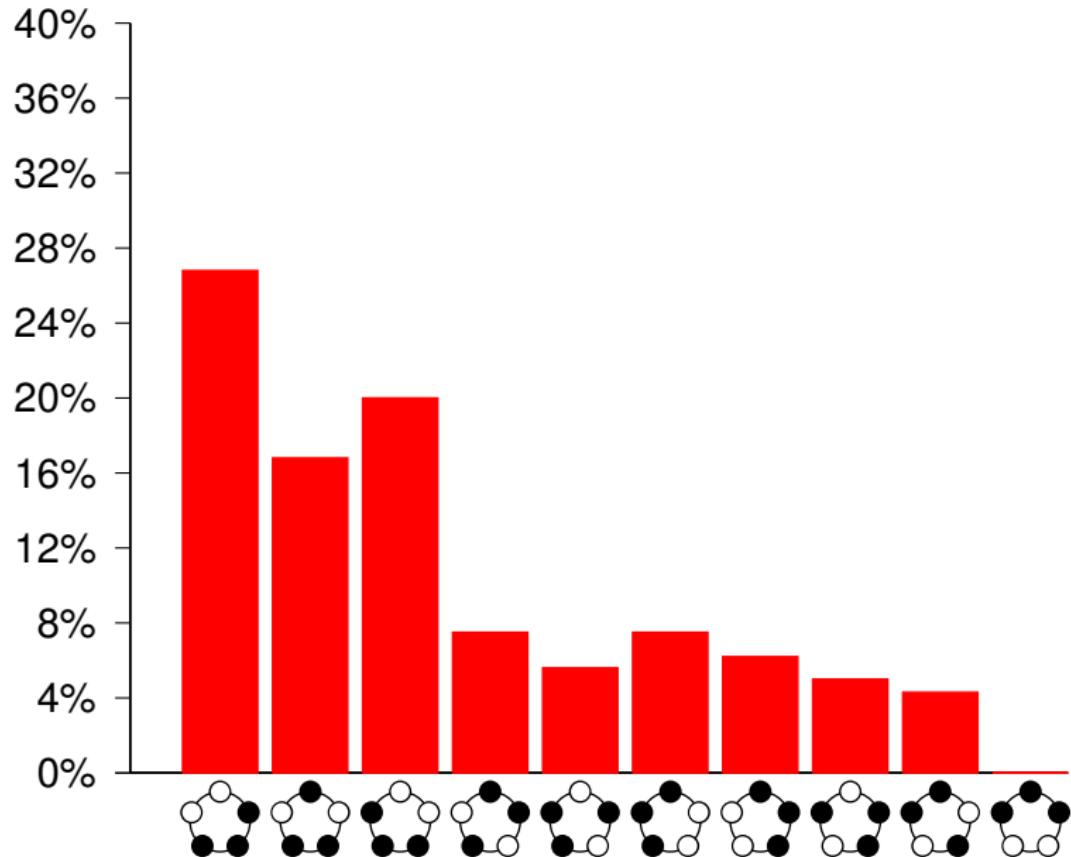
Stationary distribution



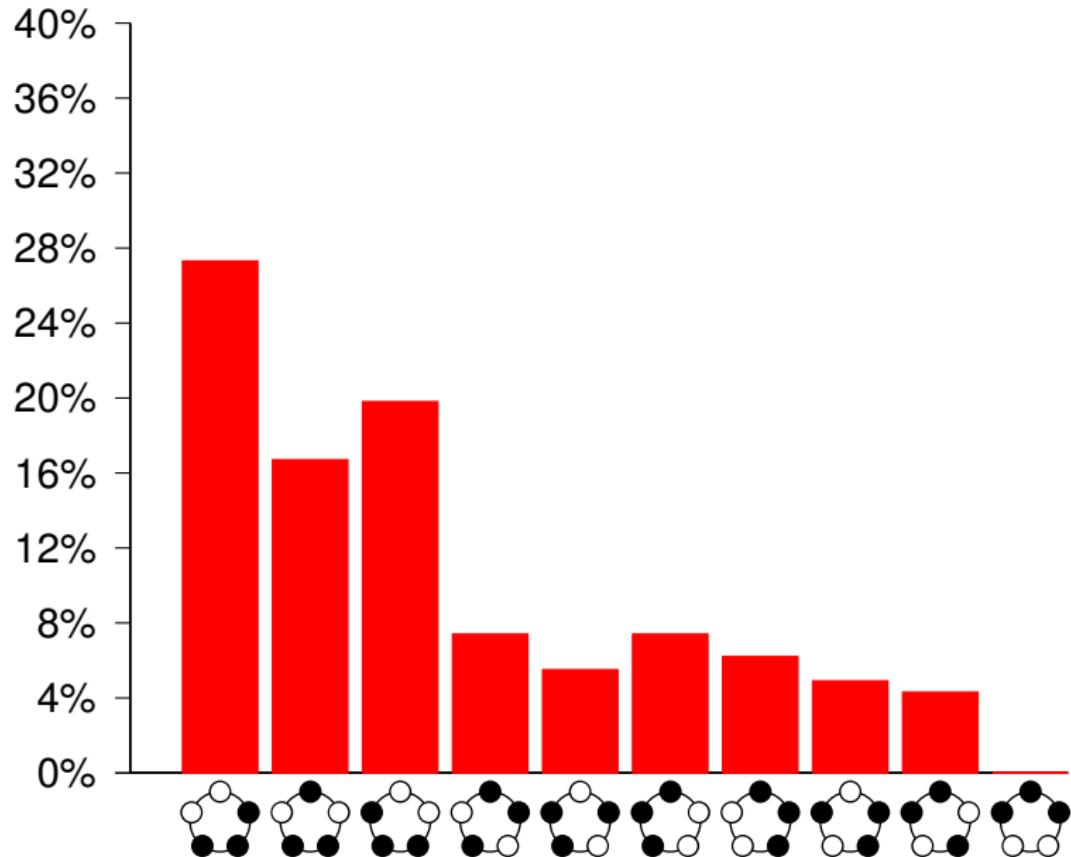
Stationary distribution



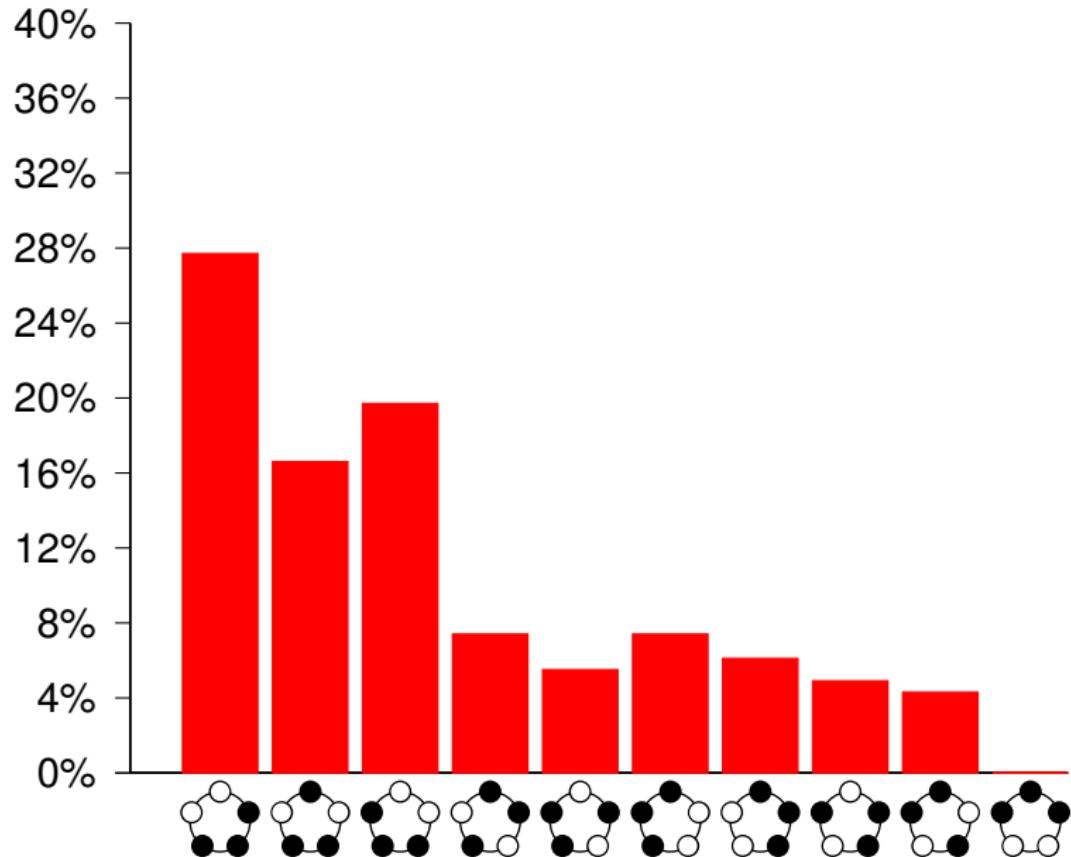
Stationary distribution



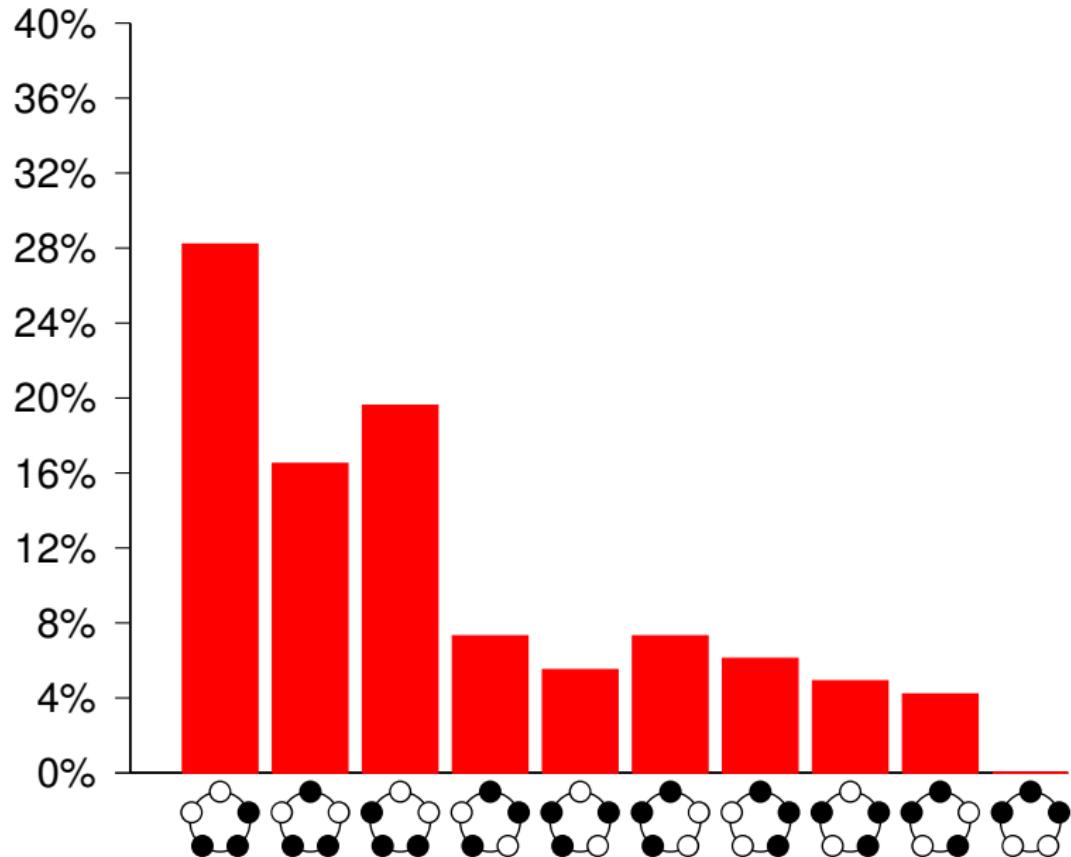
Stationary distribution



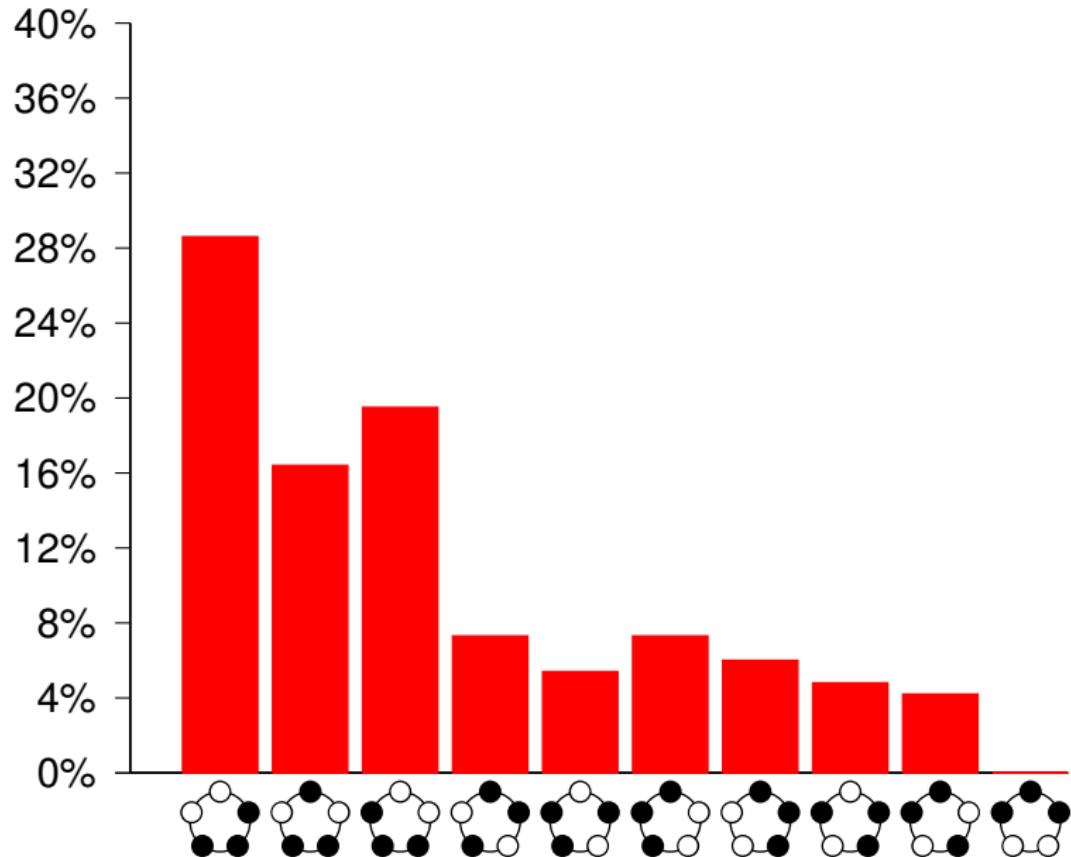
Stationary distribution



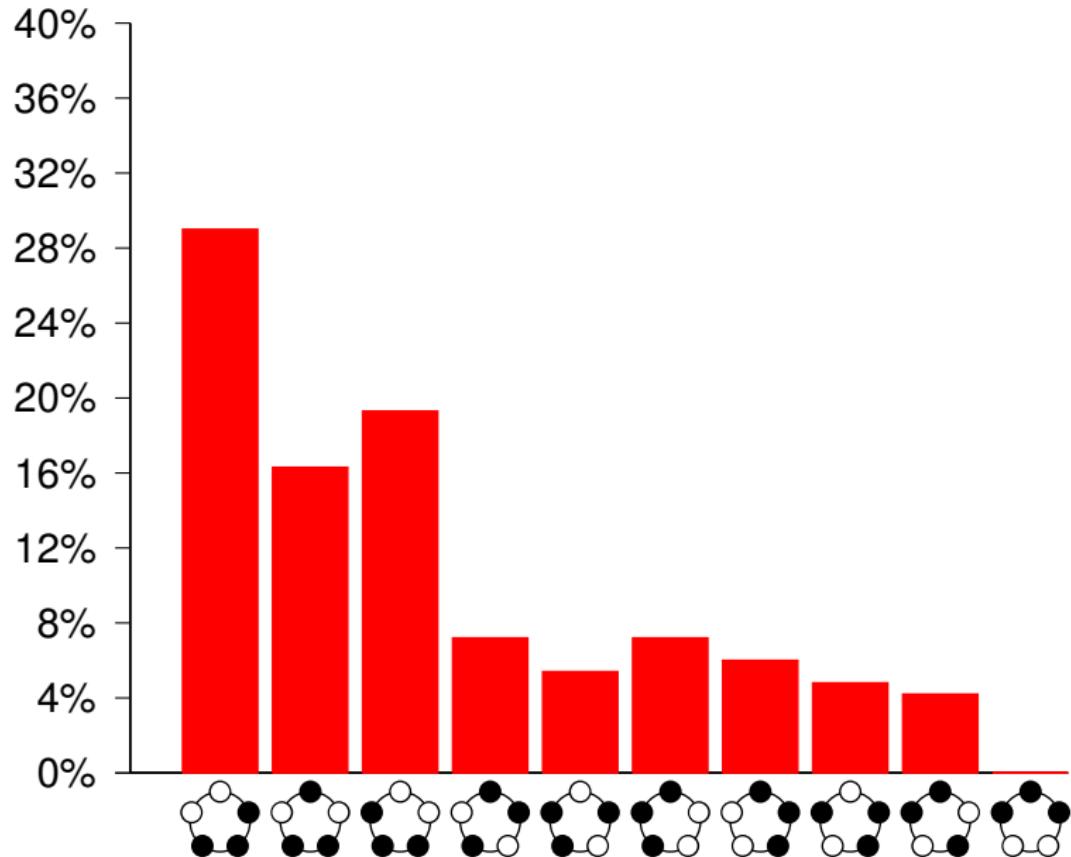
Stationary distribution



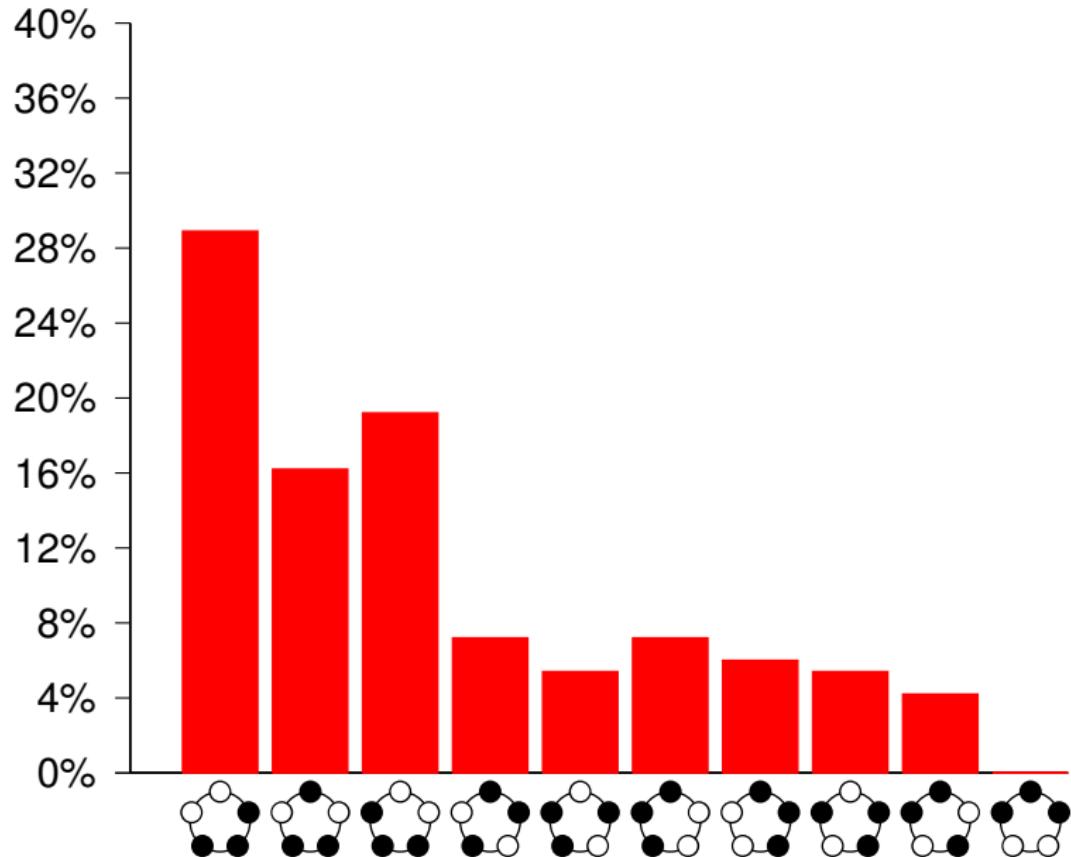
Stationary distribution



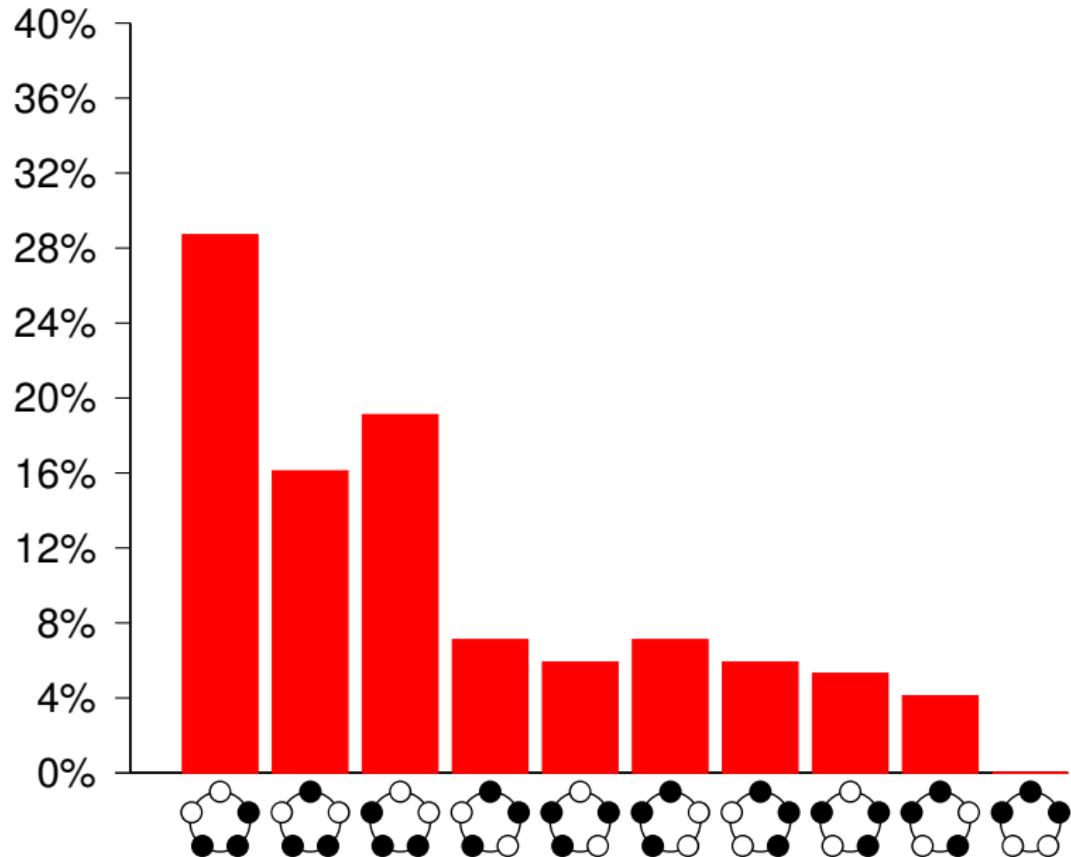
Stationary distribution



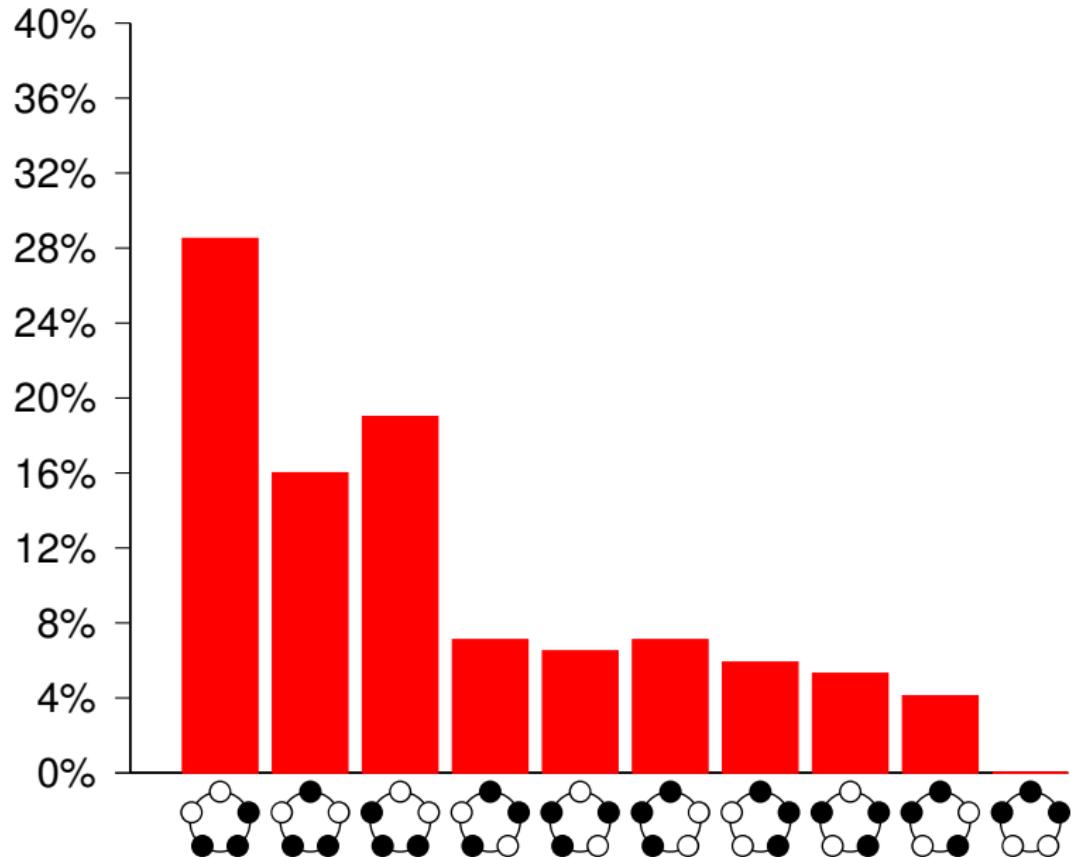
Stationary distribution



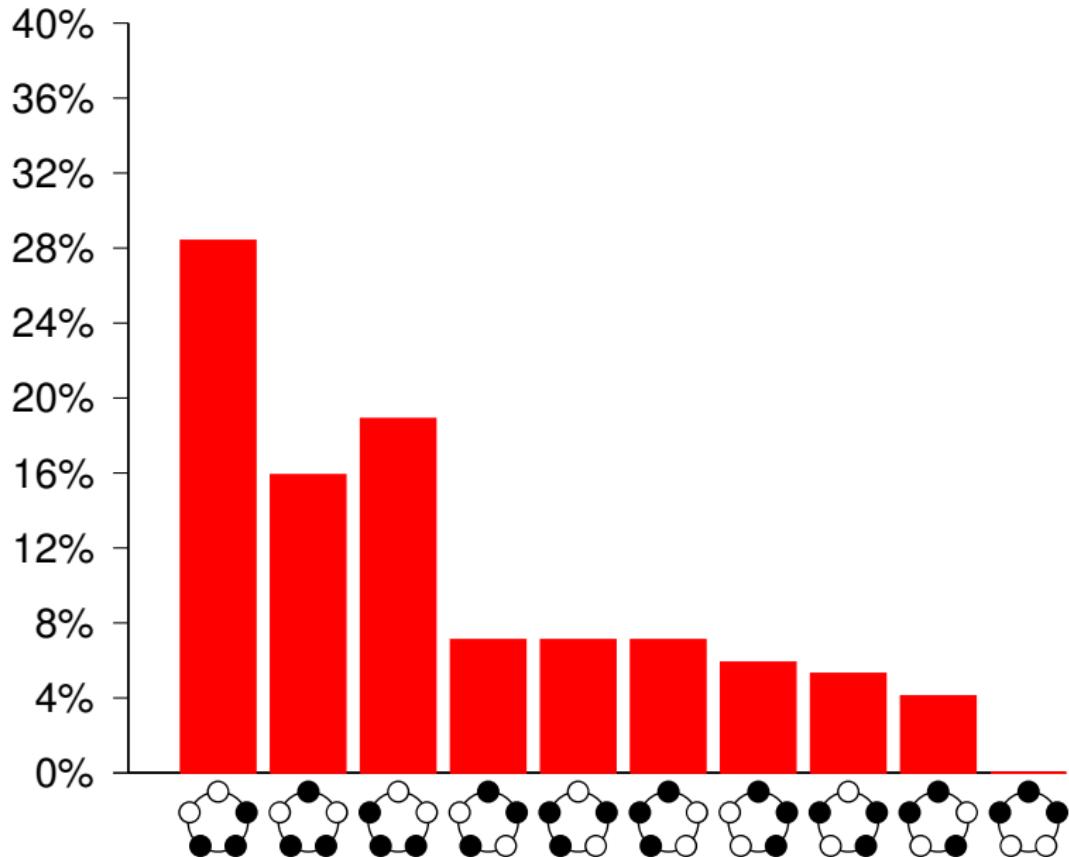
Stationary distribution



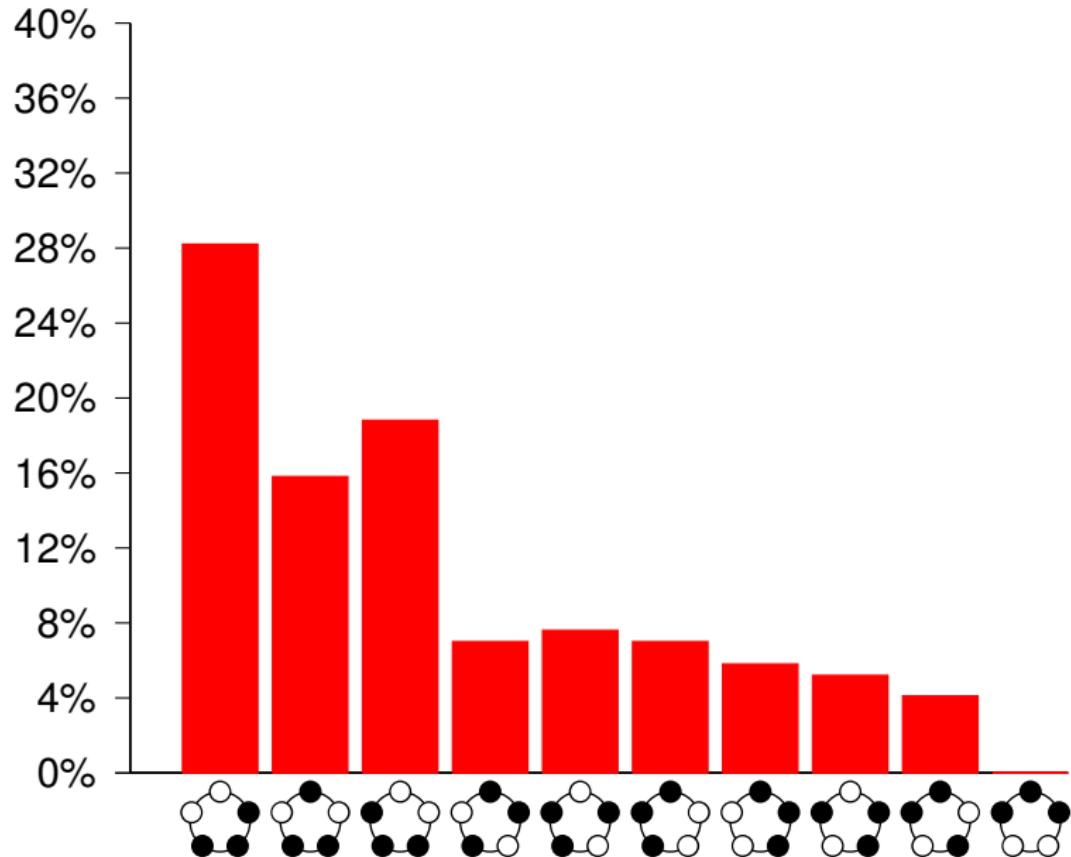
Stationary distribution



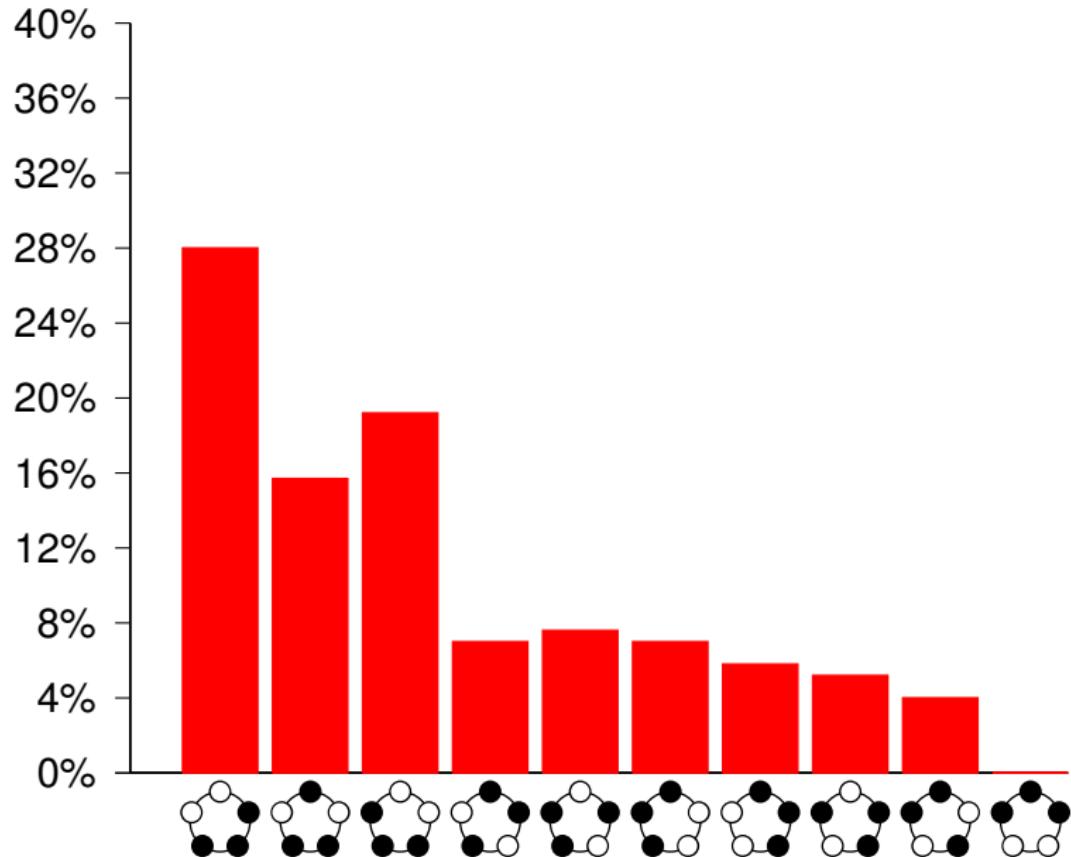
Stationary distribution



Stationary distribution



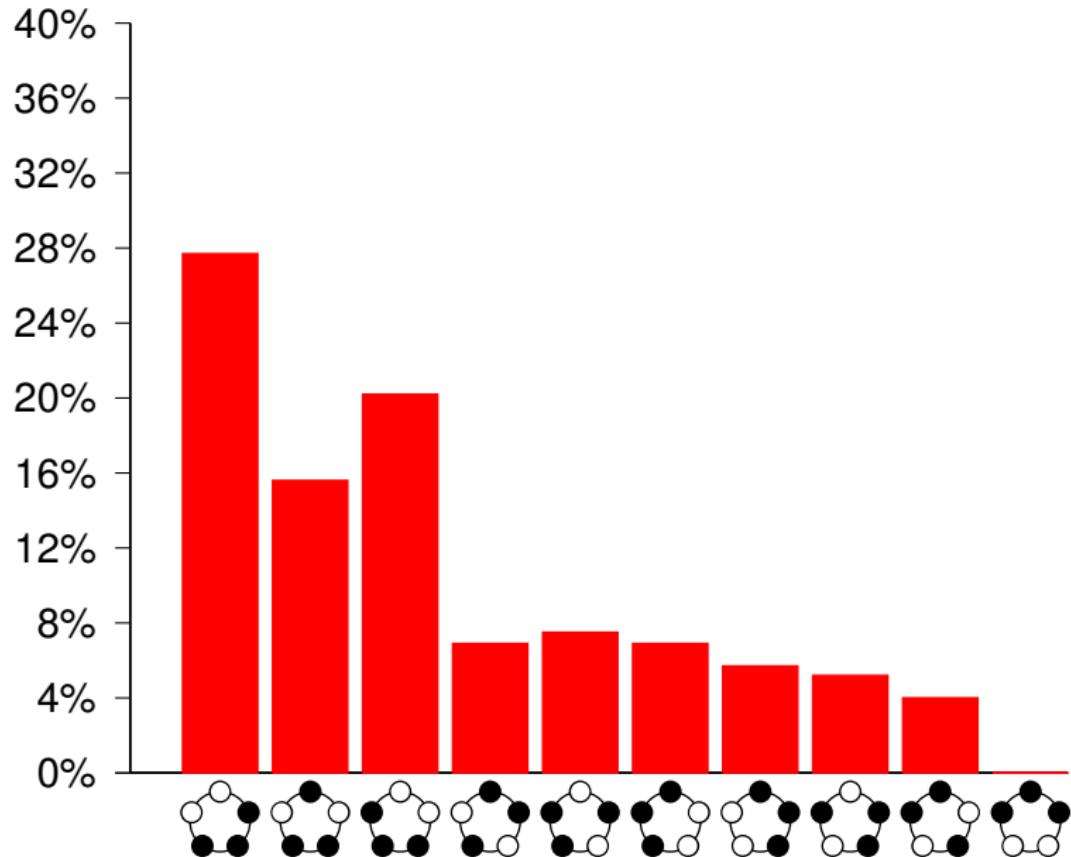
Stationary distribution



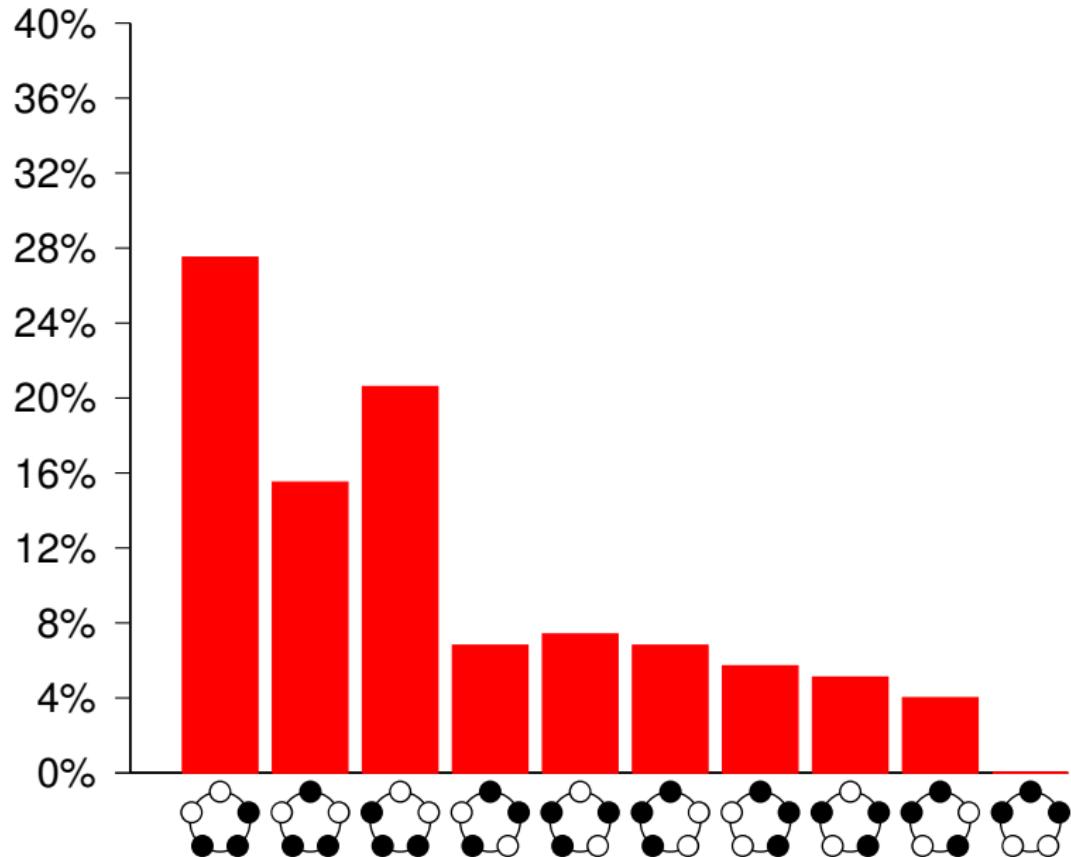
Stationary distribution



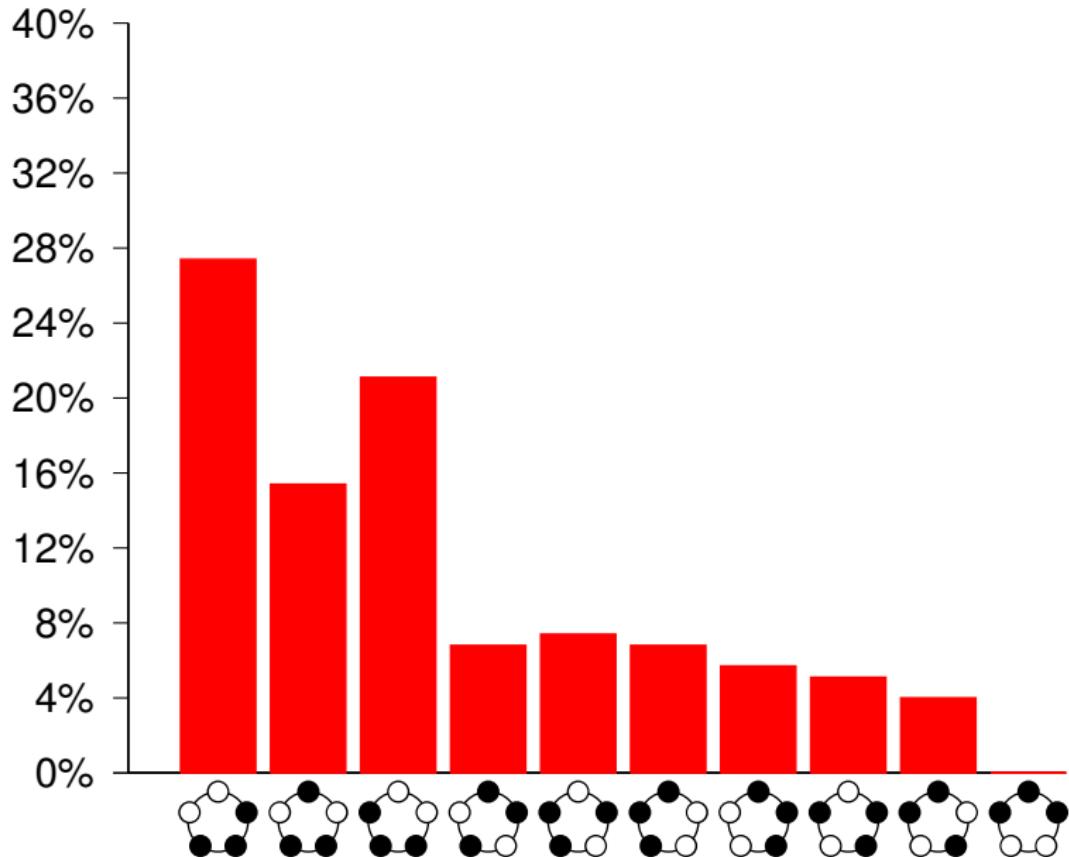
Stationary distribution



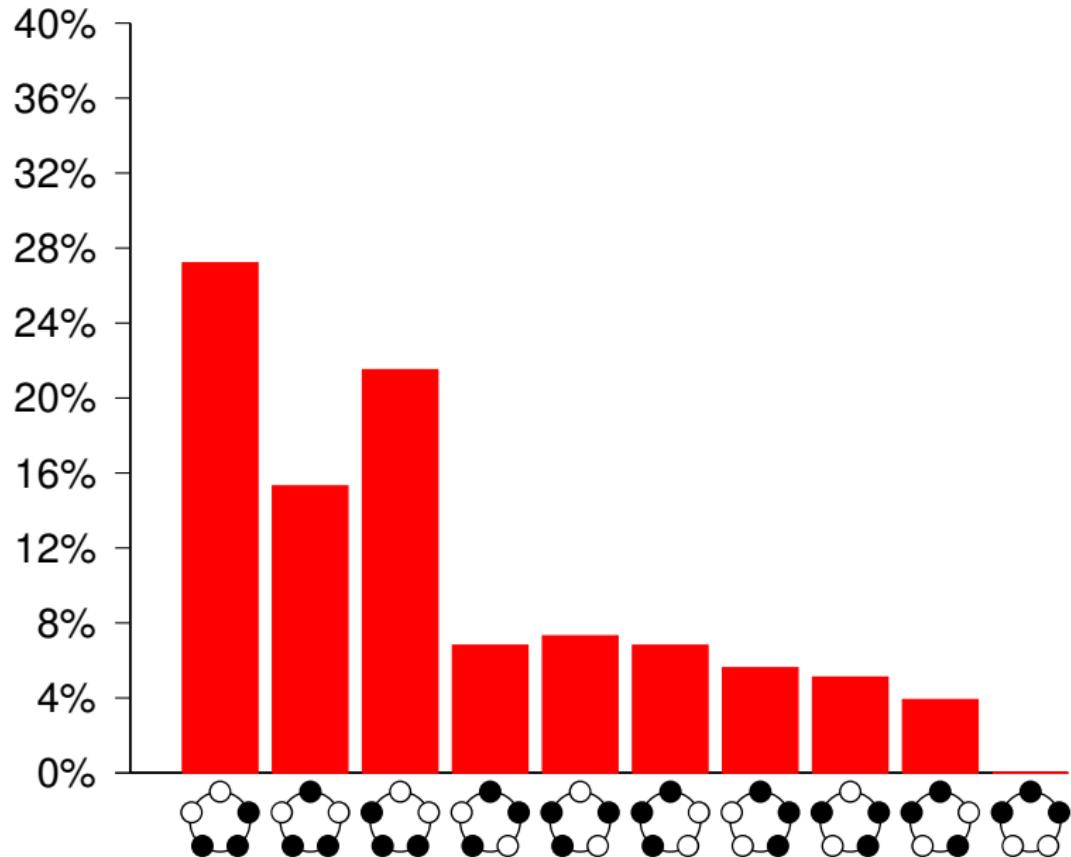
Stationary distribution



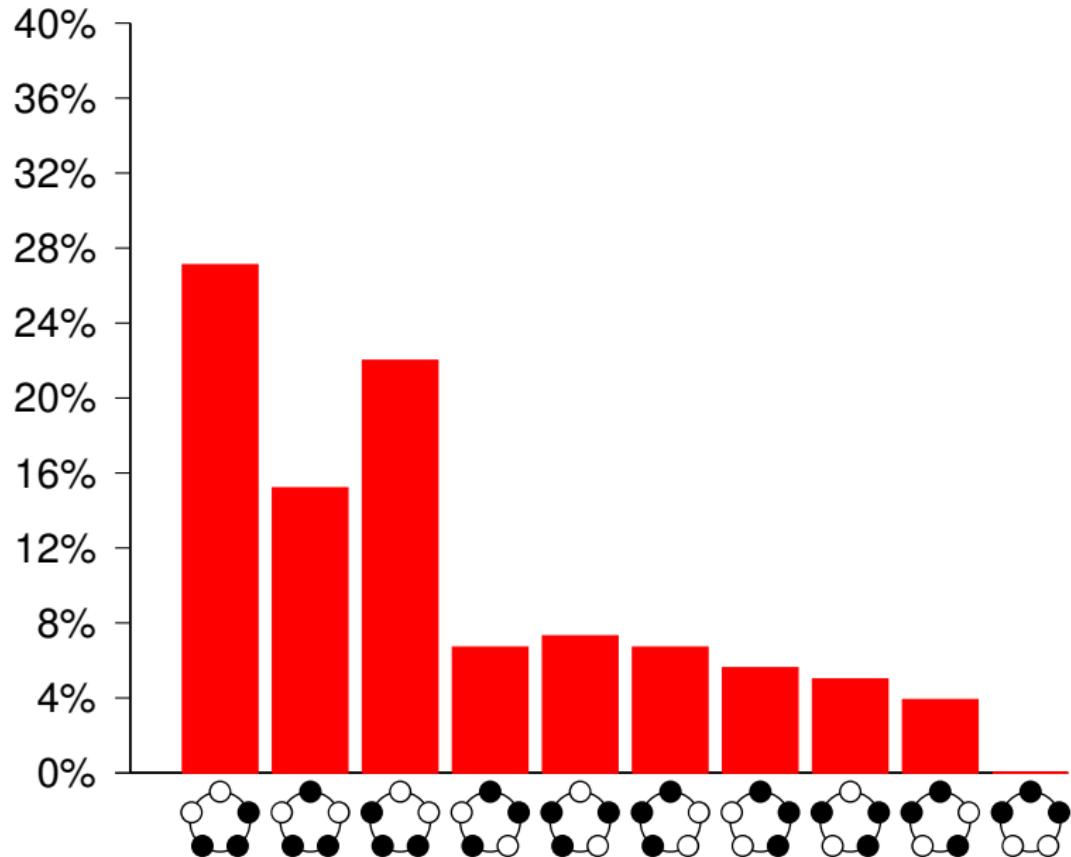
Stationary distribution



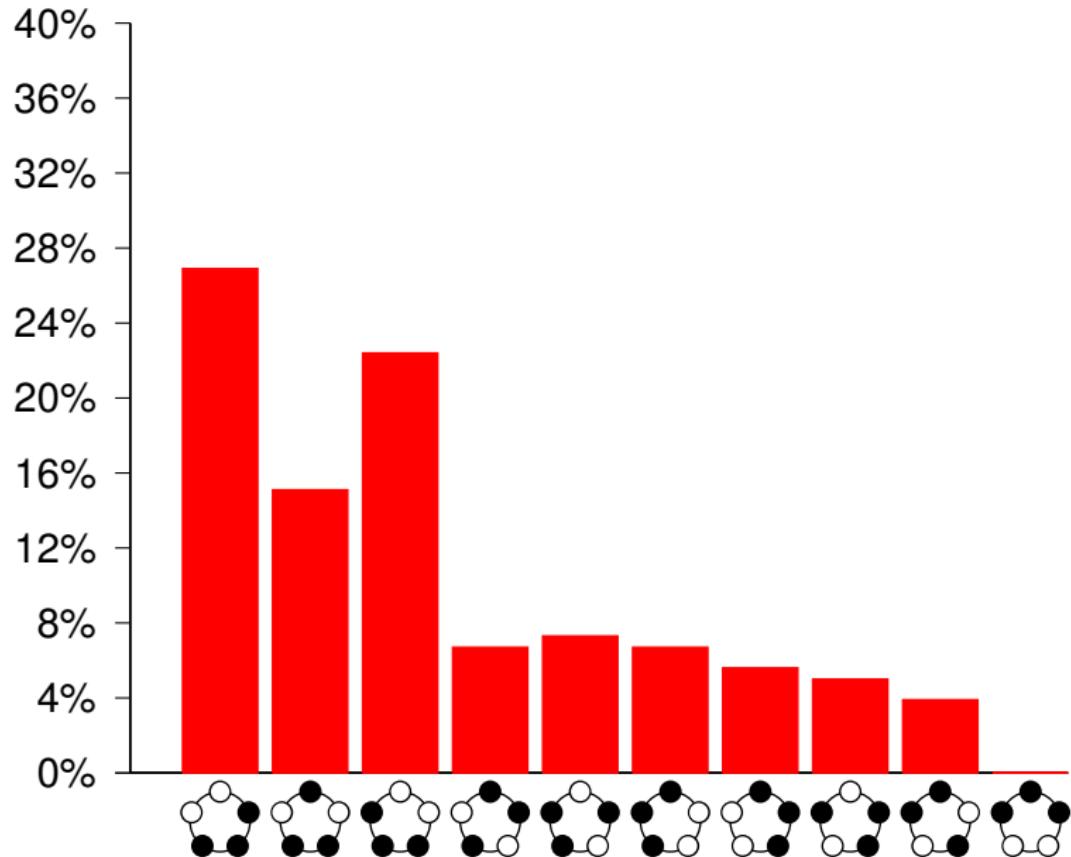
Stationary distribution



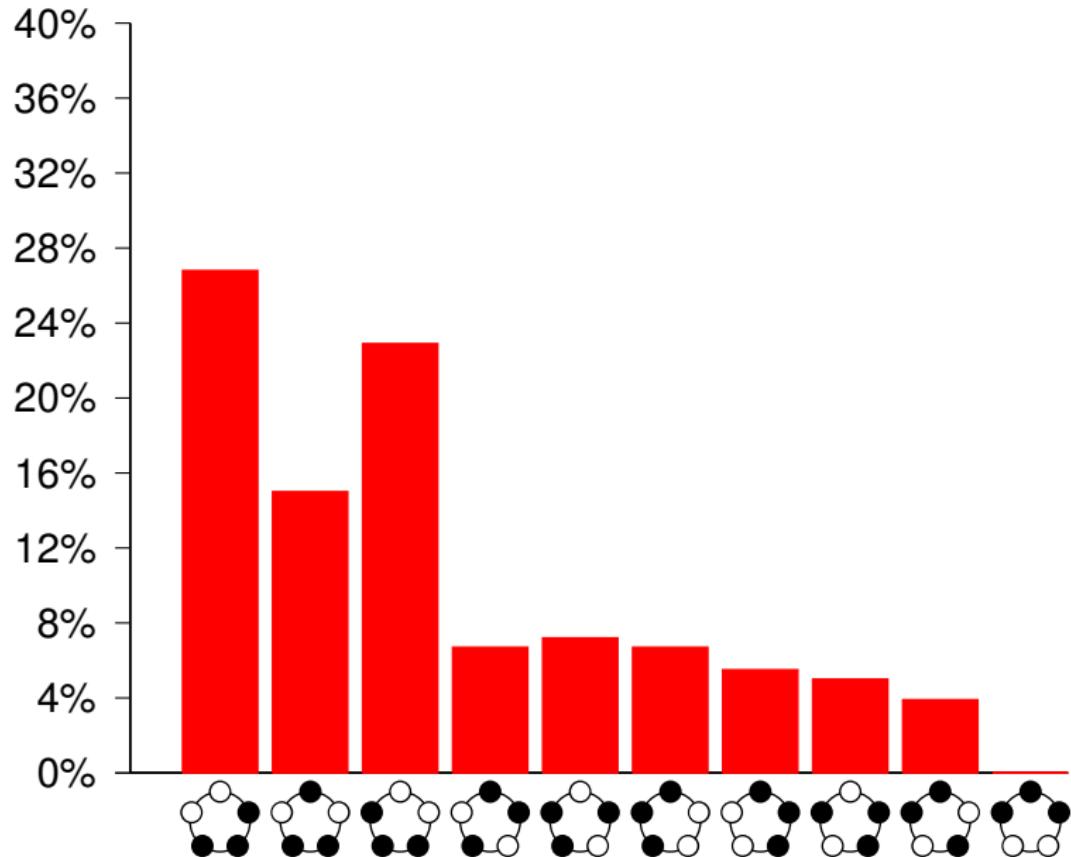
Stationary distribution



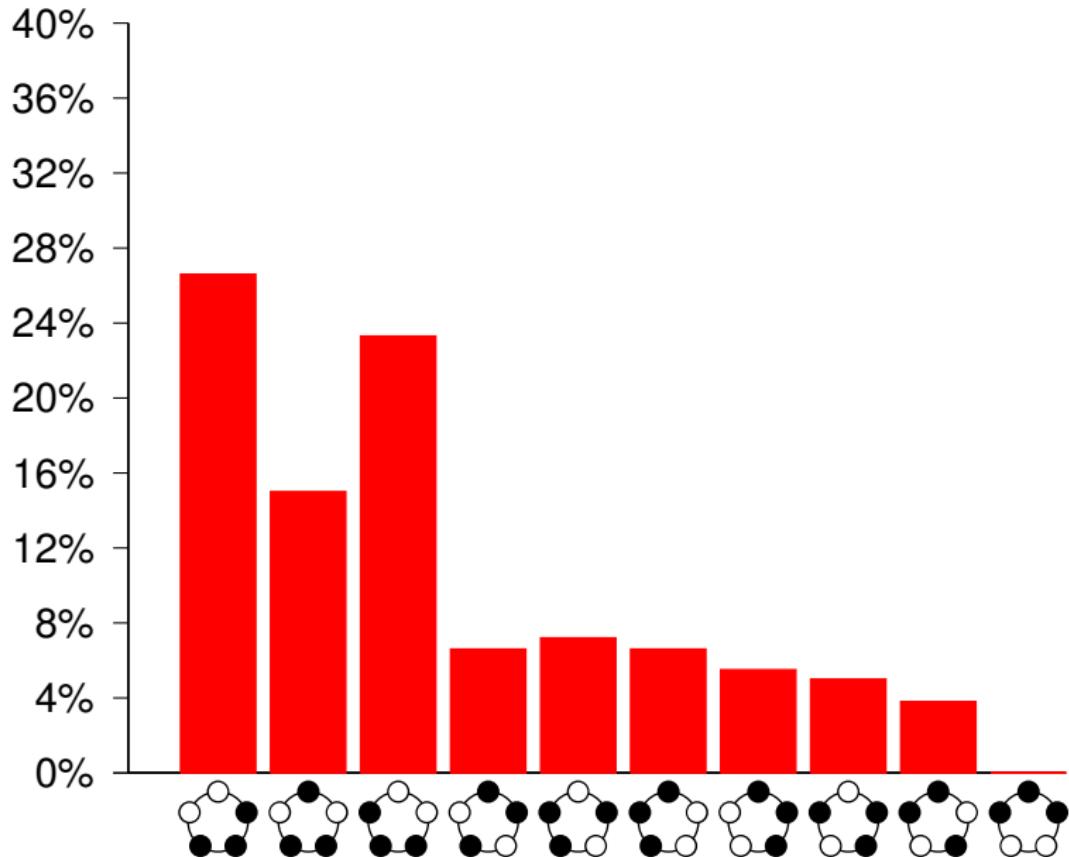
Stationary distribution



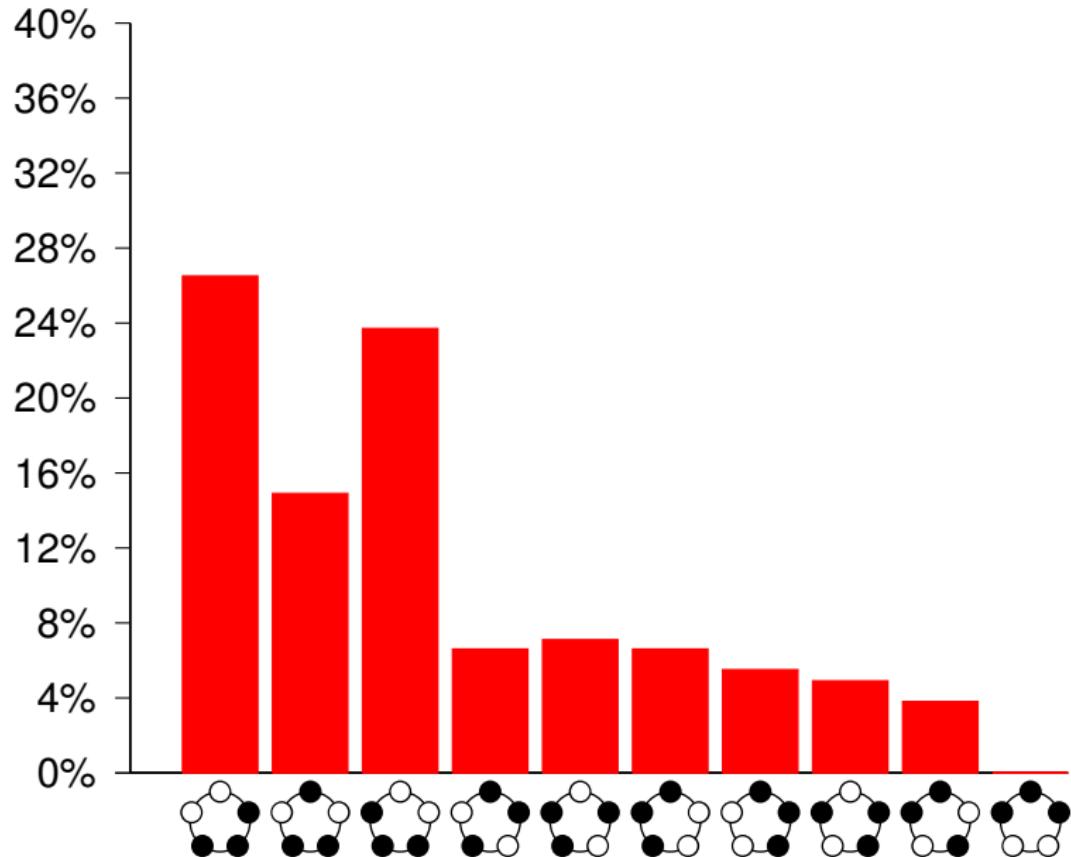
Stationary distribution



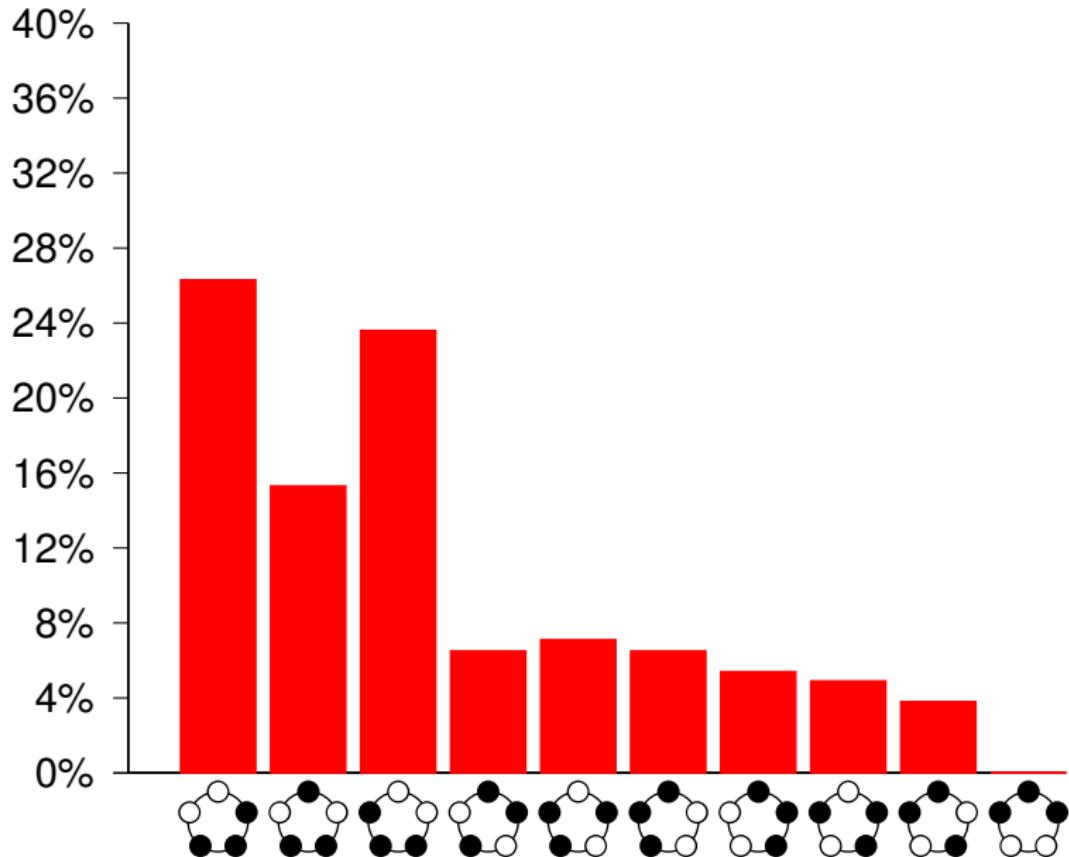
Stationary distribution



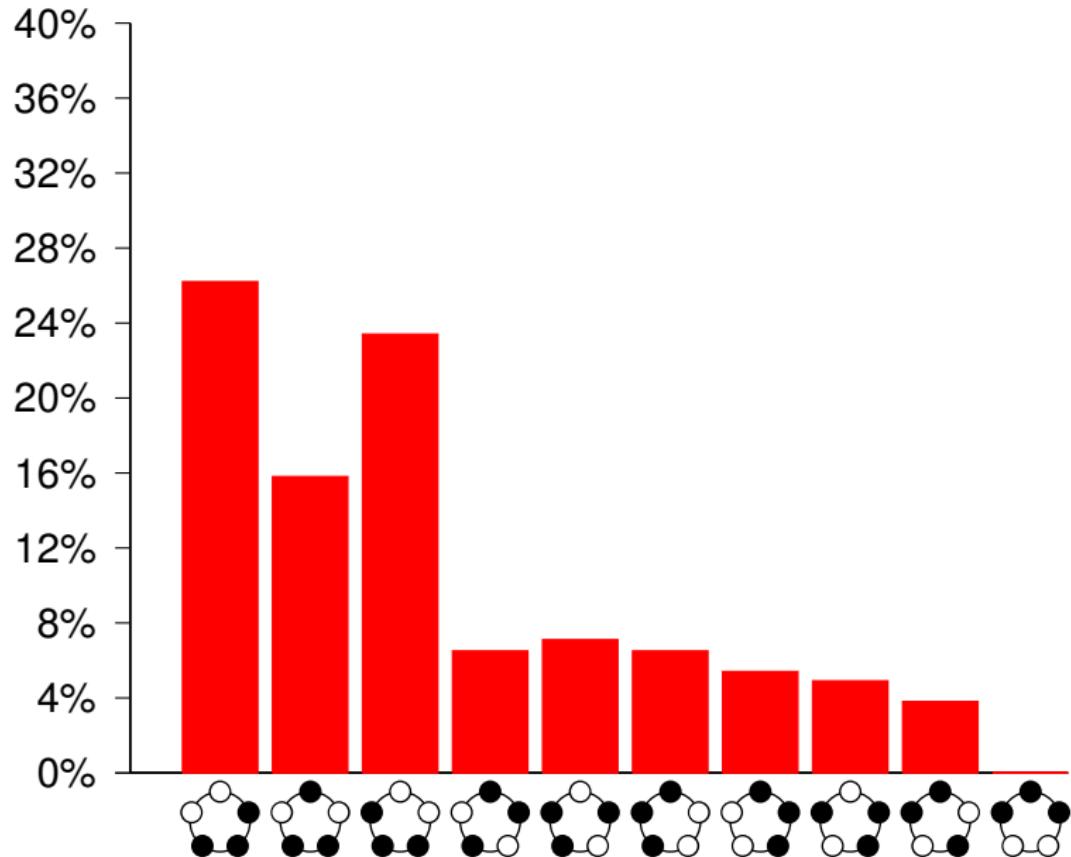
Stationary distribution



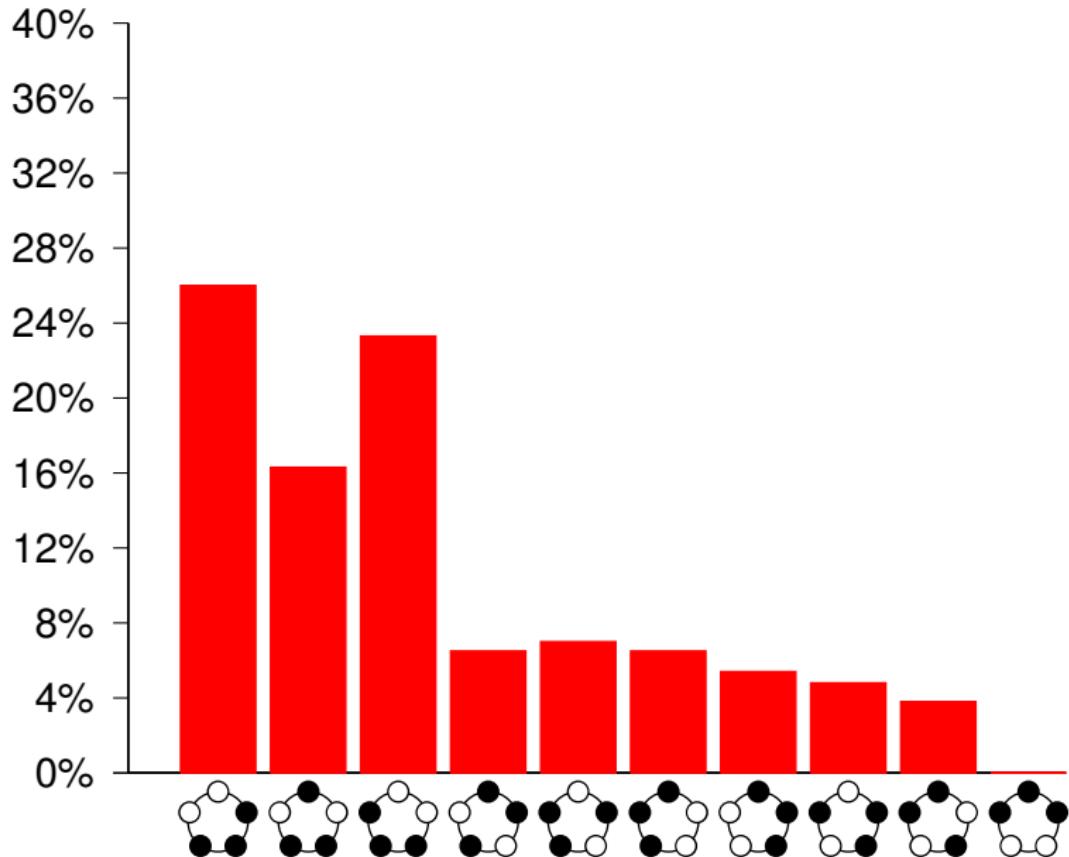
Stationary distribution



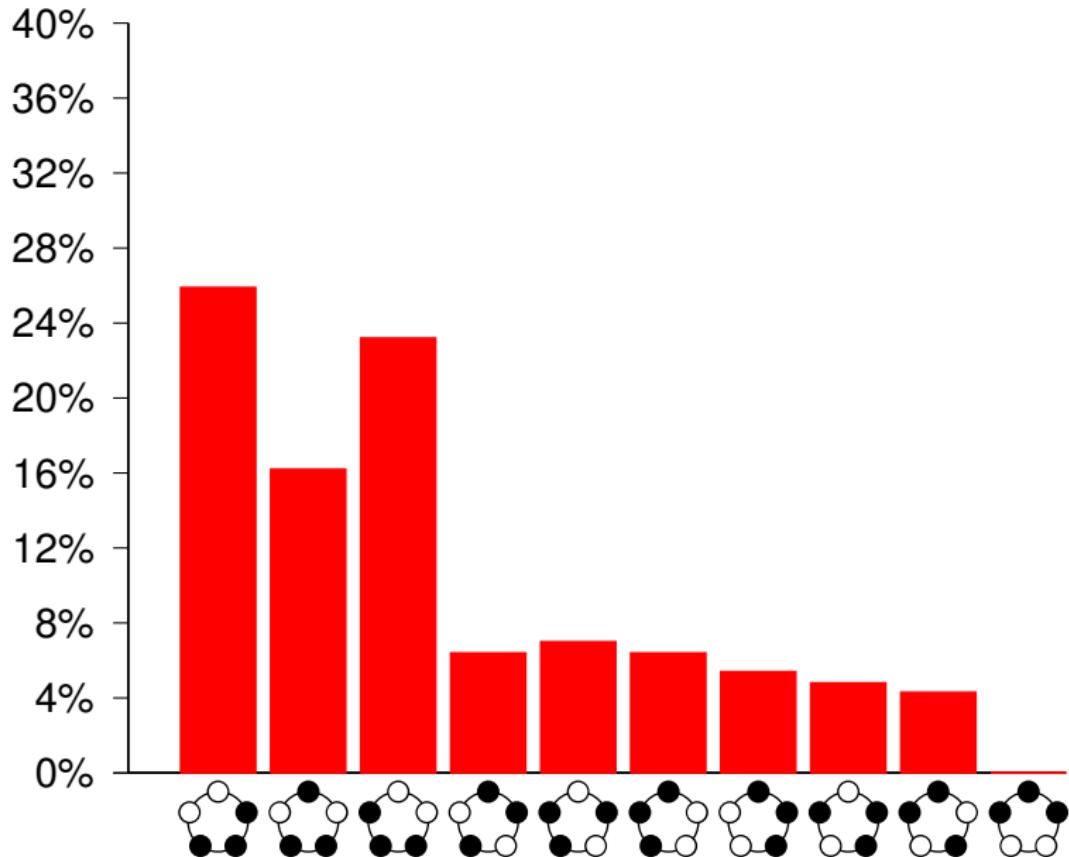
Stationary distribution



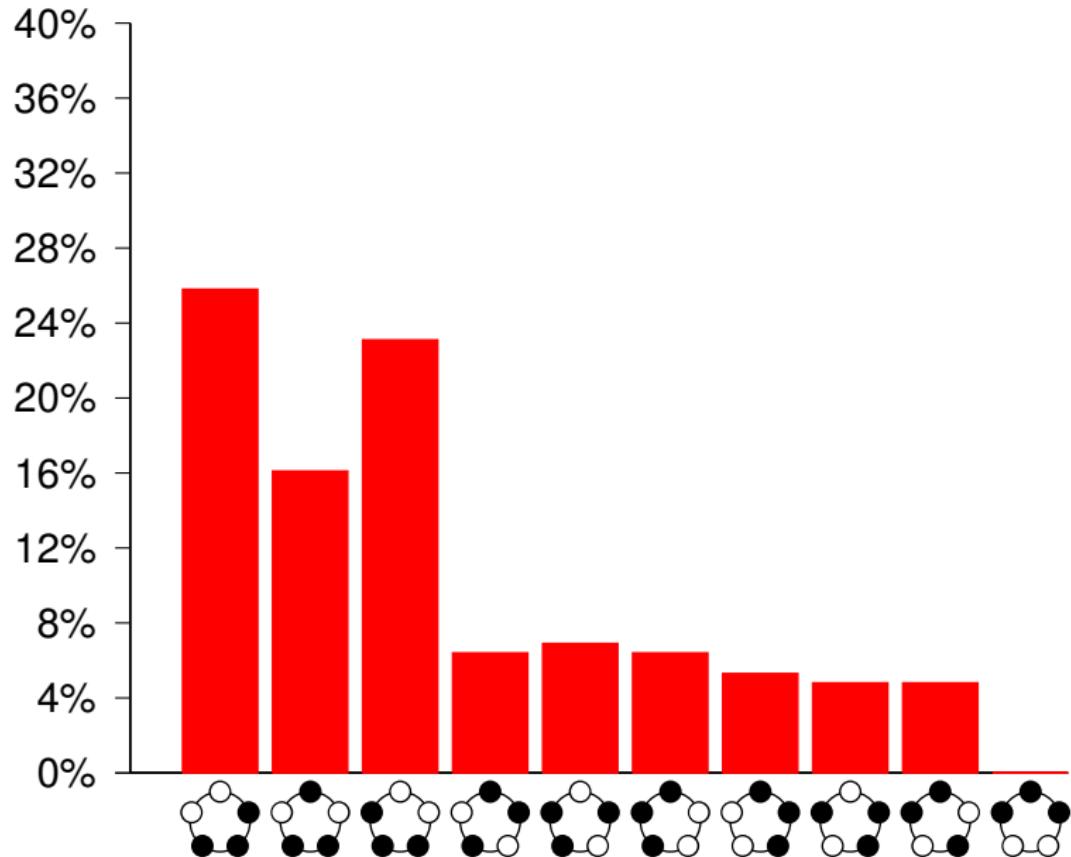
Stationary distribution



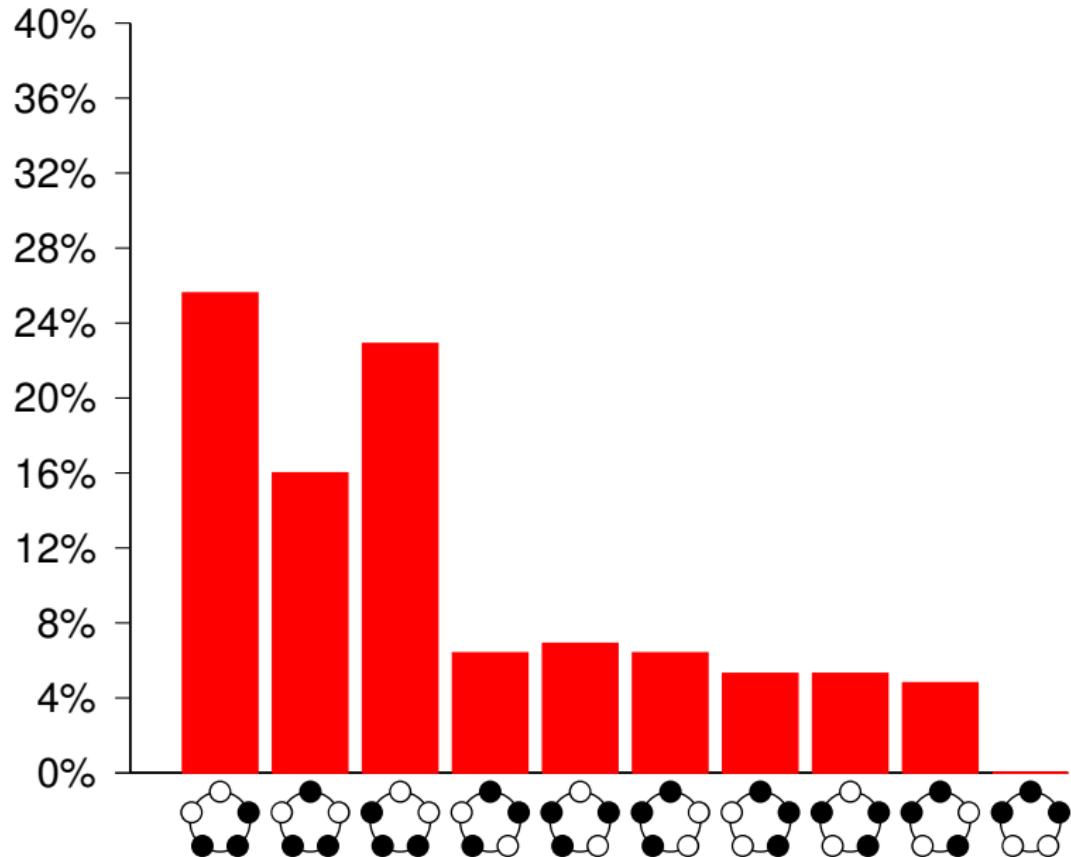
Stationary distribution



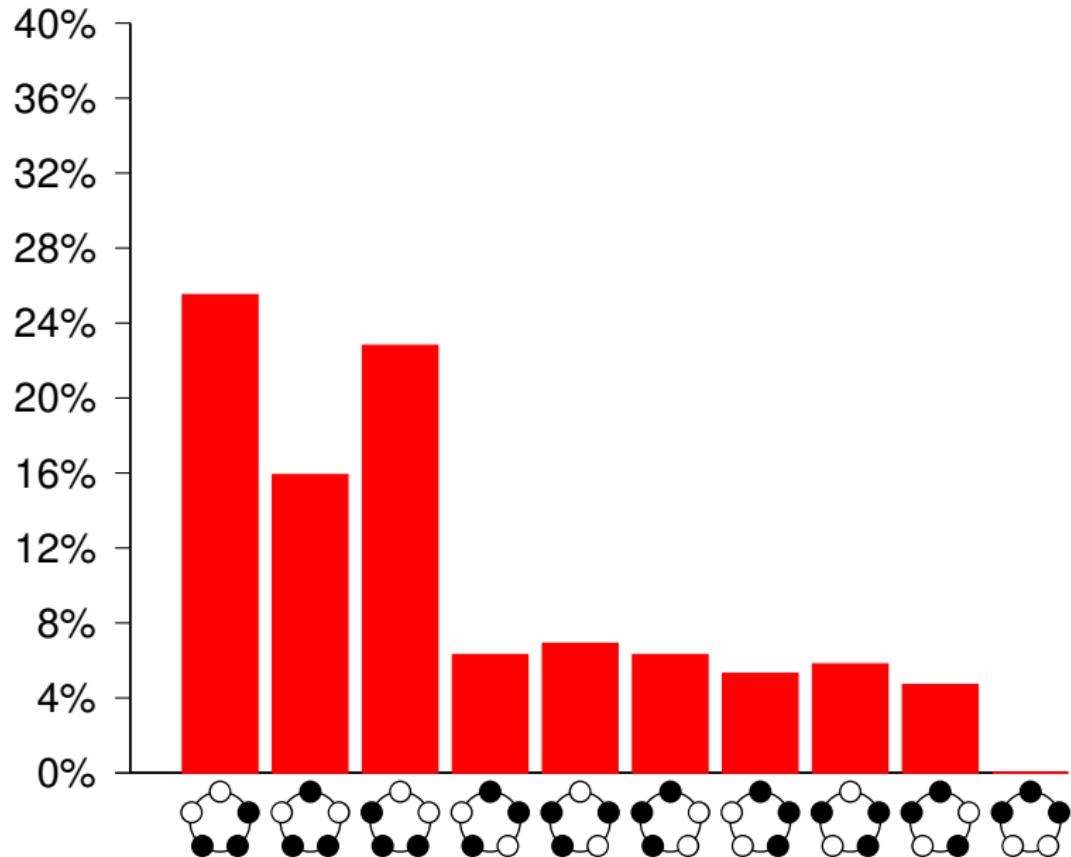
Stationary distribution



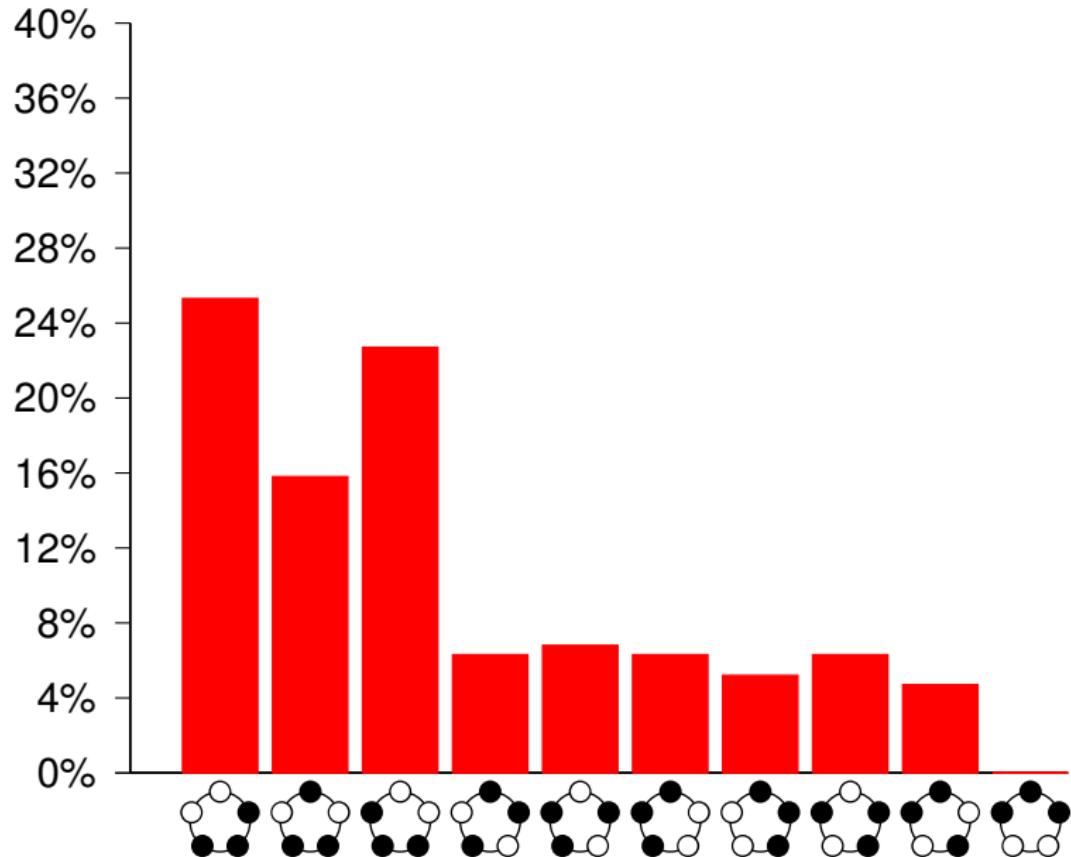
Stationary distribution



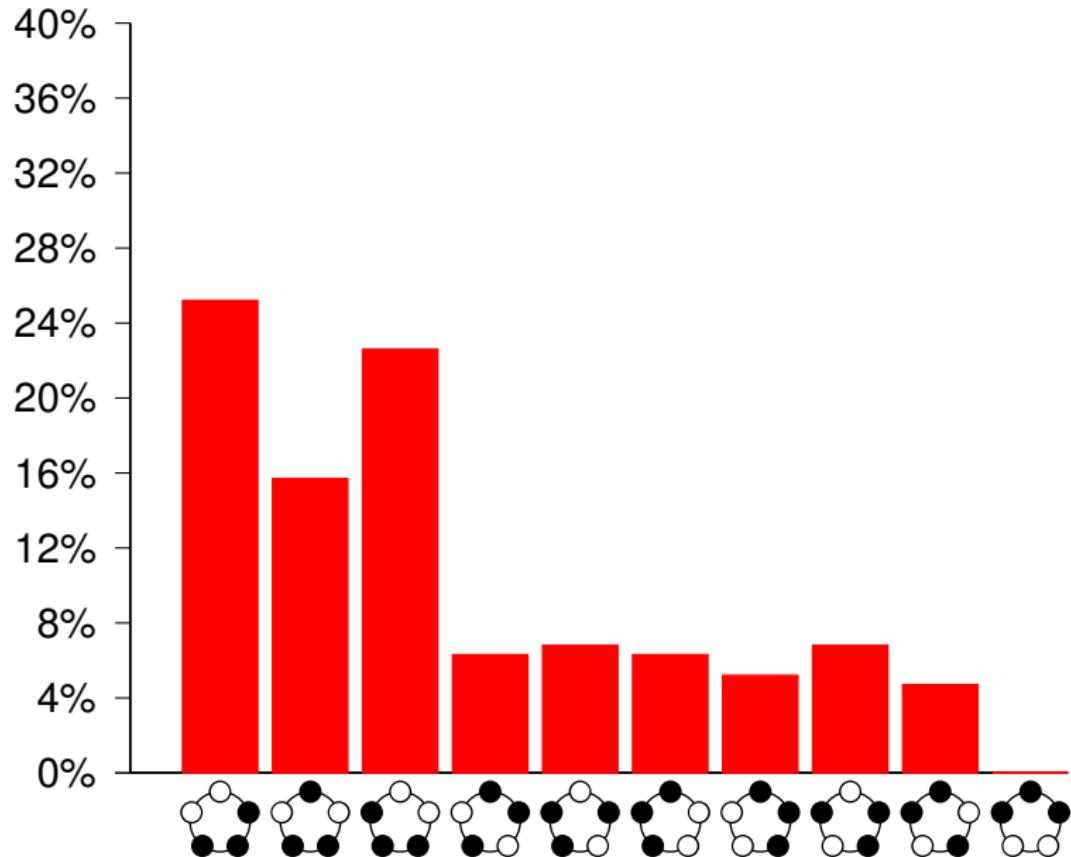
Stationary distribution



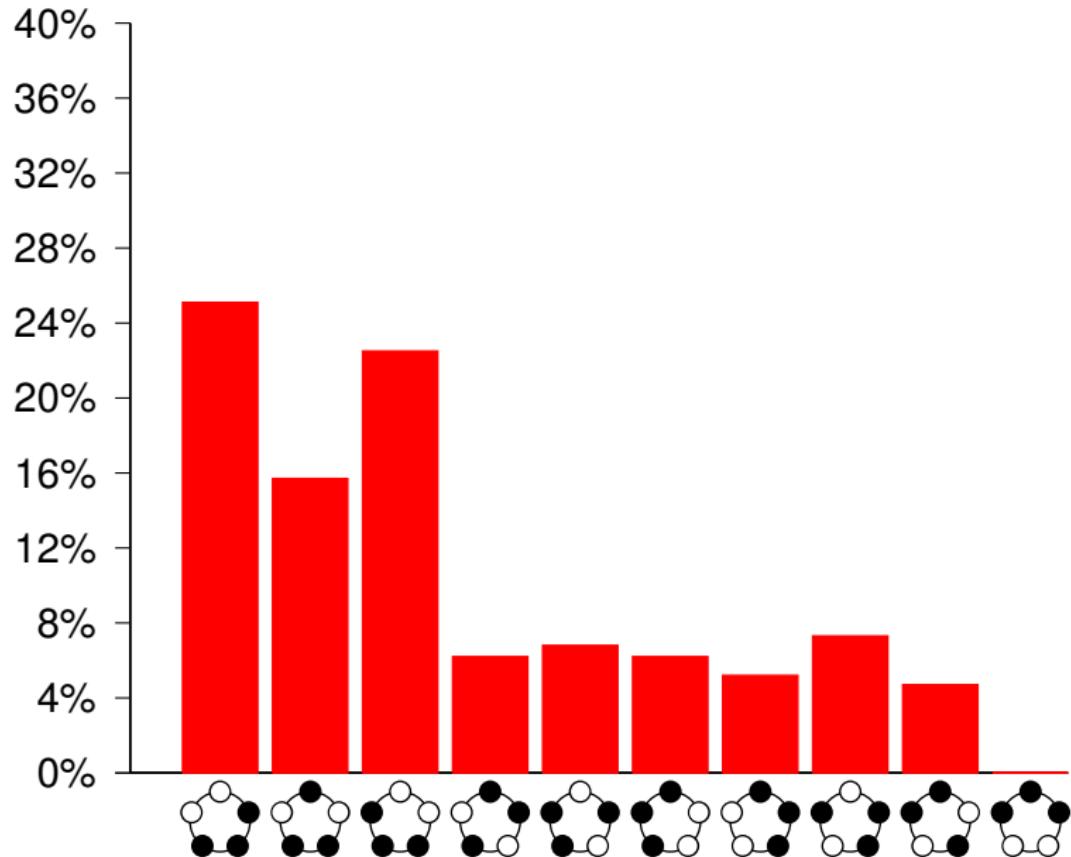
Stationary distribution



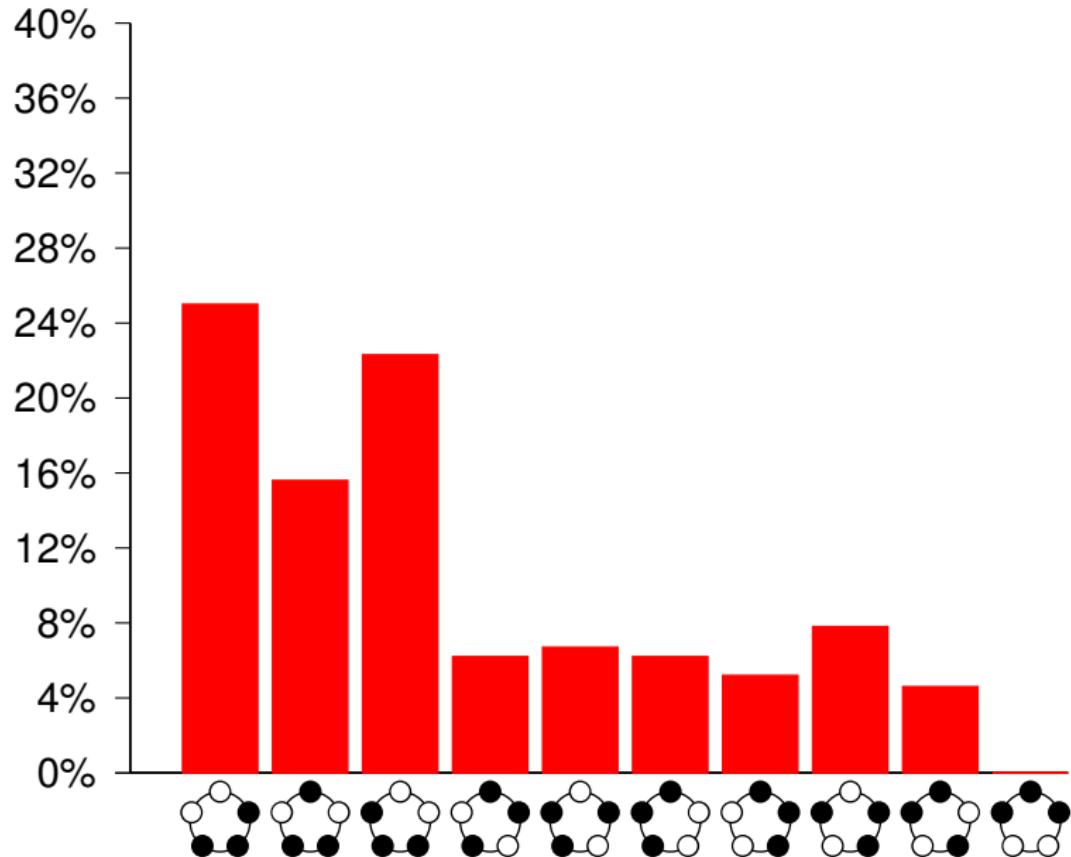
Stationary distribution



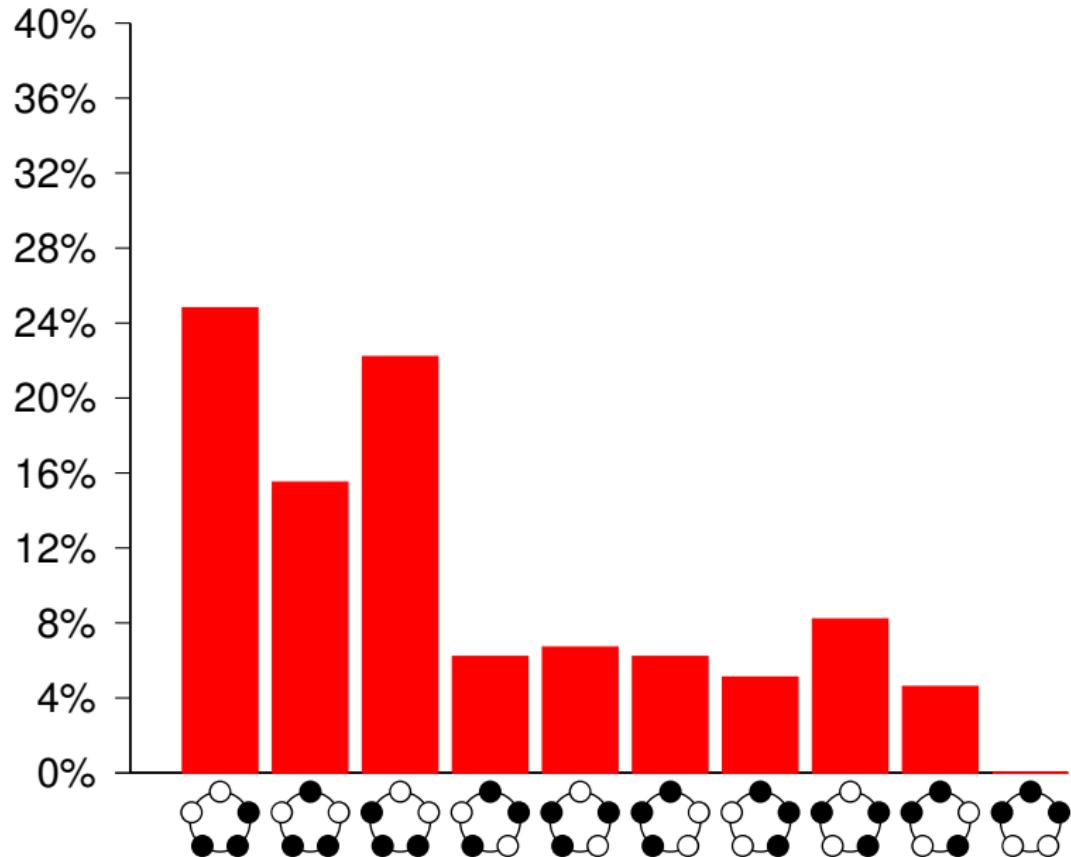
Stationary distribution



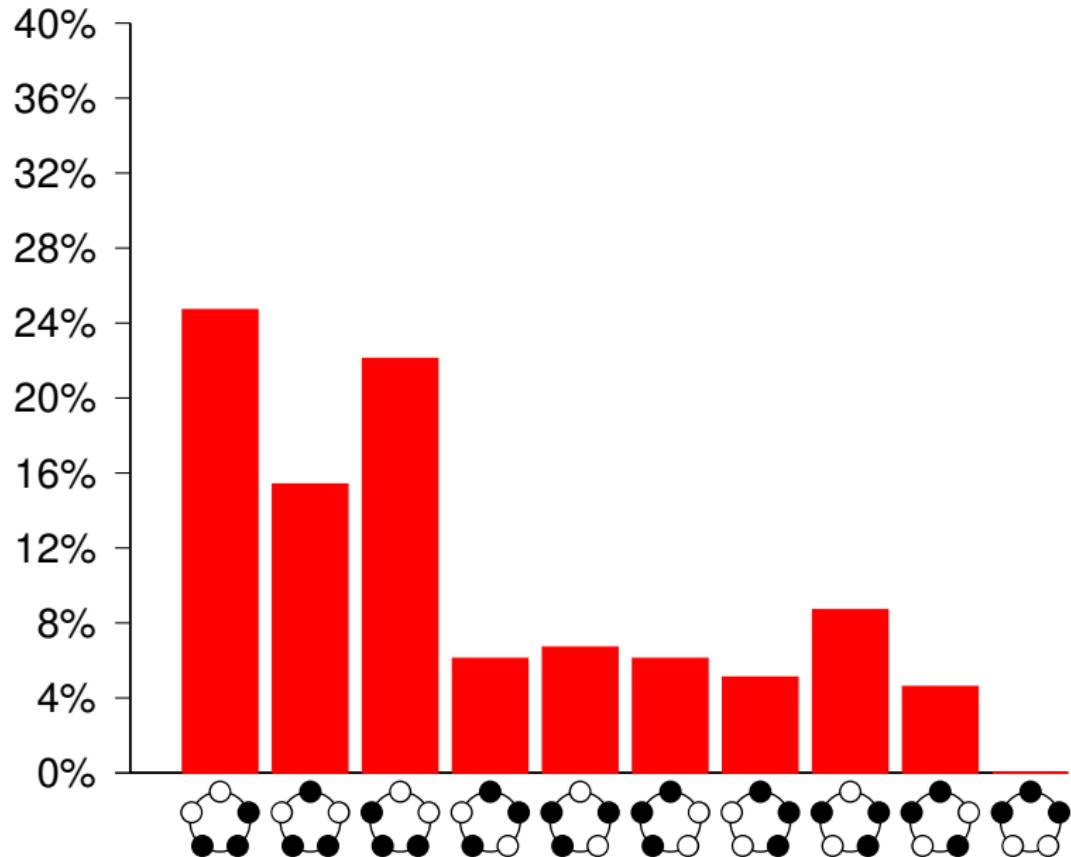
Stationary distribution



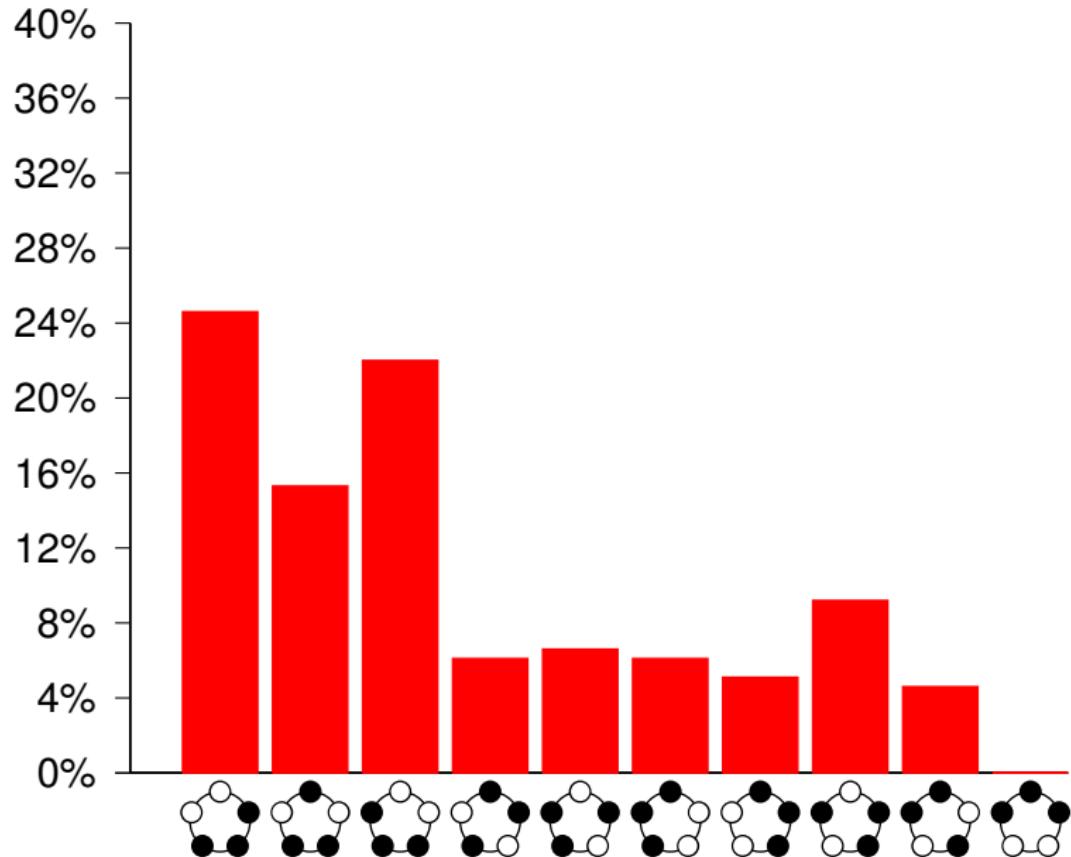
Stationary distribution



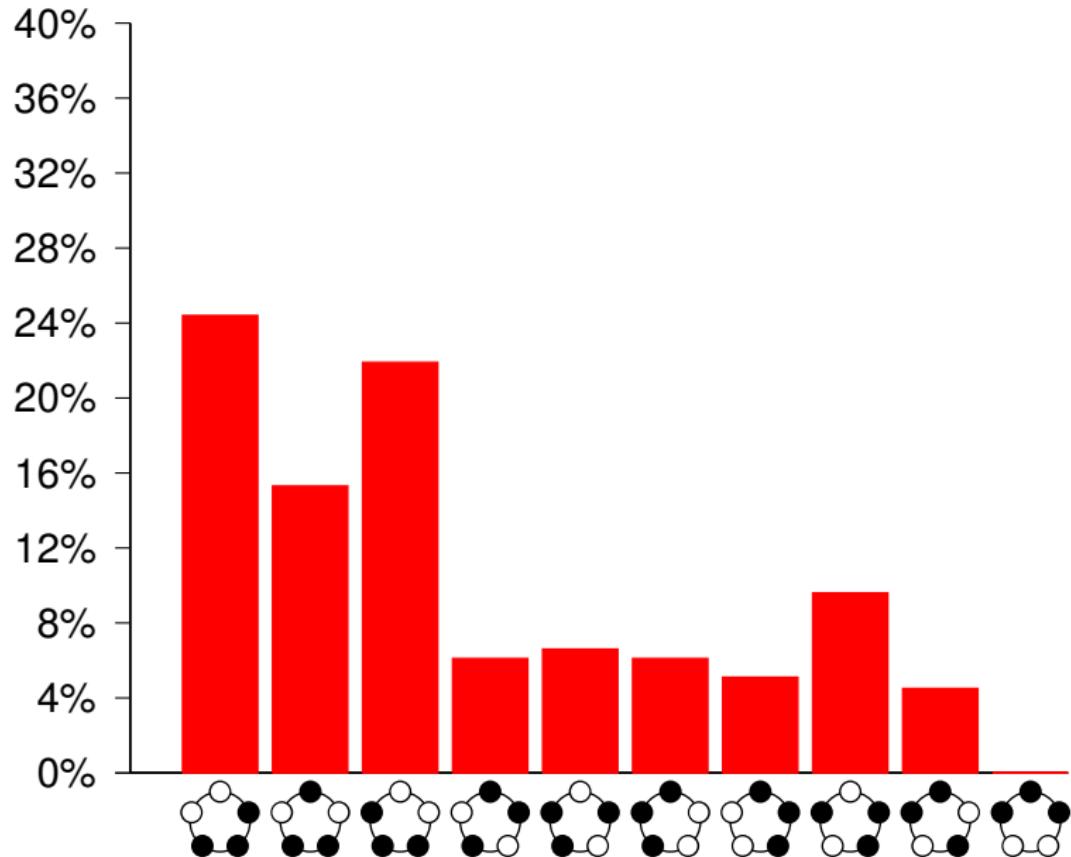
Stationary distribution



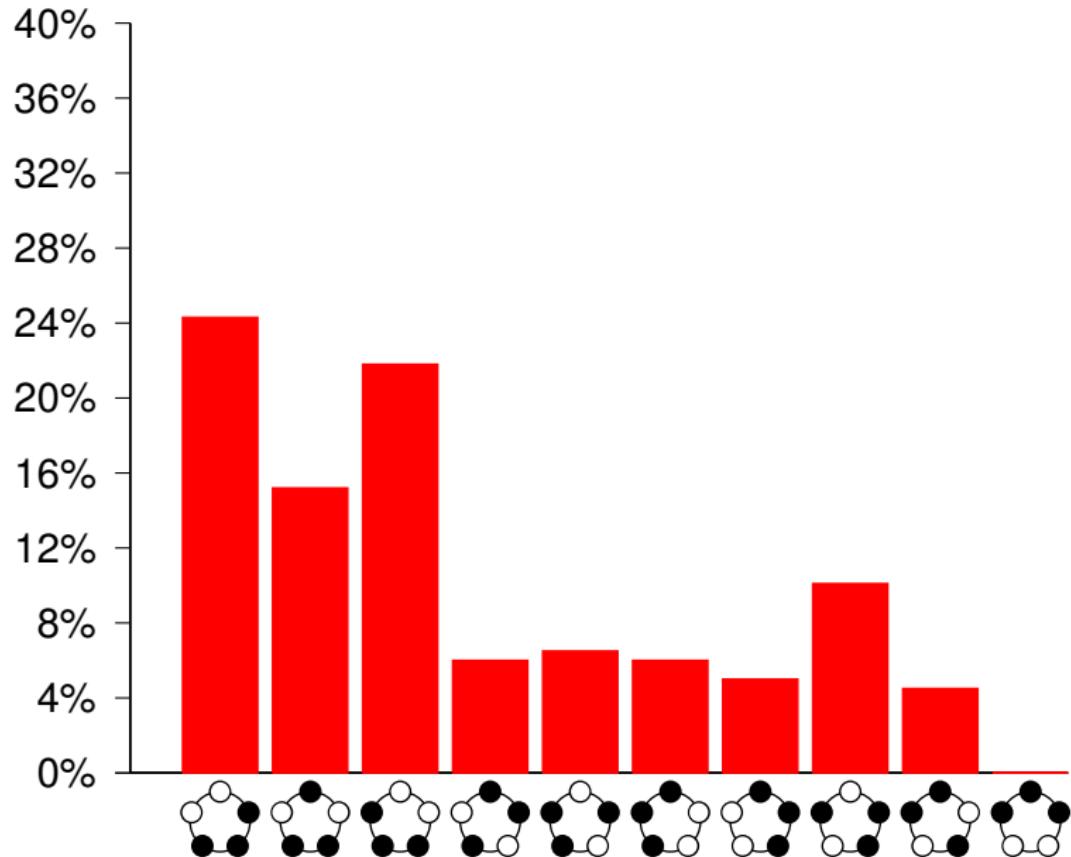
Stationary distribution



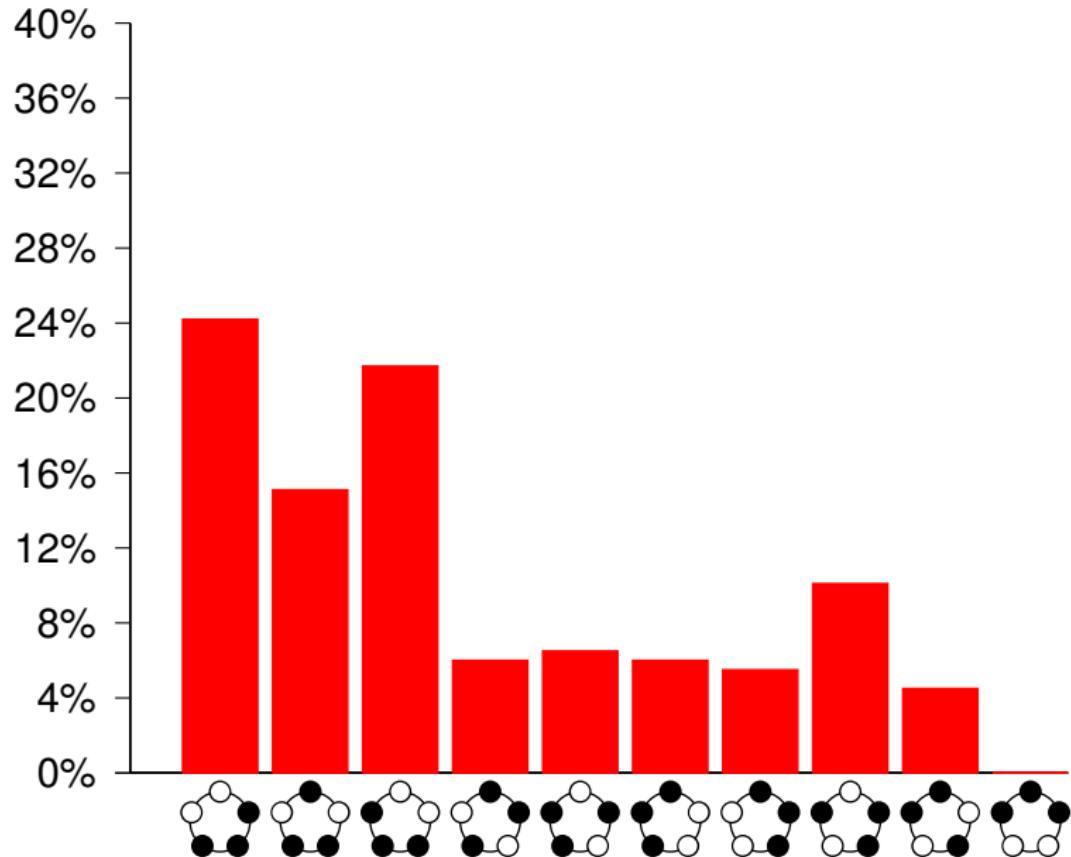
Stationary distribution



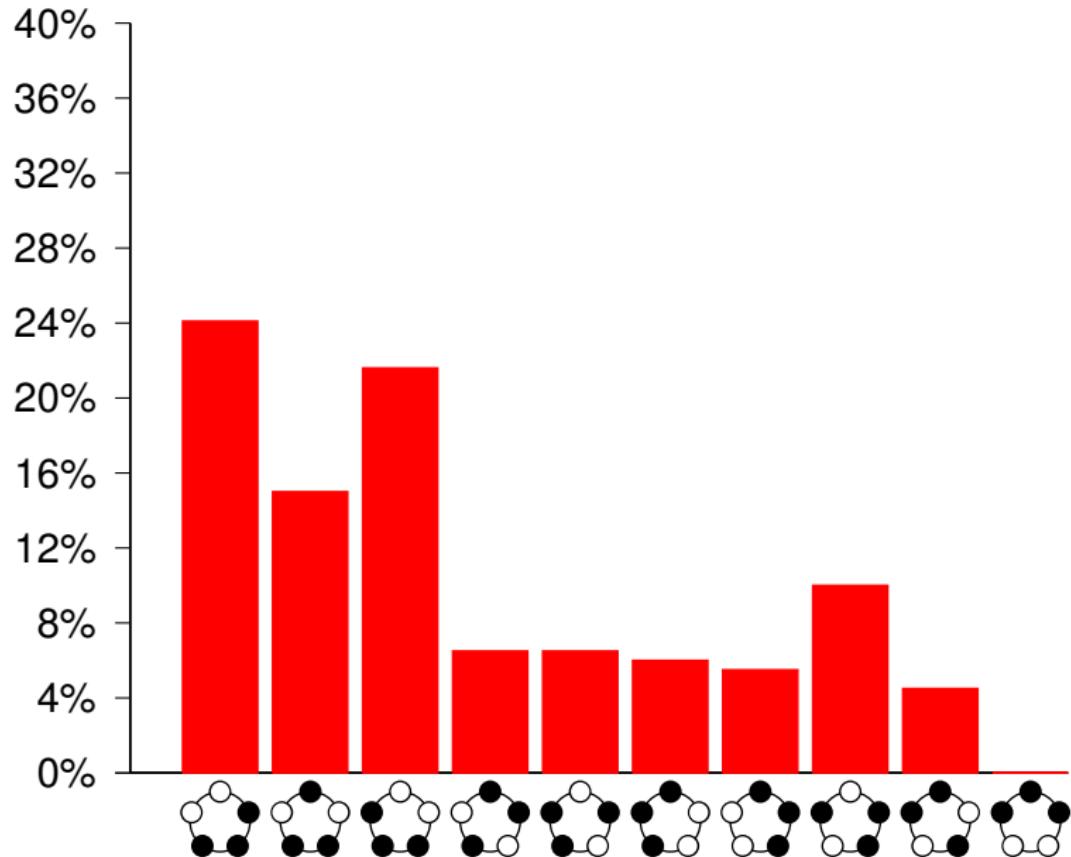
Stationary distribution



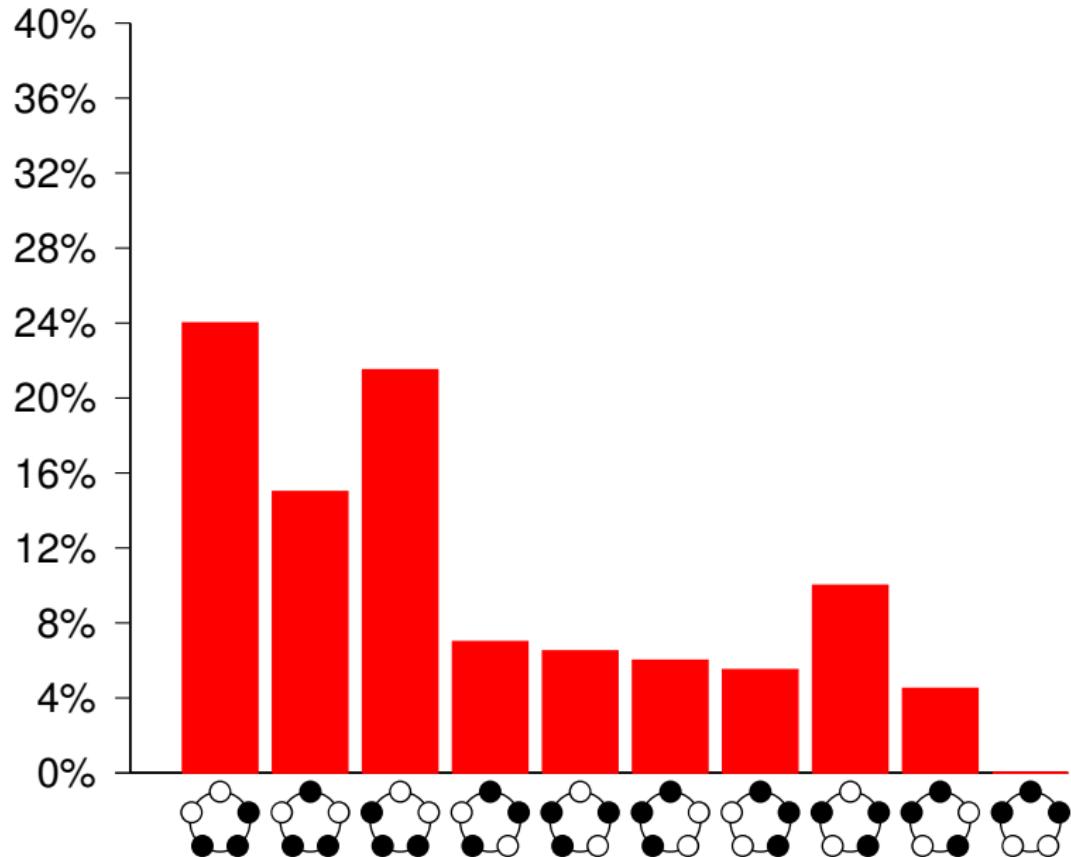
Stationary distribution



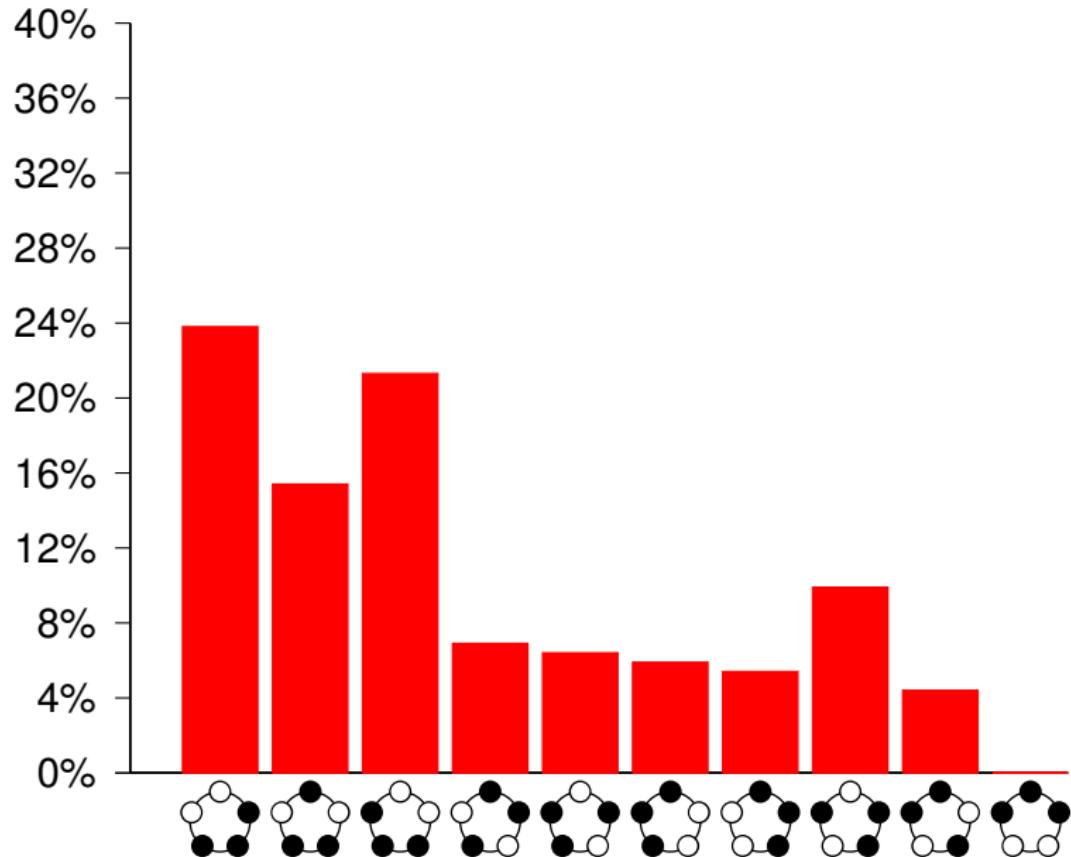
Stationary distribution



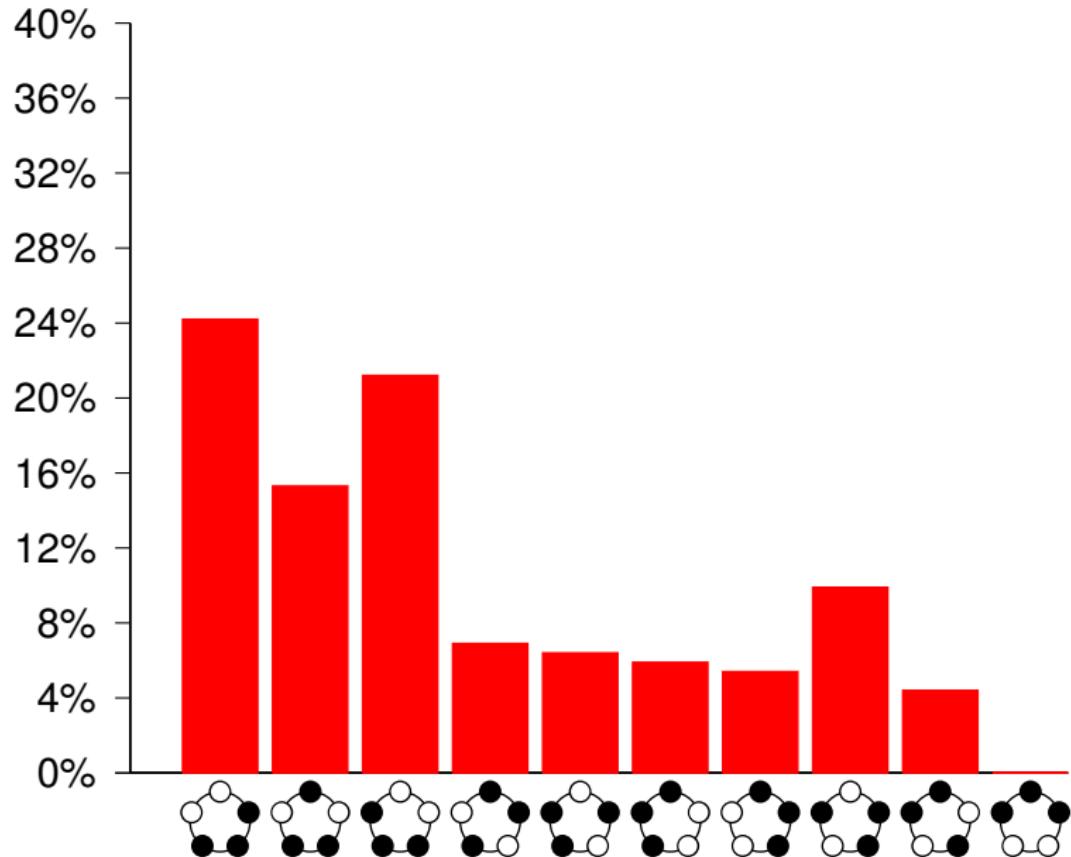
Stationary distribution



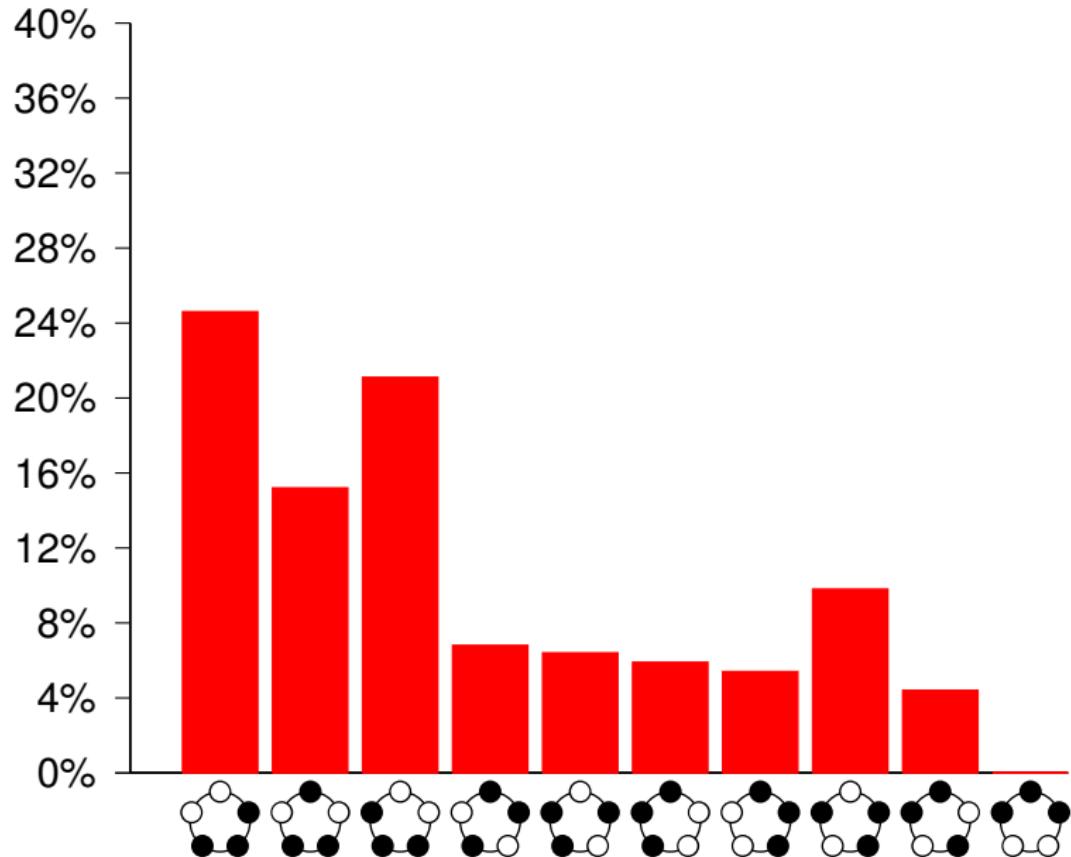
Stationary distribution



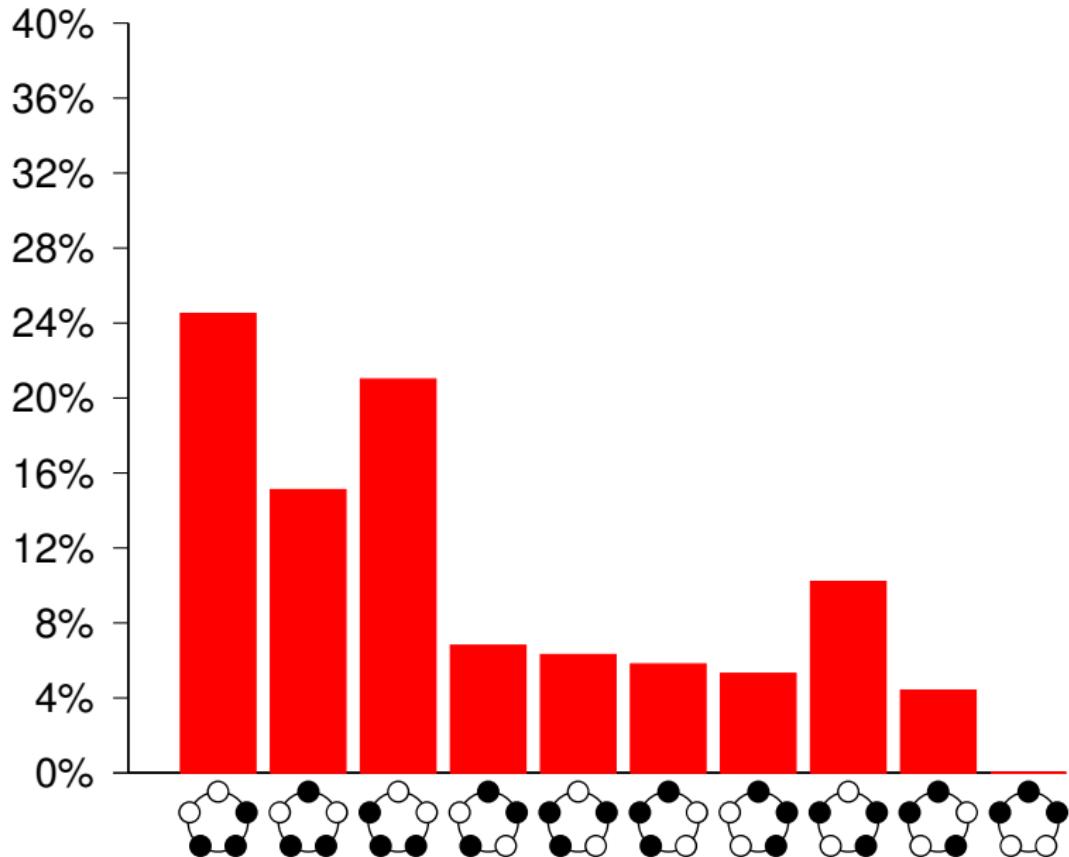
Stationary distribution



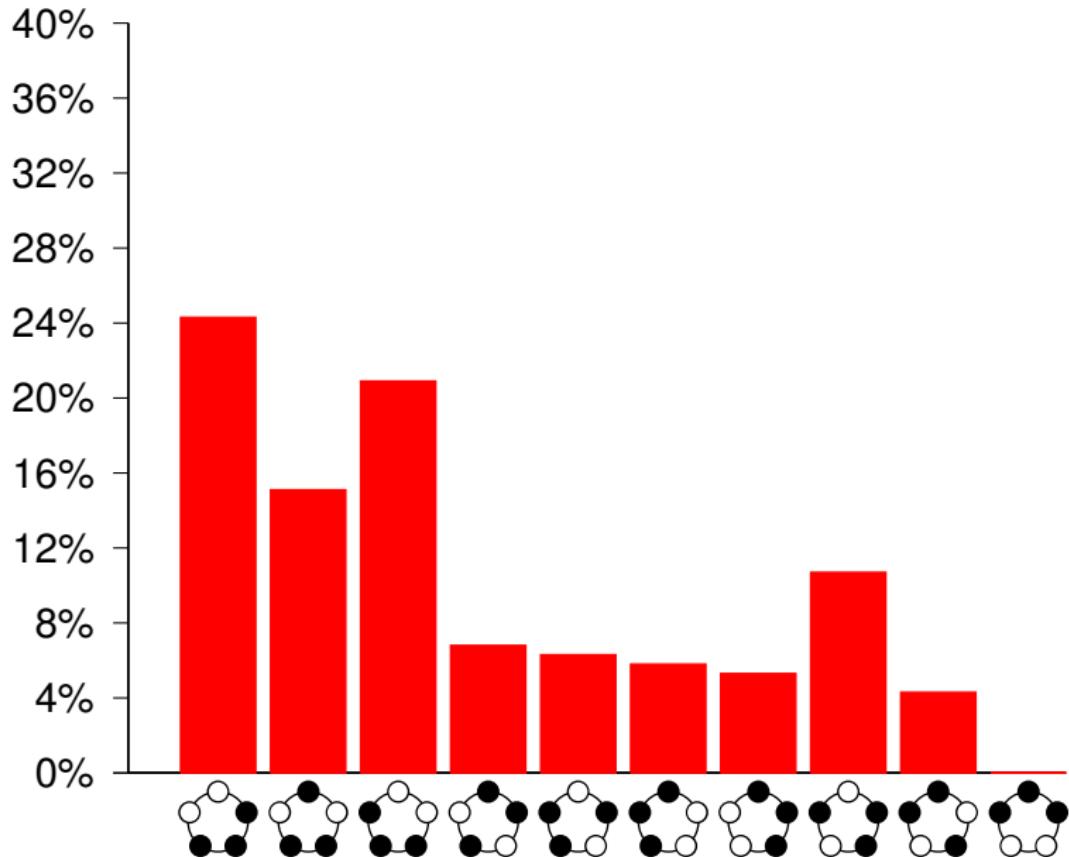
Stationary distribution



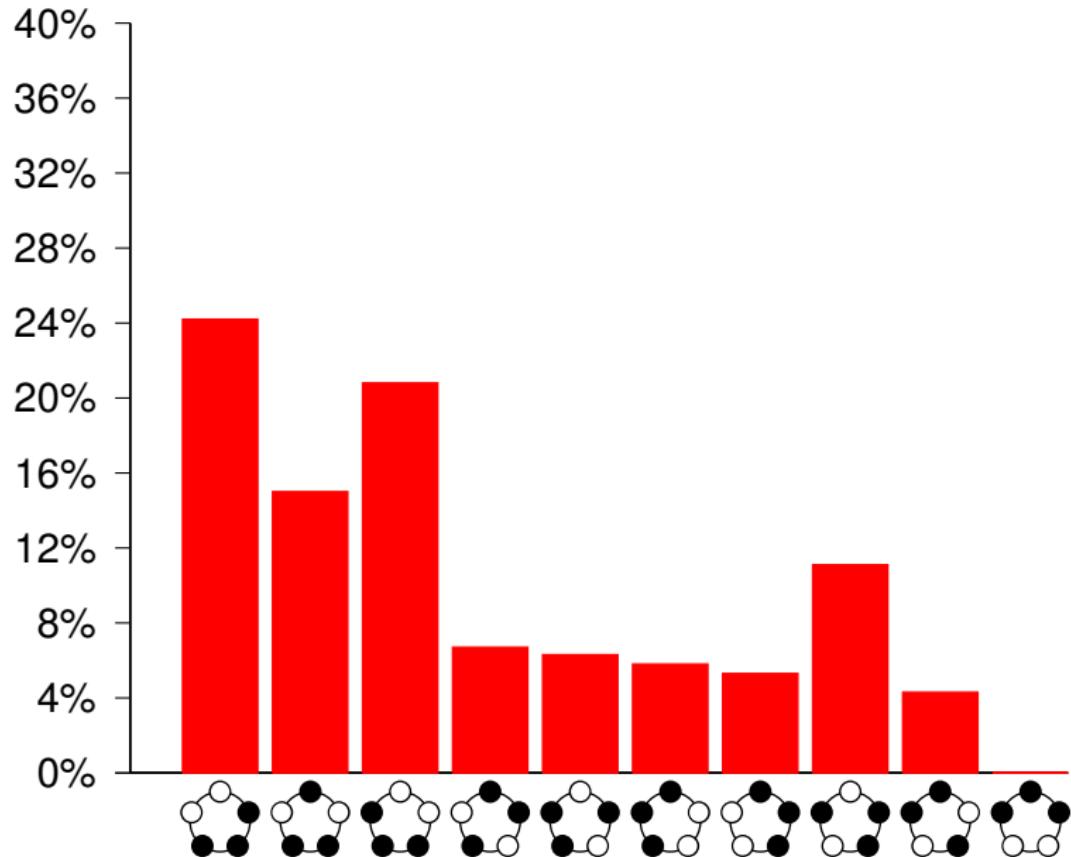
Stationary distribution



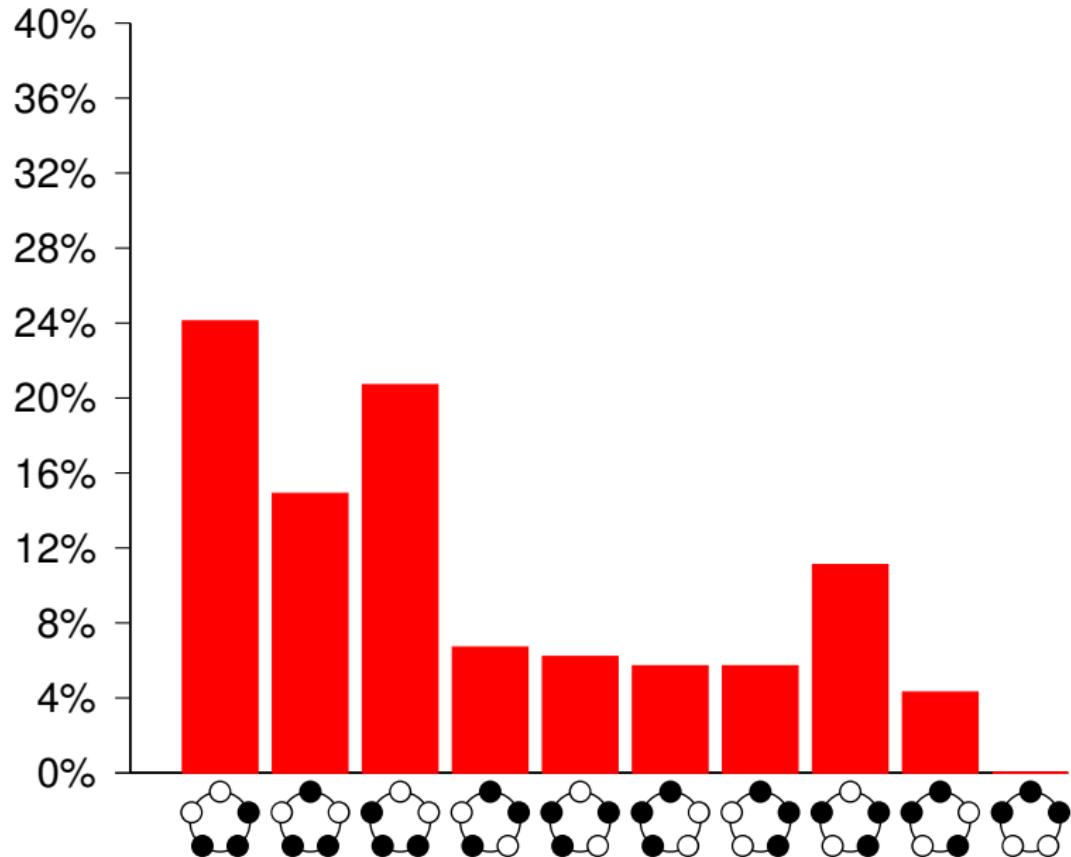
Stationary distribution



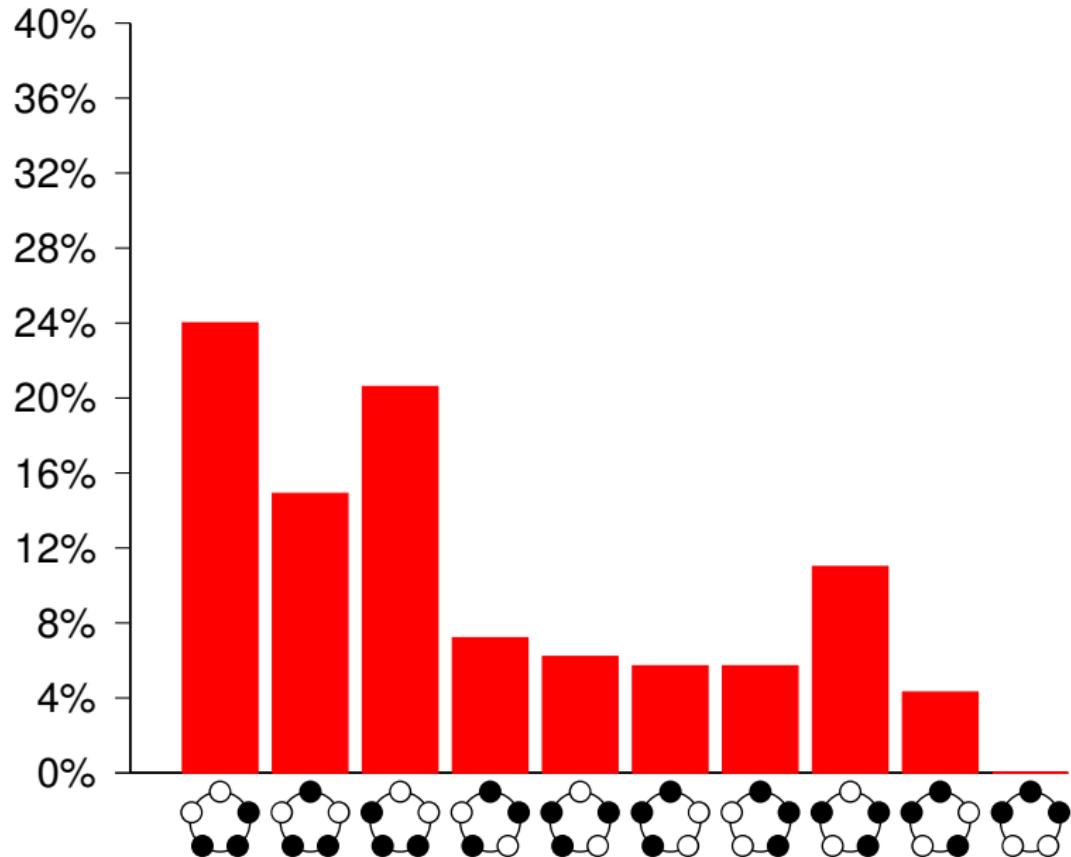
Stationary distribution



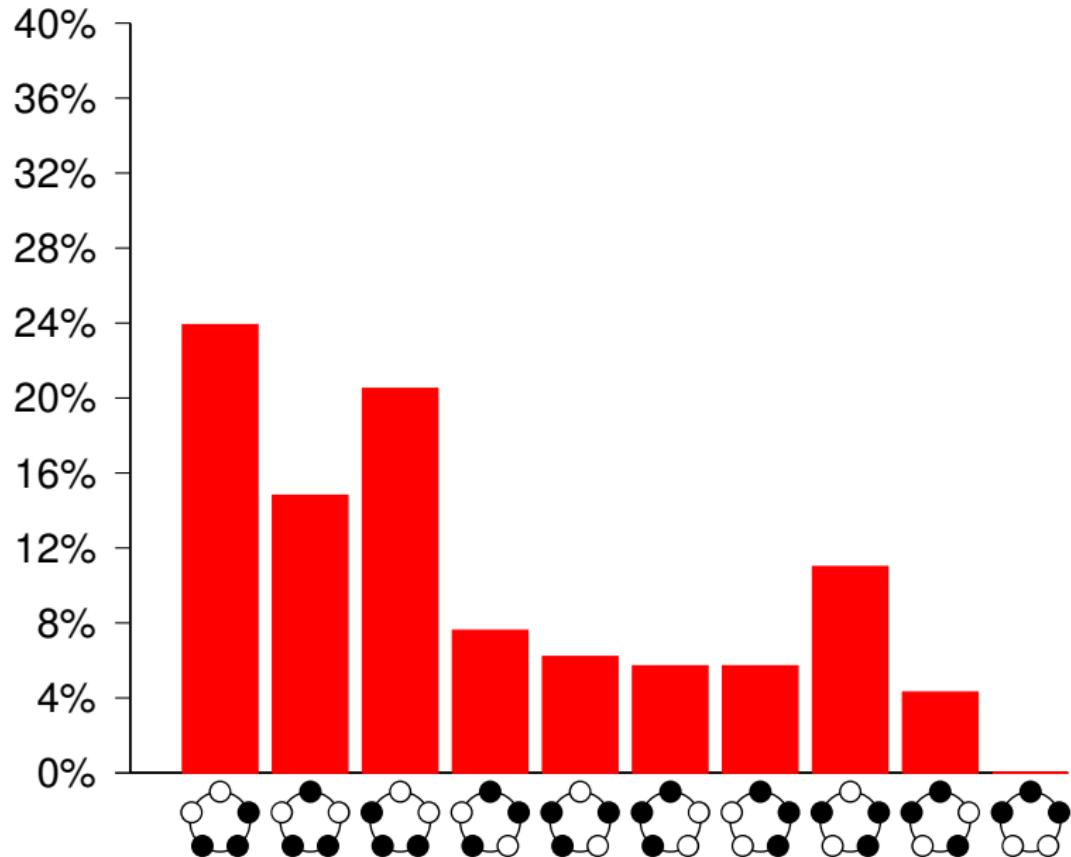
Stationary distribution



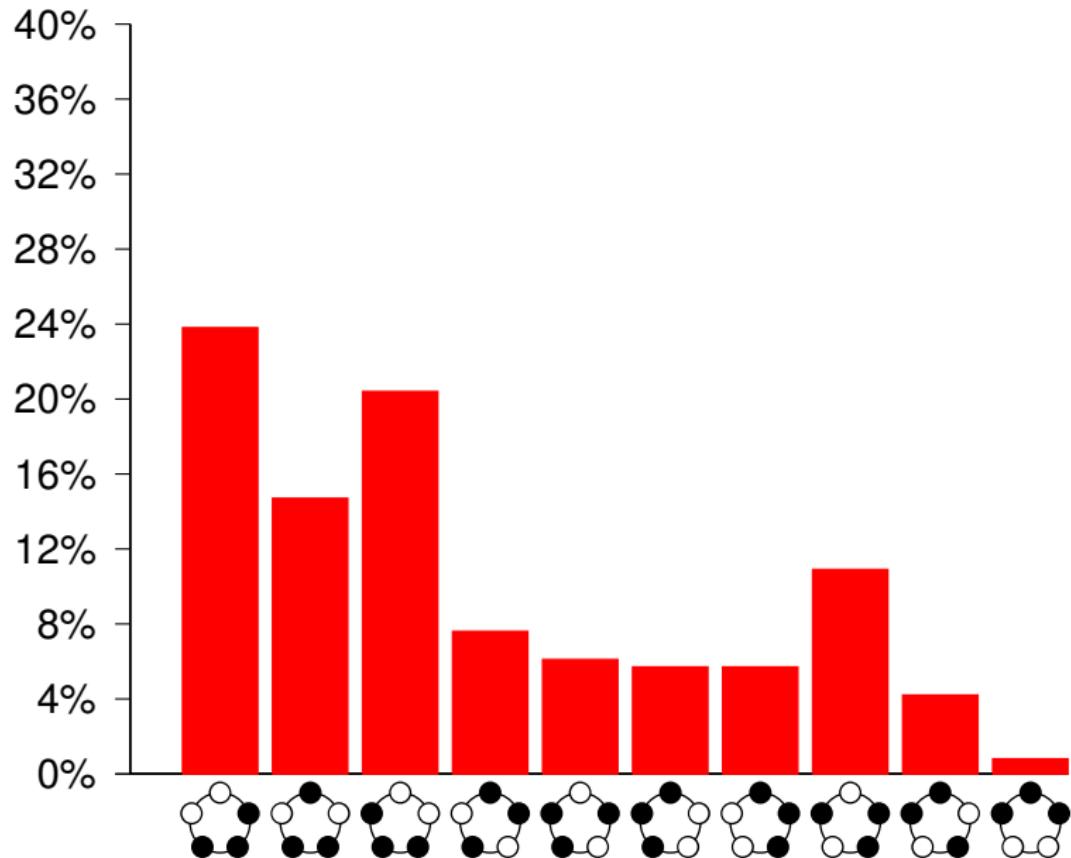
Stationary distribution



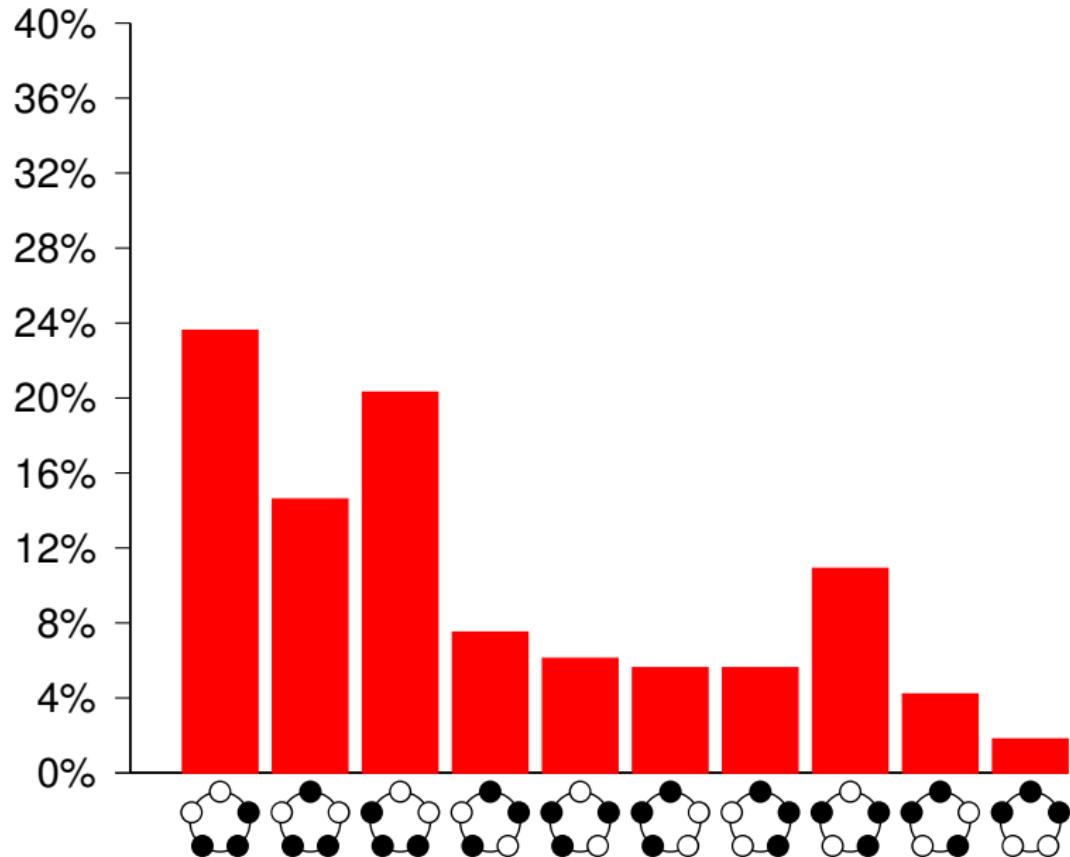
Stationary distribution



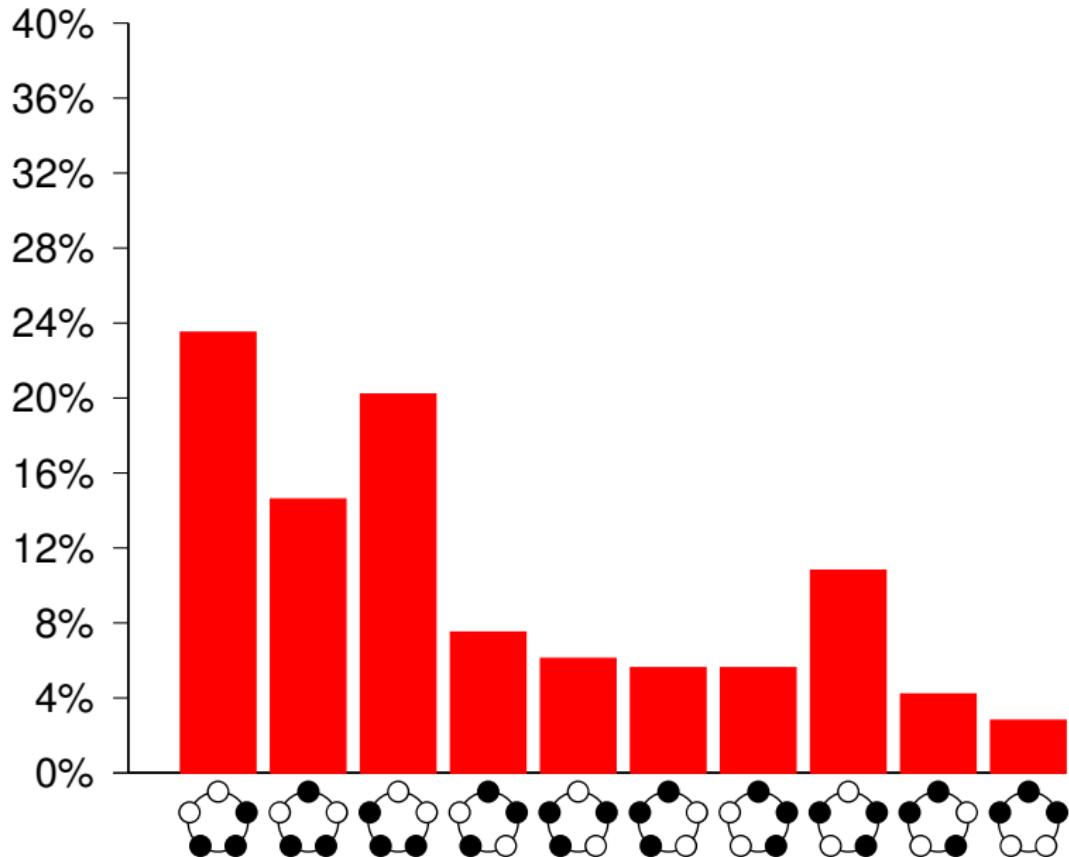
Stationary distribution



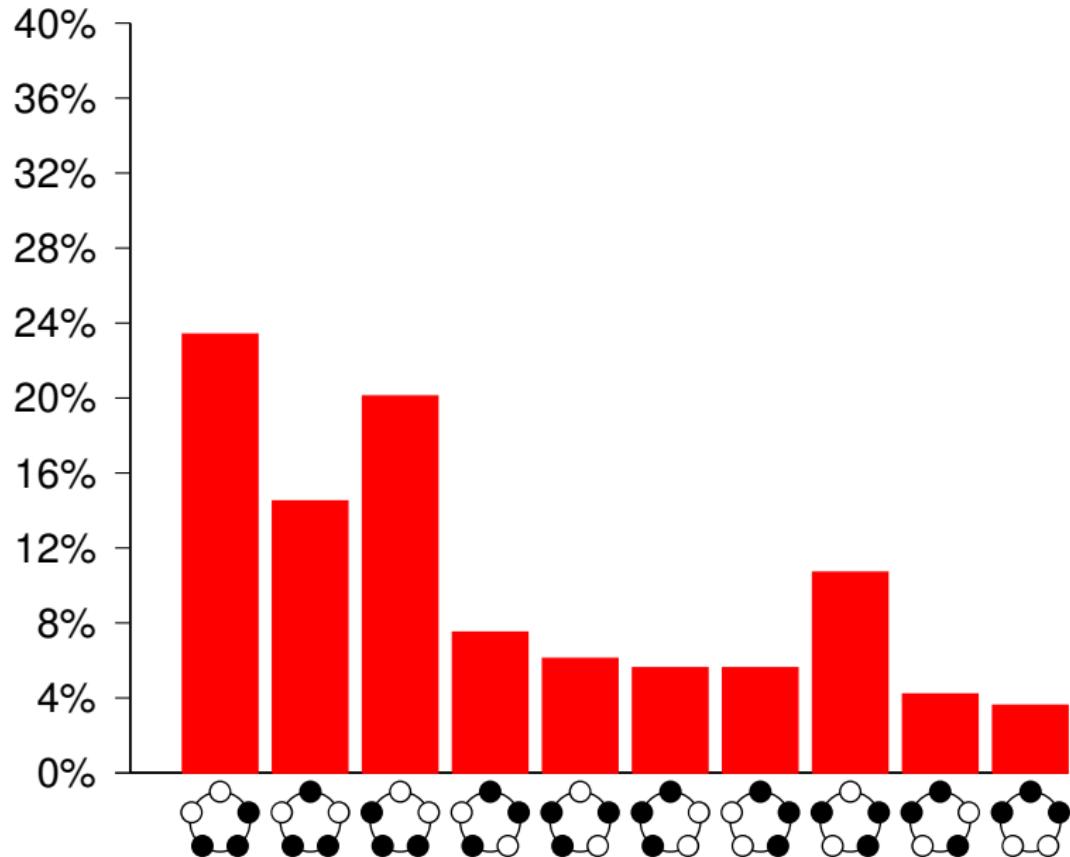
Stationary distribution



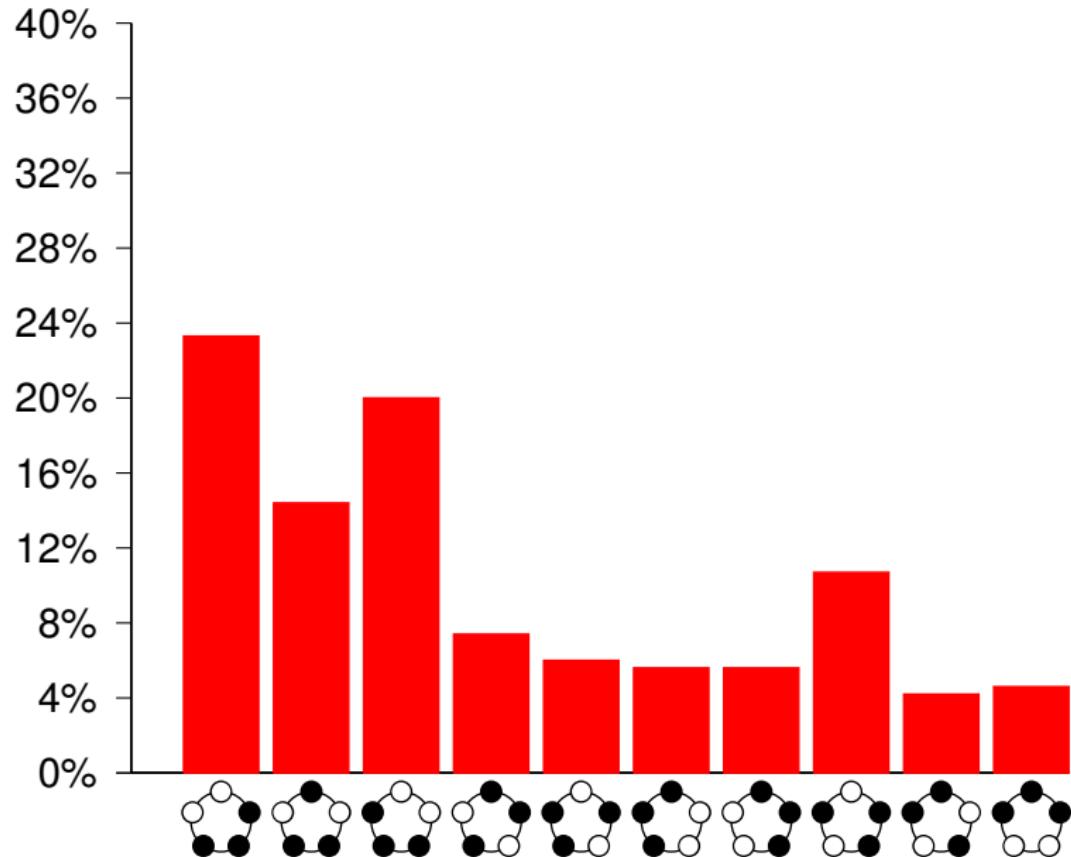
Stationary distribution



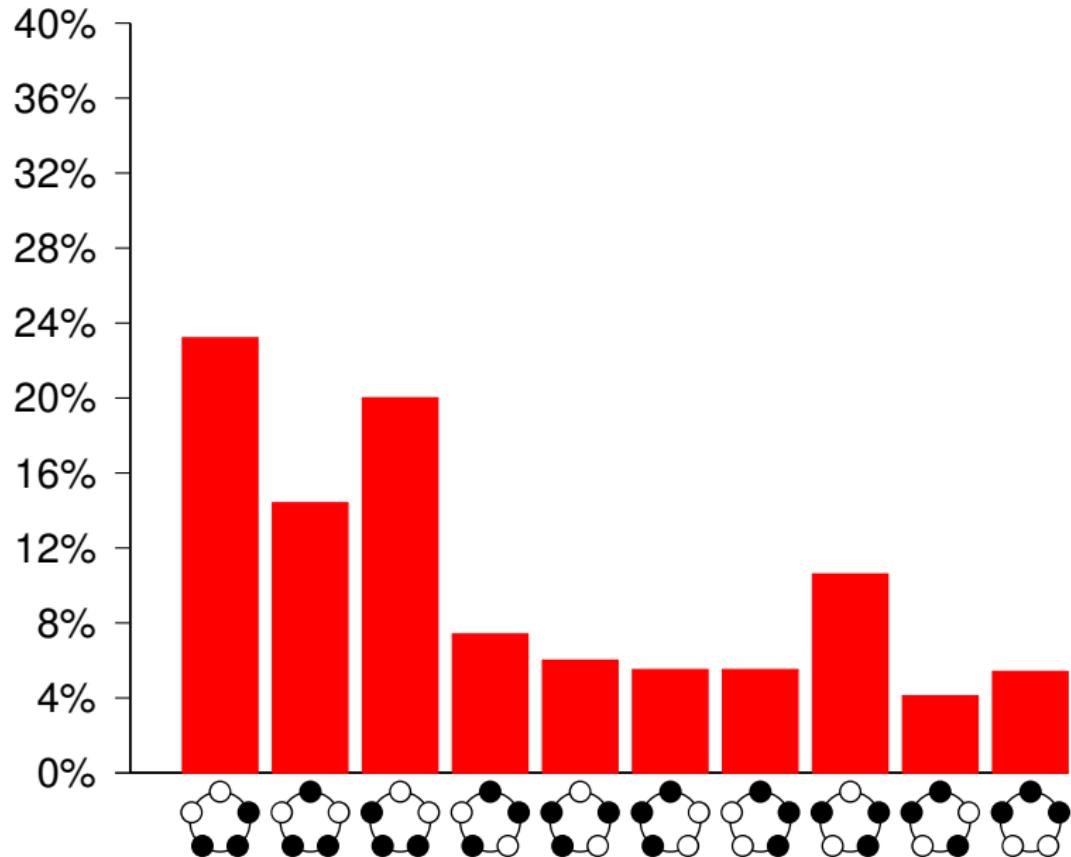
Stationary distribution



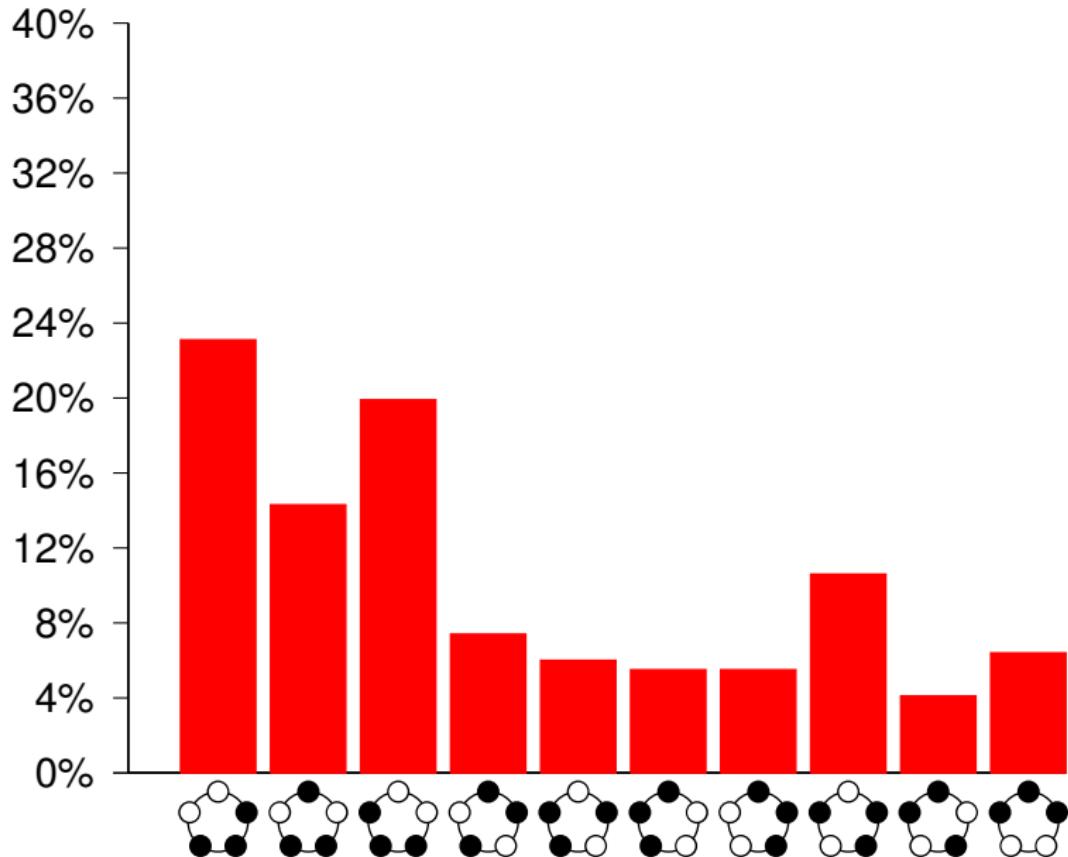
Stationary distribution



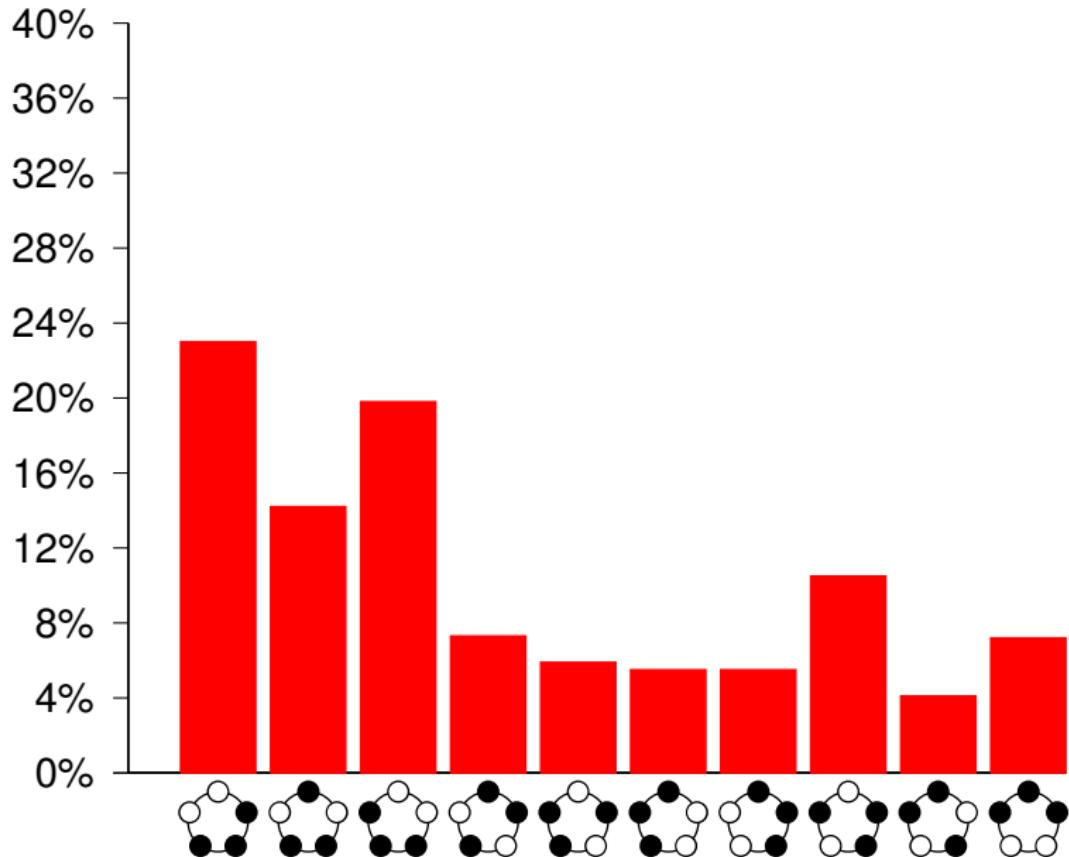
Stationary distribution



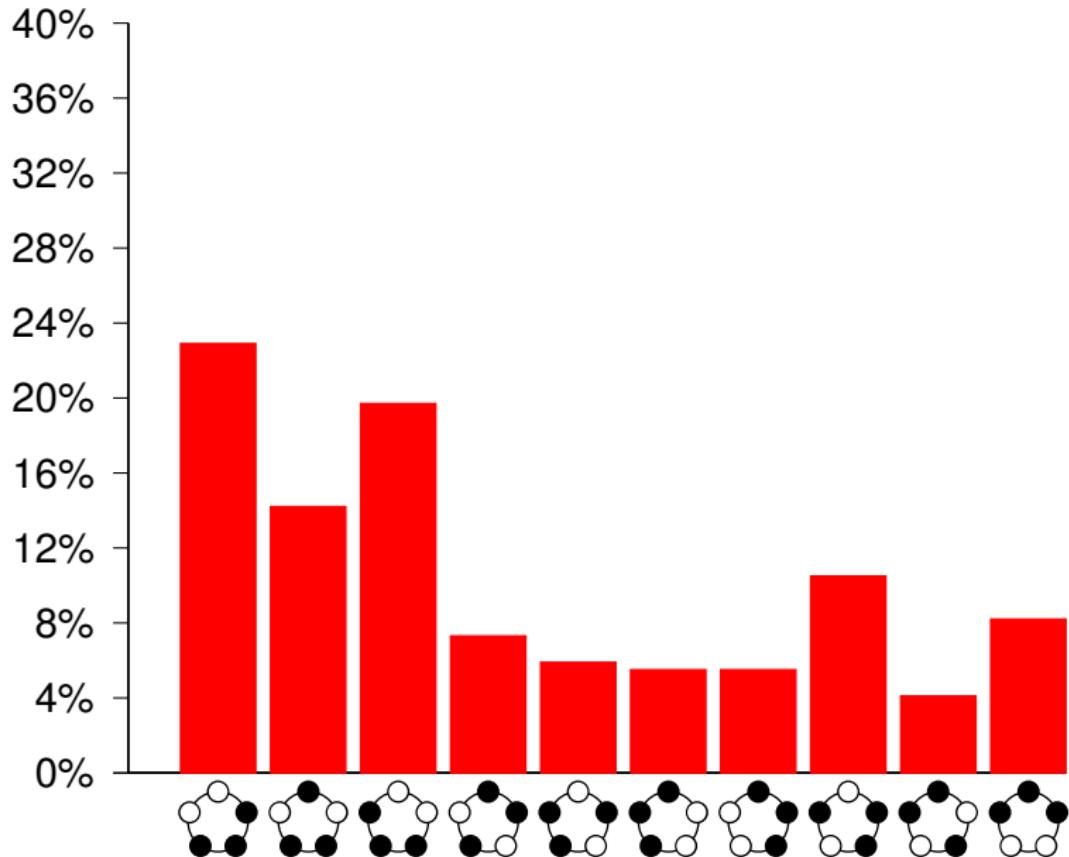
Stationary distribution



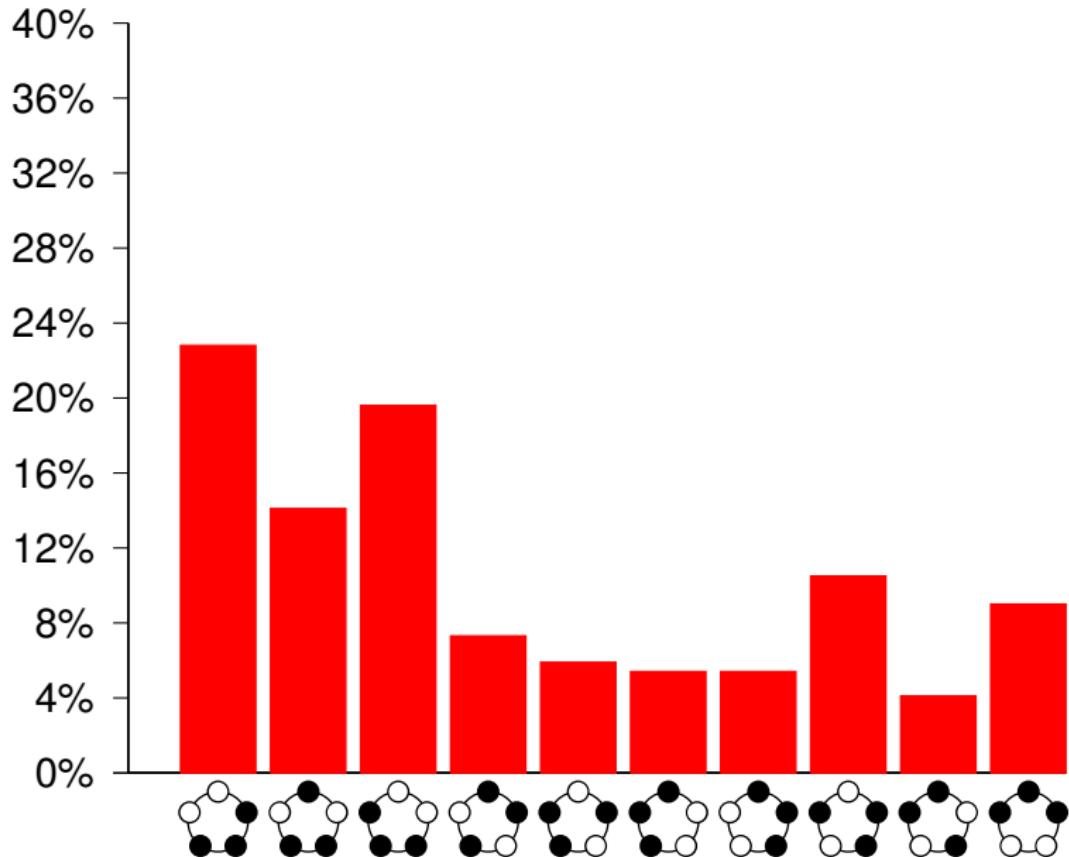
Stationary distribution



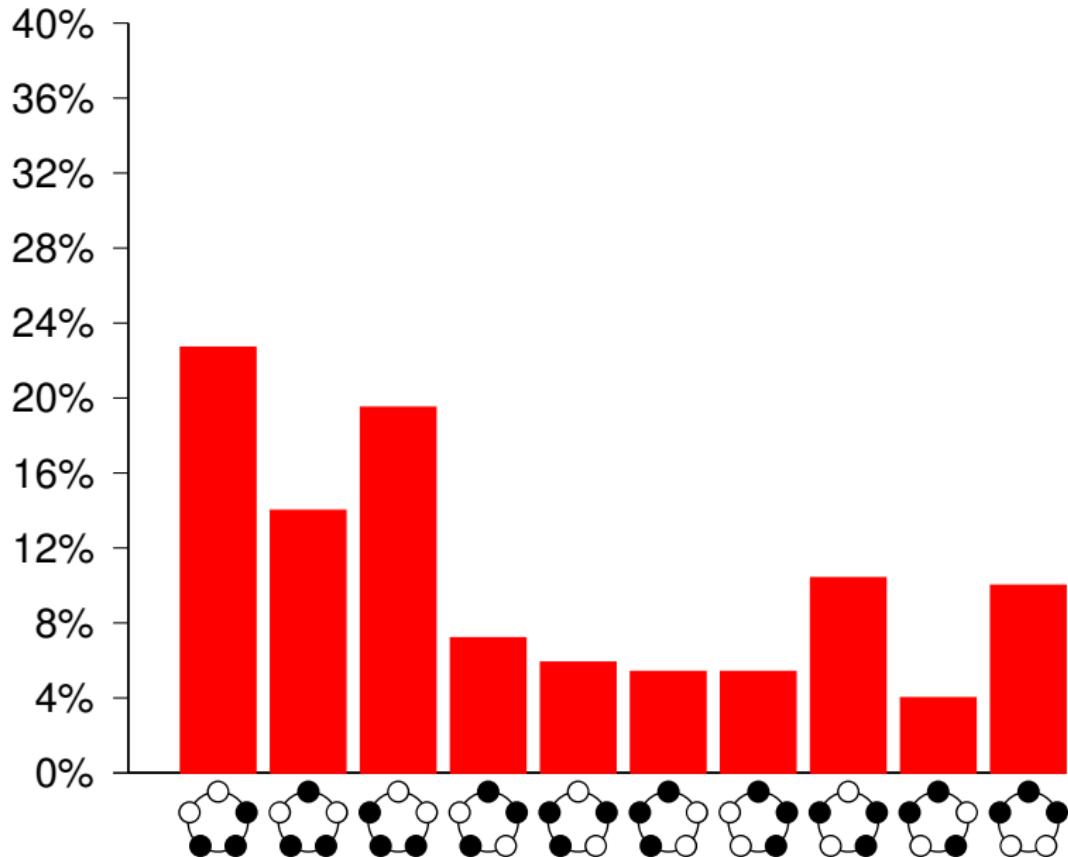
Stationary distribution



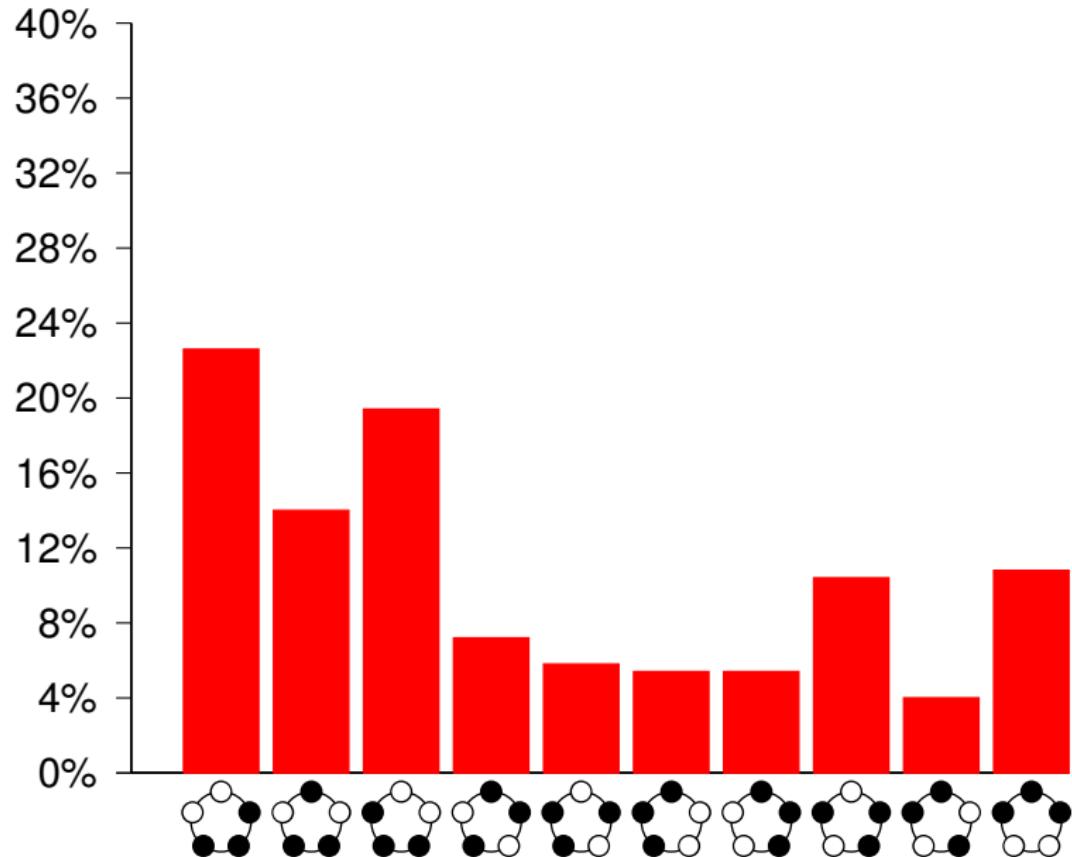
Stationary distribution



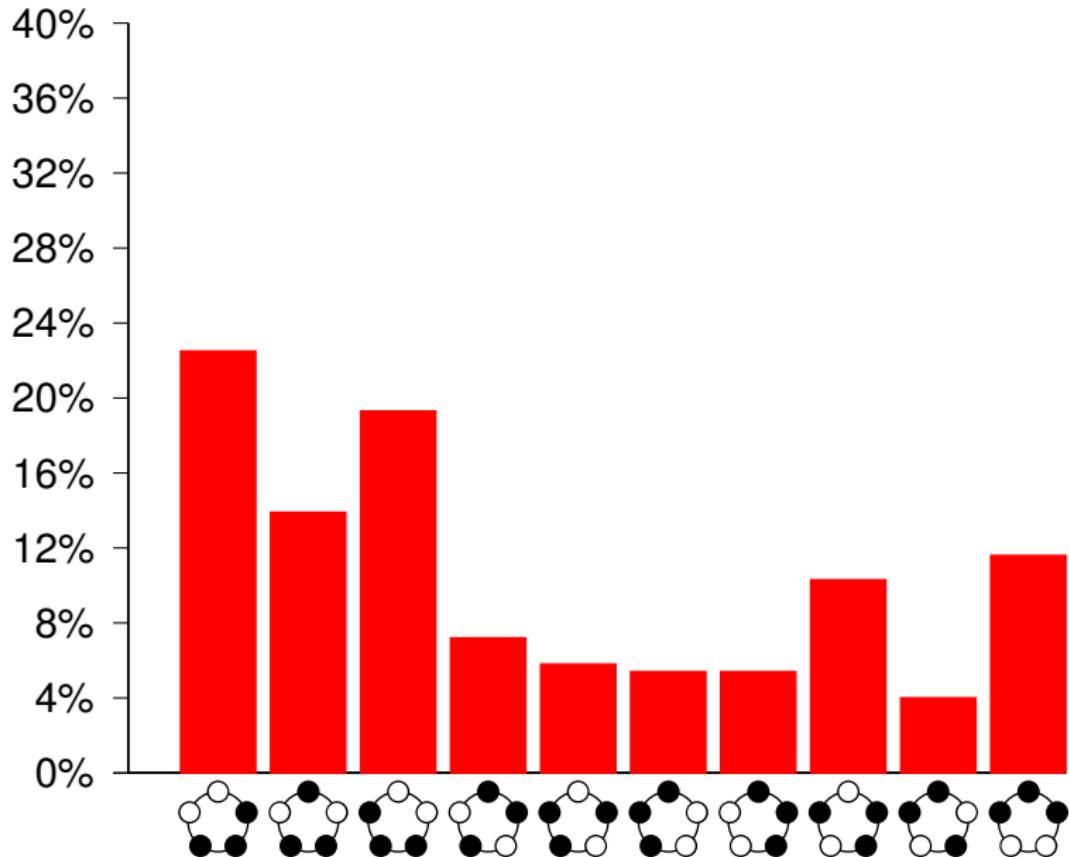
Stationary distribution



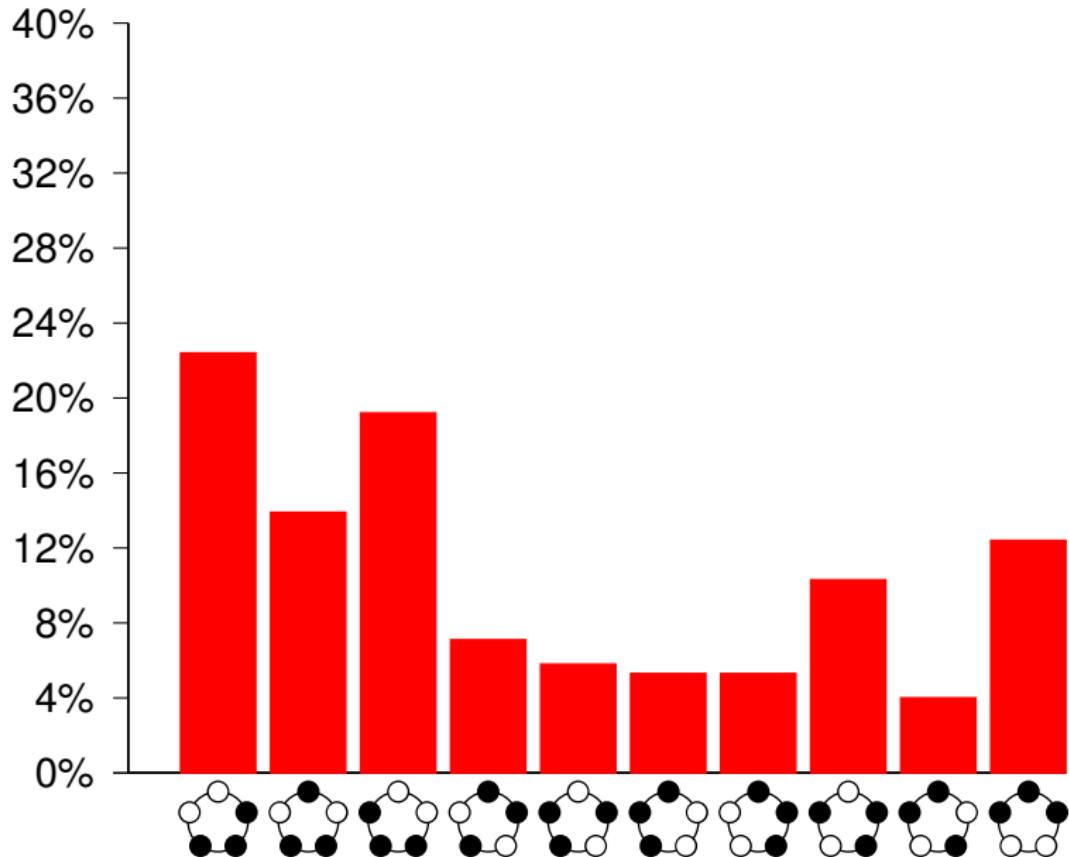
Stationary distribution



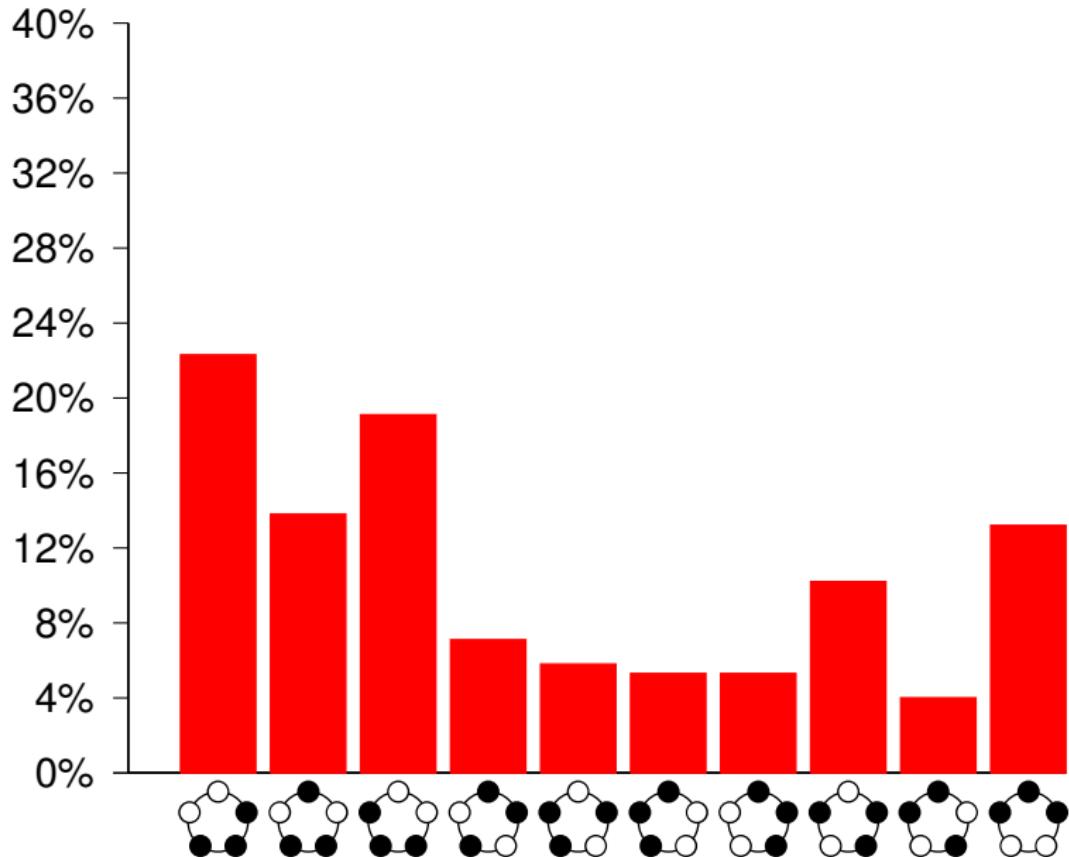
Stationary distribution



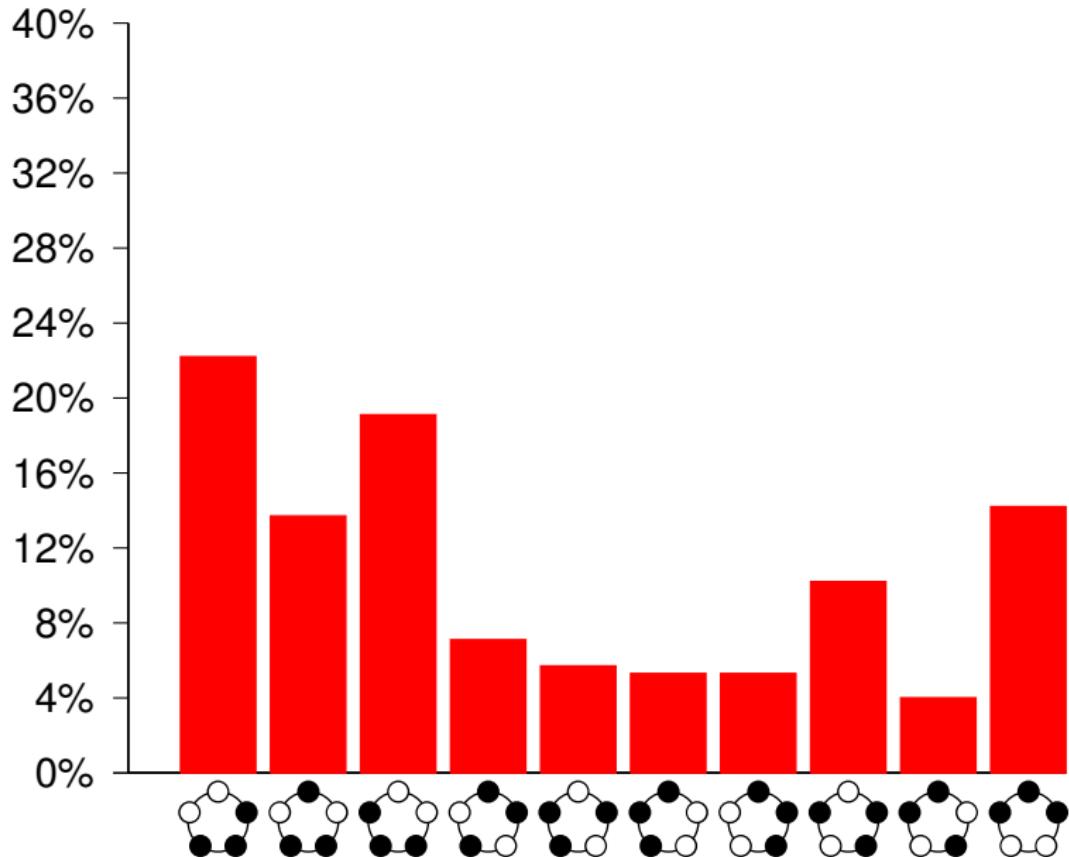
Stationary distribution



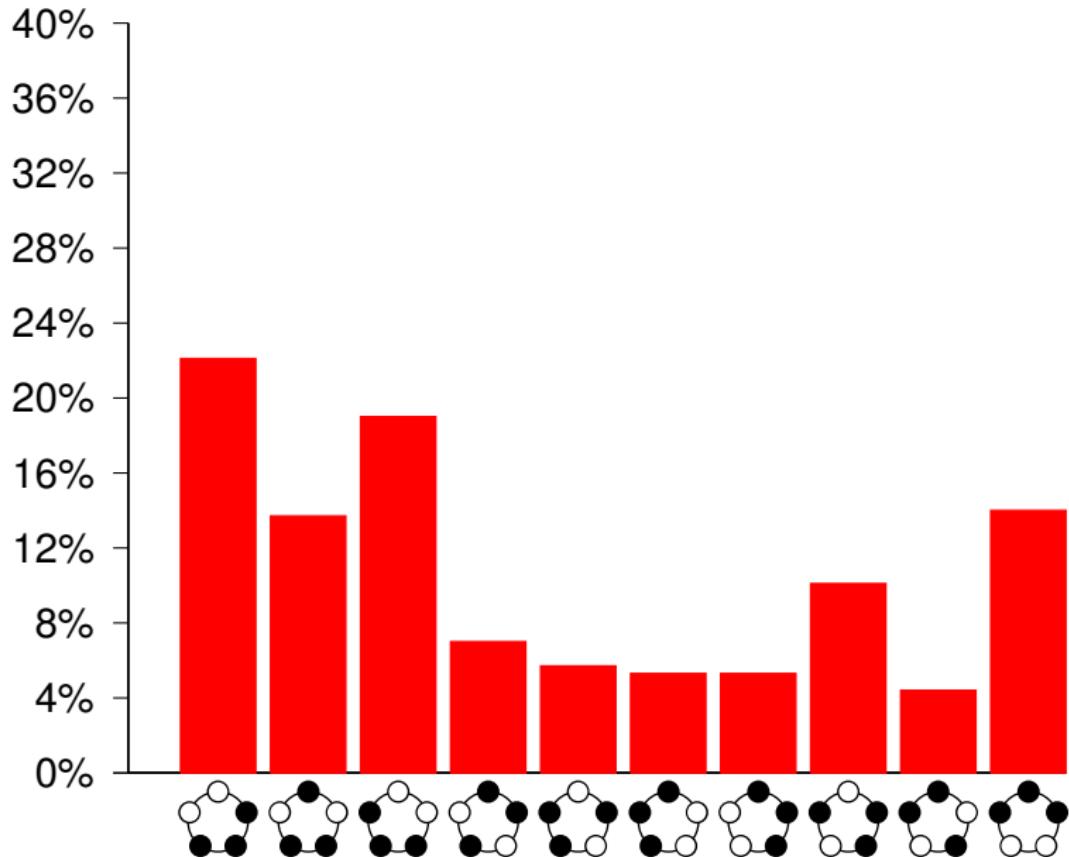
Stationary distribution



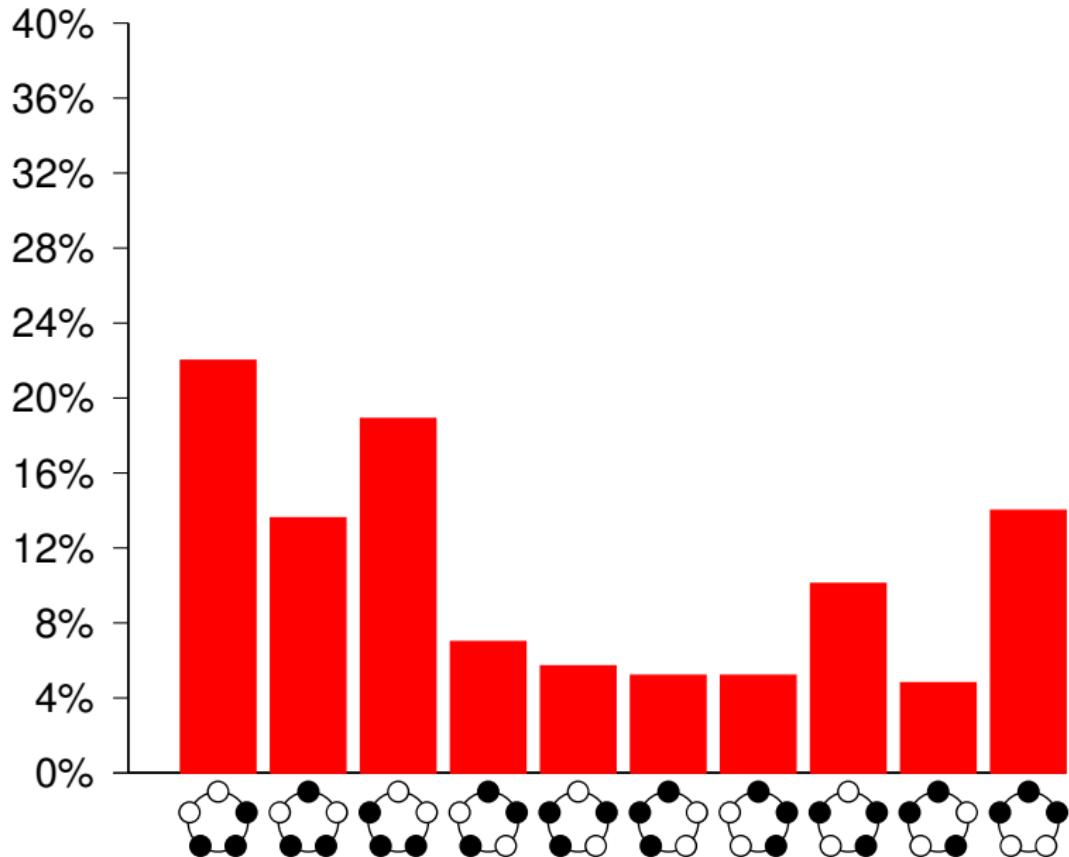
Stationary distribution



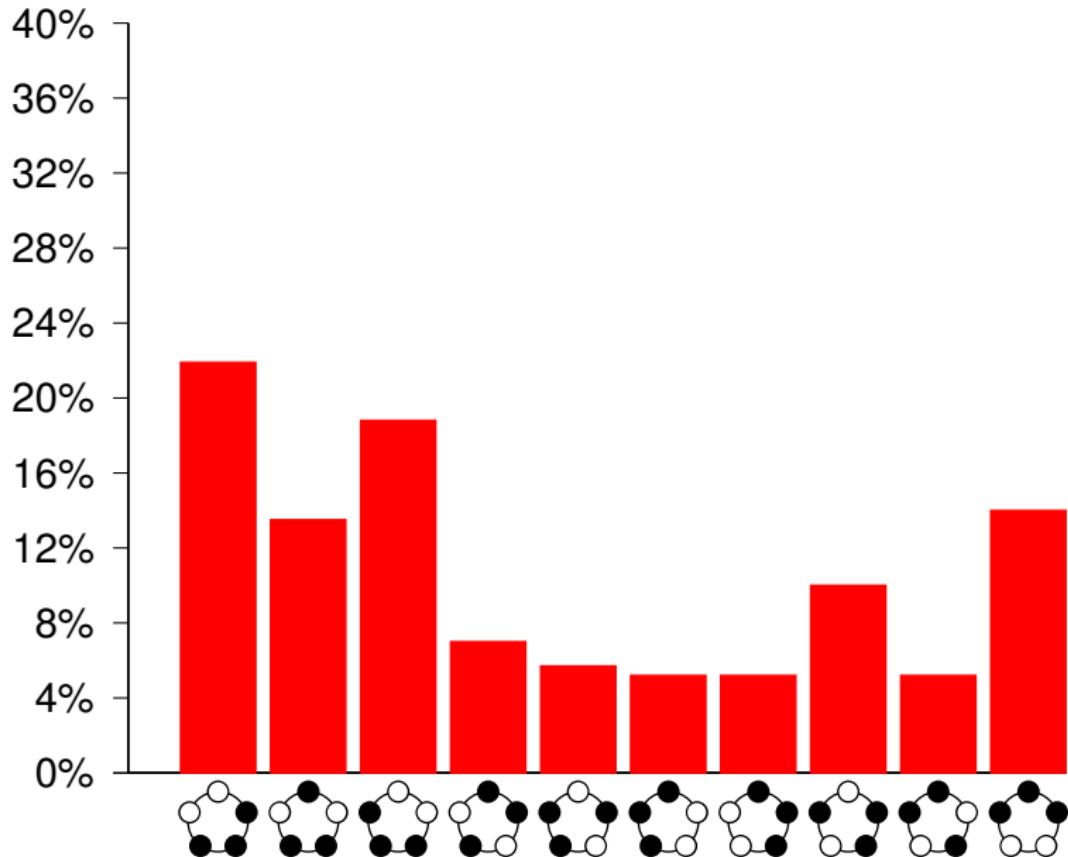
Stationary distribution



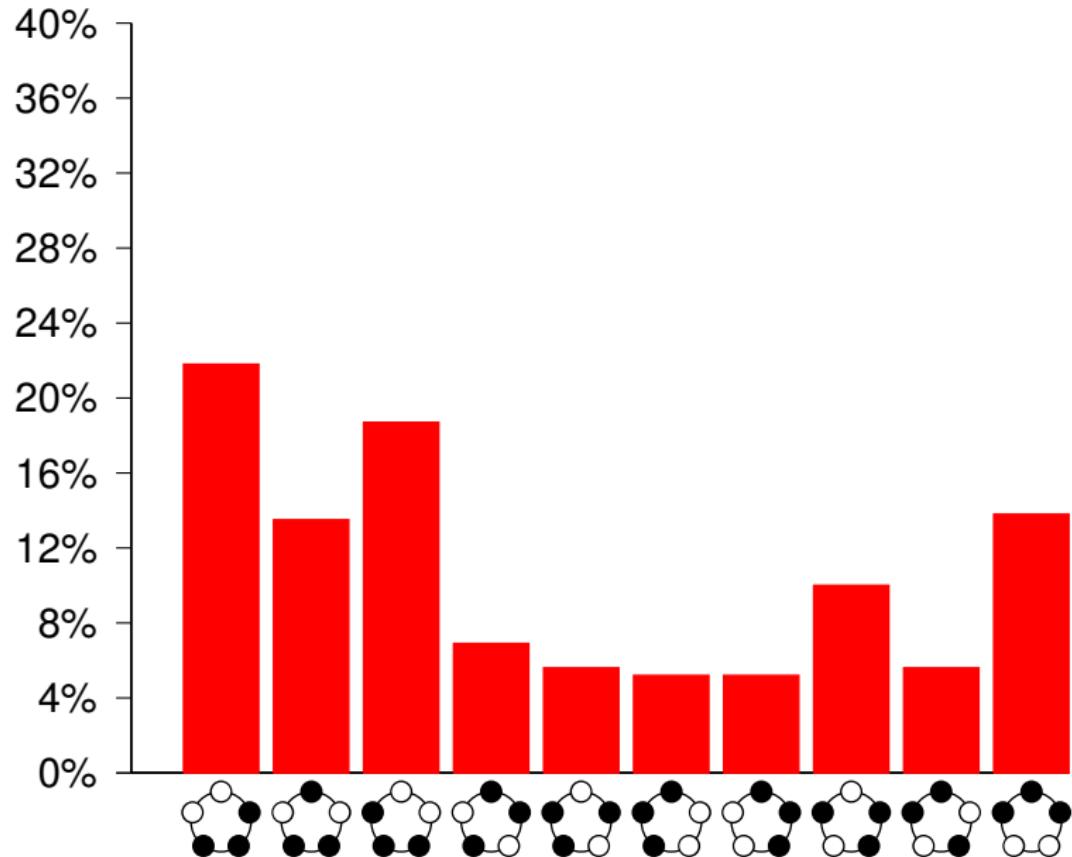
Stationary distribution



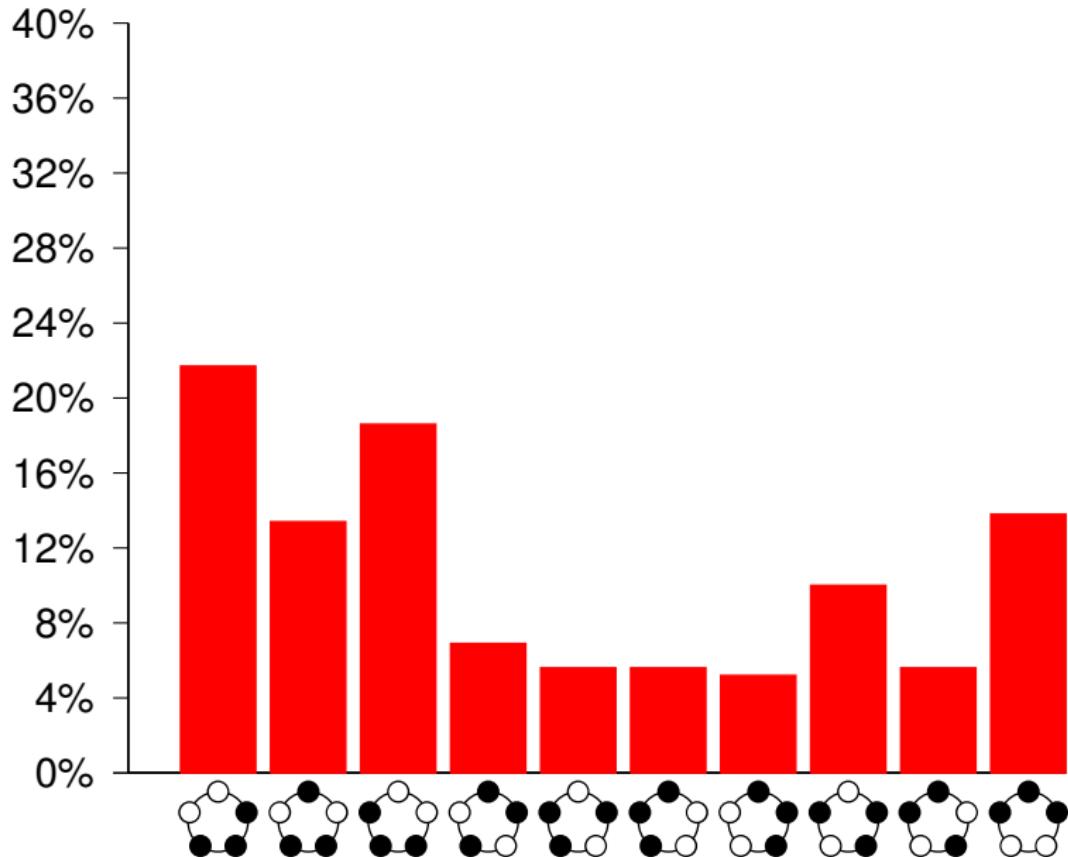
Stationary distribution



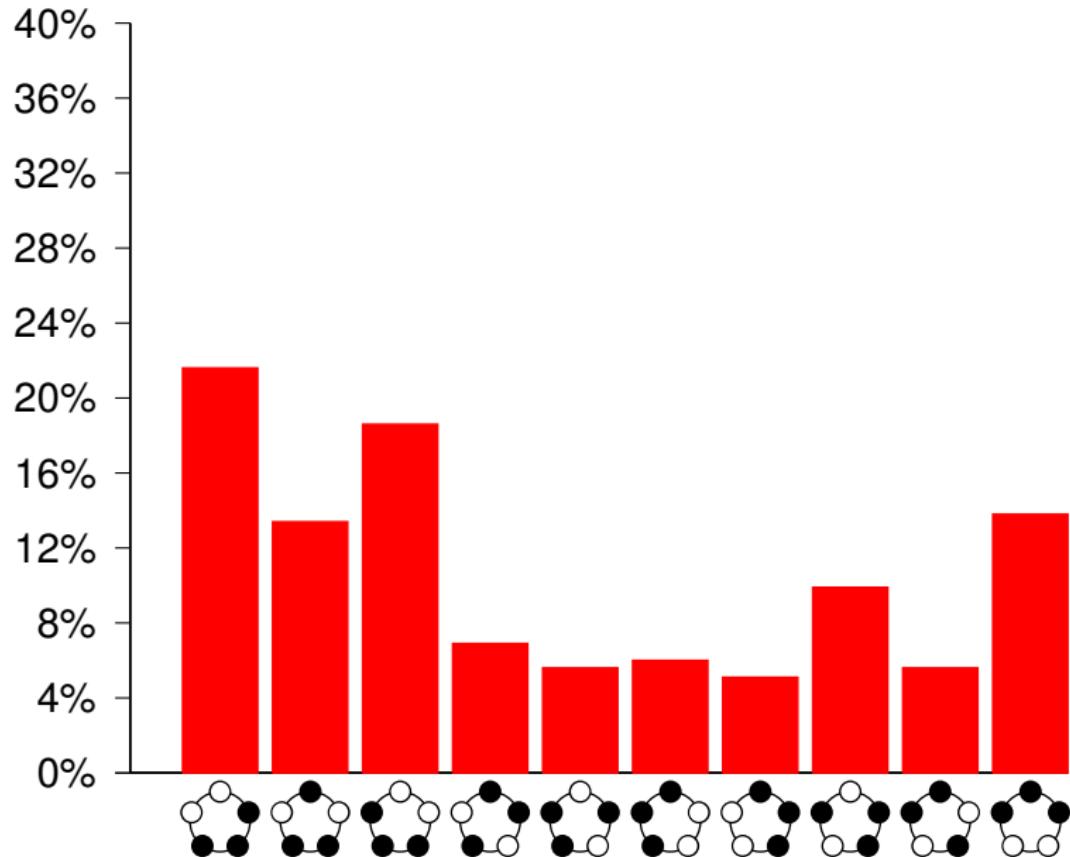
Stationary distribution



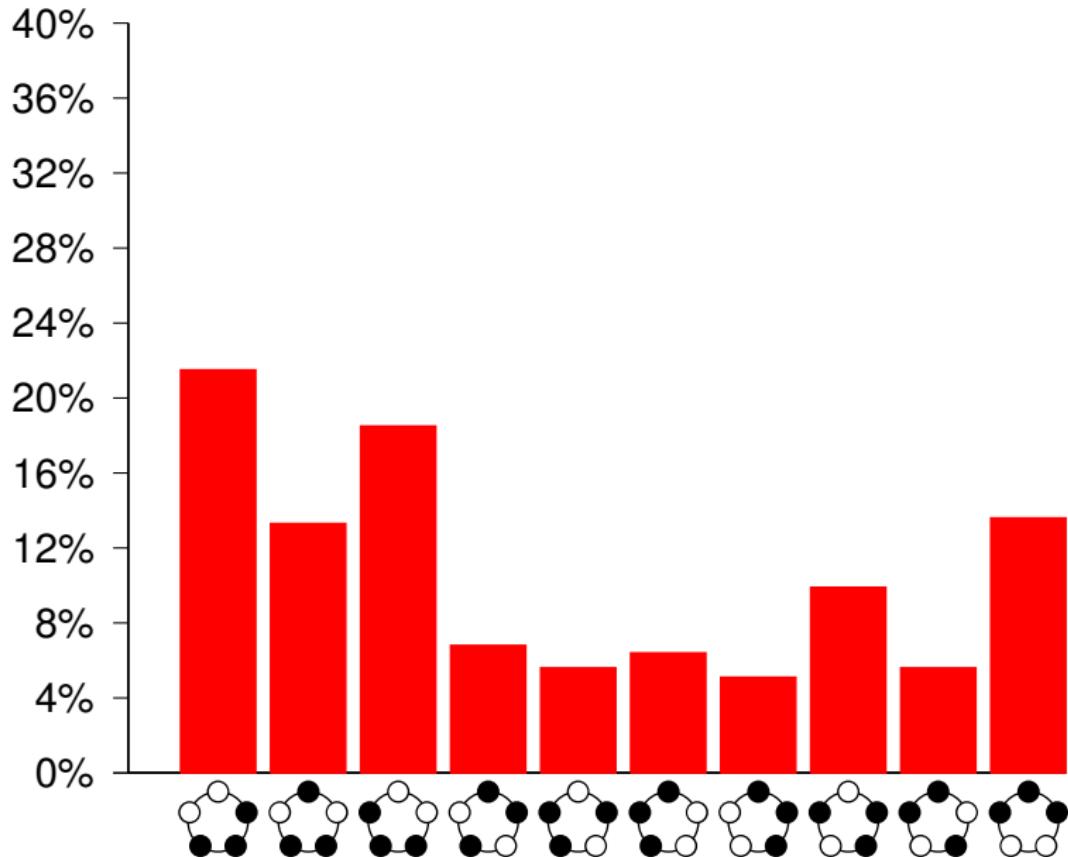
Stationary distribution



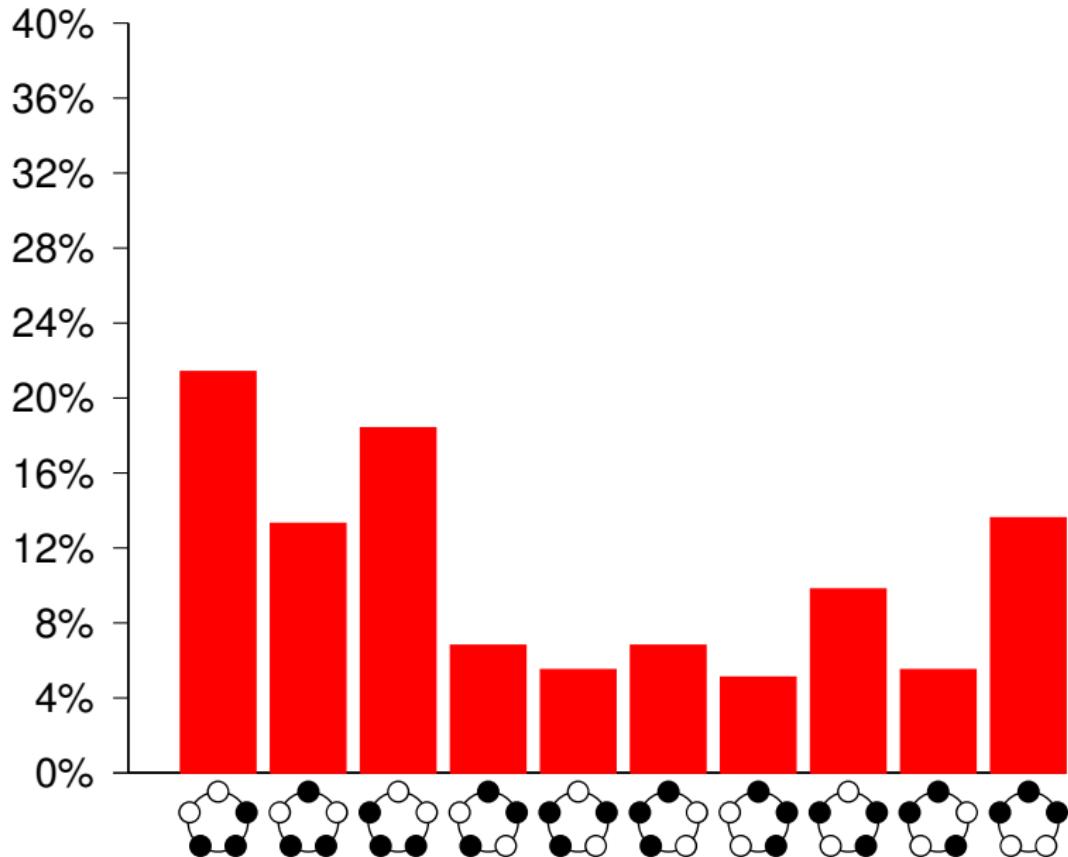
Stationary distribution



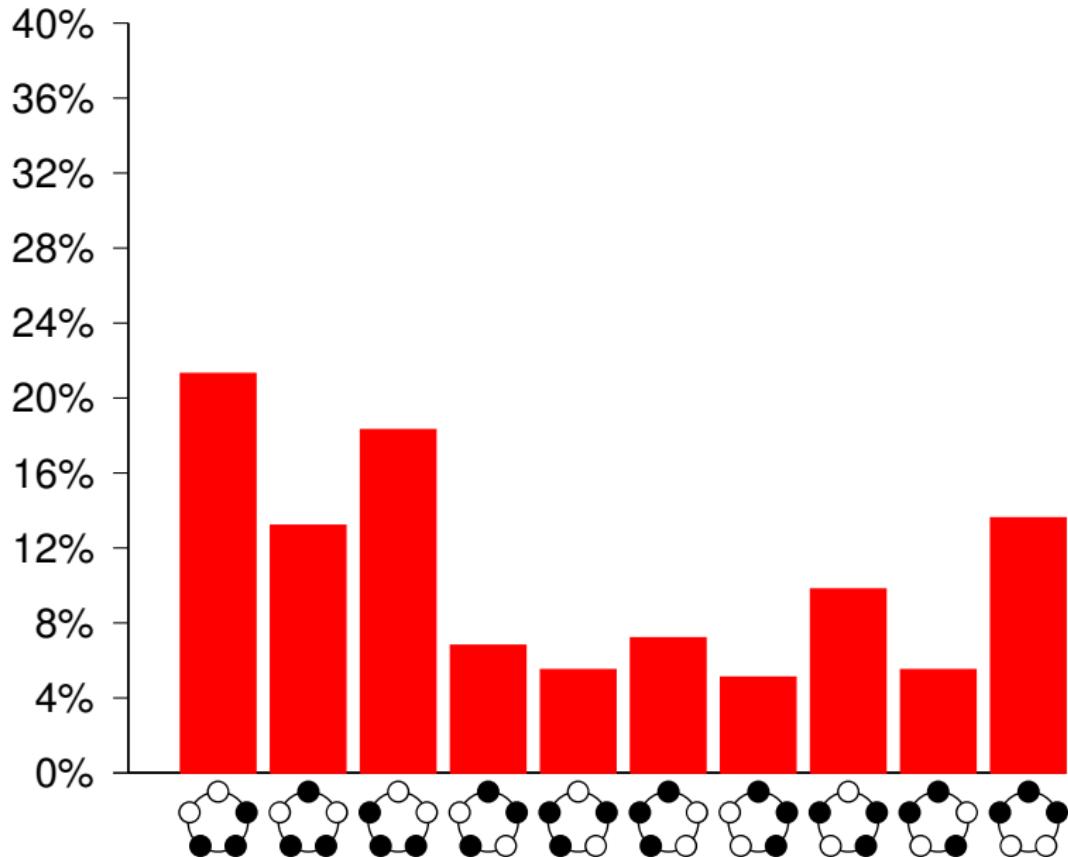
Stationary distribution



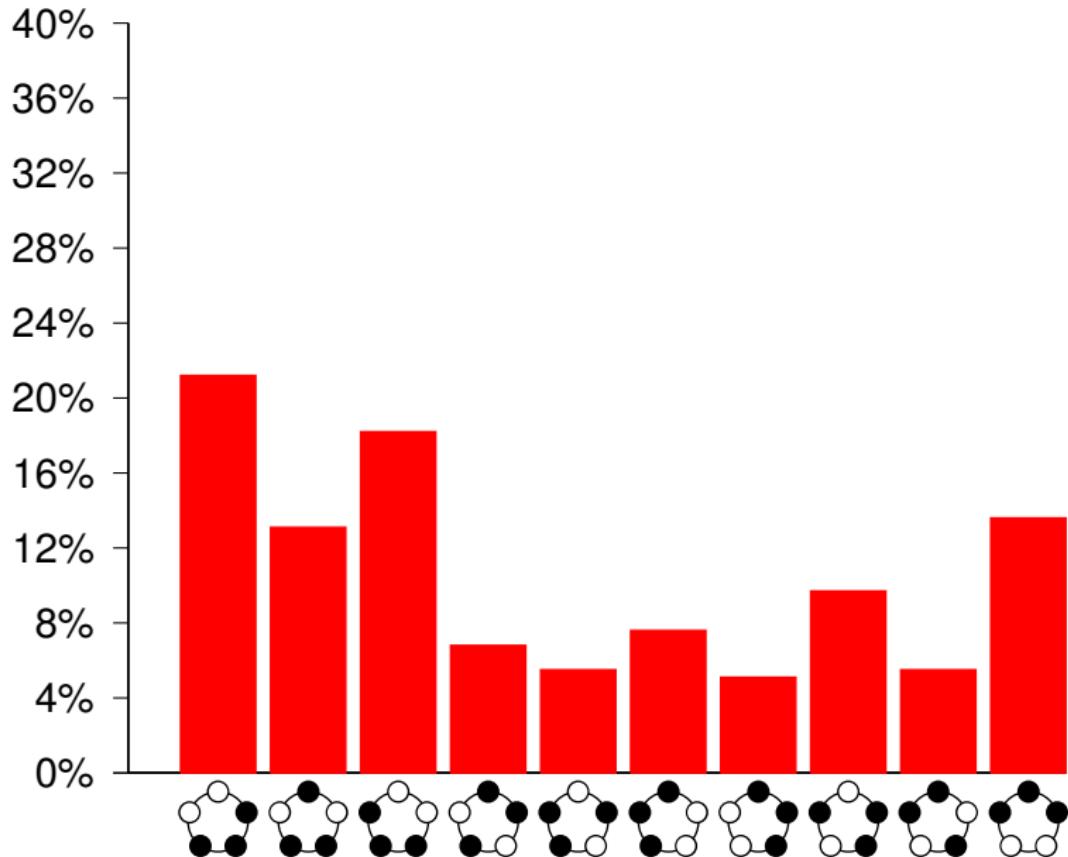
Stationary distribution



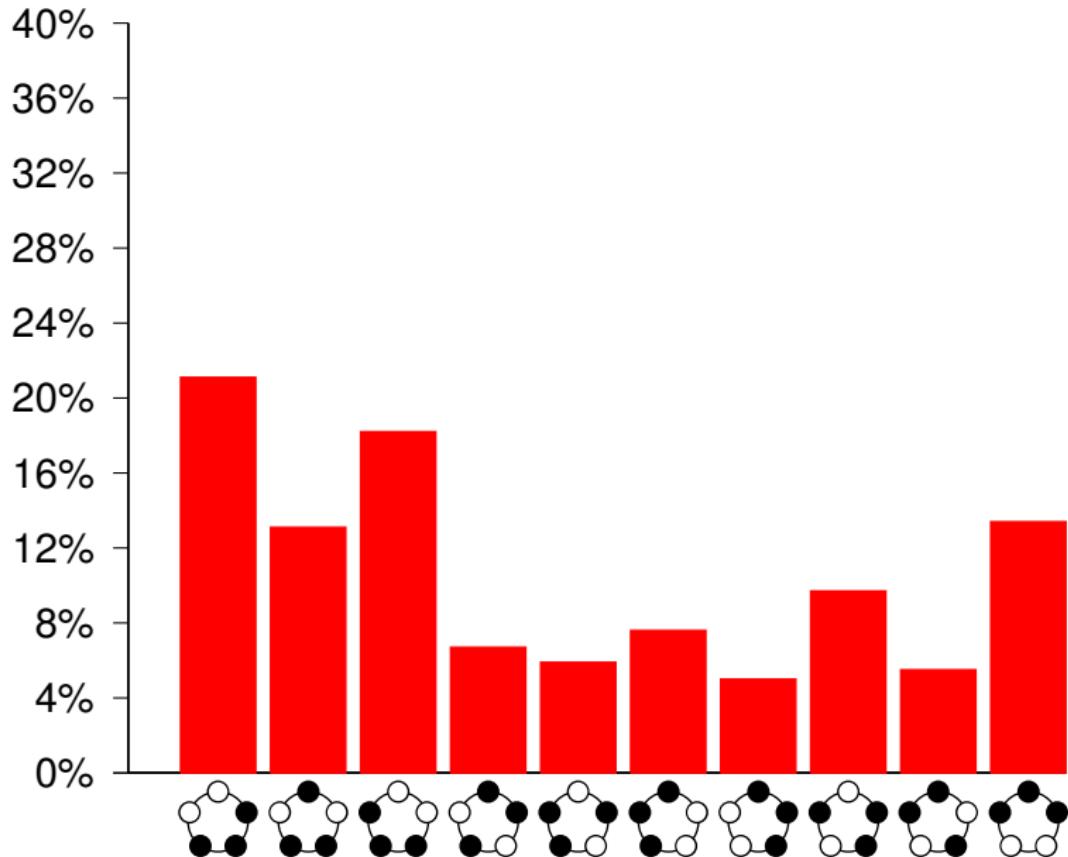
Stationary distribution



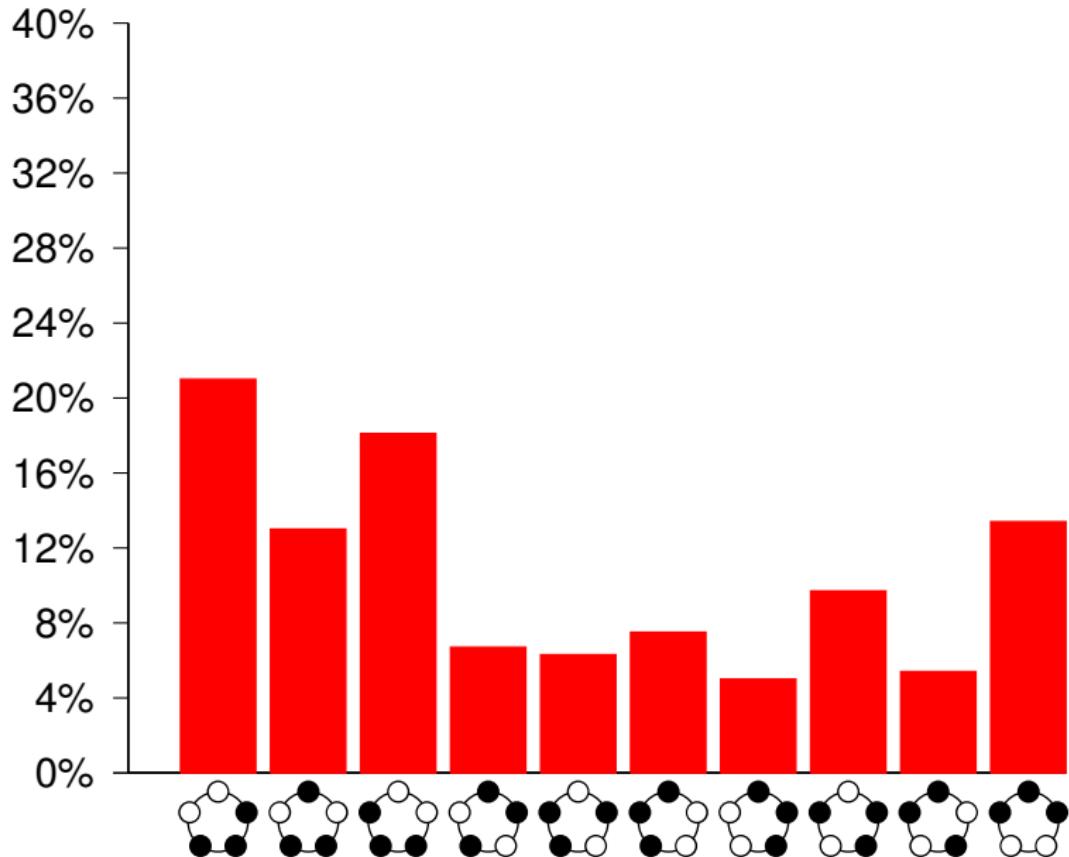
Stationary distribution



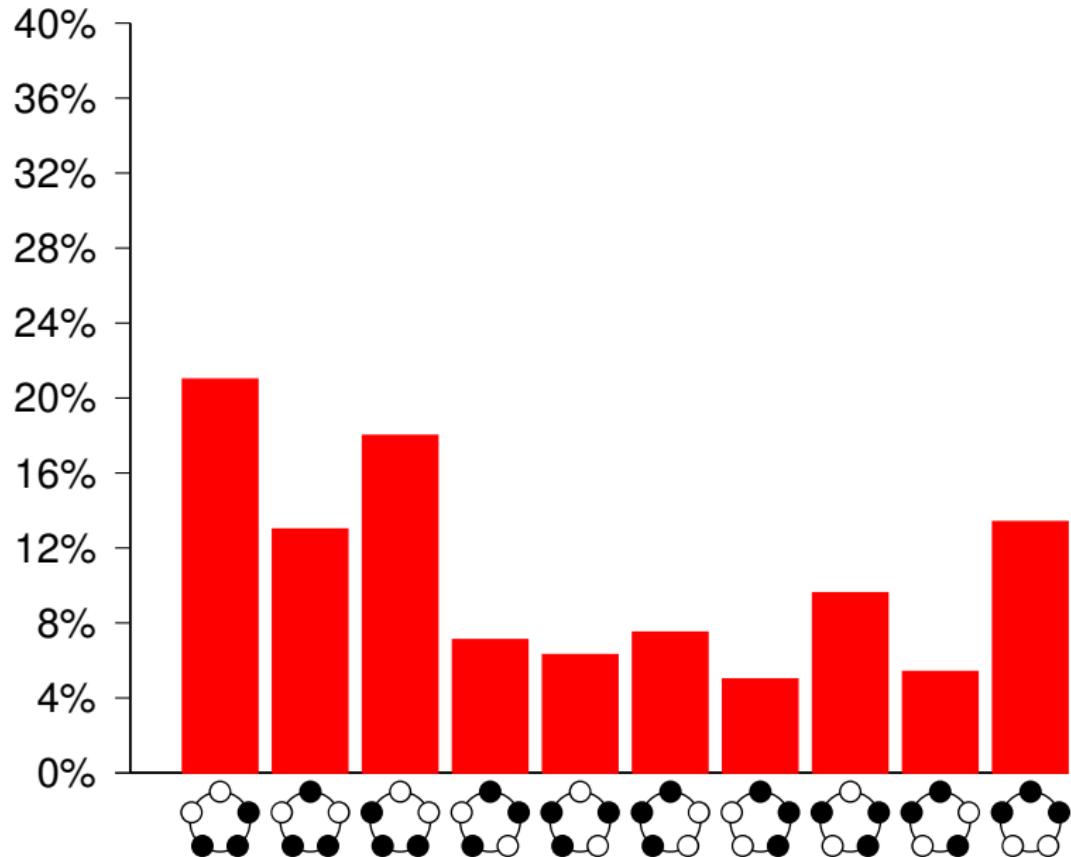
Stationary distribution



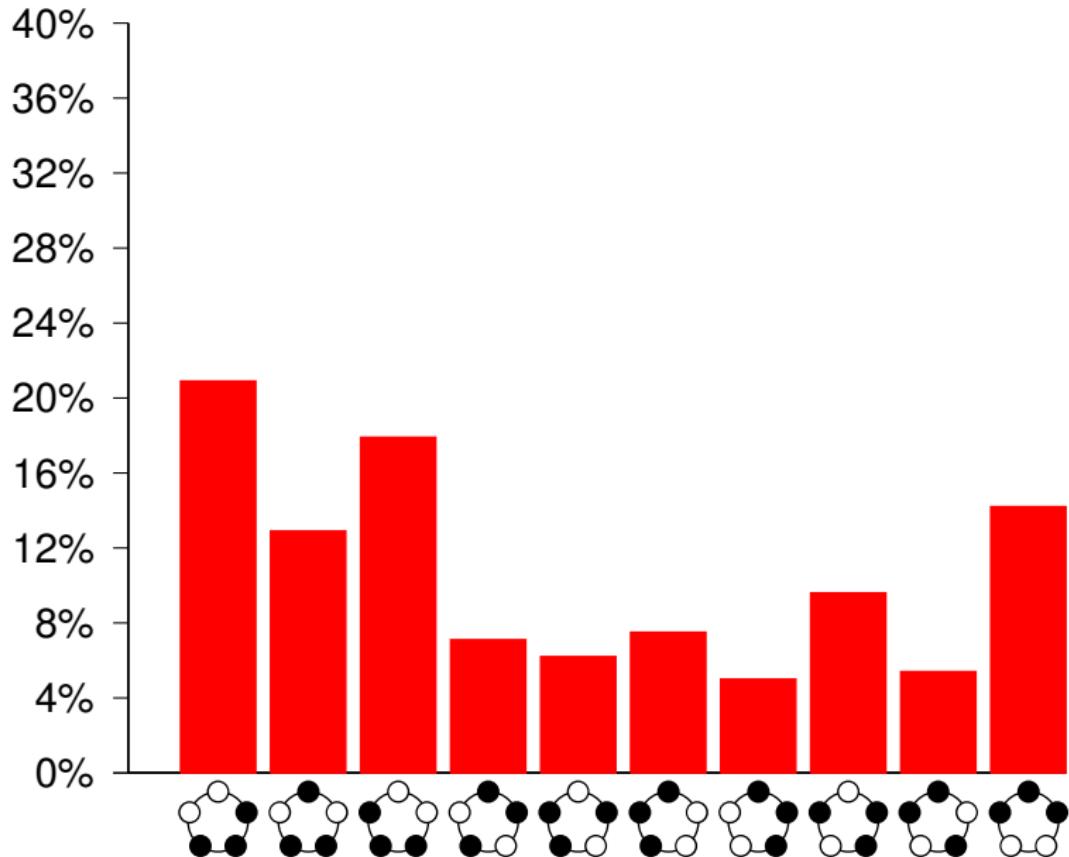
Stationary distribution



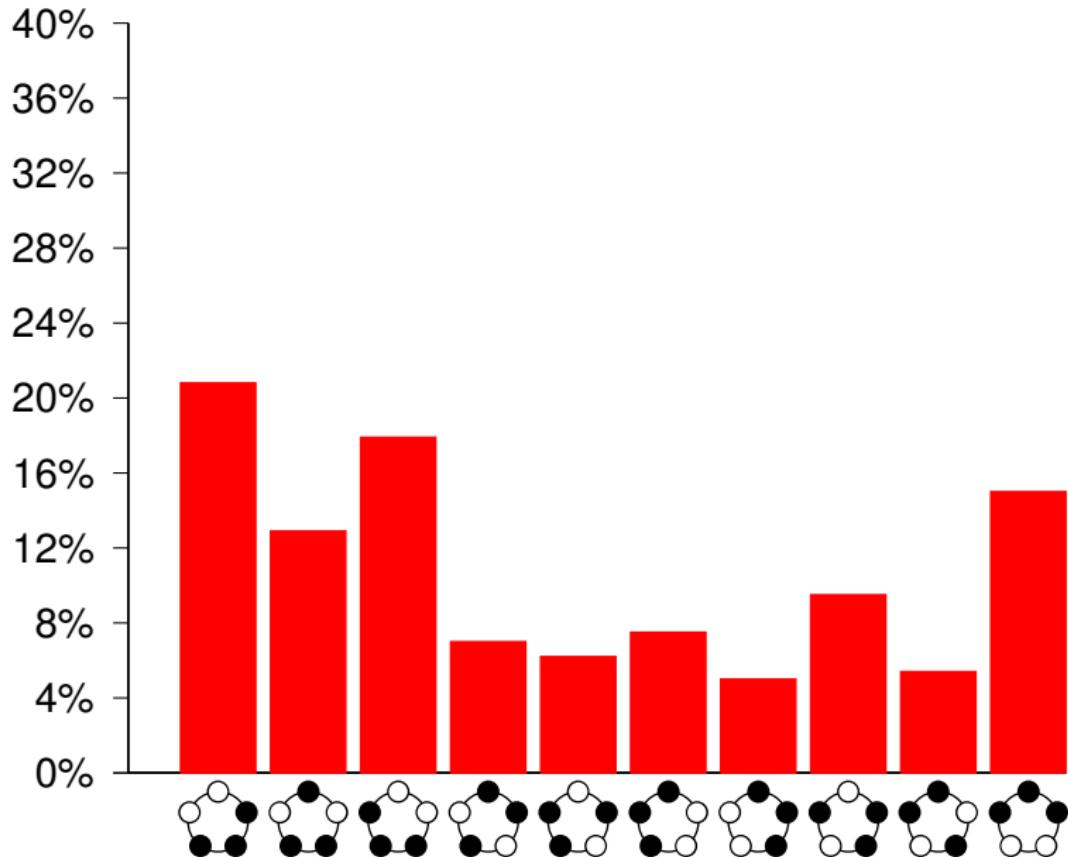
Stationary distribution



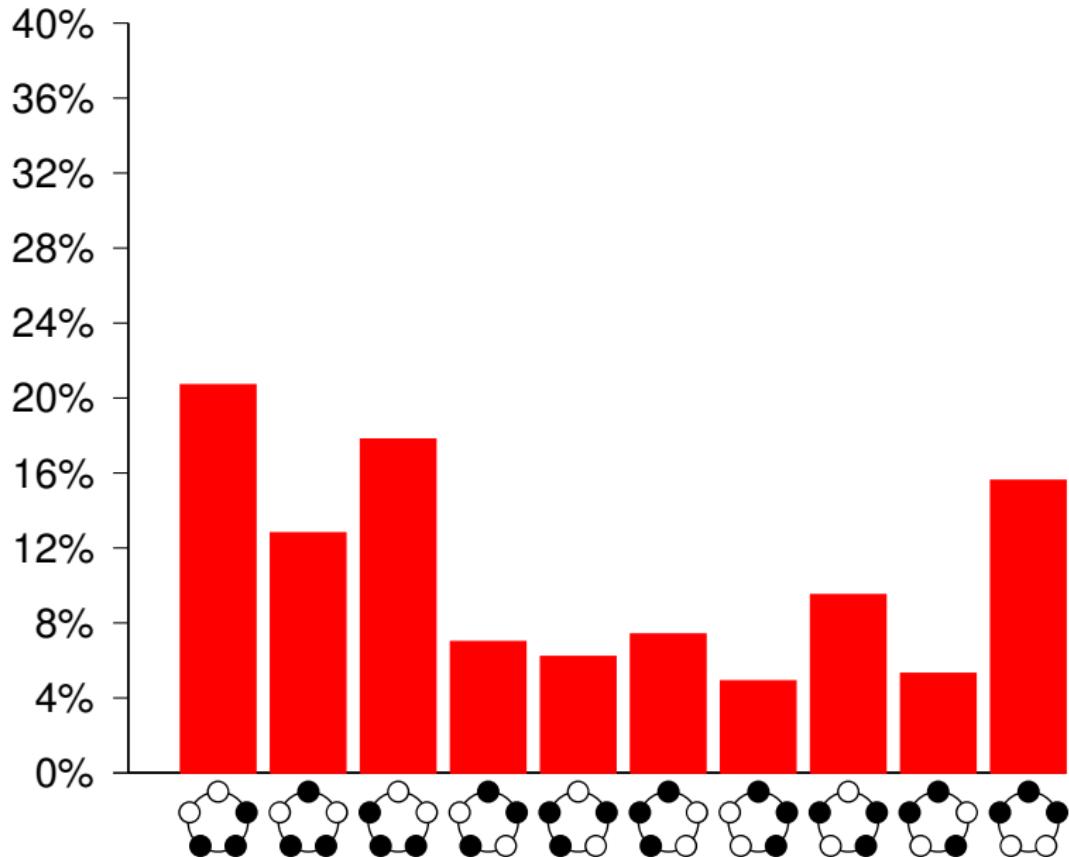
Stationary distribution



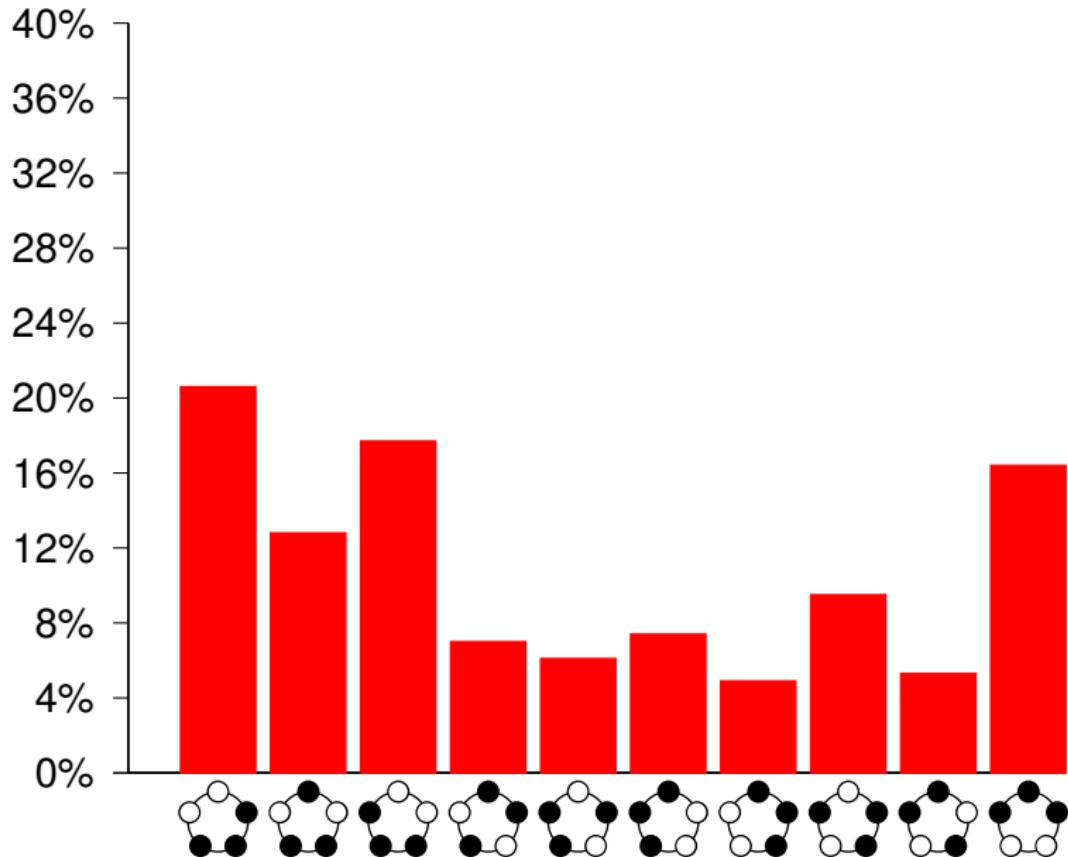
Stationary distribution



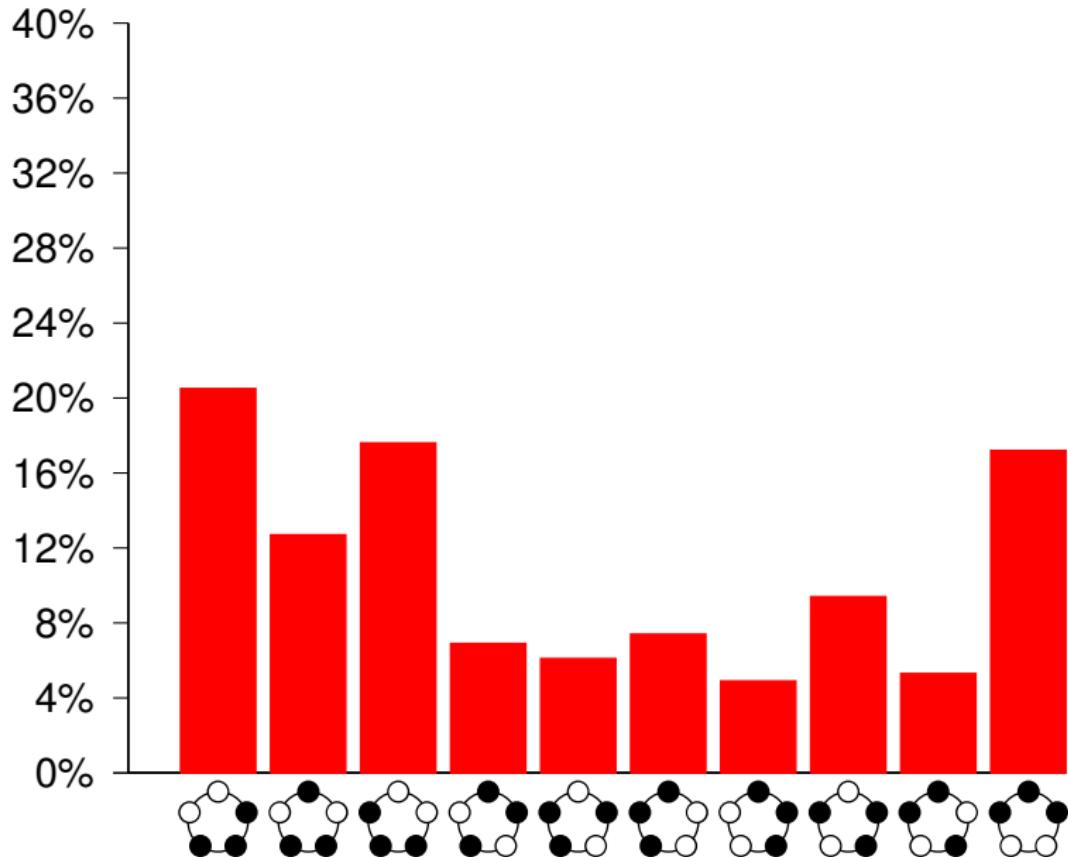
Stationary distribution



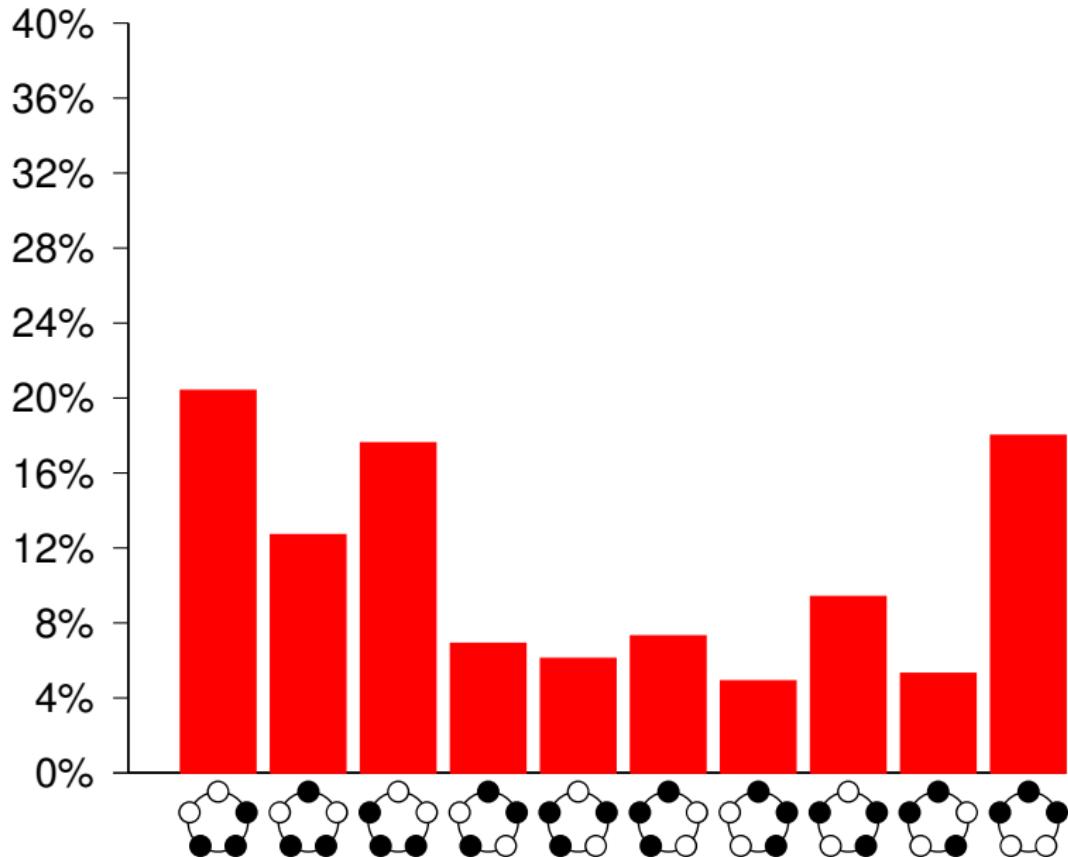
Stationary distribution



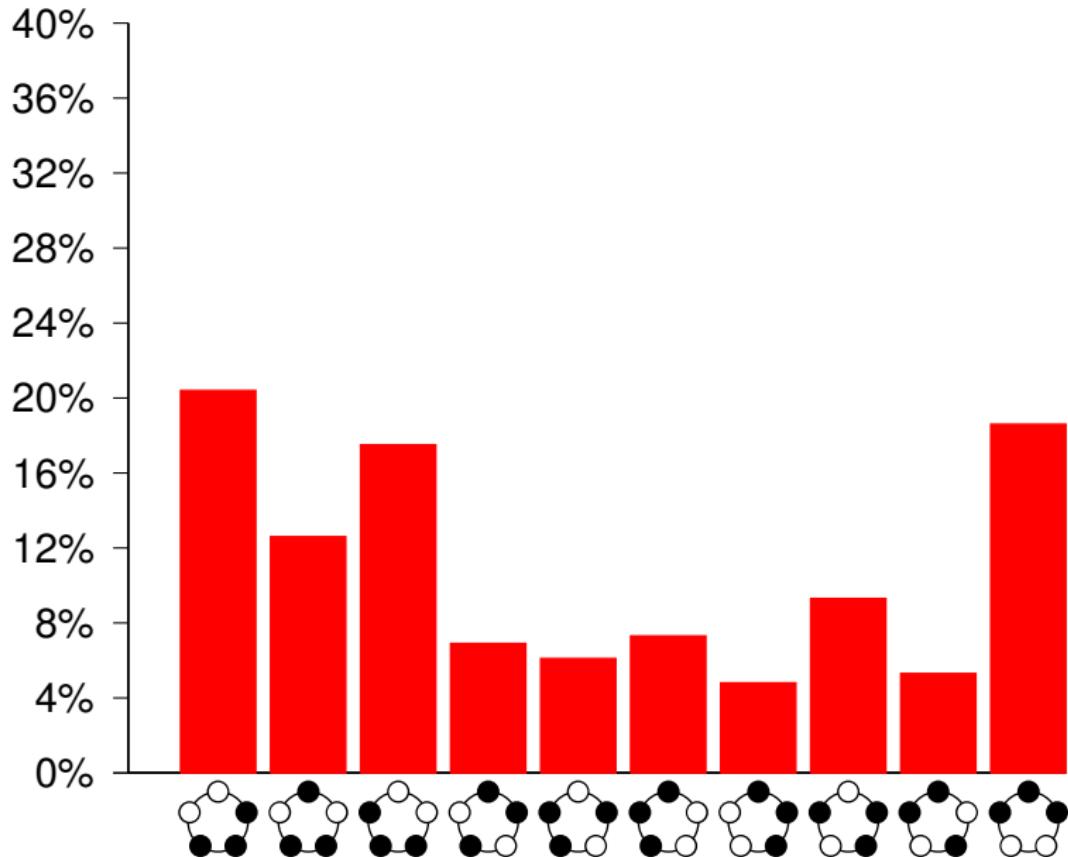
Stationary distribution



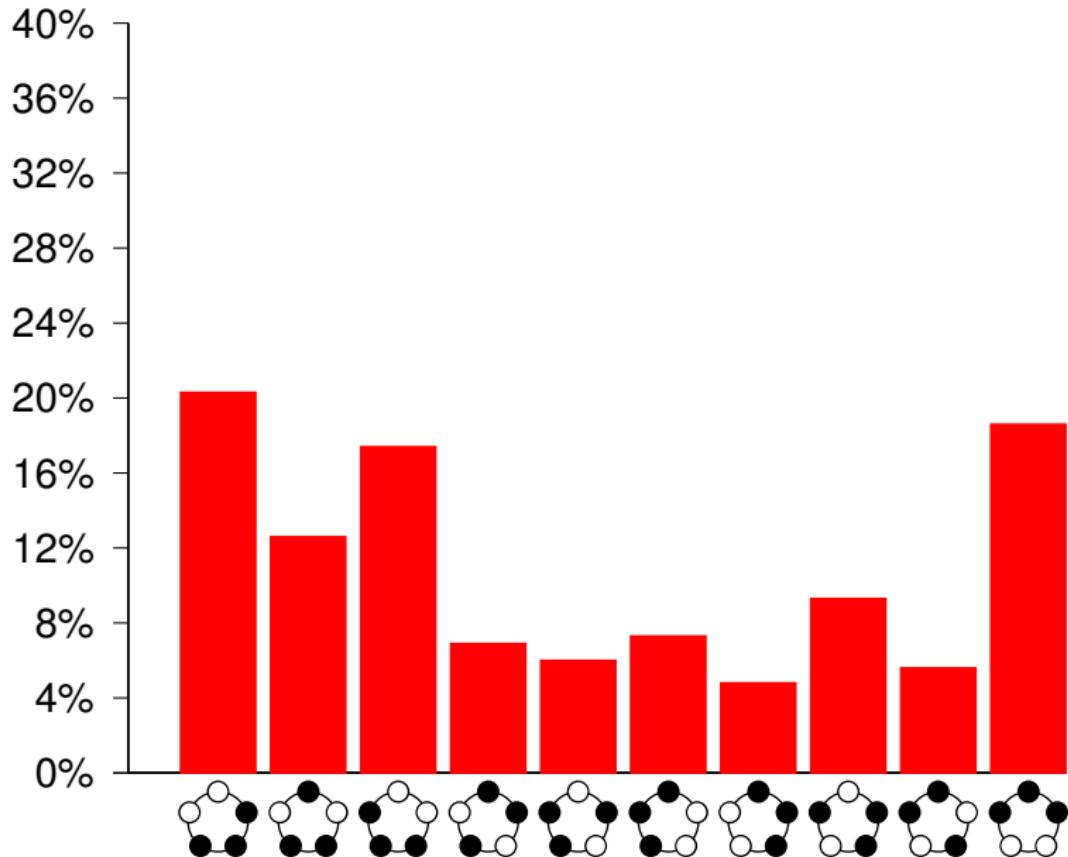
Stationary distribution



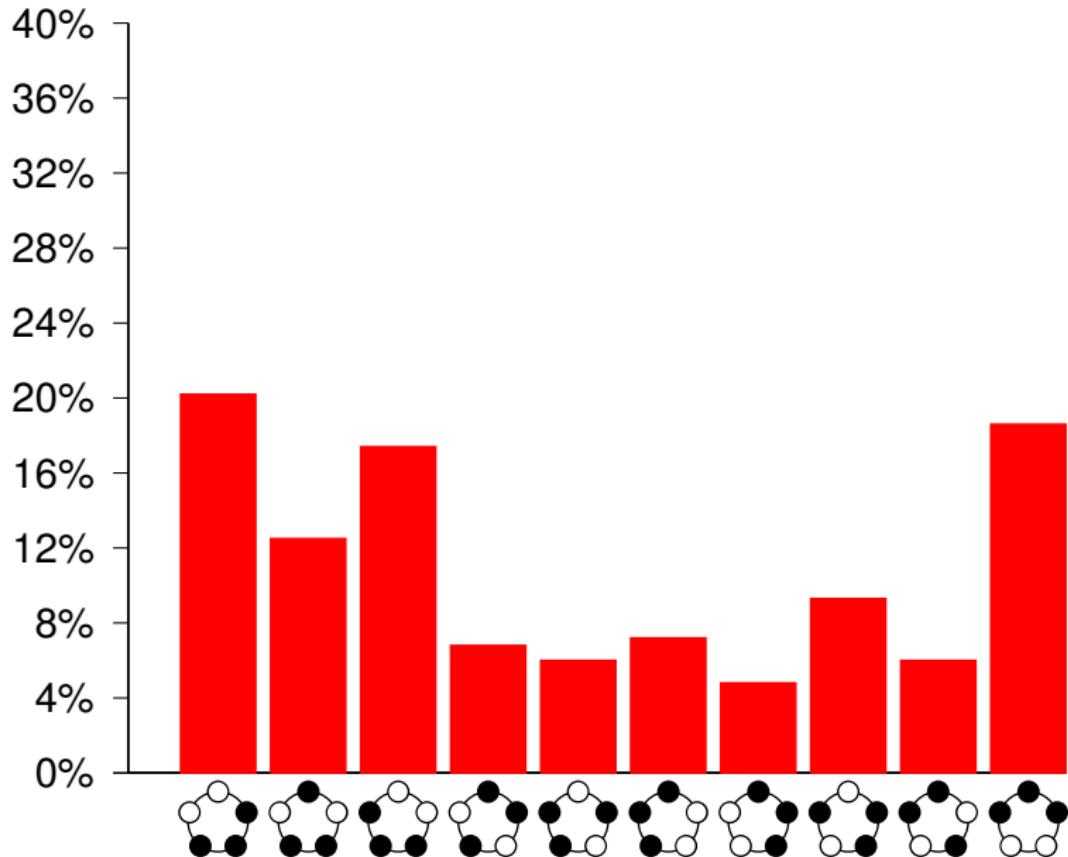
Stationary distribution



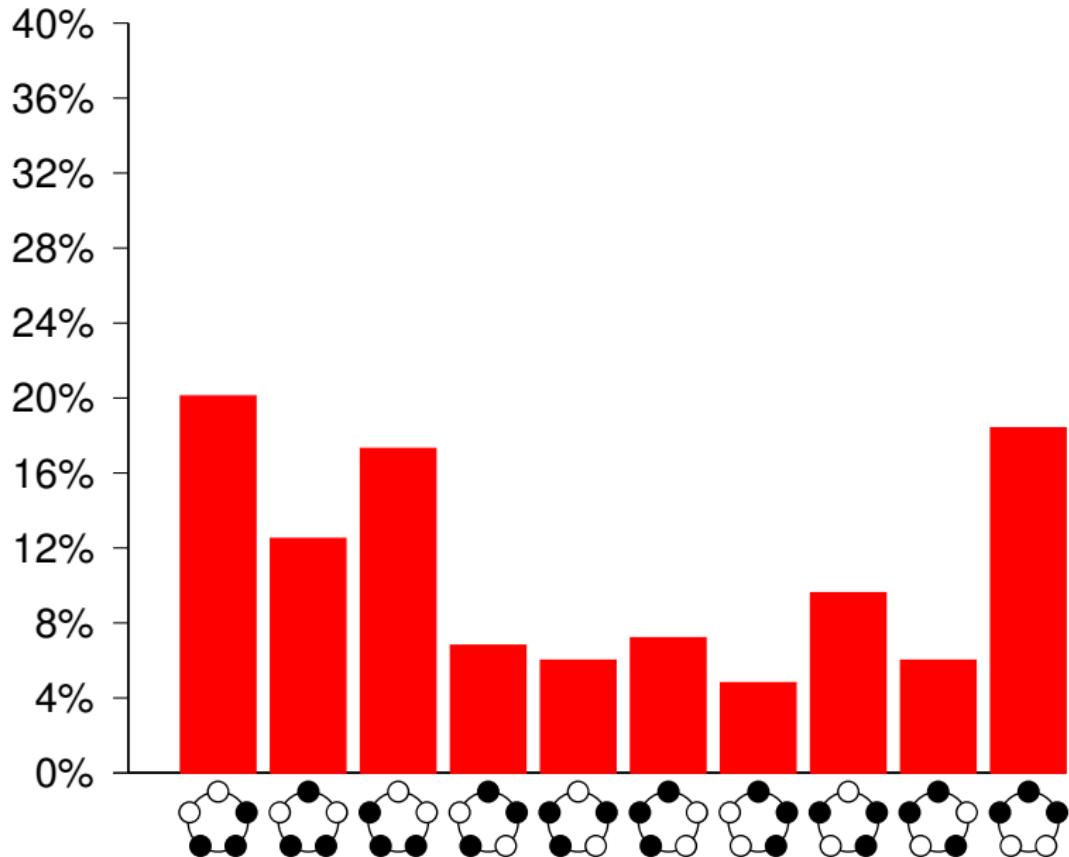
Stationary distribution



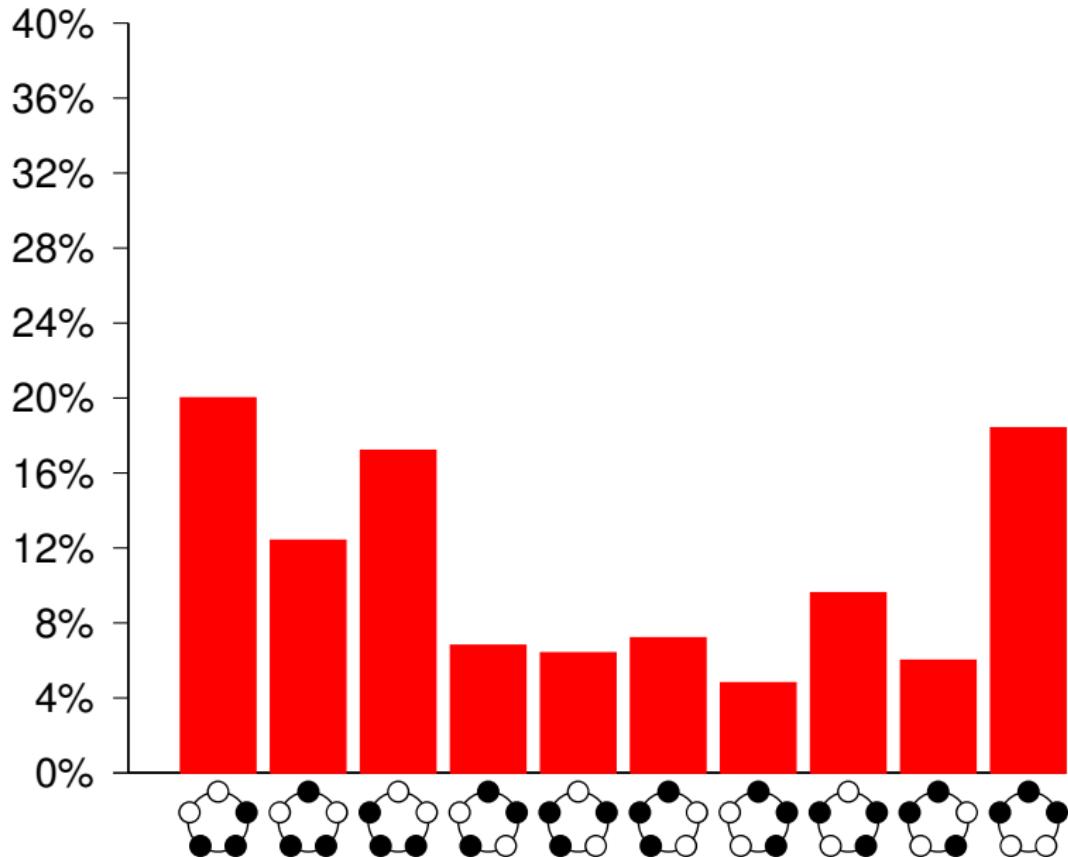
Stationary distribution



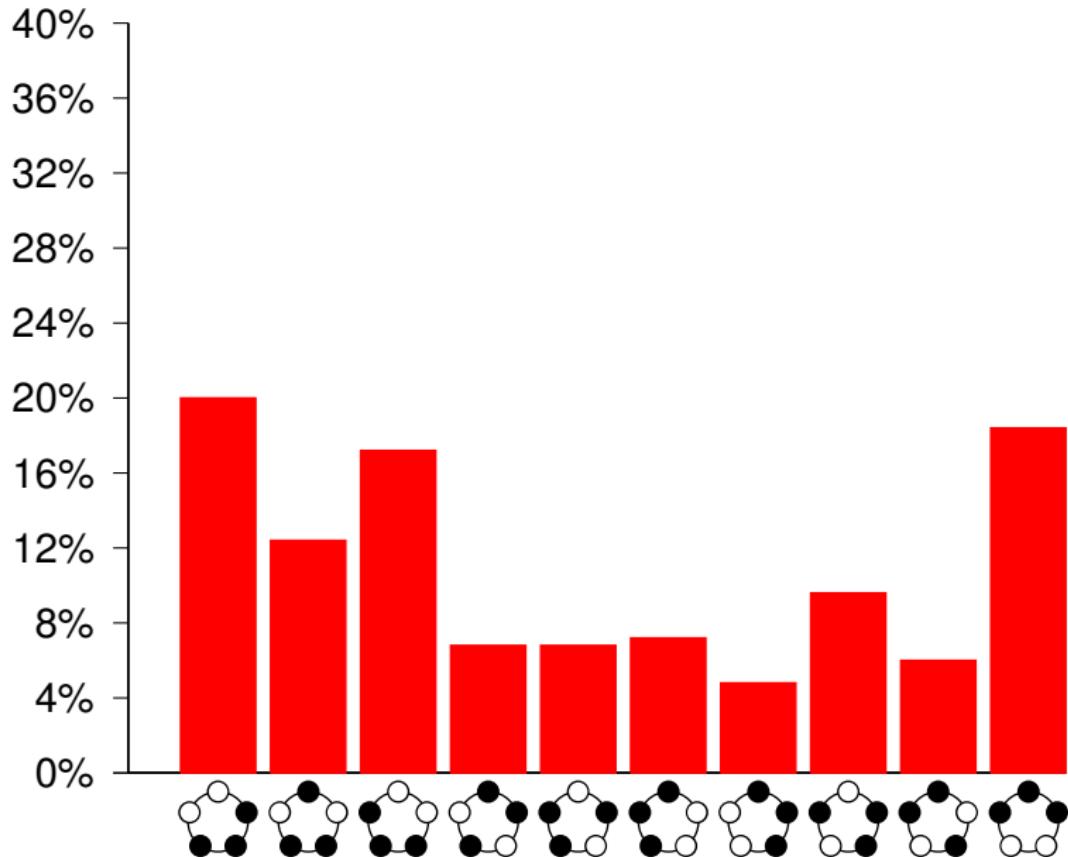
Stationary distribution



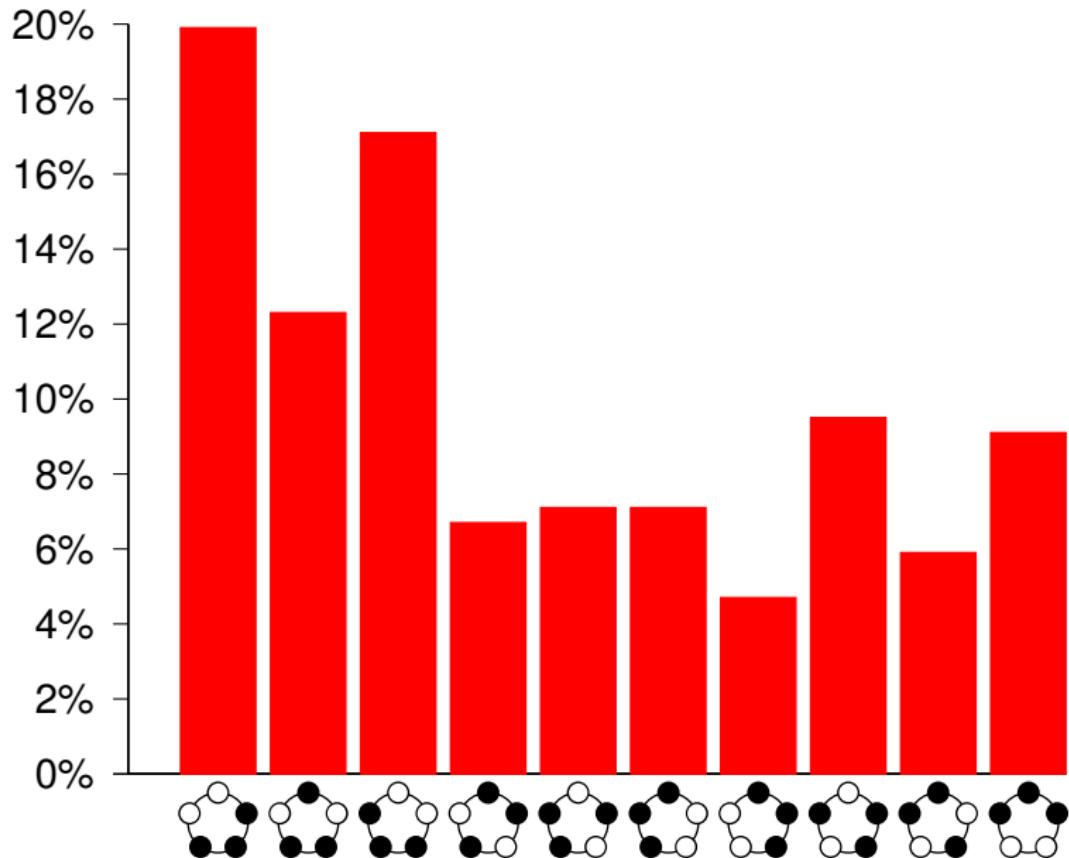
Stationary distribution



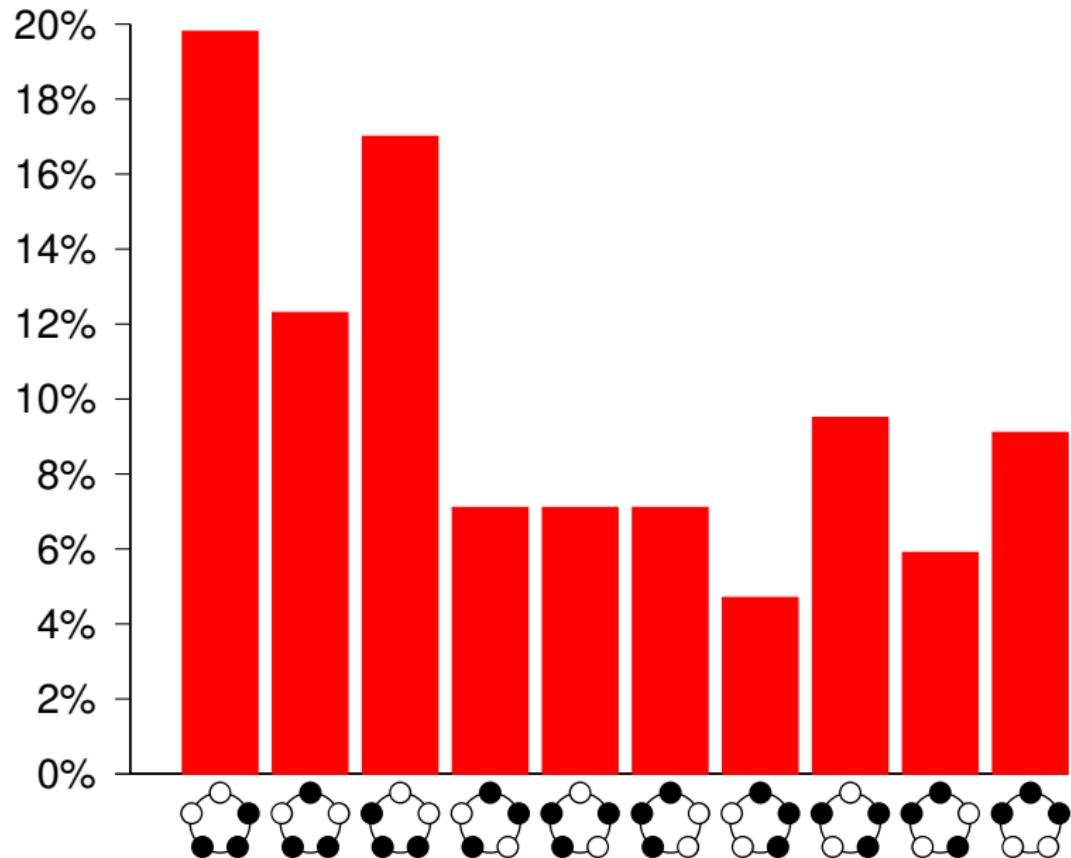
Stationary distribution



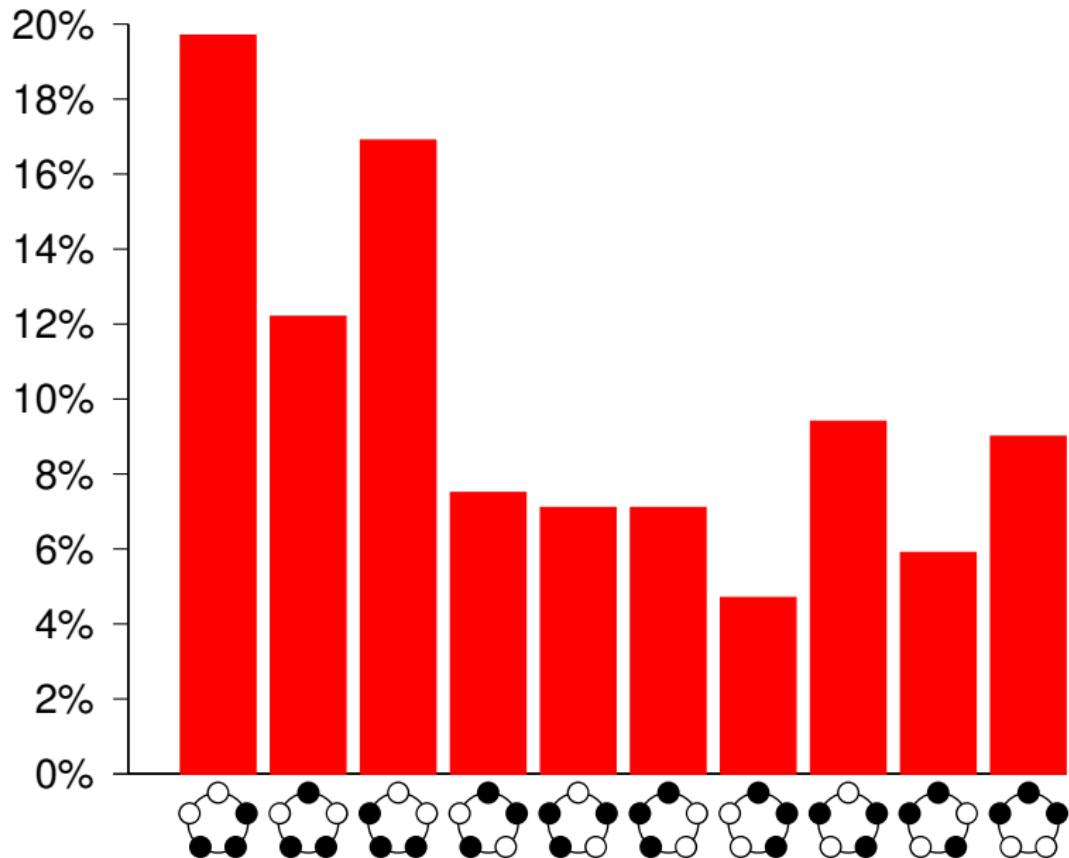
Stationary distribution



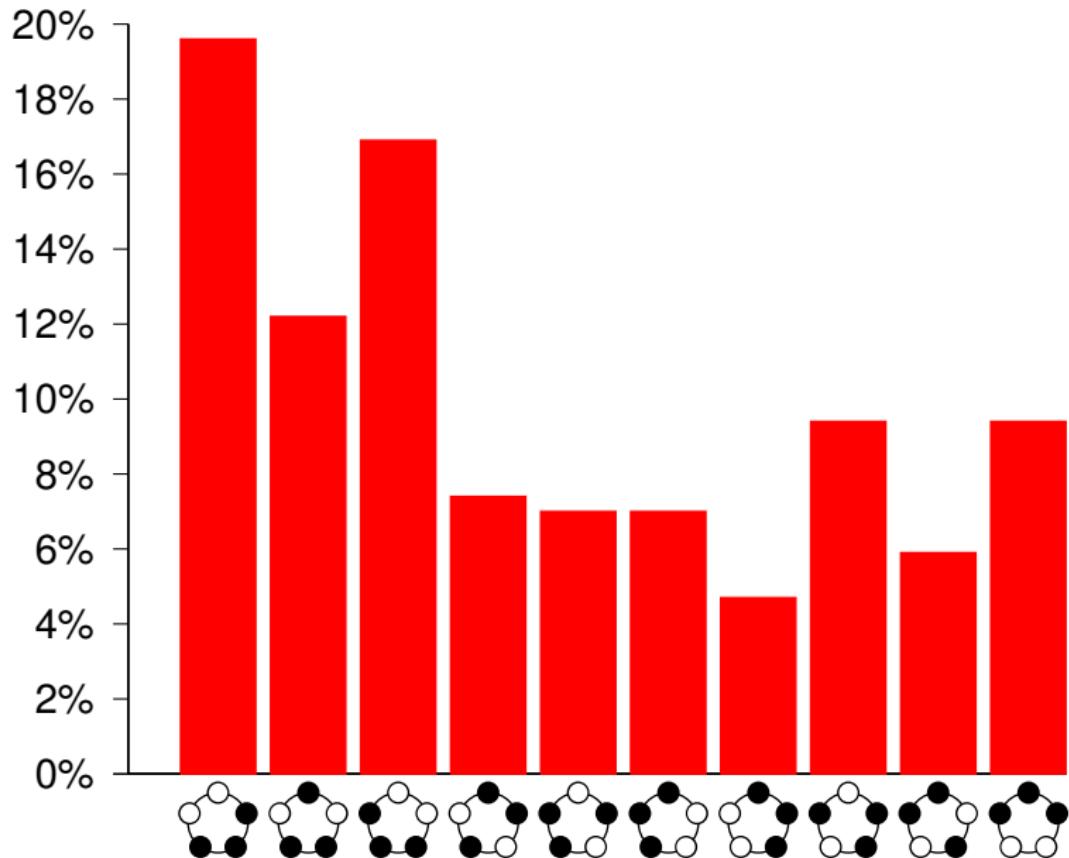
Stationary distribution



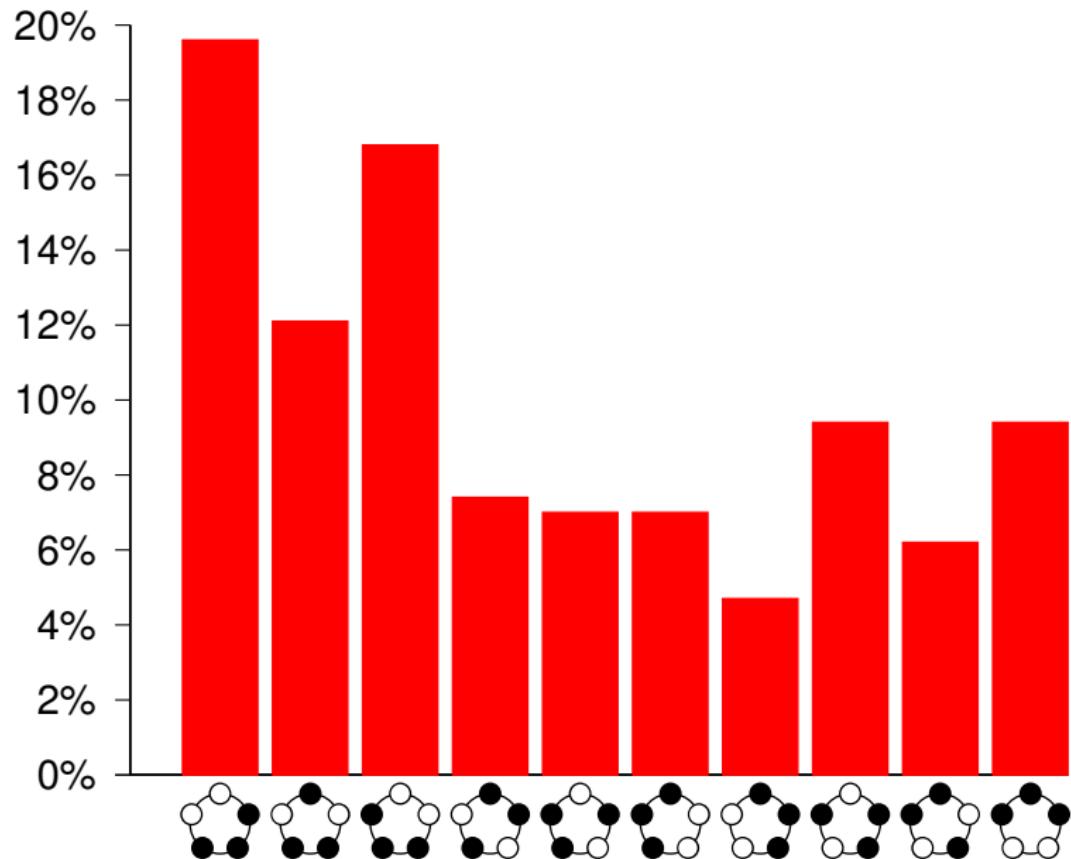
Stationary distribution



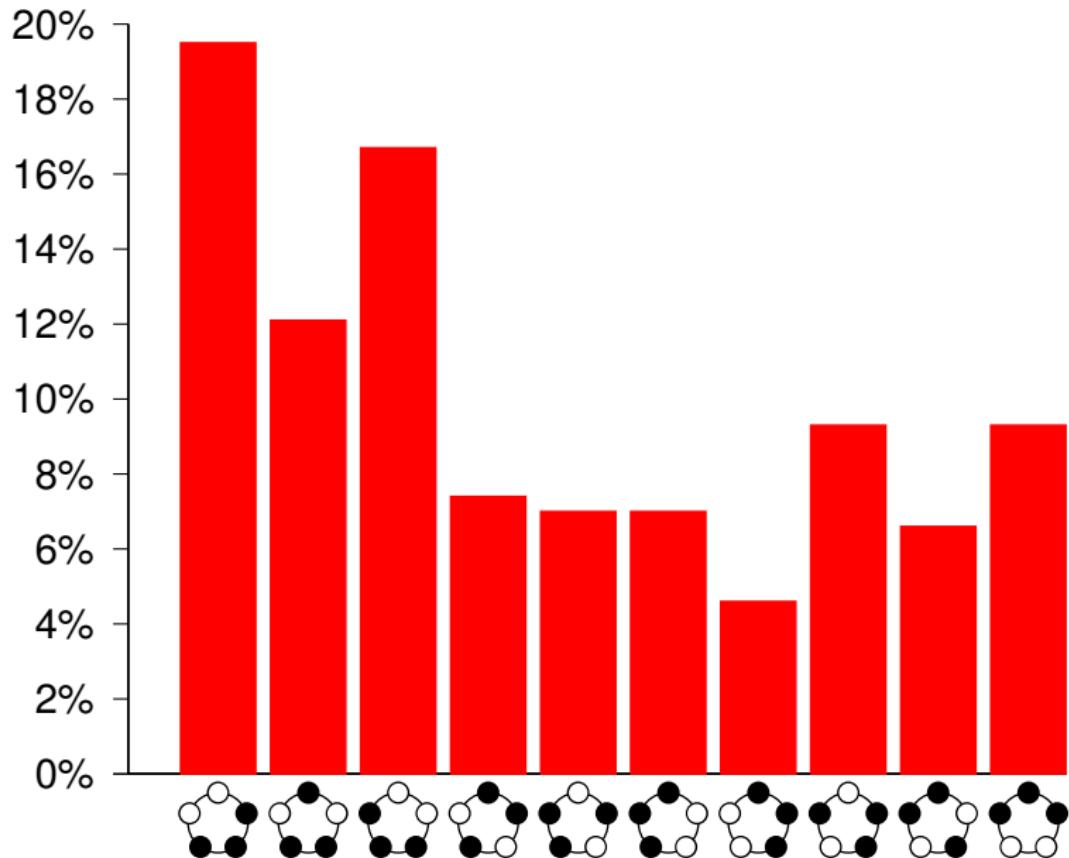
Stationary distribution



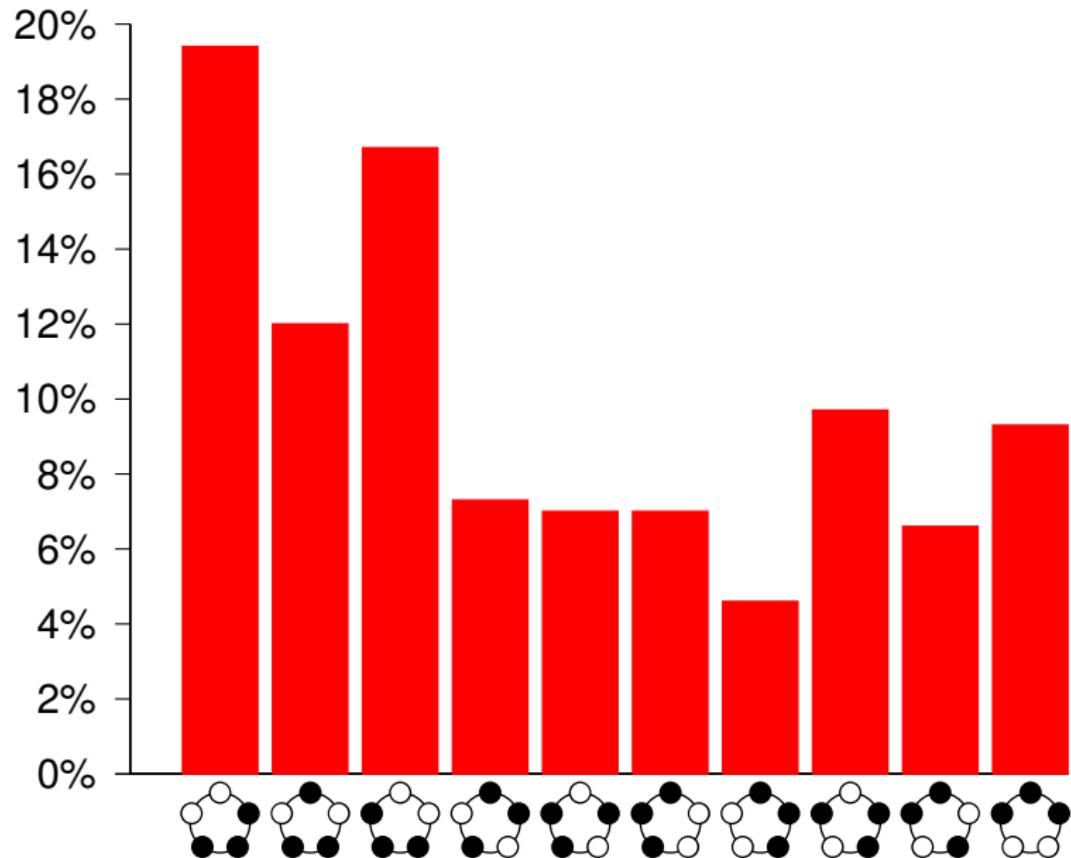
Stationary distribution



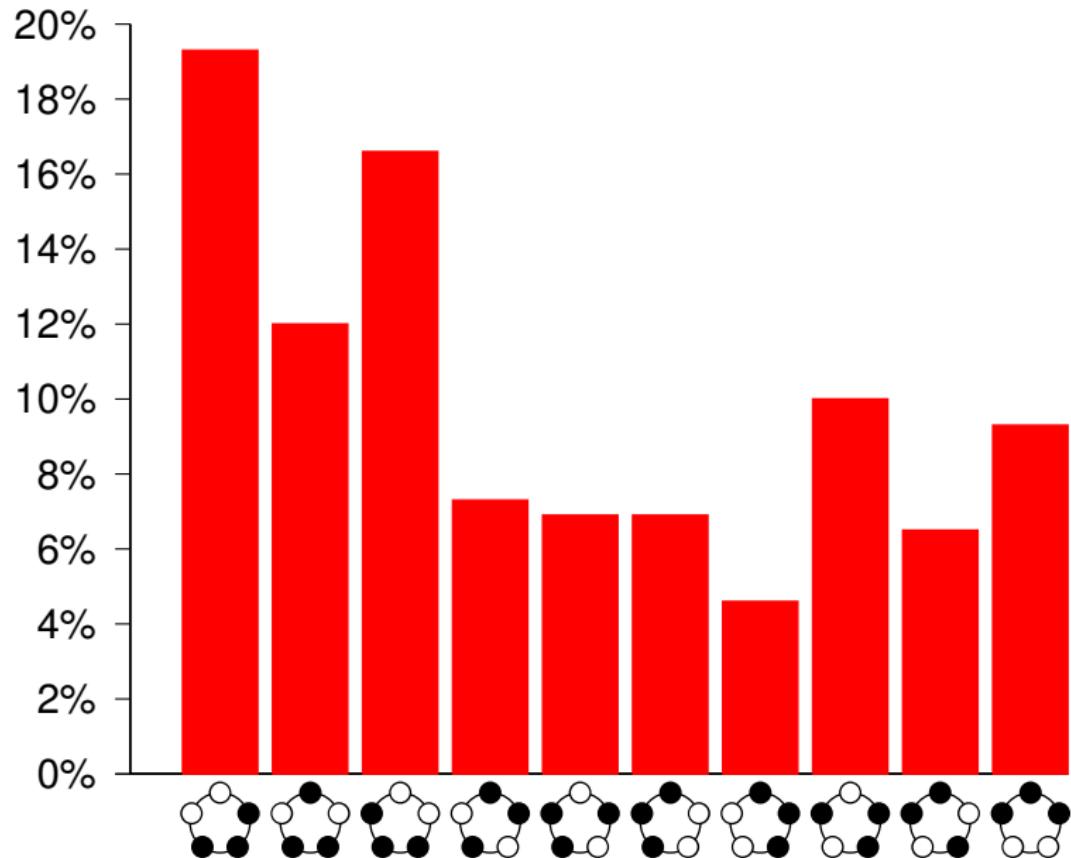
Stationary distribution



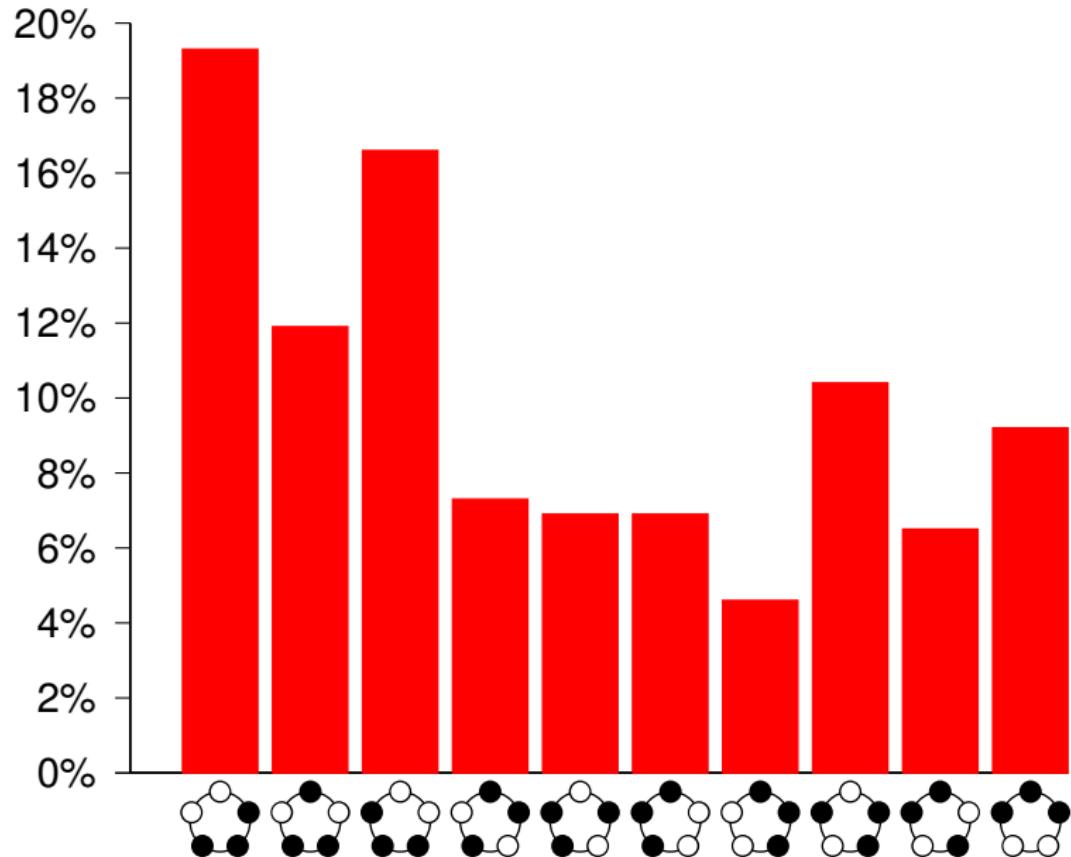
Stationary distribution



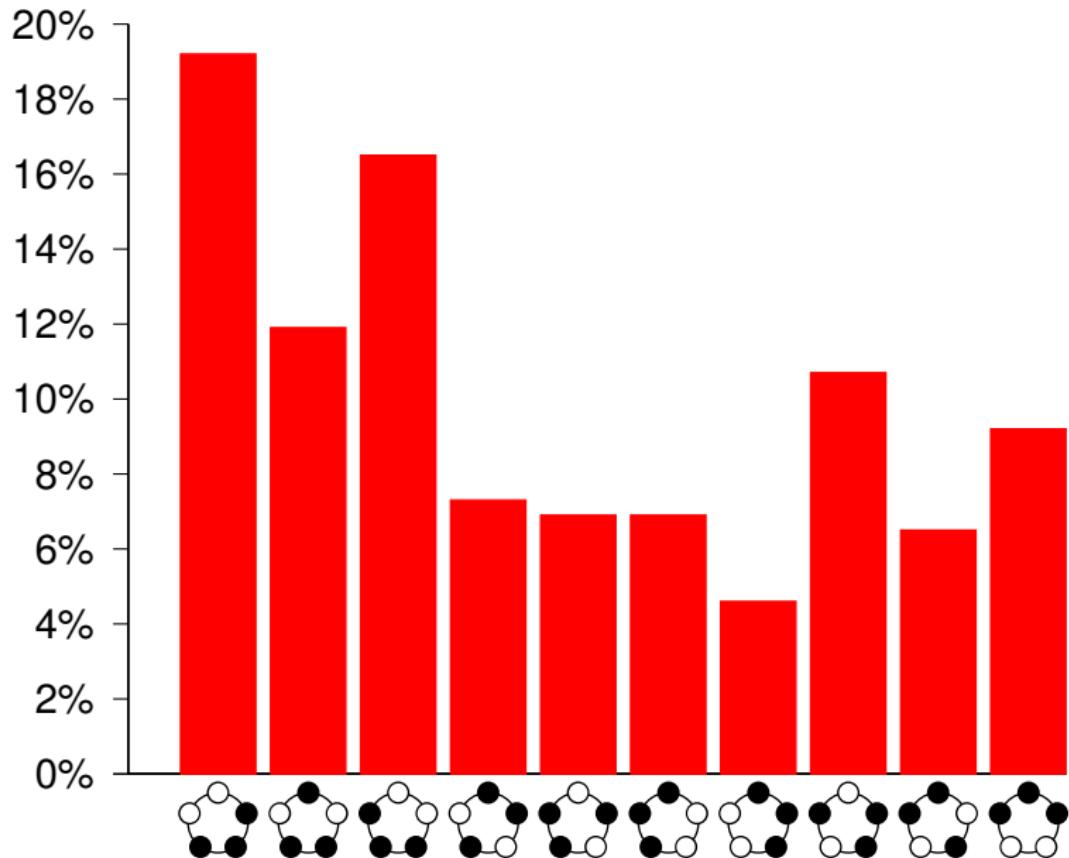
Stationary distribution



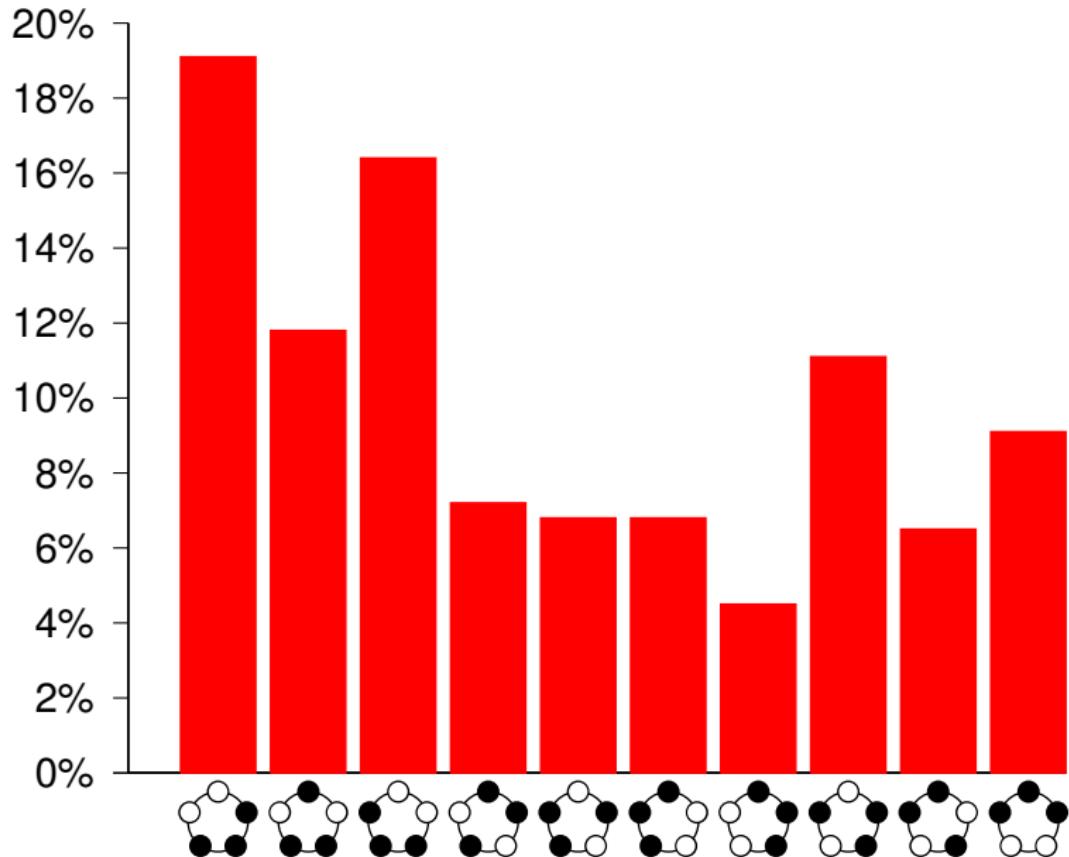
Stationary distribution



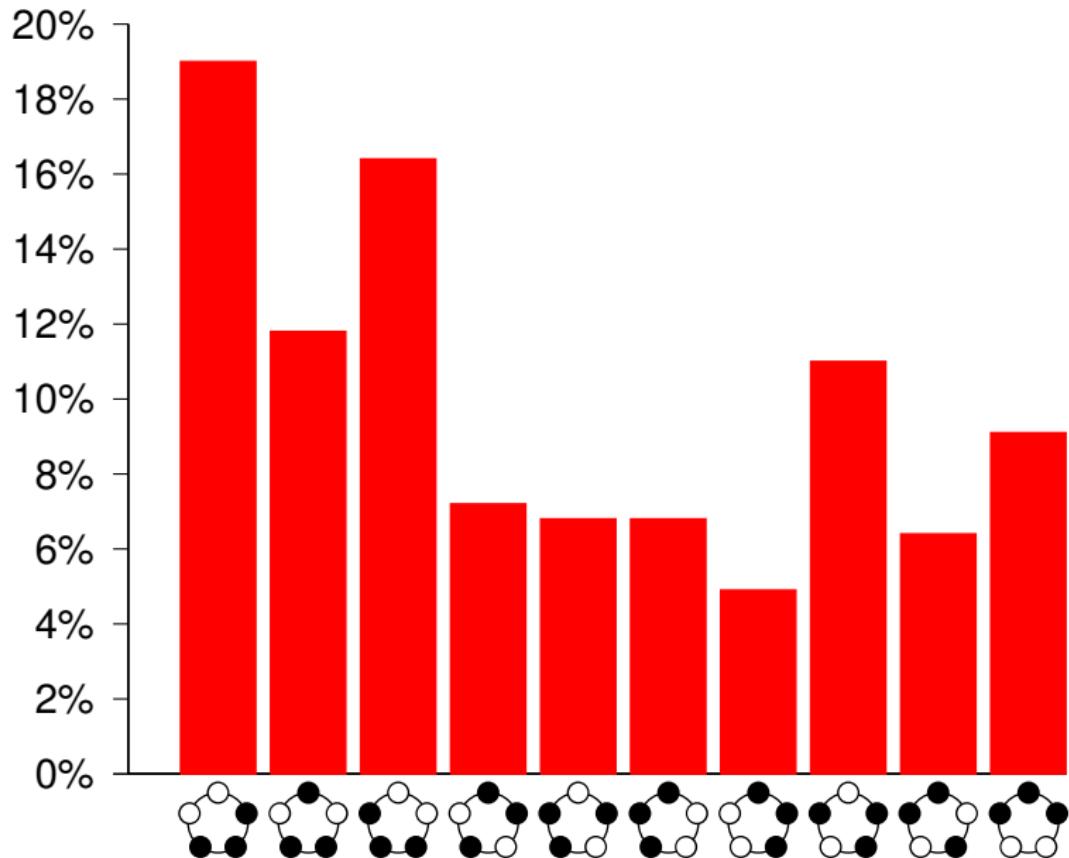
Stationary distribution



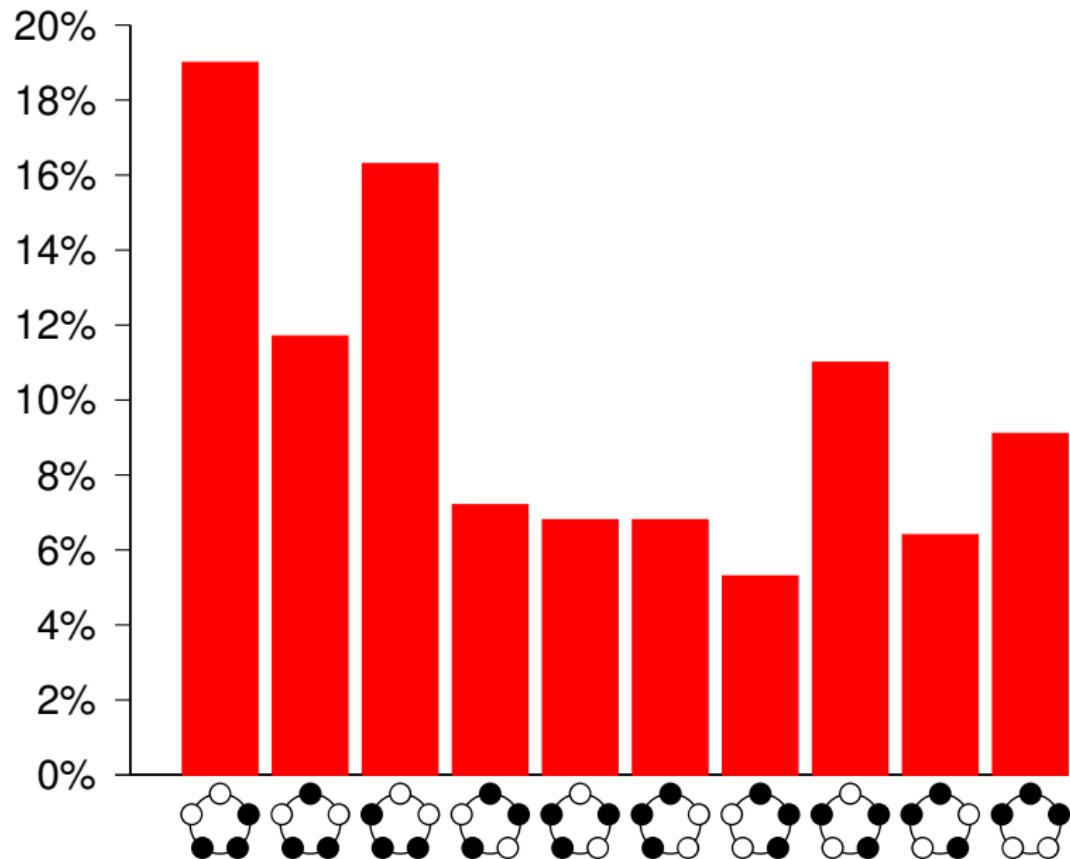
Stationary distribution



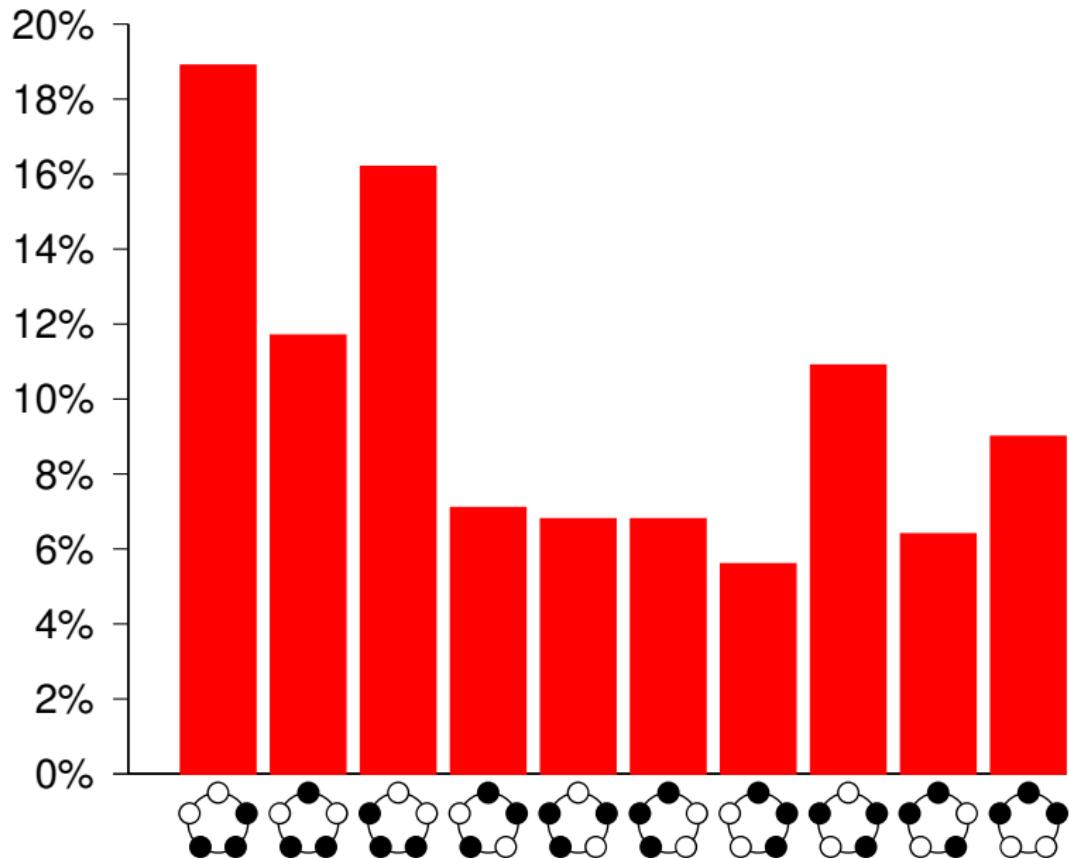
Stationary distribution



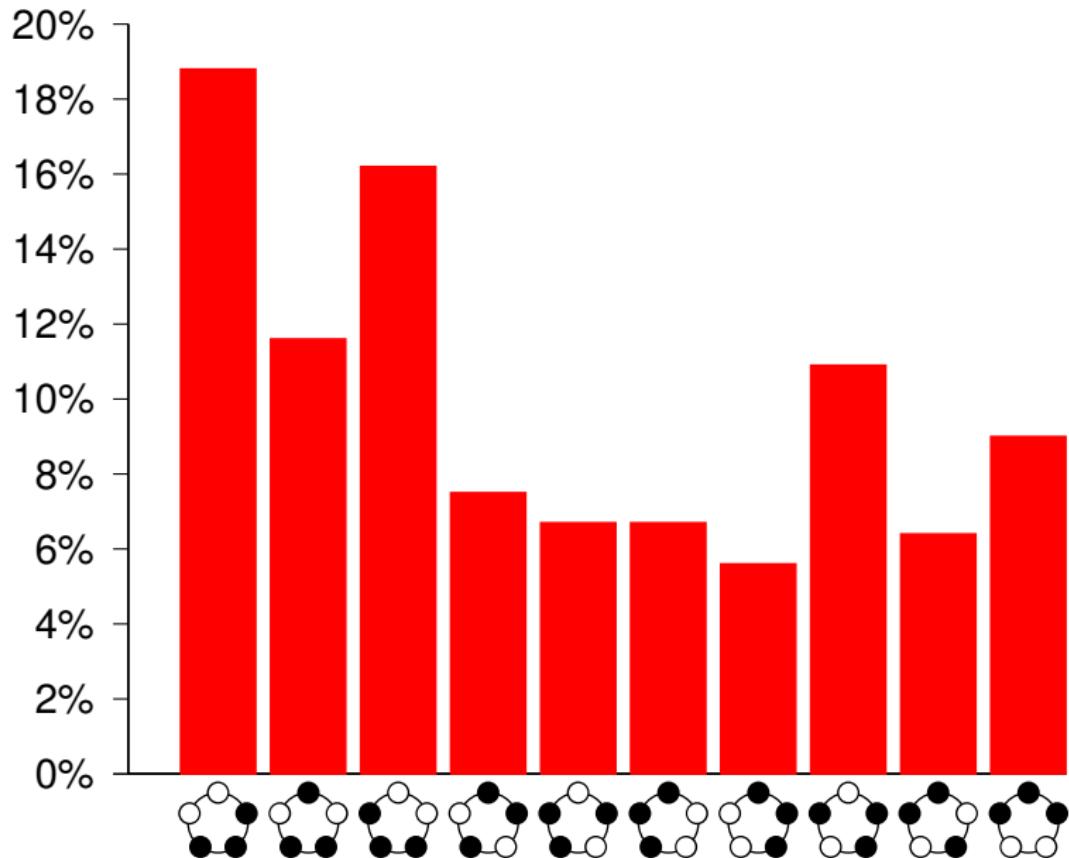
Stationary distribution



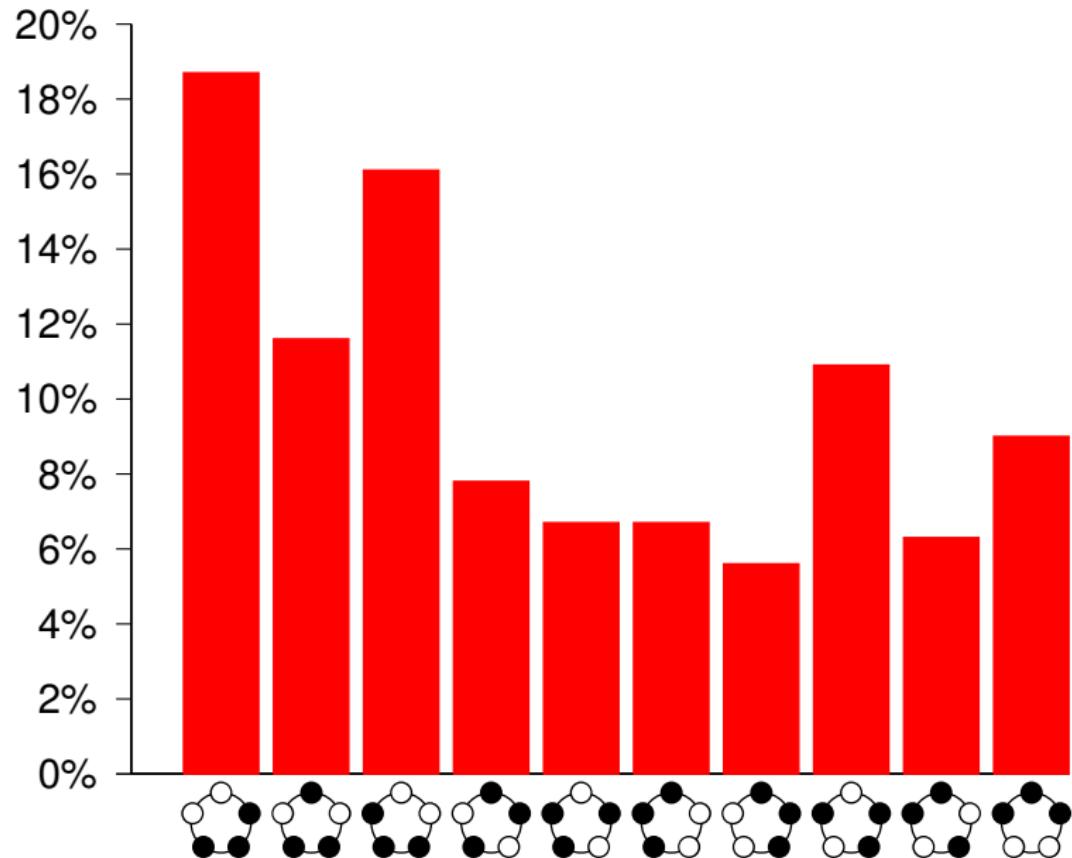
Stationary distribution



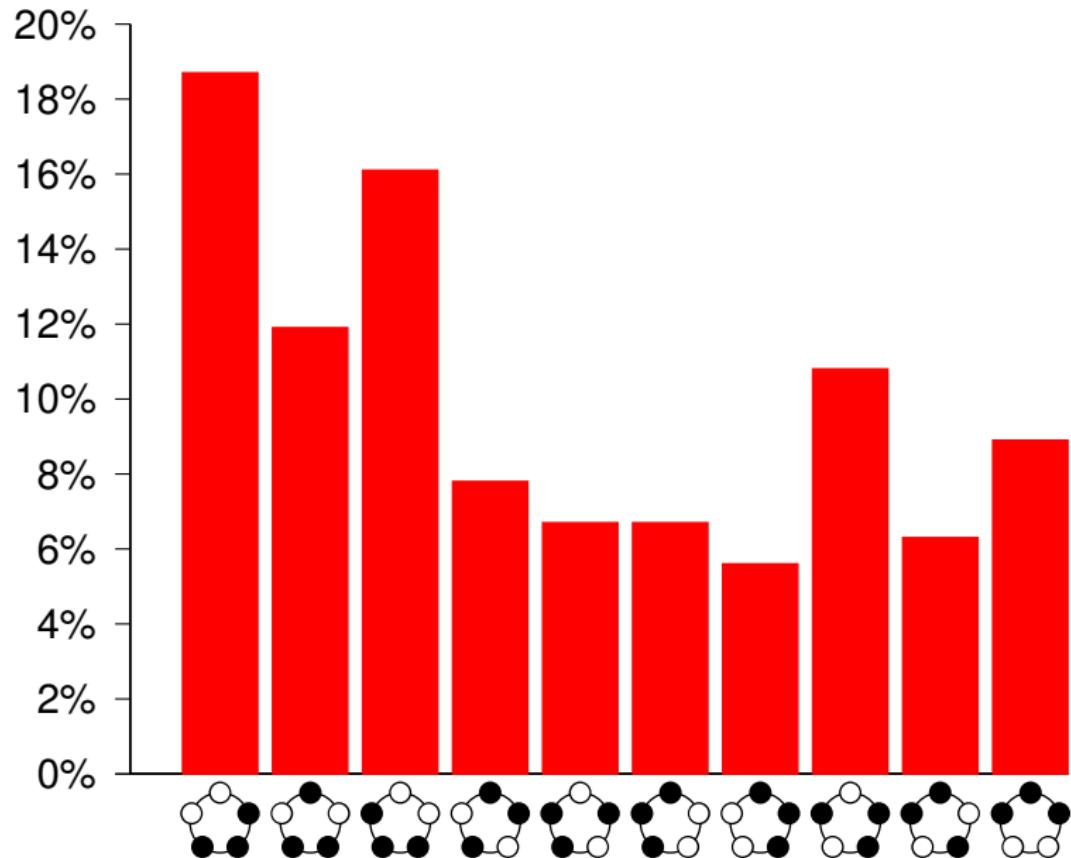
Stationary distribution



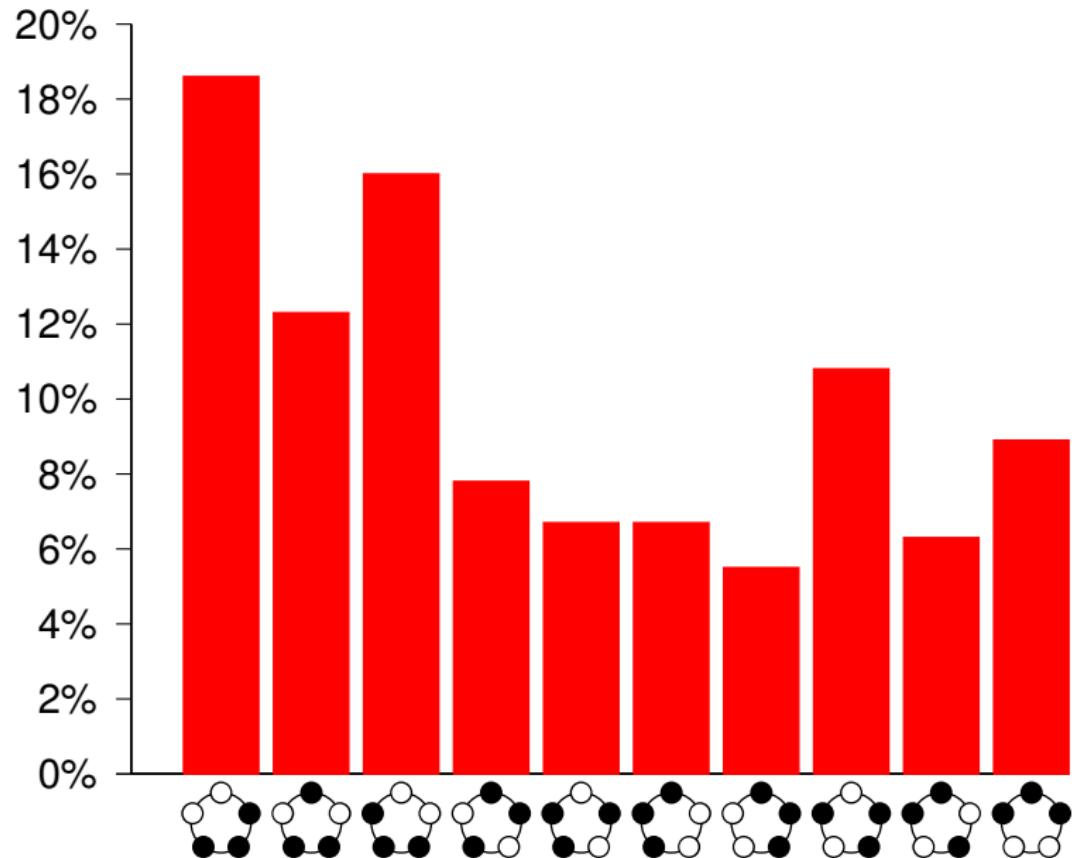
Stationary distribution



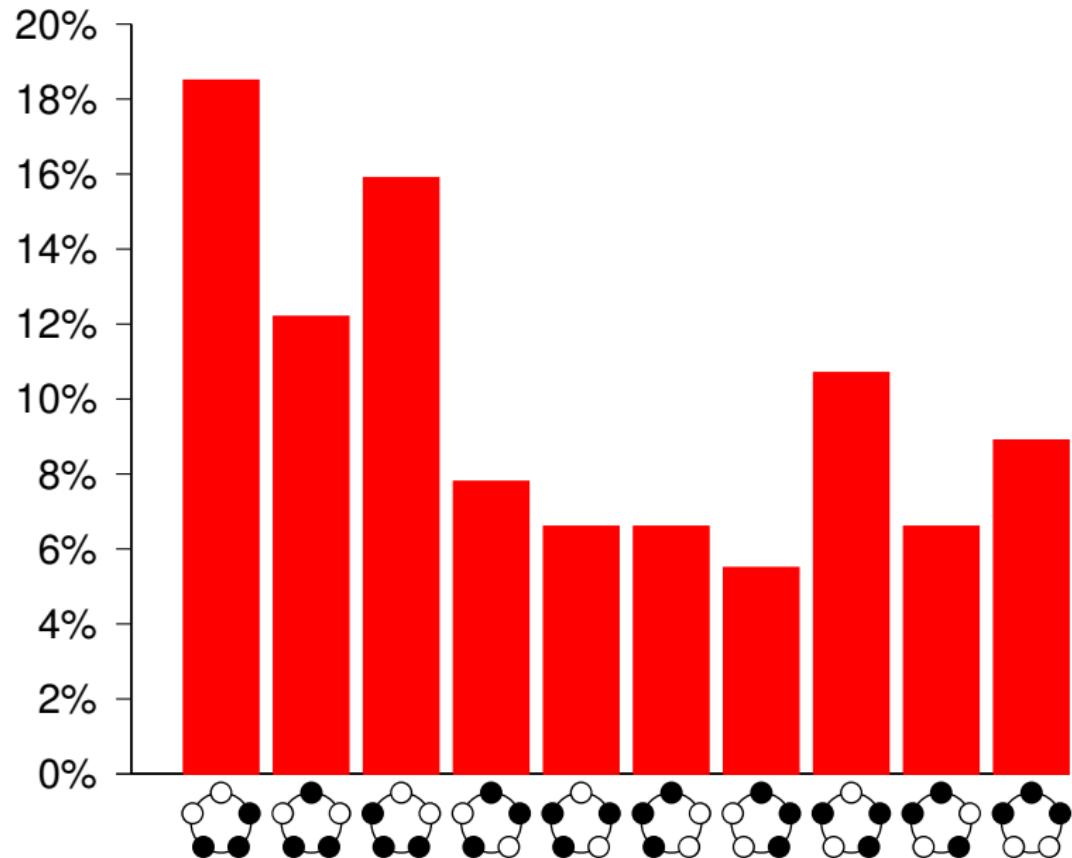
Stationary distribution



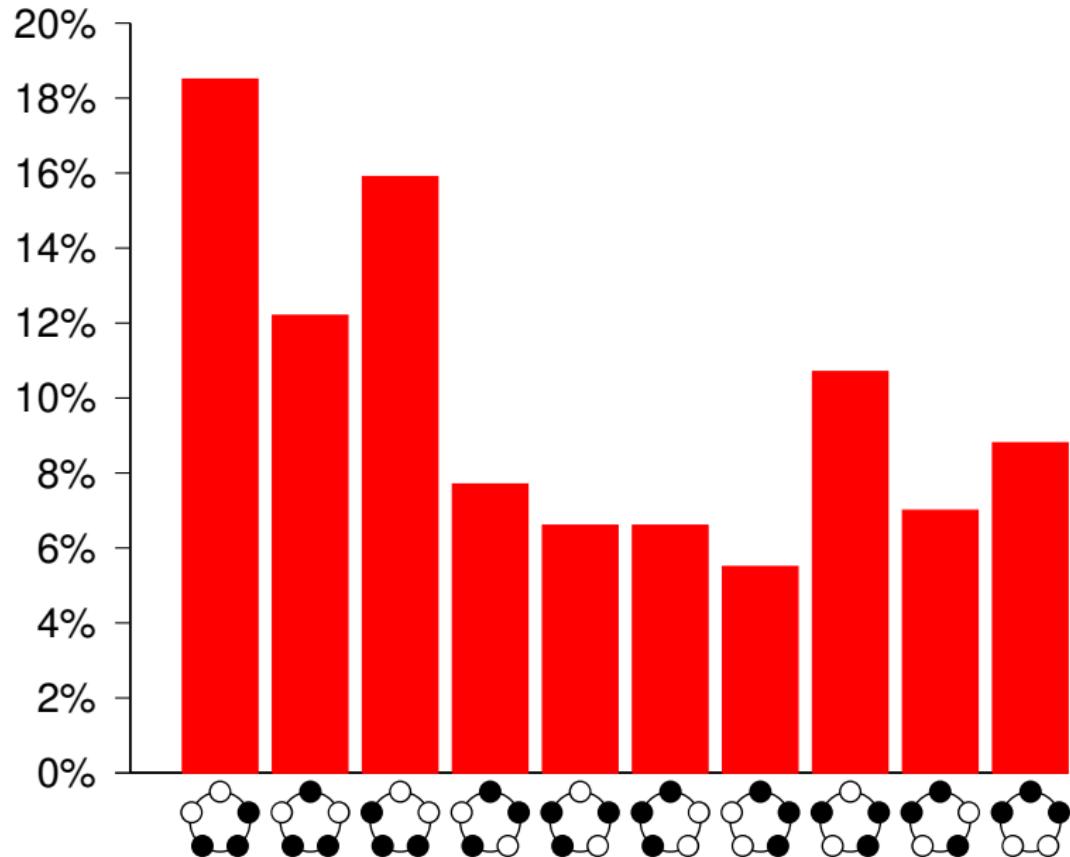
Stationary distribution



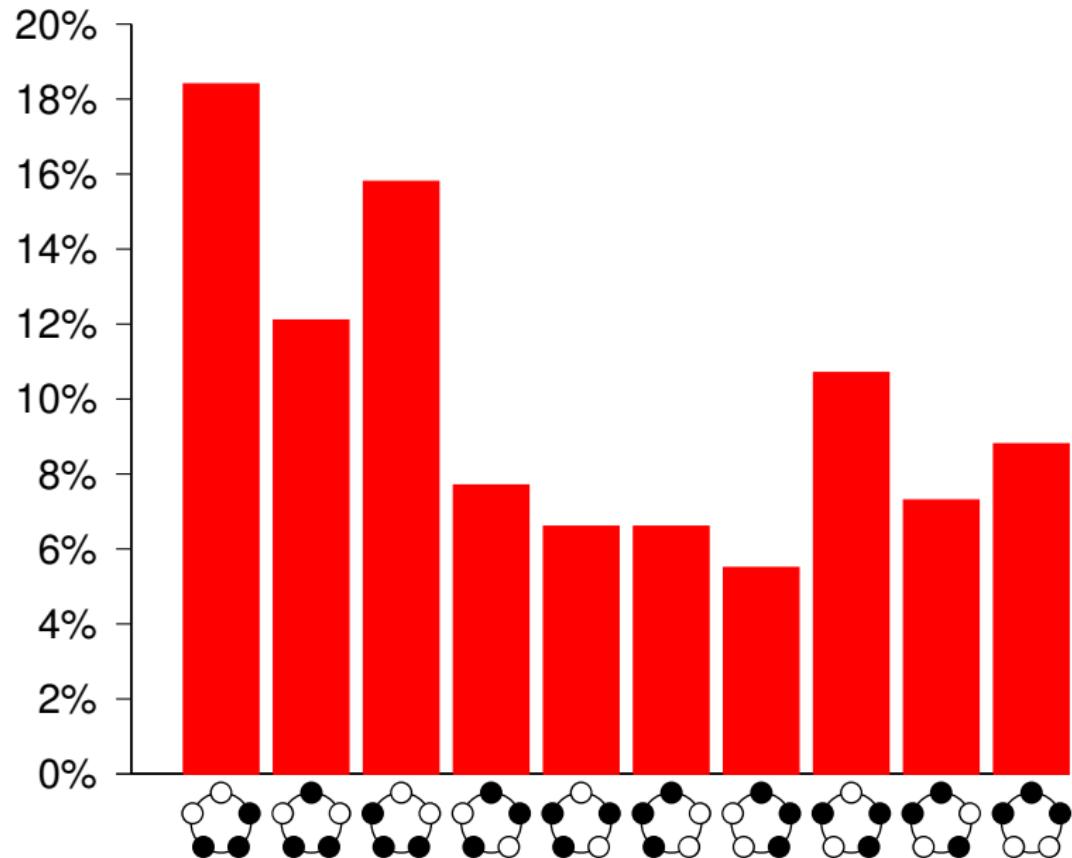
Stationary distribution



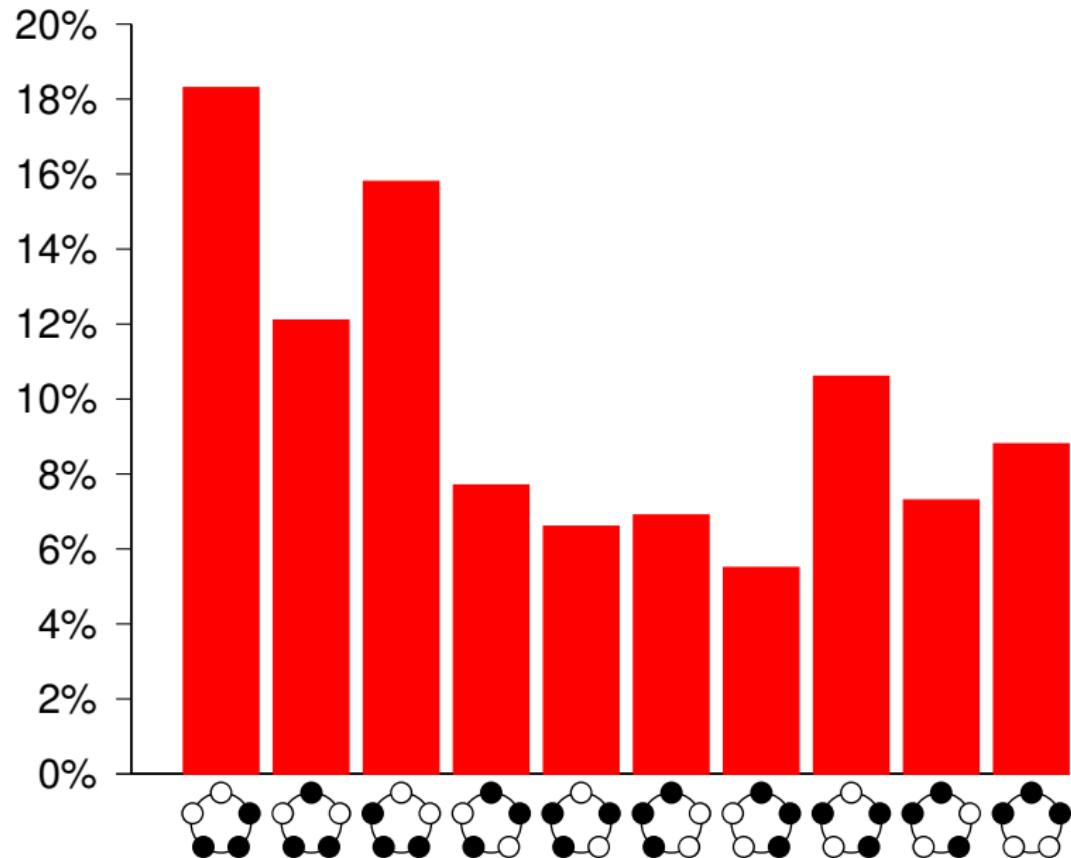
Stationary distribution



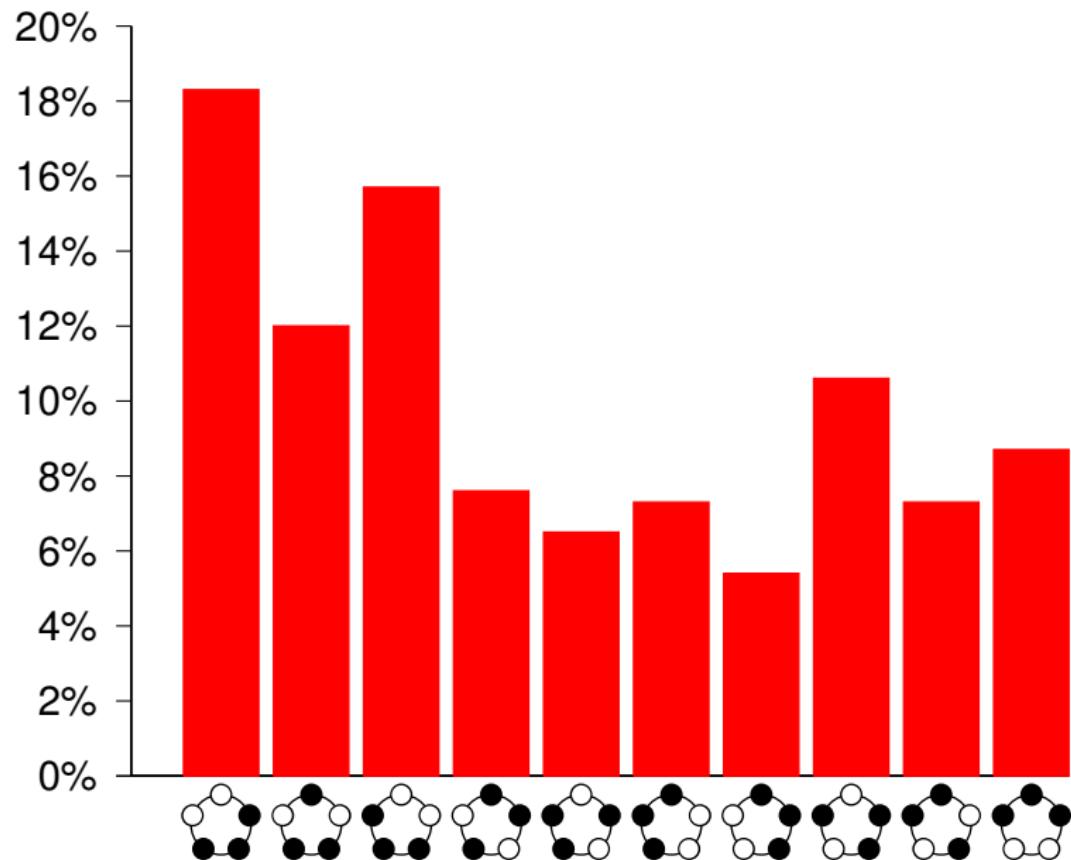
Stationary distribution



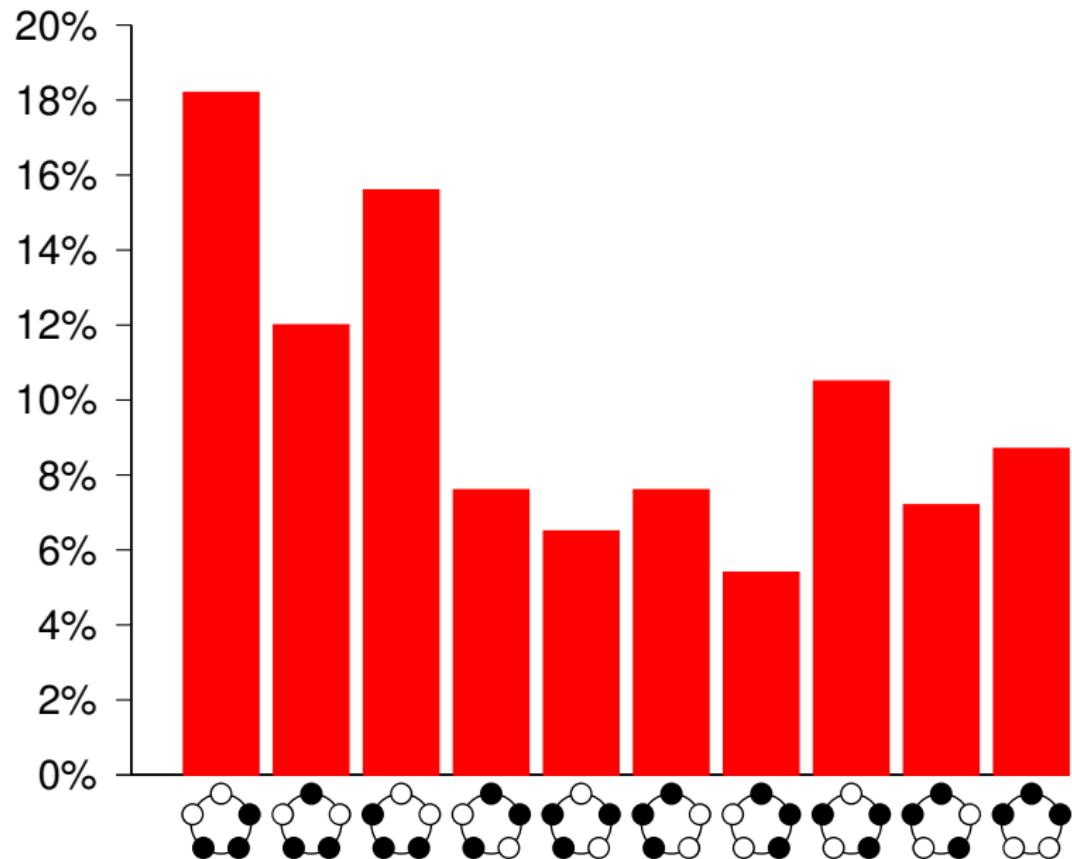
Stationary distribution



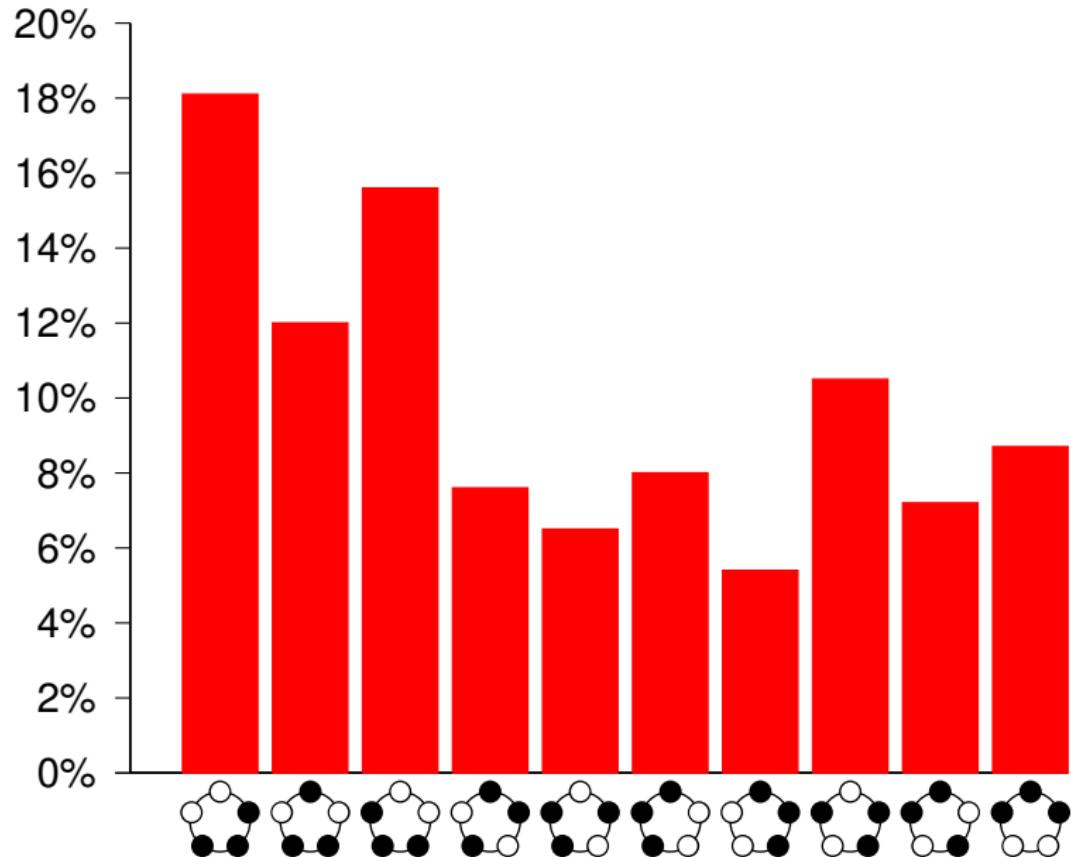
Stationary distribution



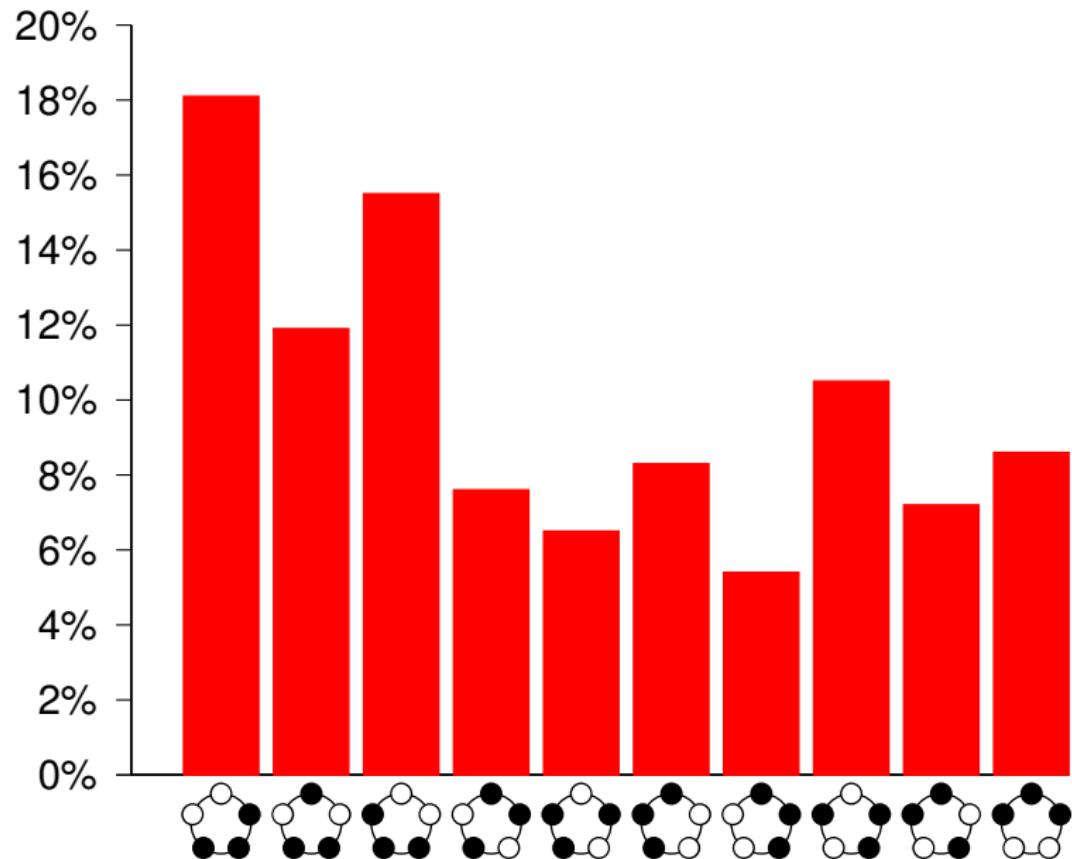
Stationary distribution



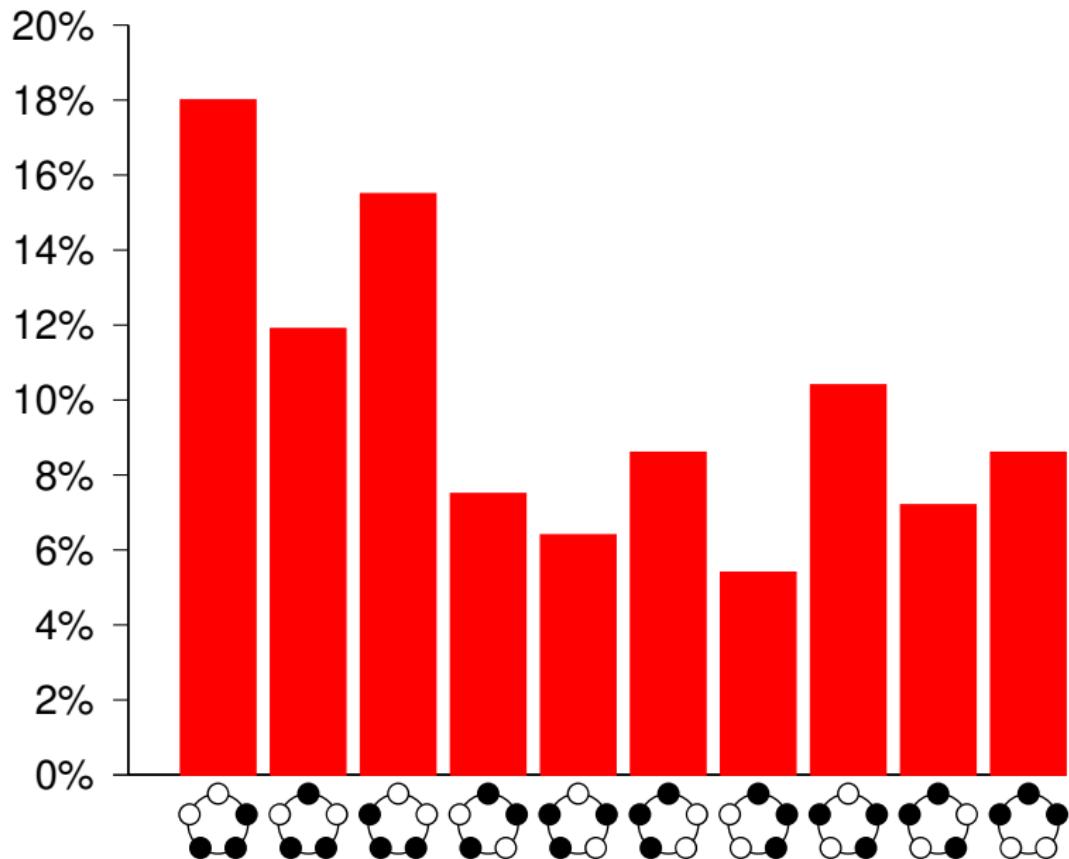
Stationary distribution



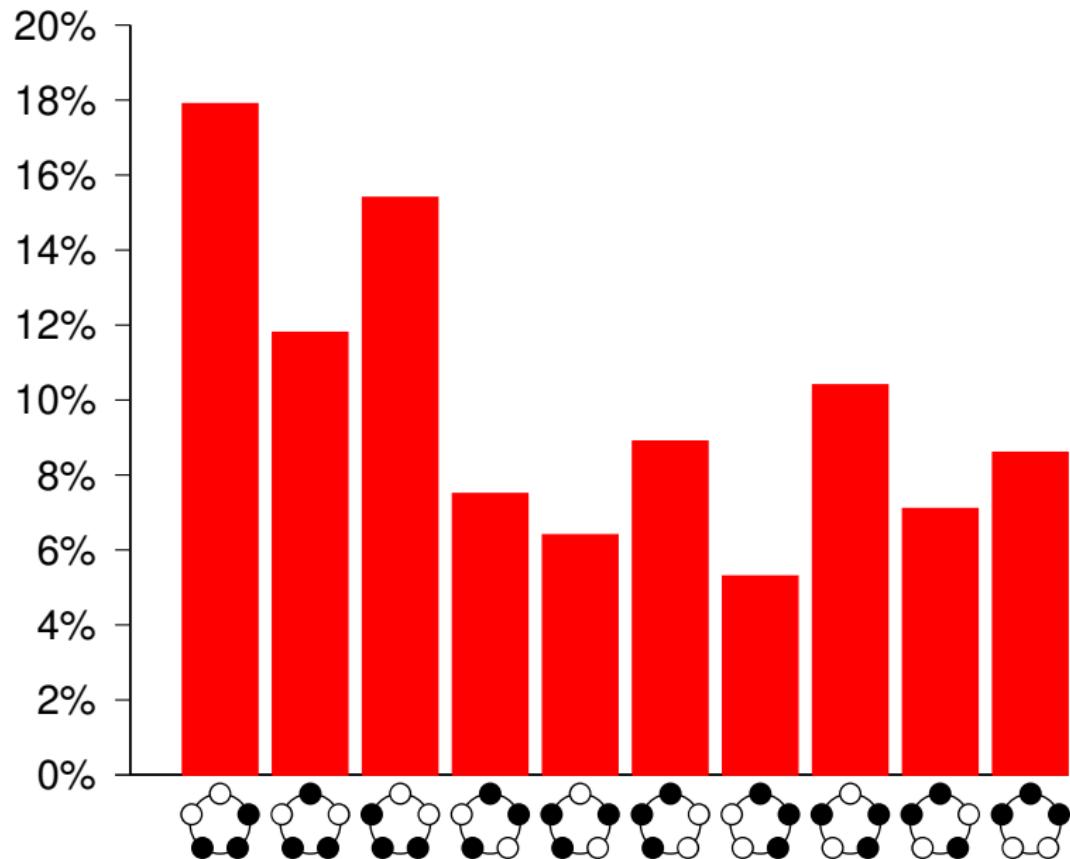
Stationary distribution



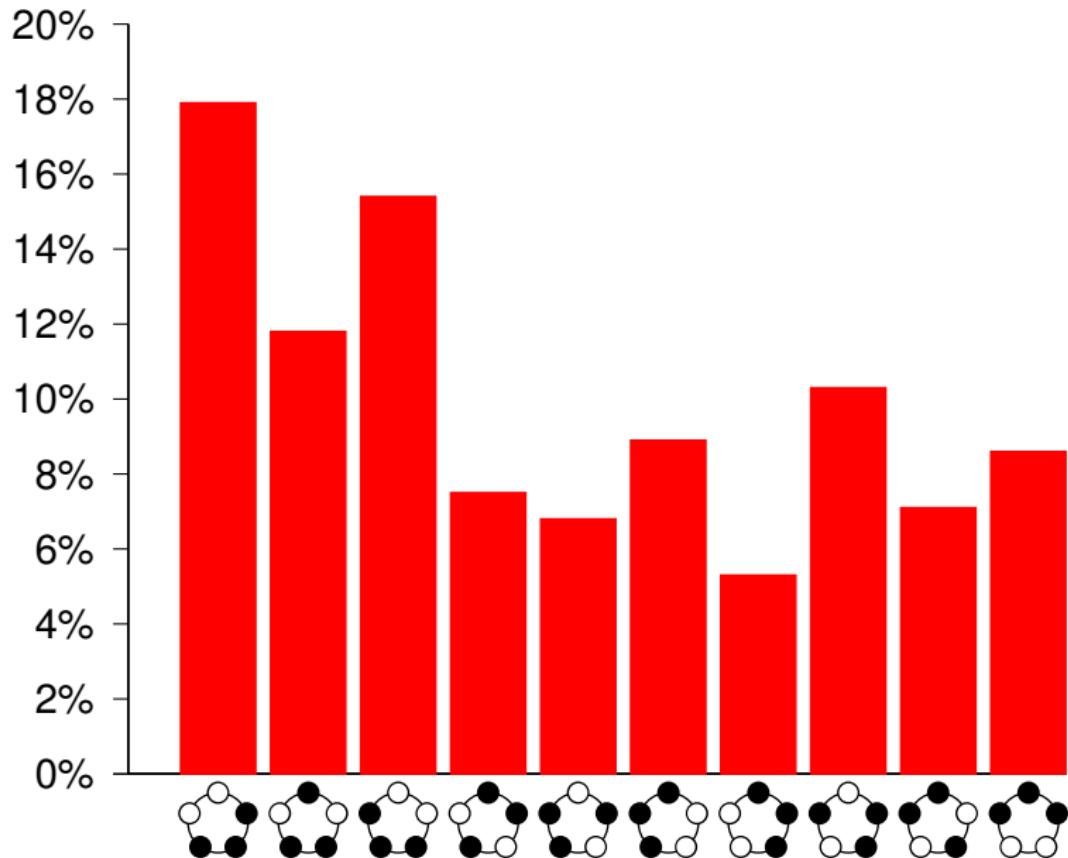
Stationary distribution



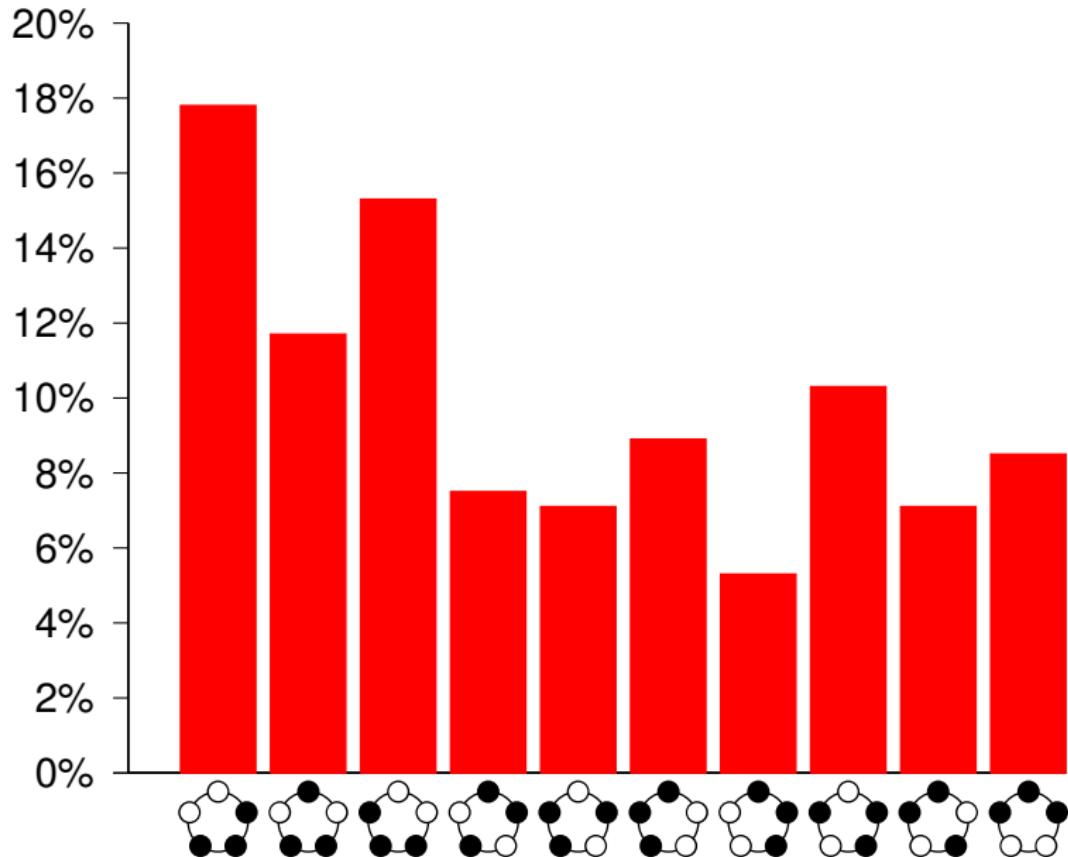
Stationary distribution



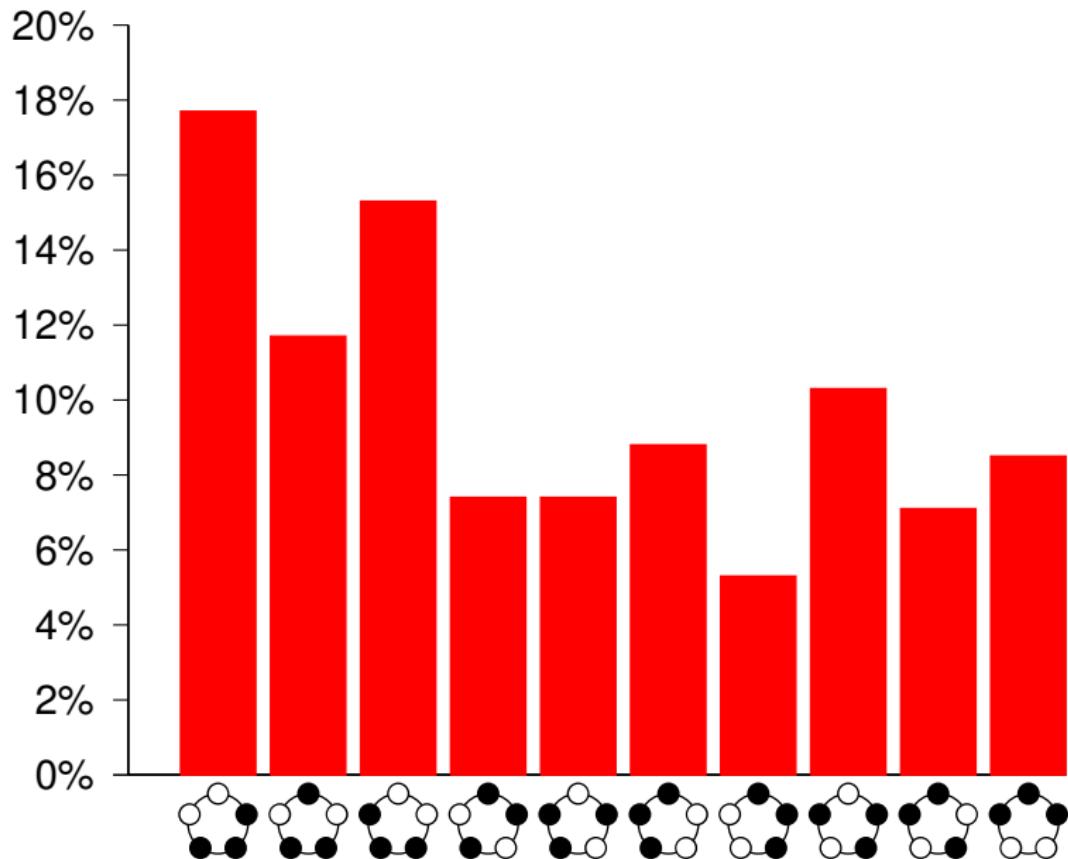
Stationary distribution



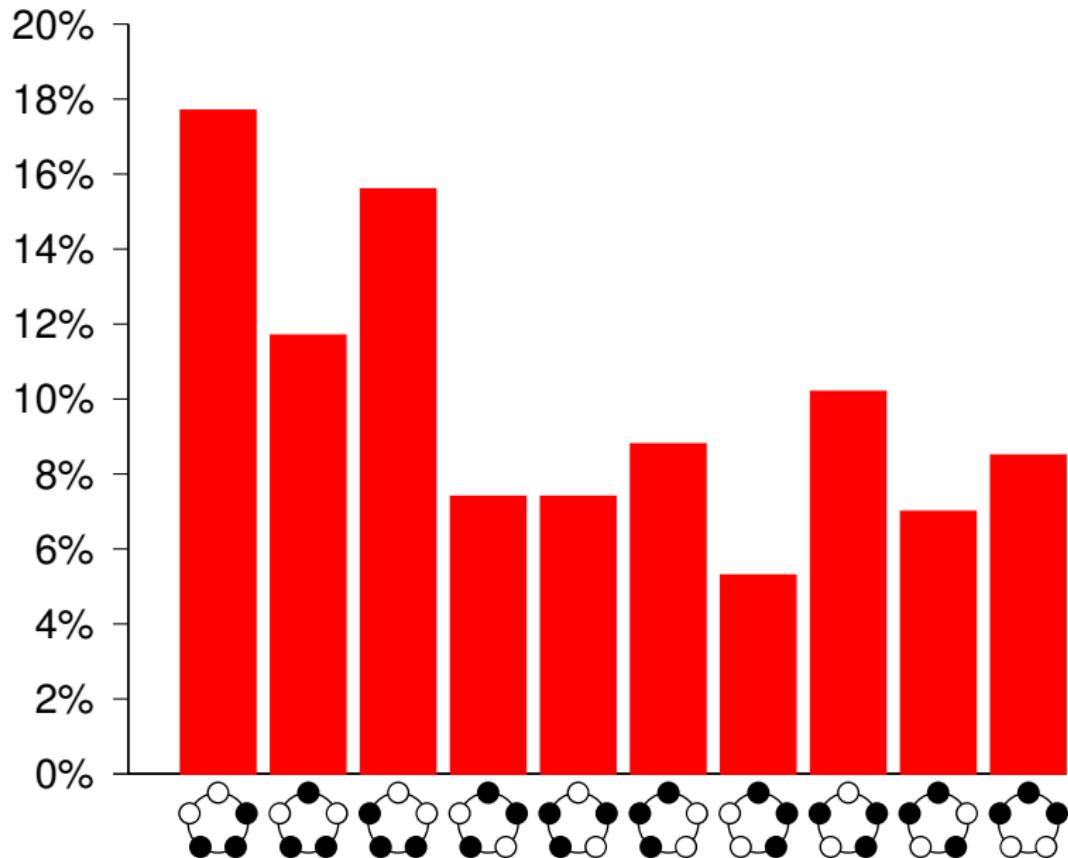
Stationary distribution



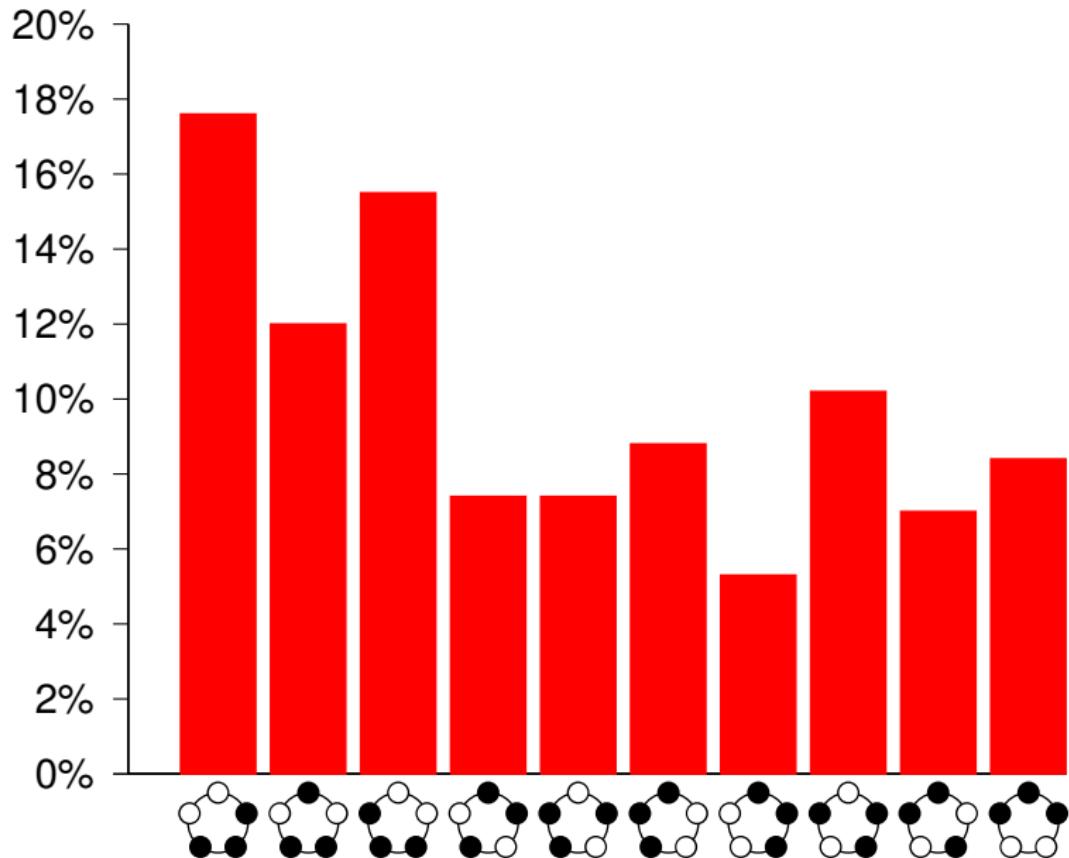
Stationary distribution



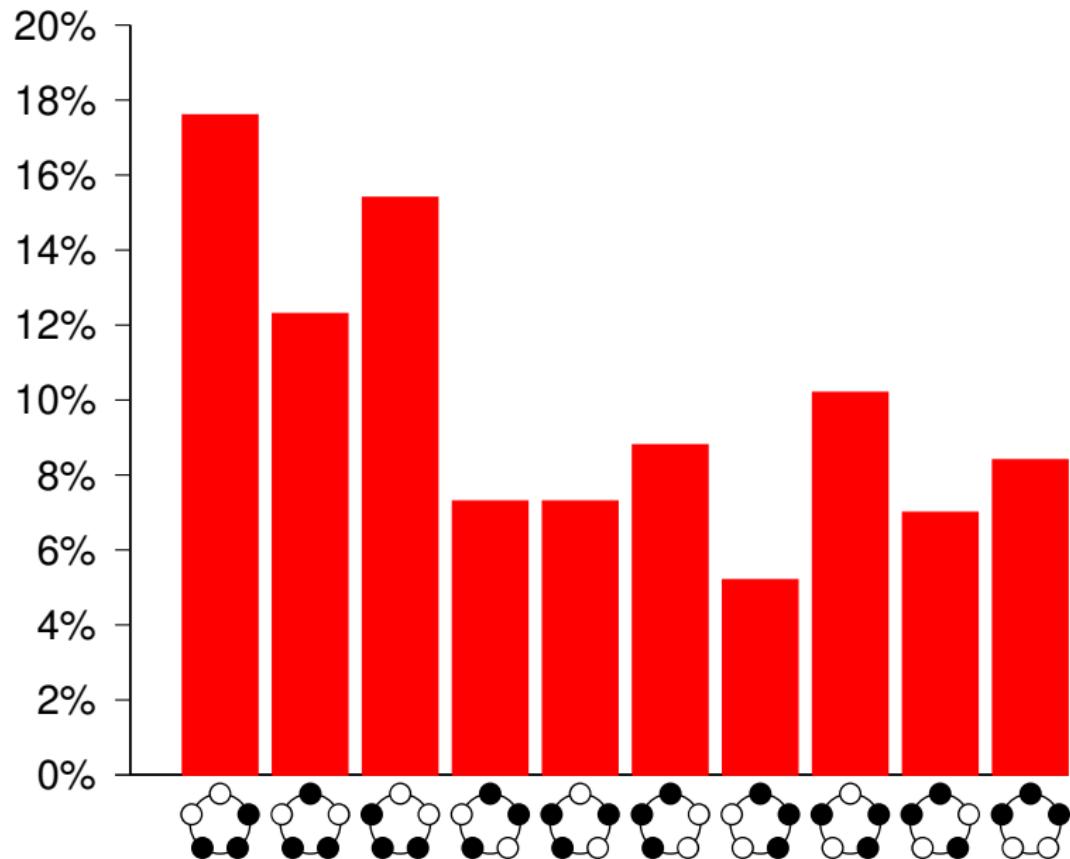
Stationary distribution



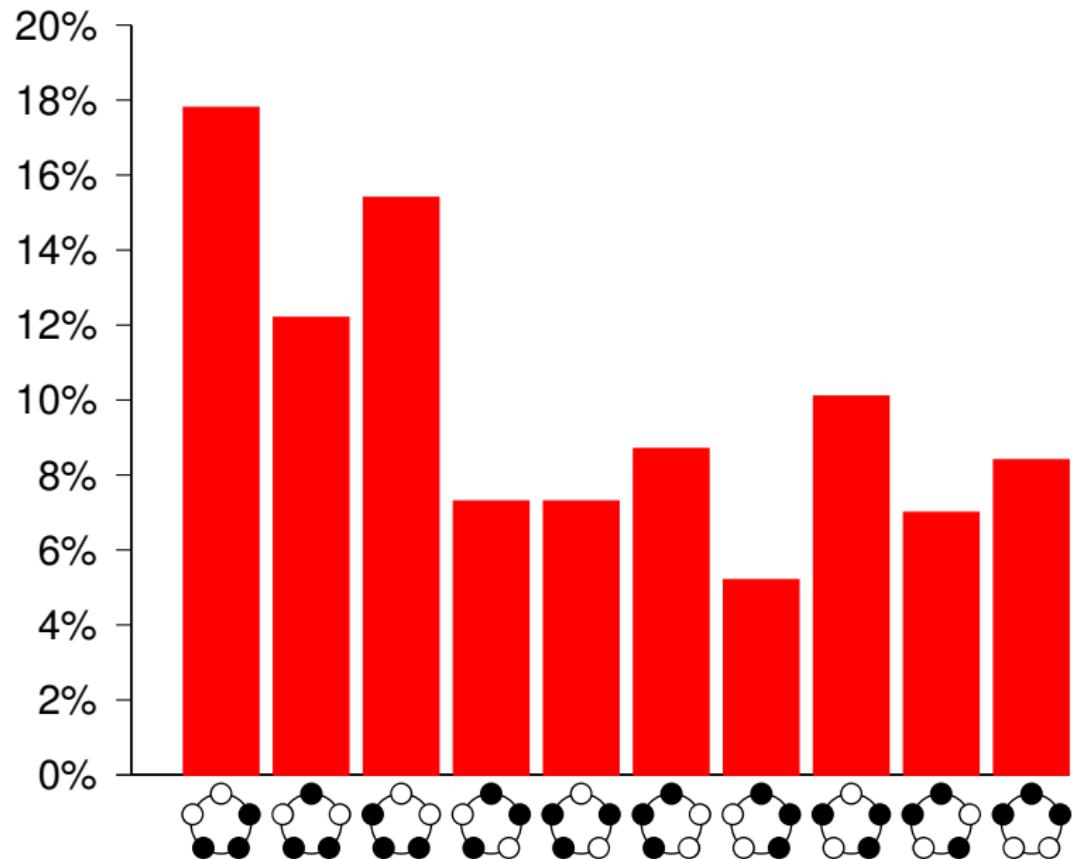
Stationary distribution



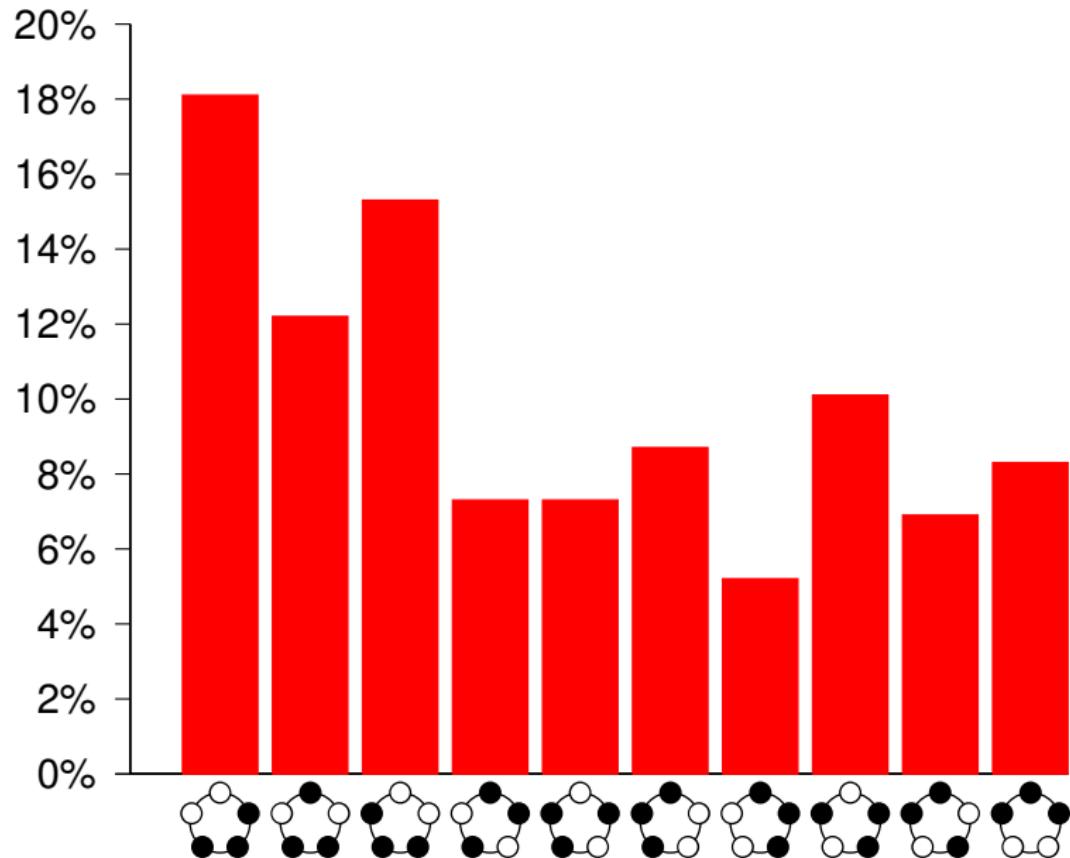
Stationary distribution



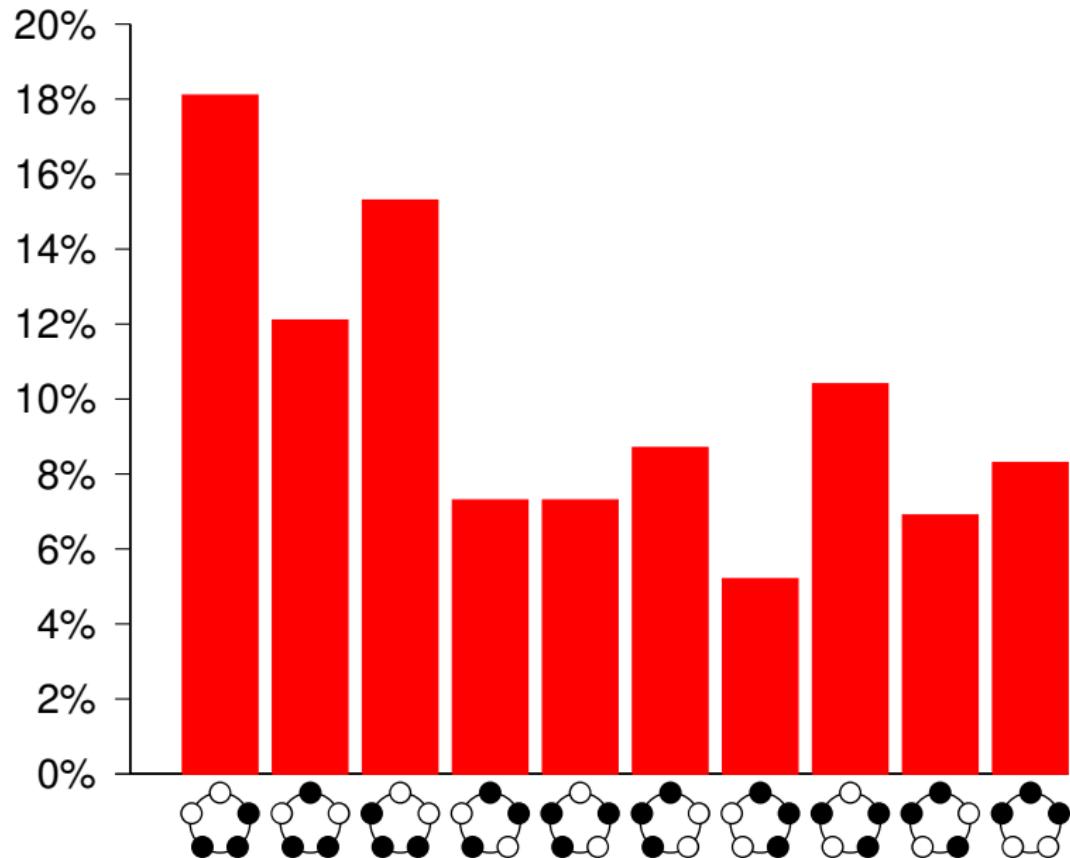
Stationary distribution



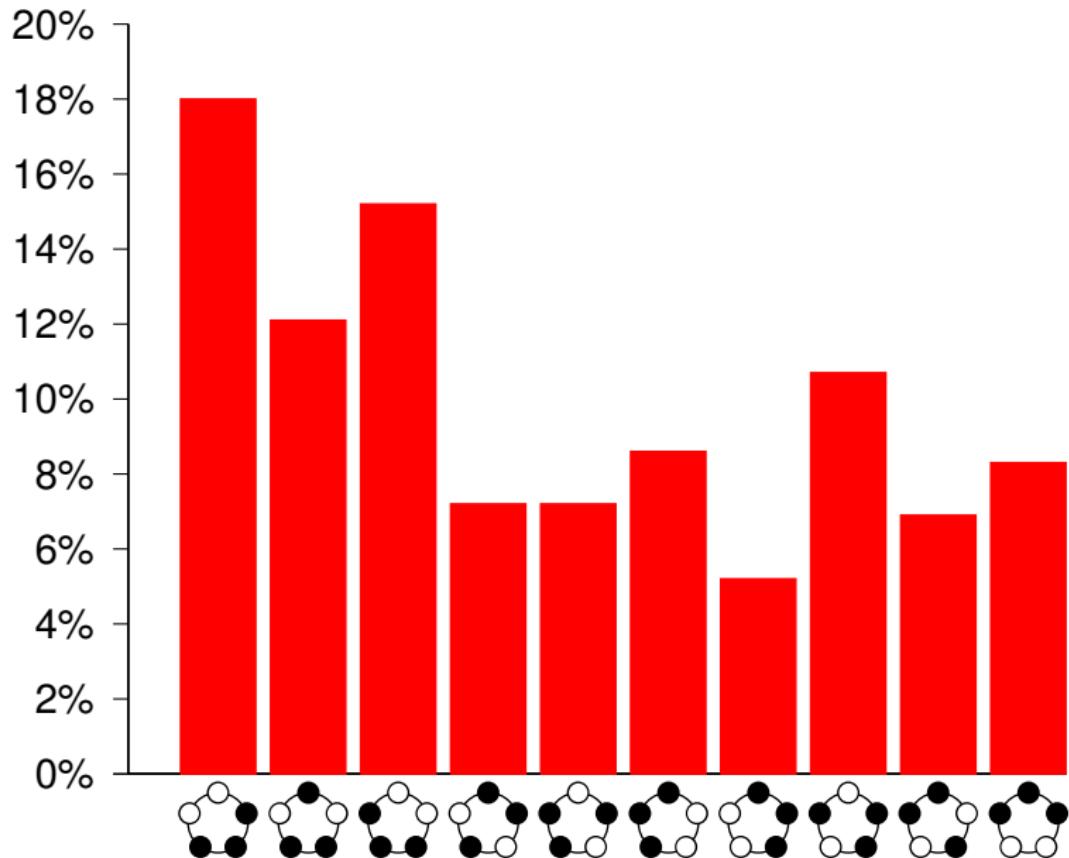
Stationary distribution



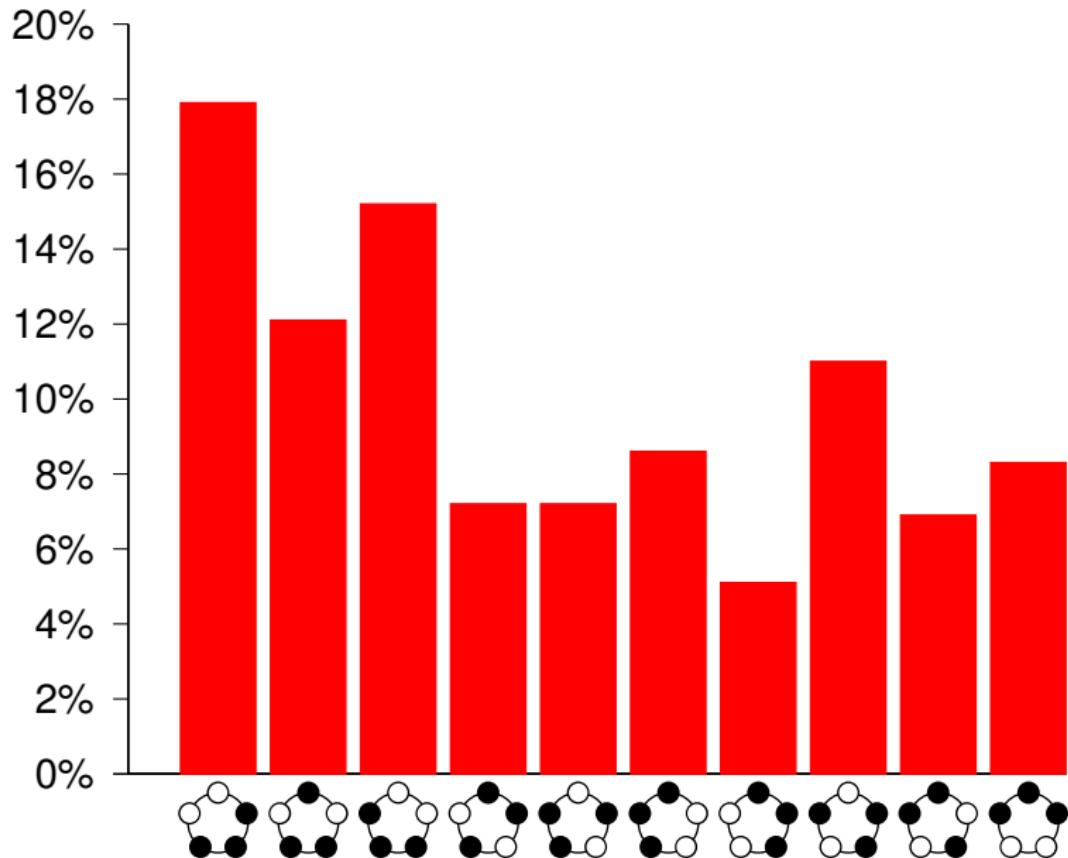
Stationary distribution



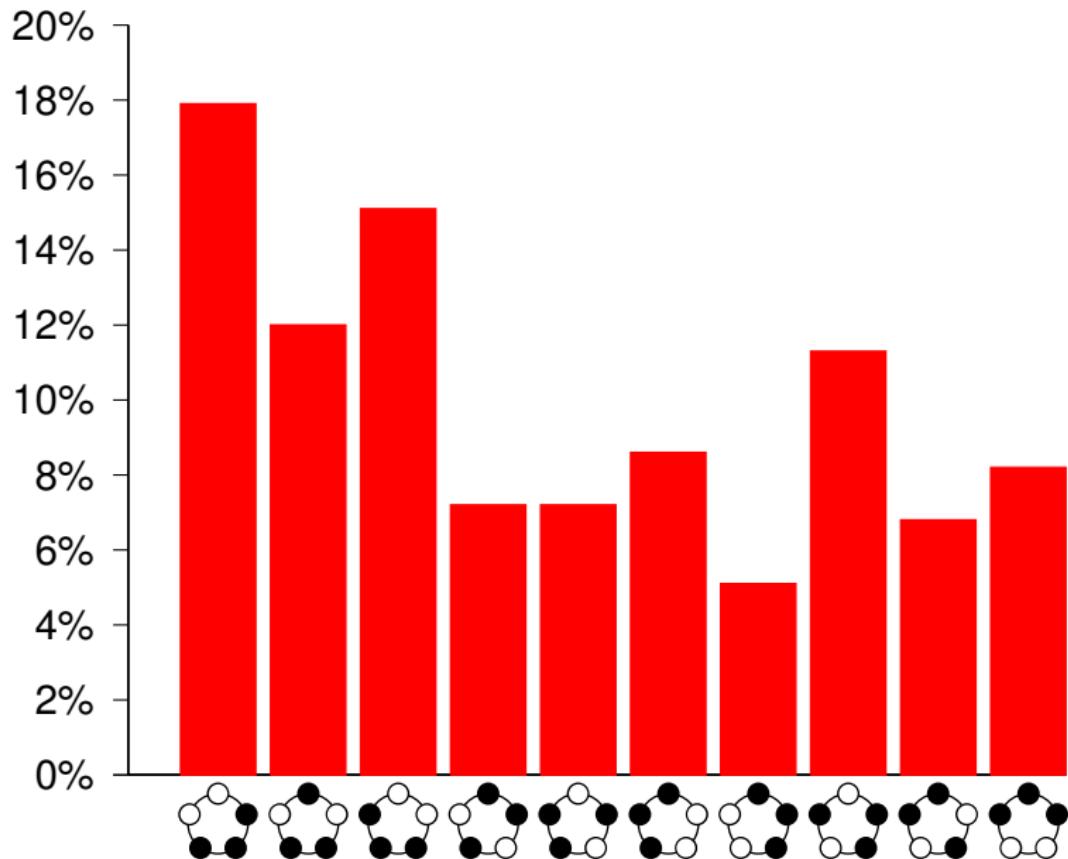
Stationary distribution



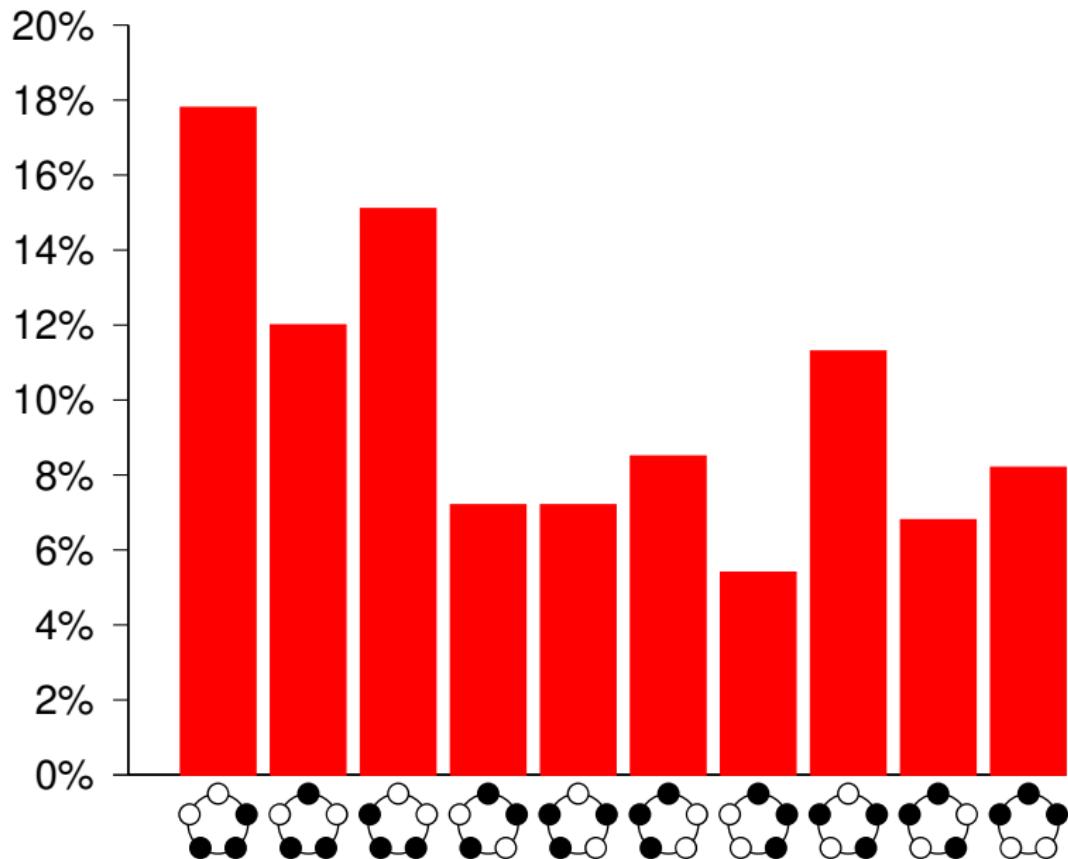
Stationary distribution



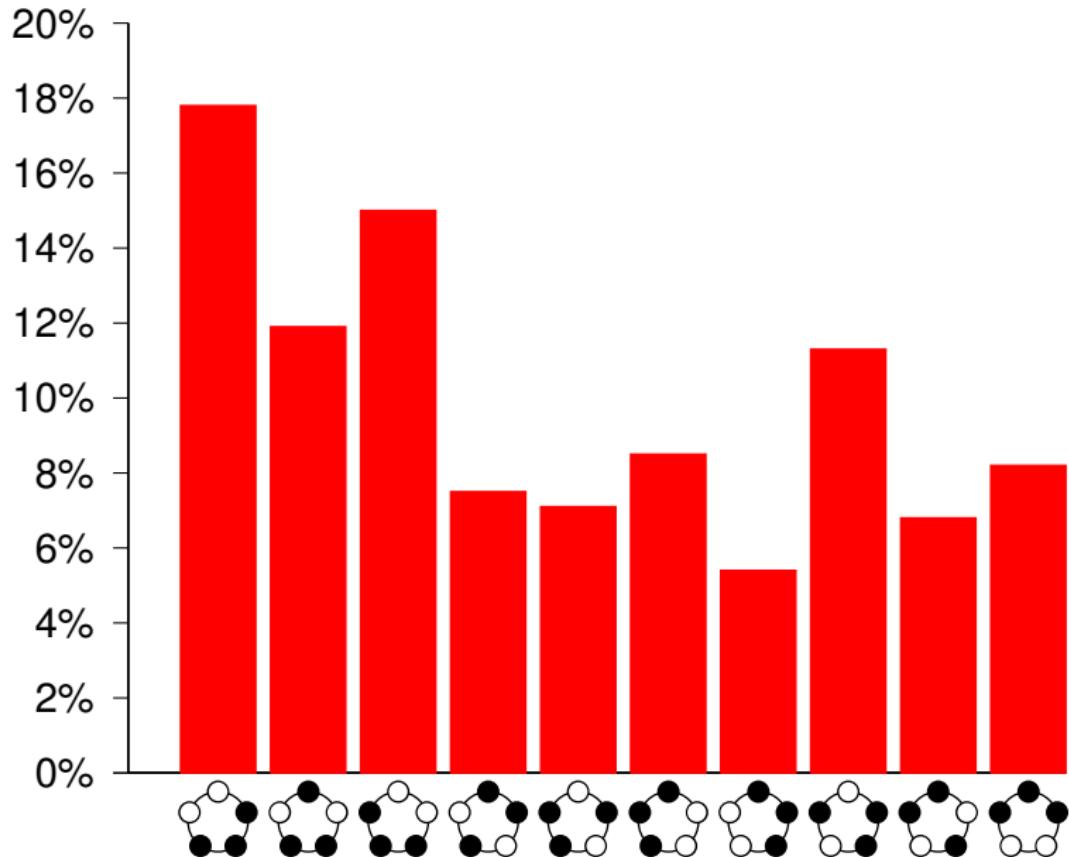
Stationary distribution



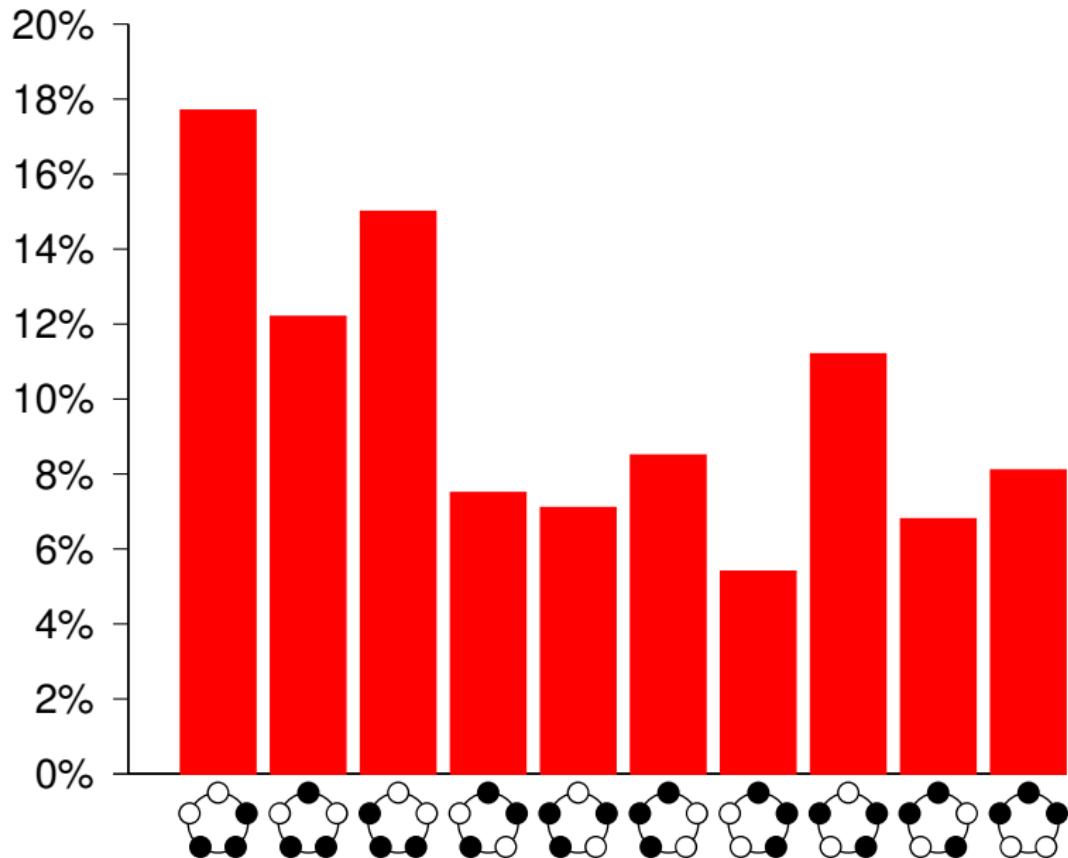
Stationary distribution



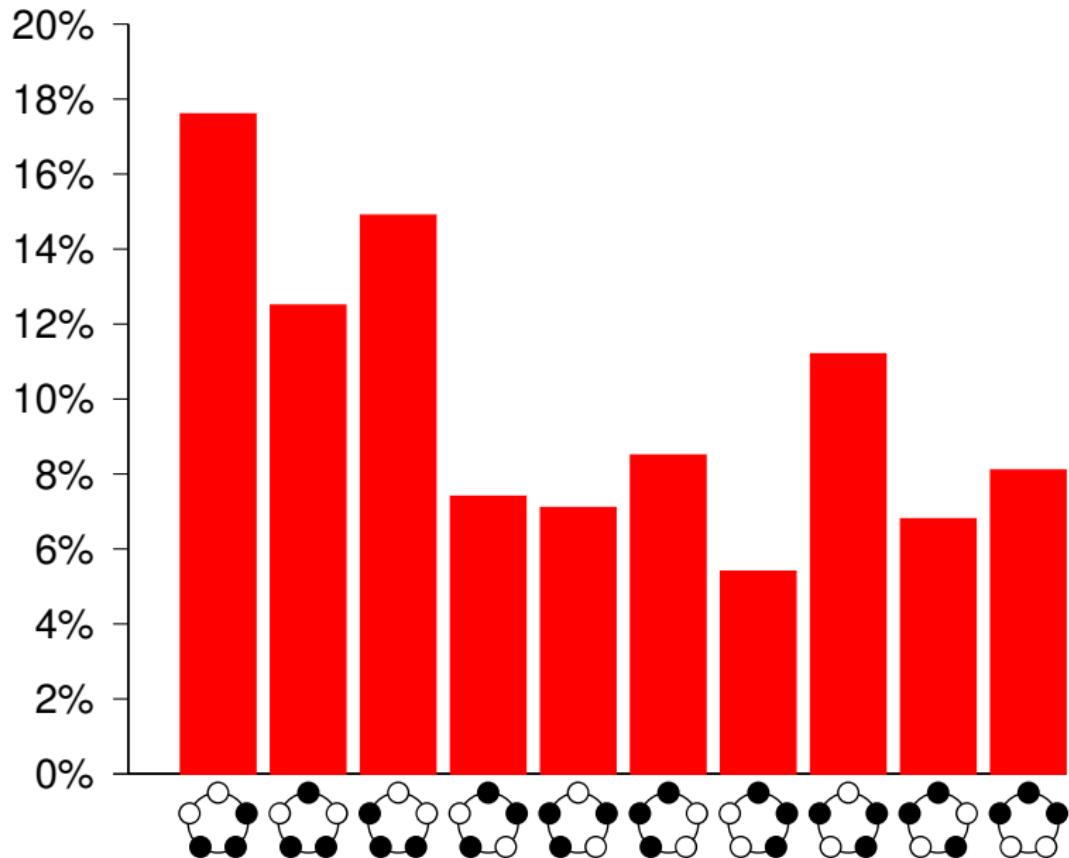
Stationary distribution



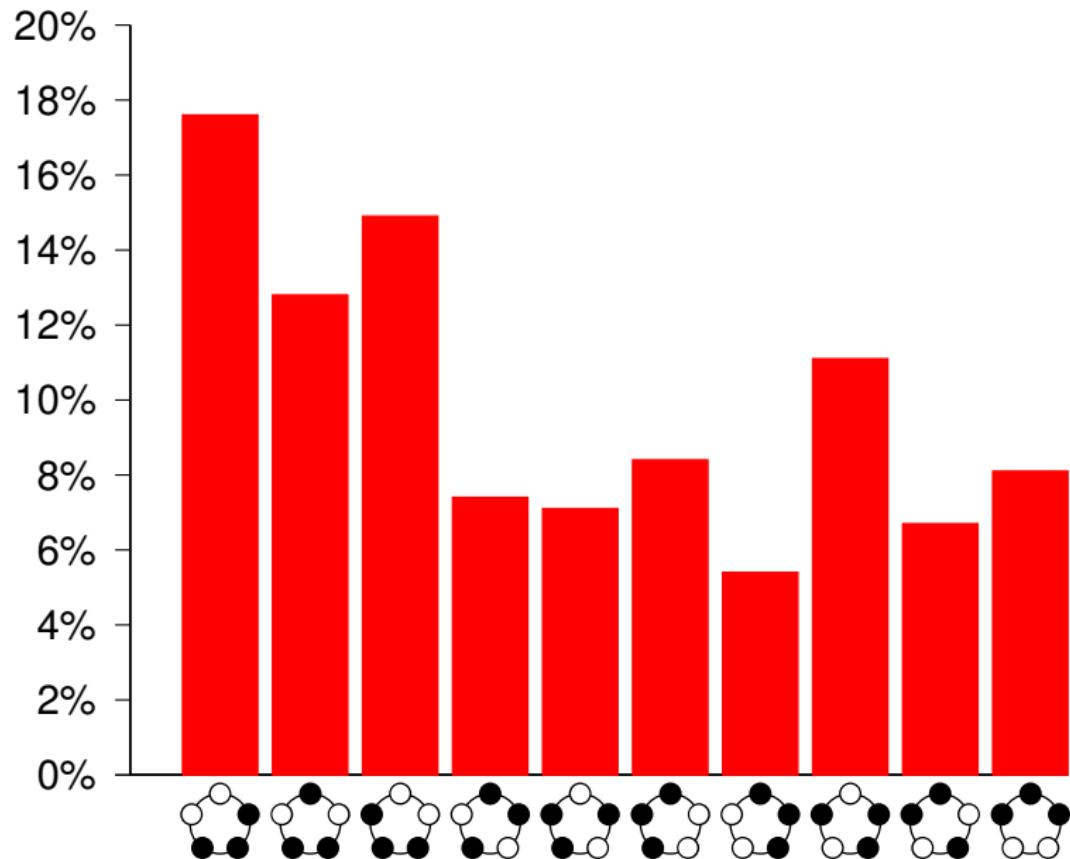
Stationary distribution



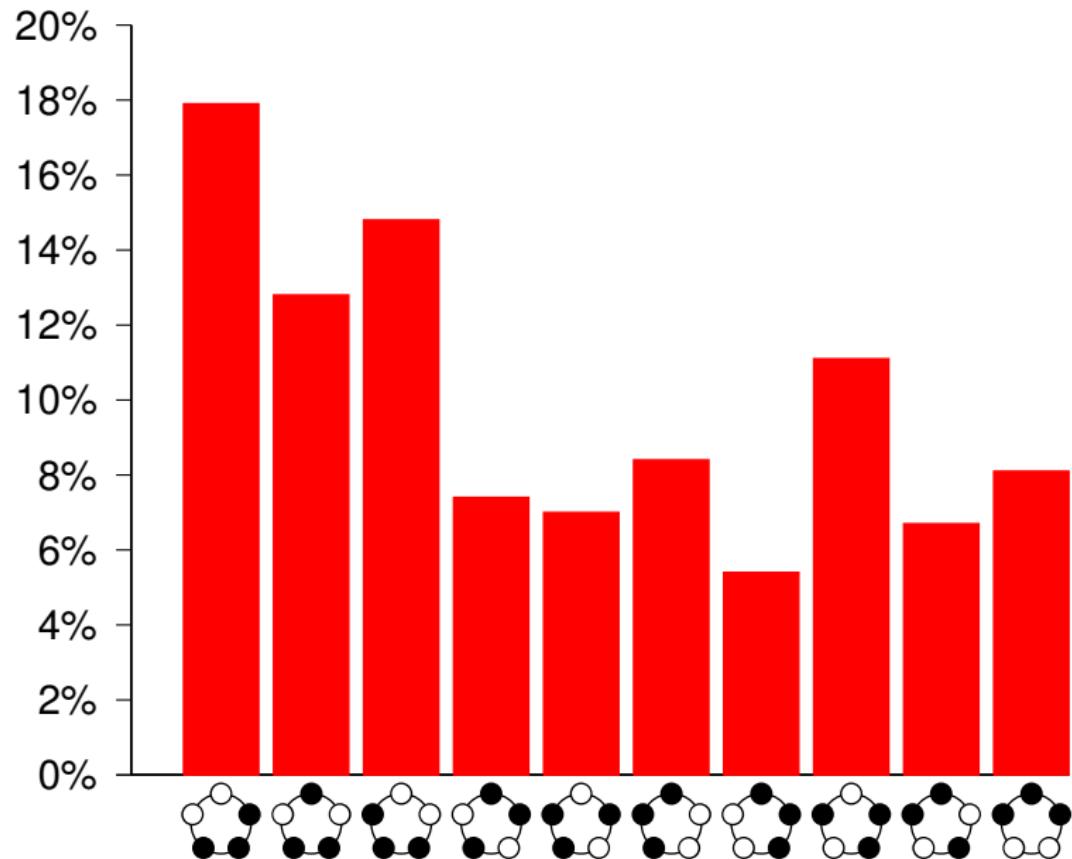
Stationary distribution



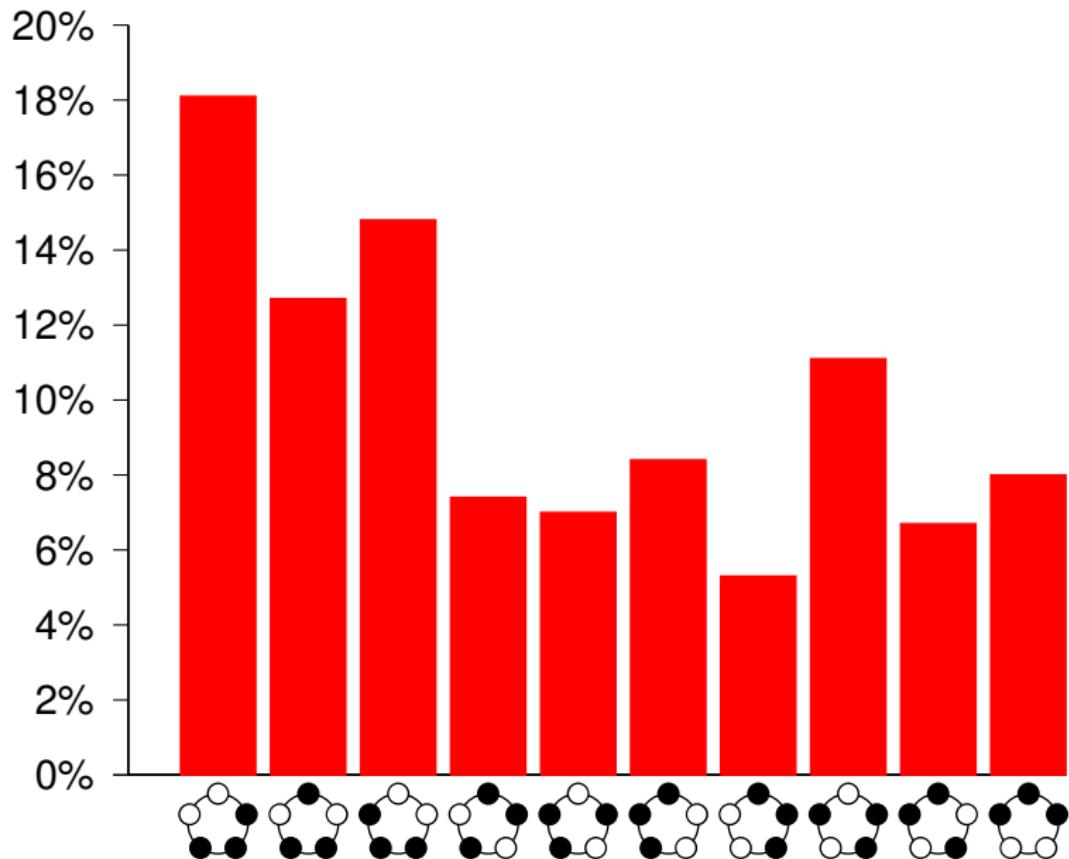
Stationary distribution



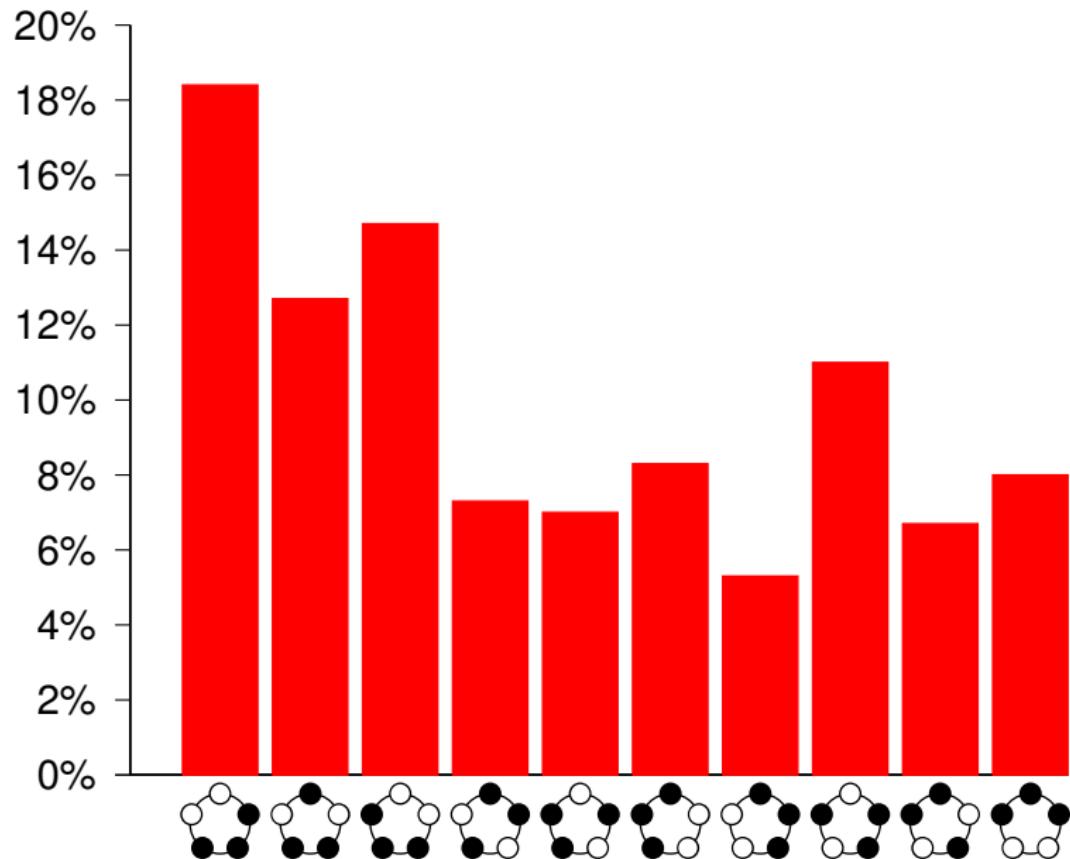
Stationary distribution



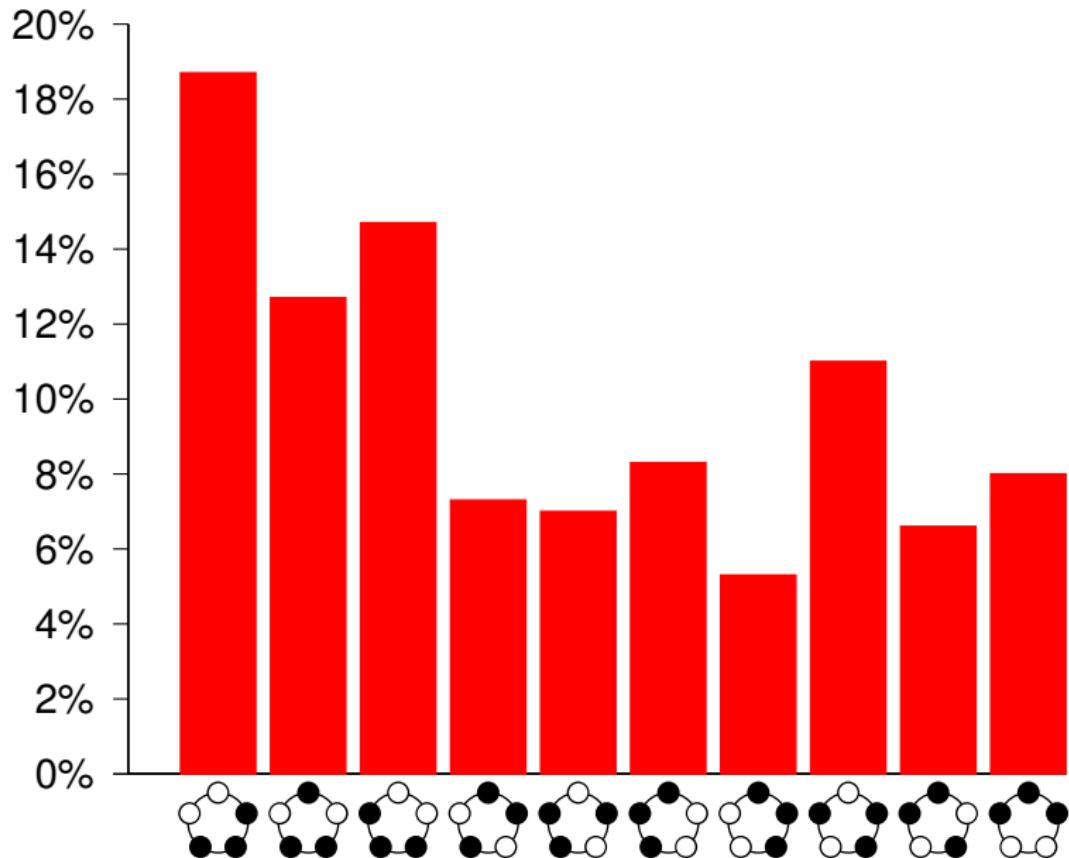
Stationary distribution



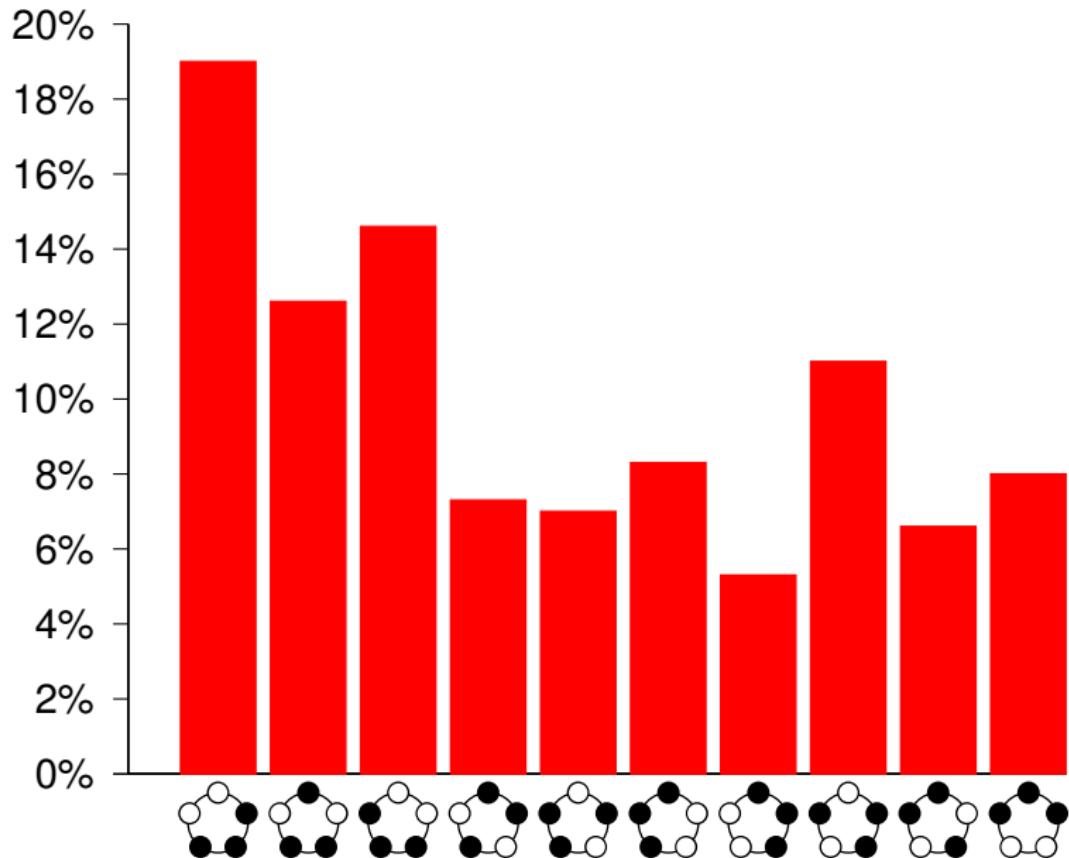
Stationary distribution



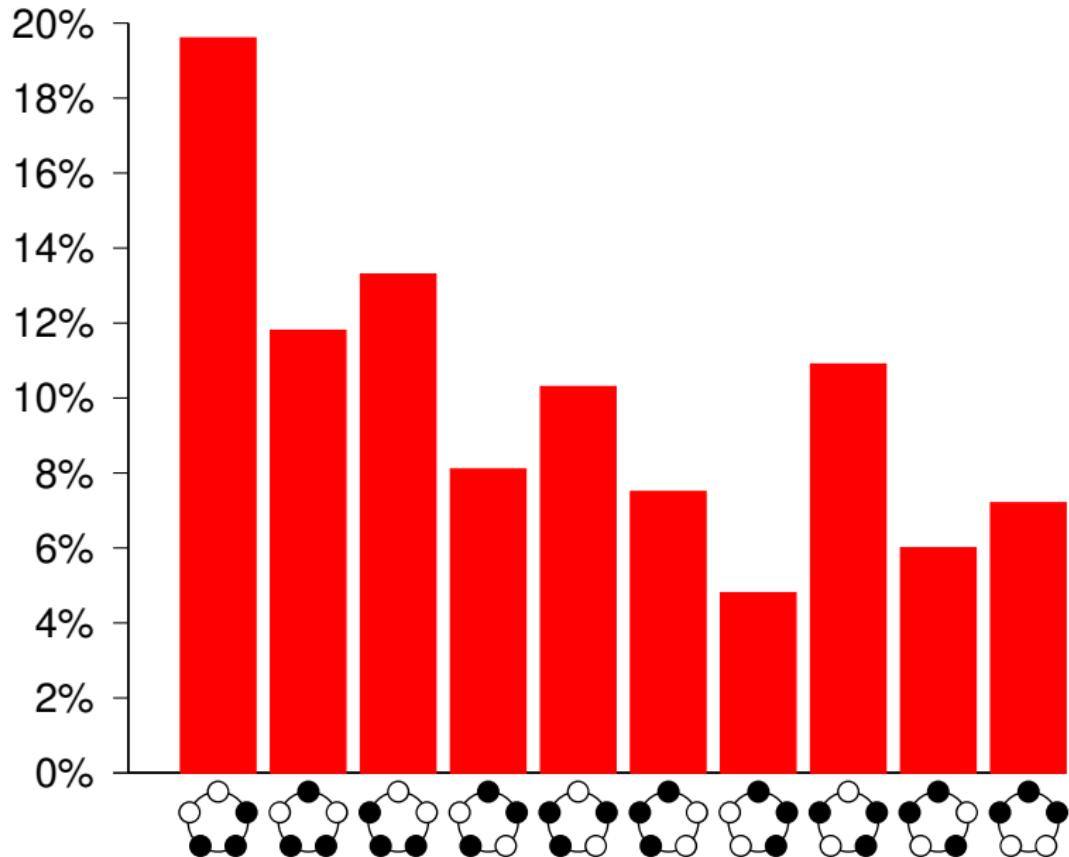
Stationary distribution



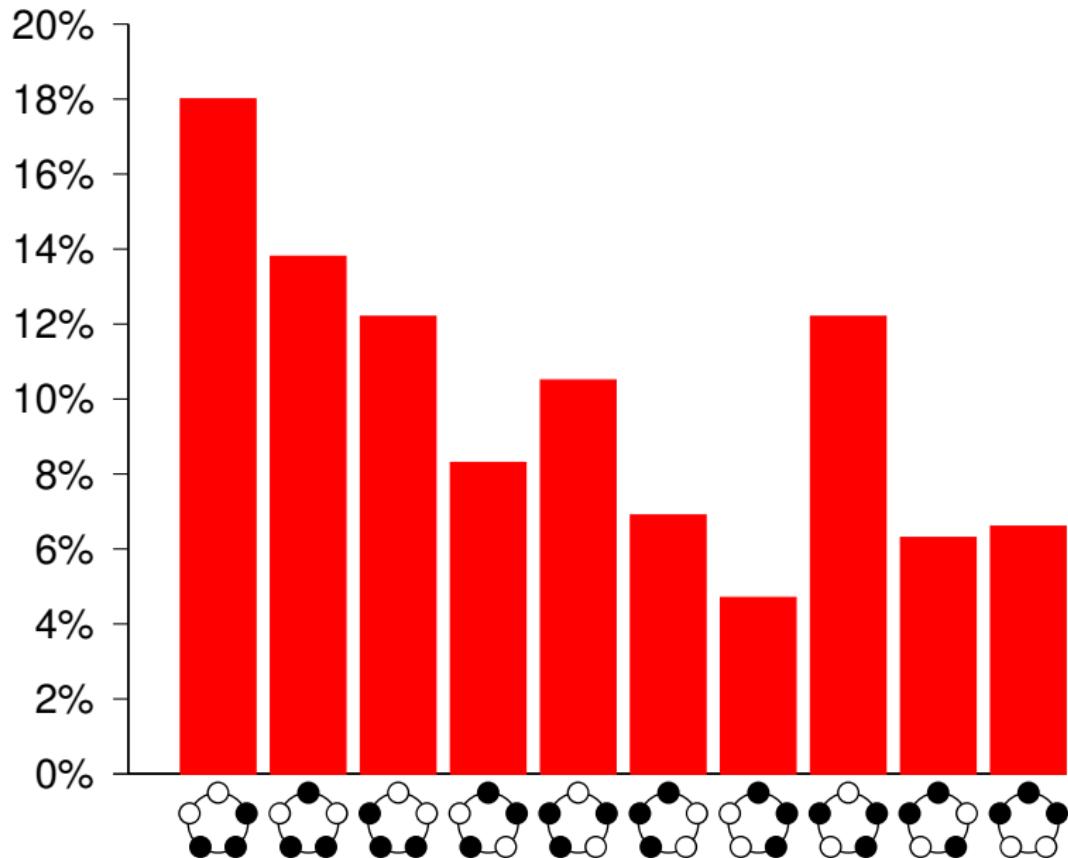
Stationary distribution



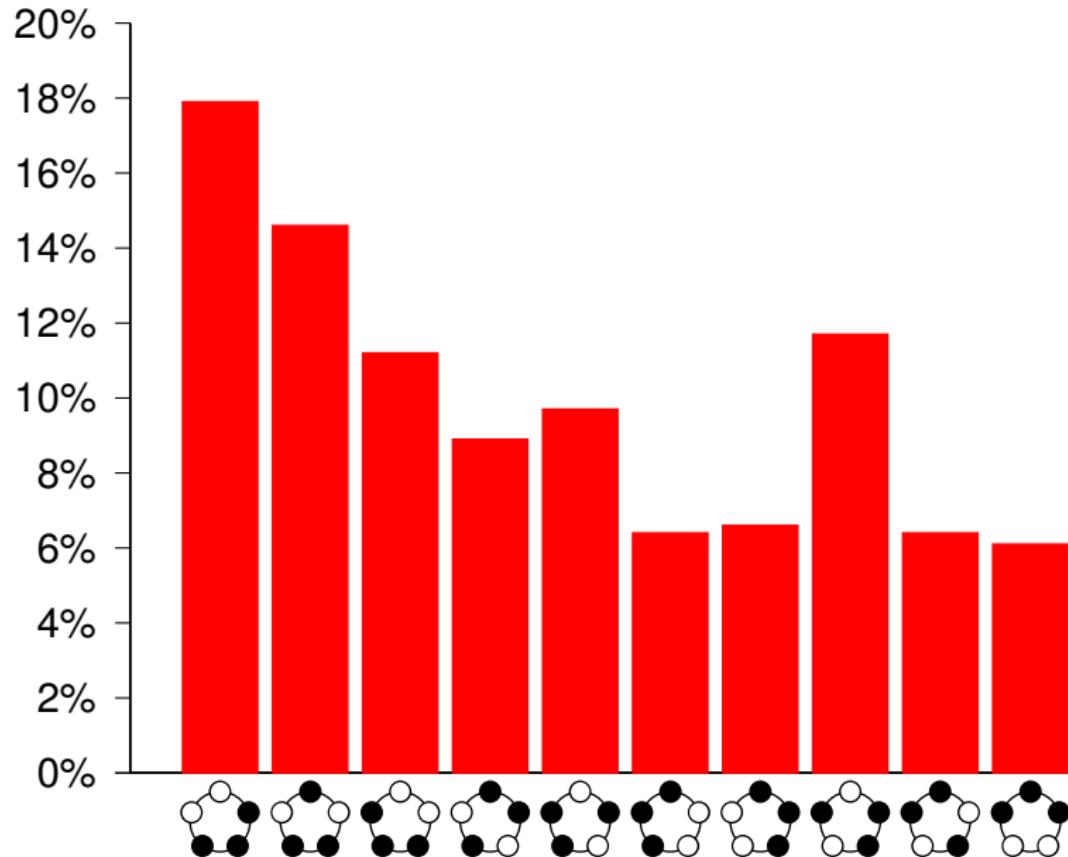
Stationary distribution



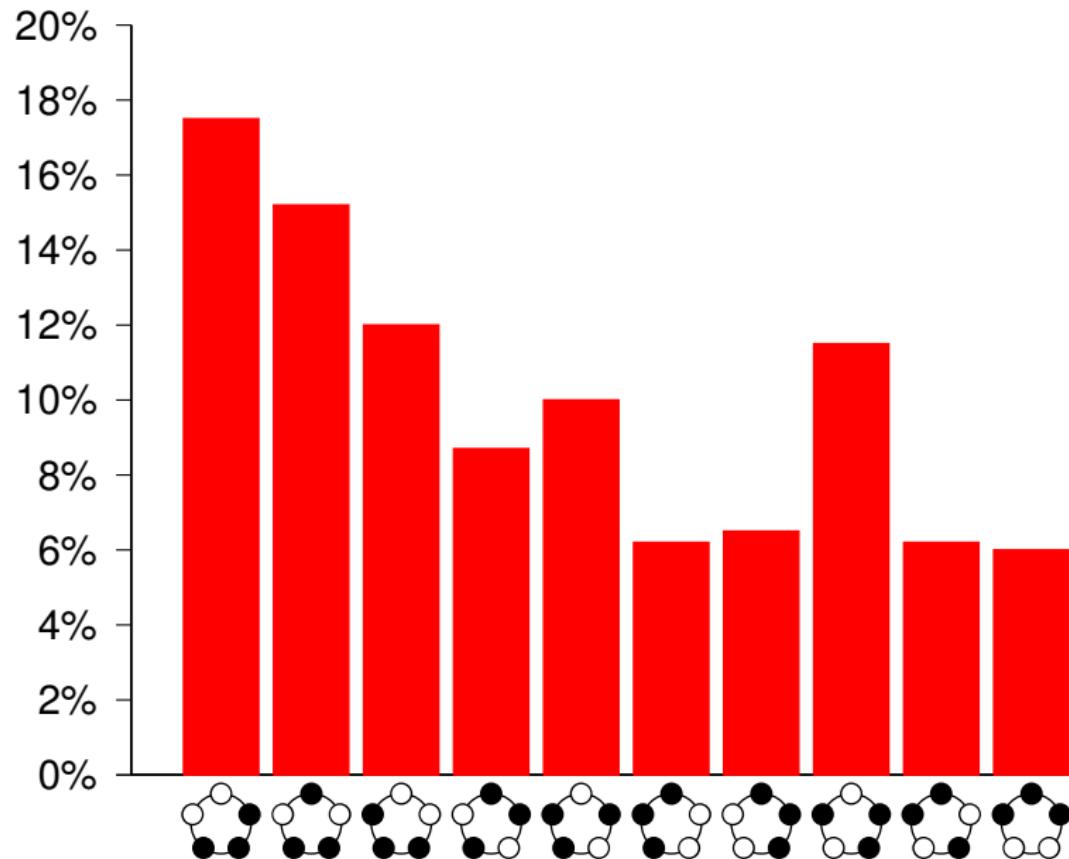
Stationary distribution



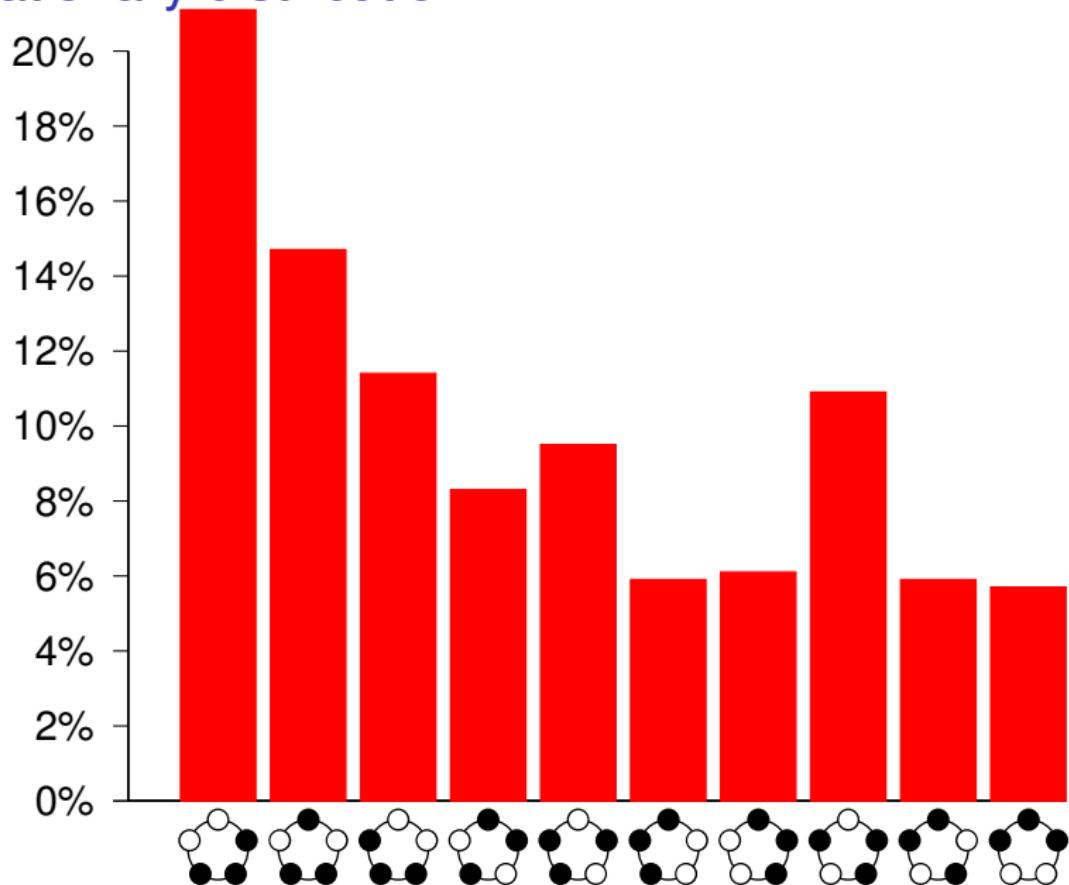
Stationary distribution



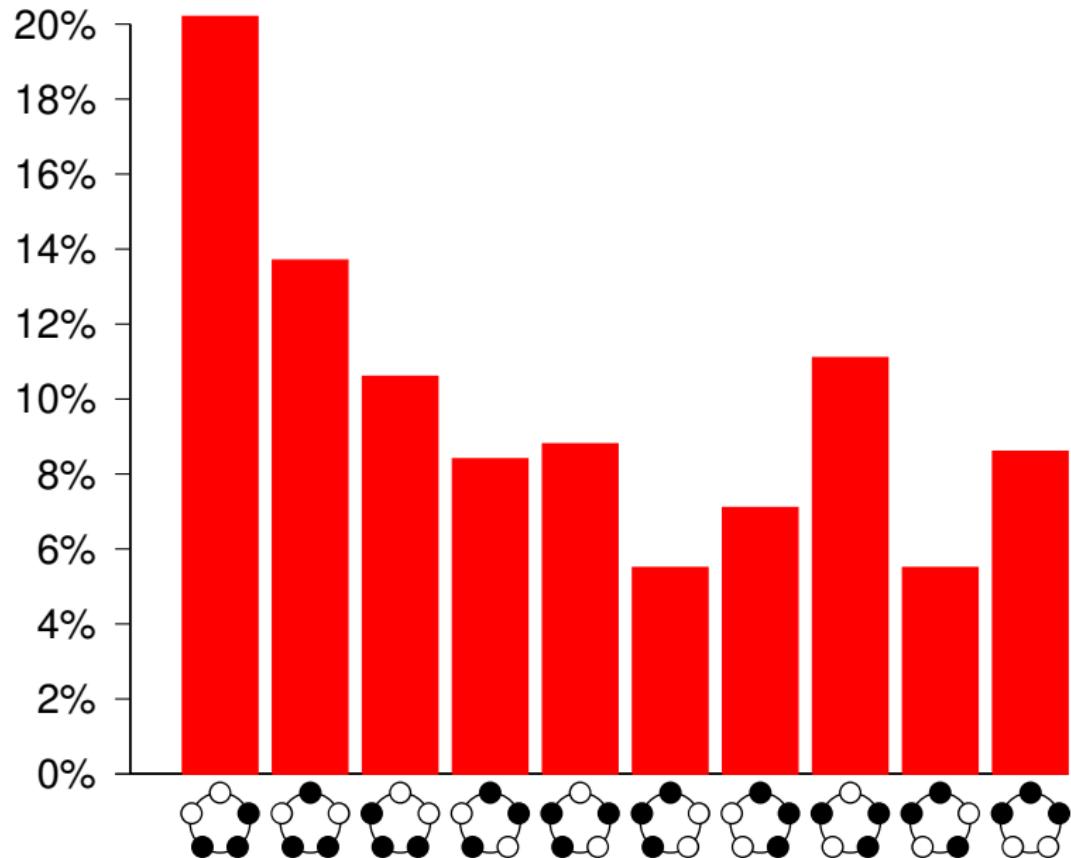
Stationary distribution



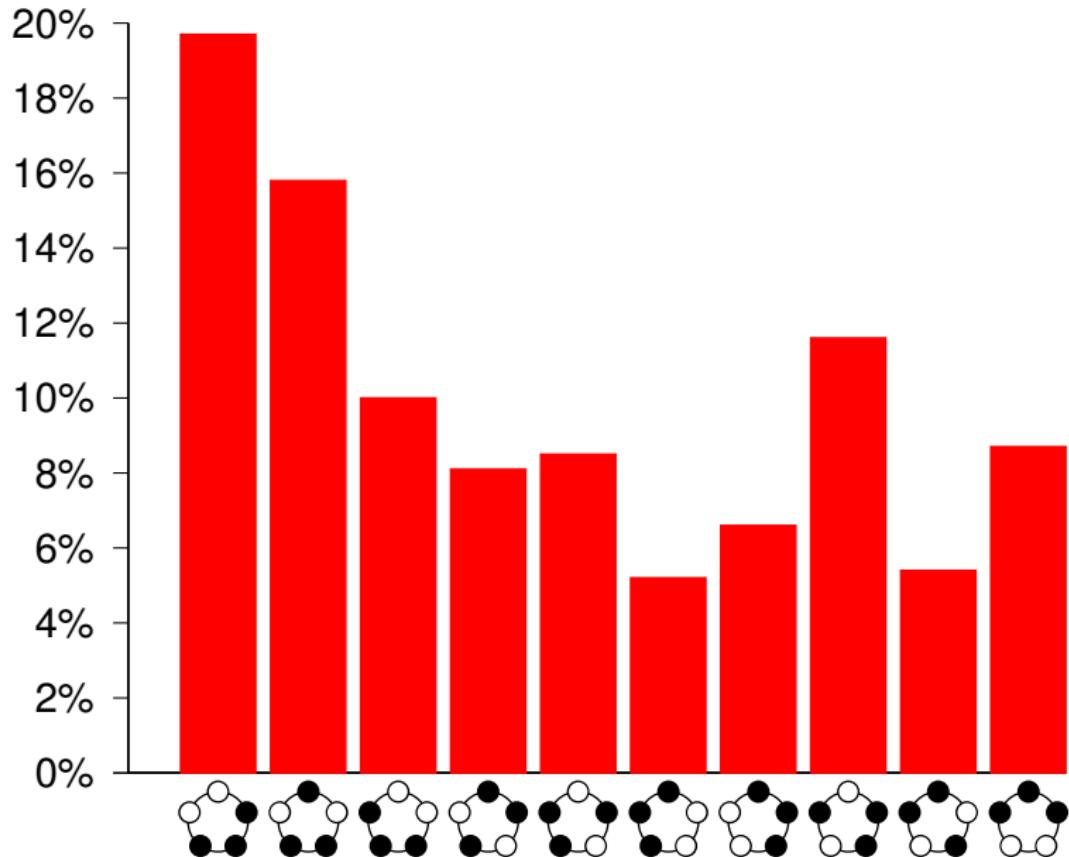
Stationary distribution



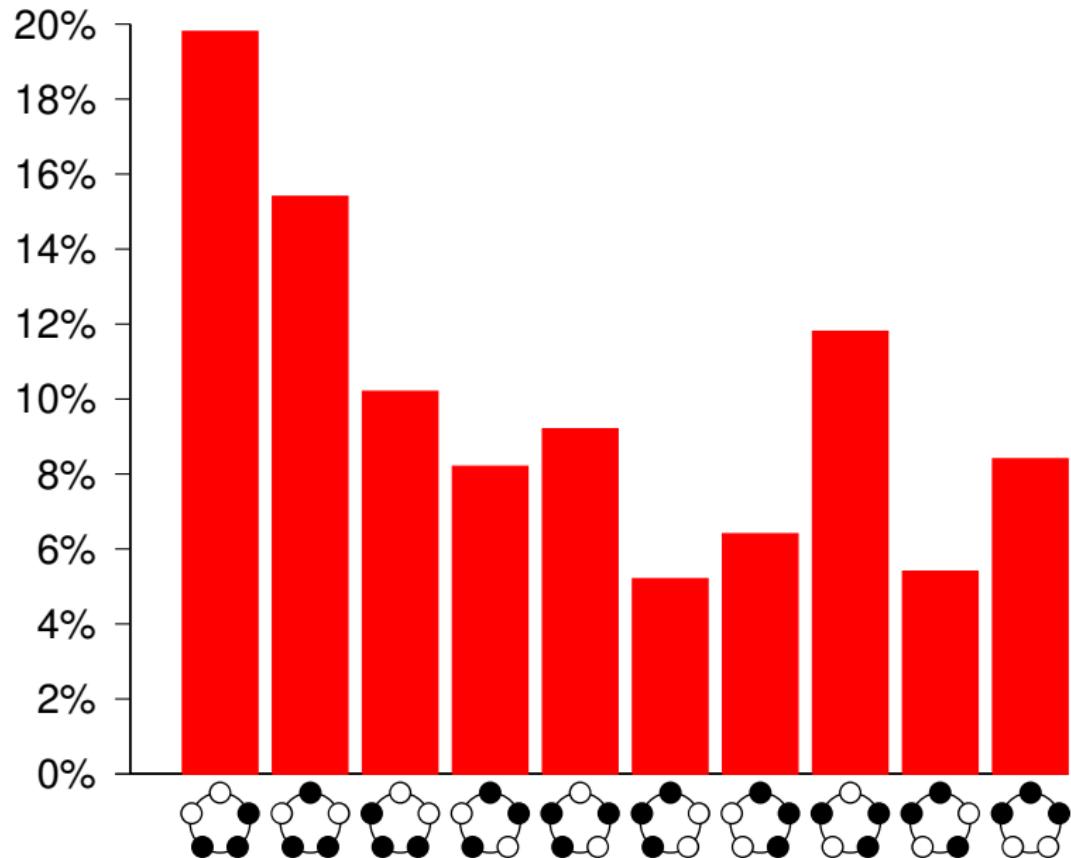
Stationary distribution



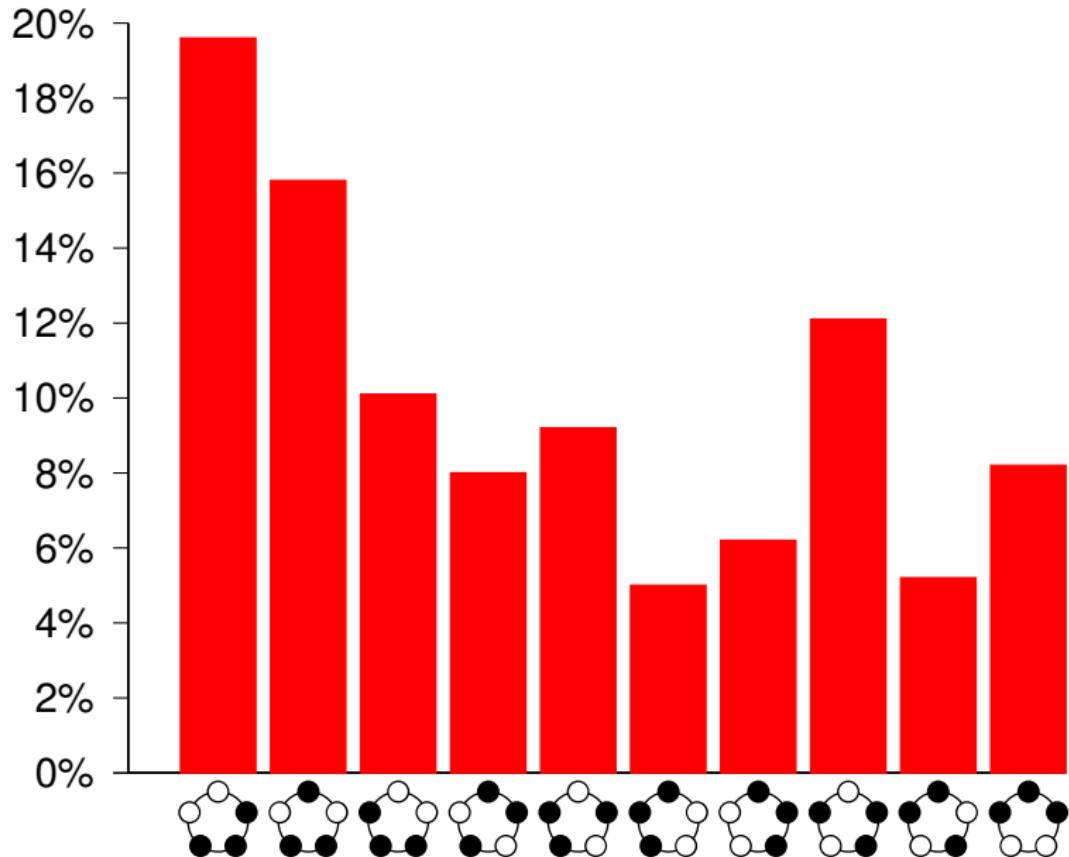
Stationary distribution



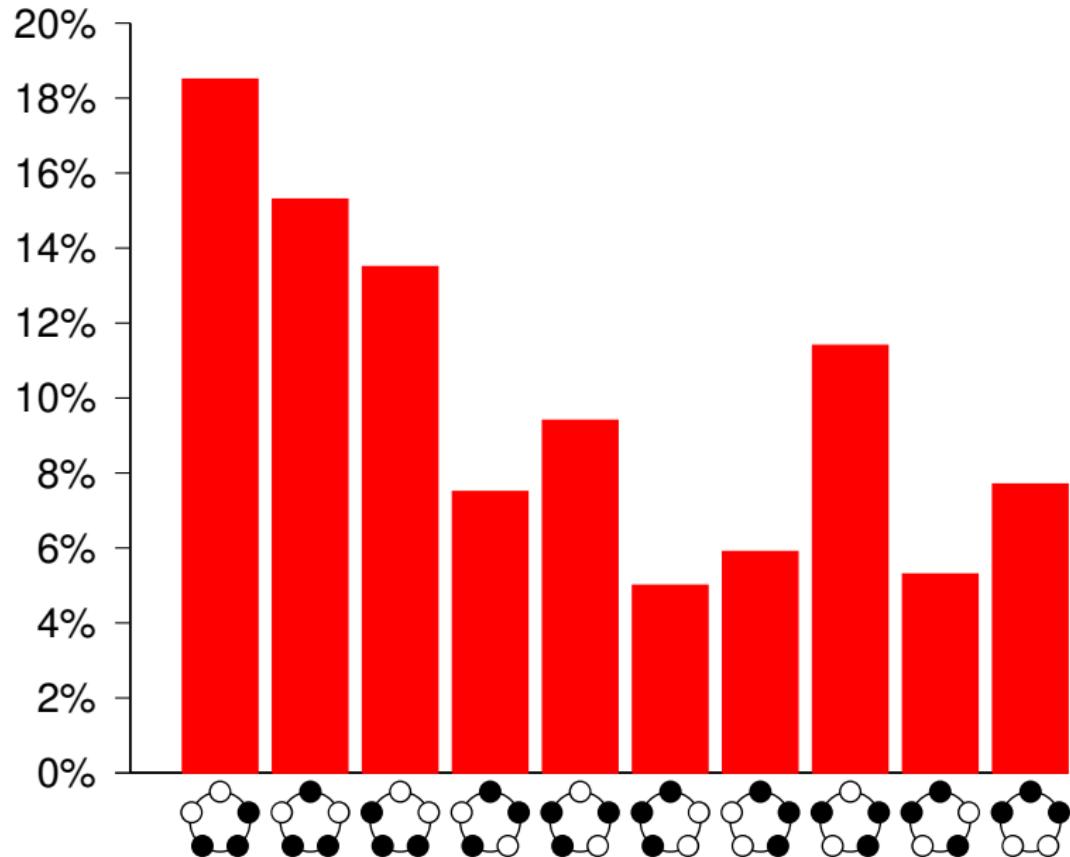
Stationary distribution



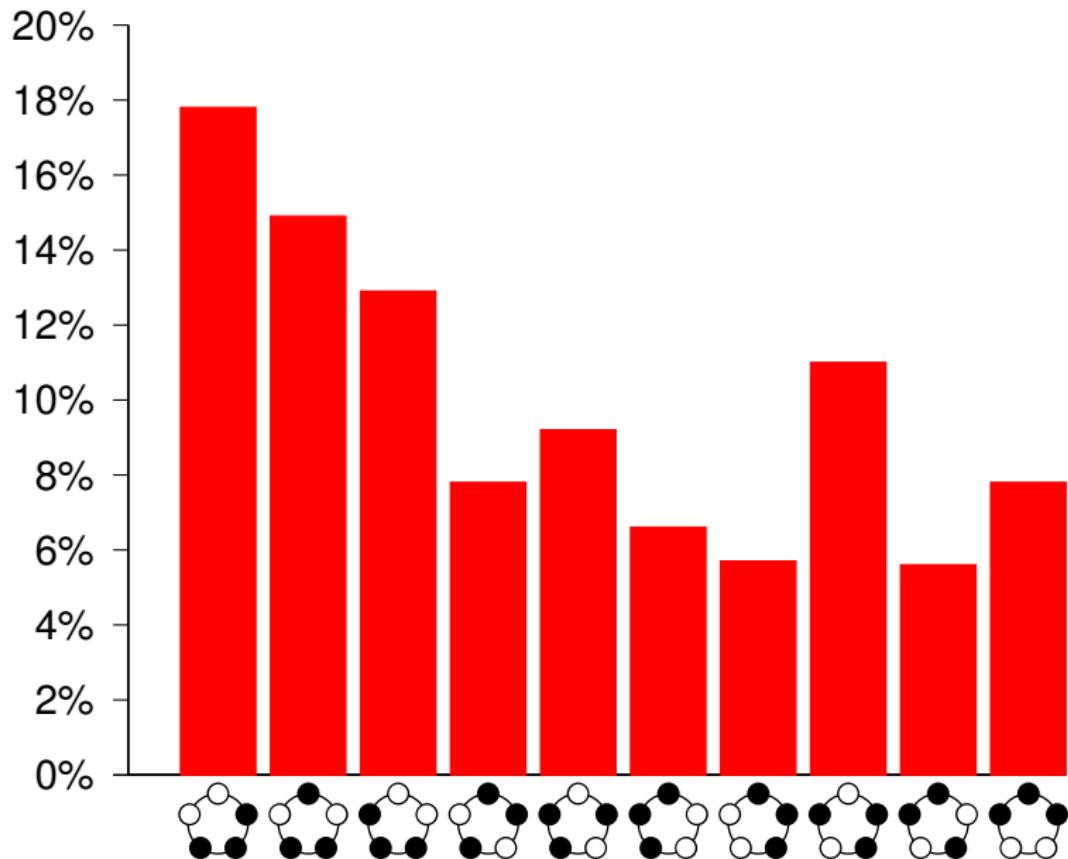
Stationary distribution



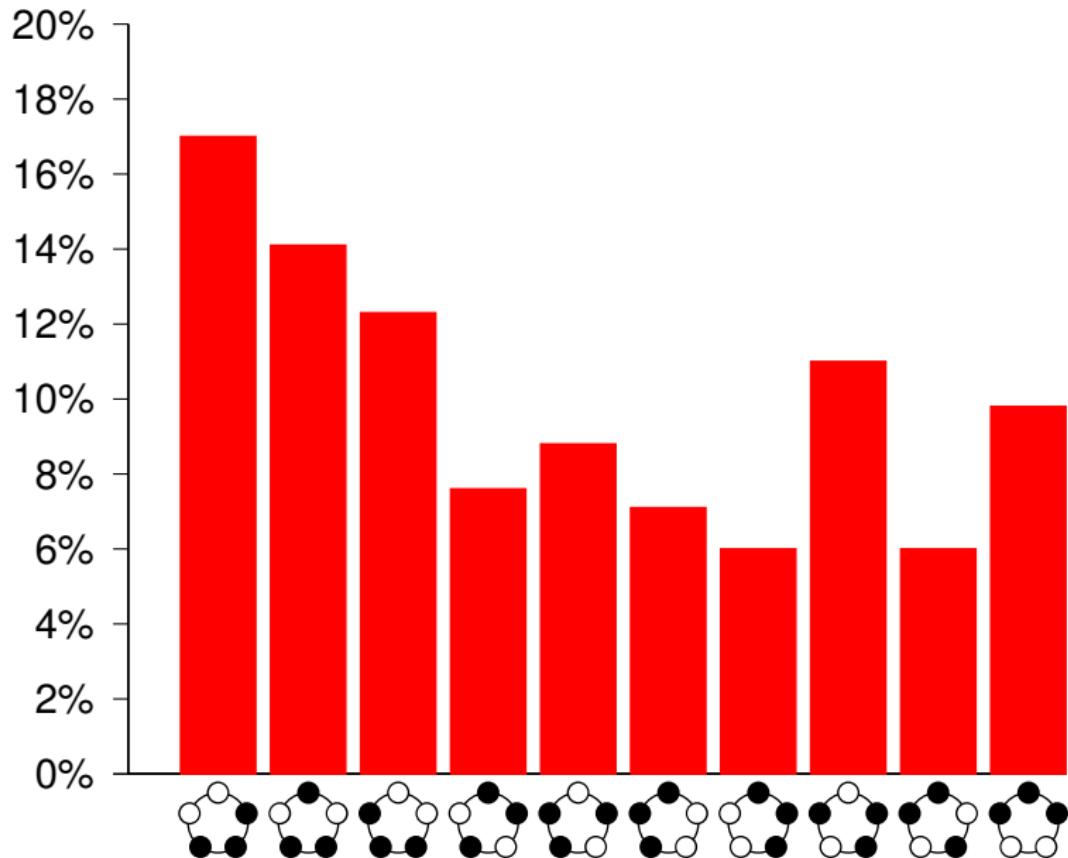
Stationary distribution



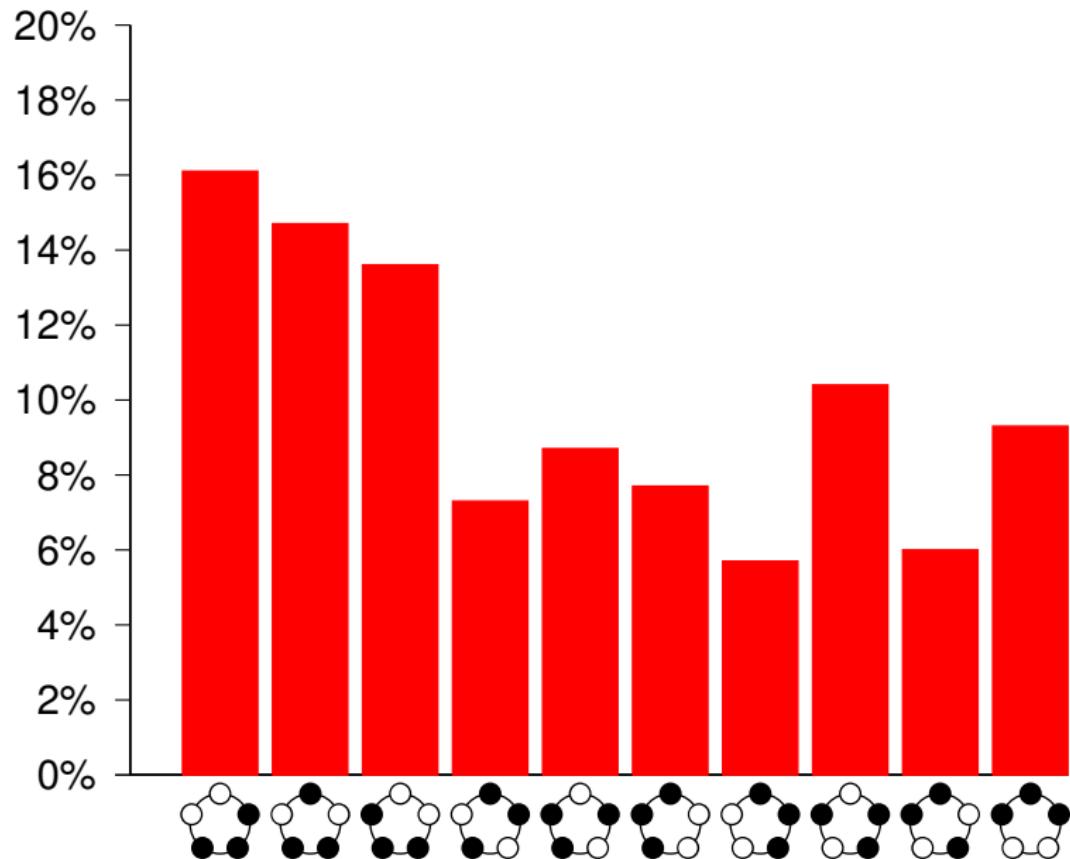
Stationary distribution



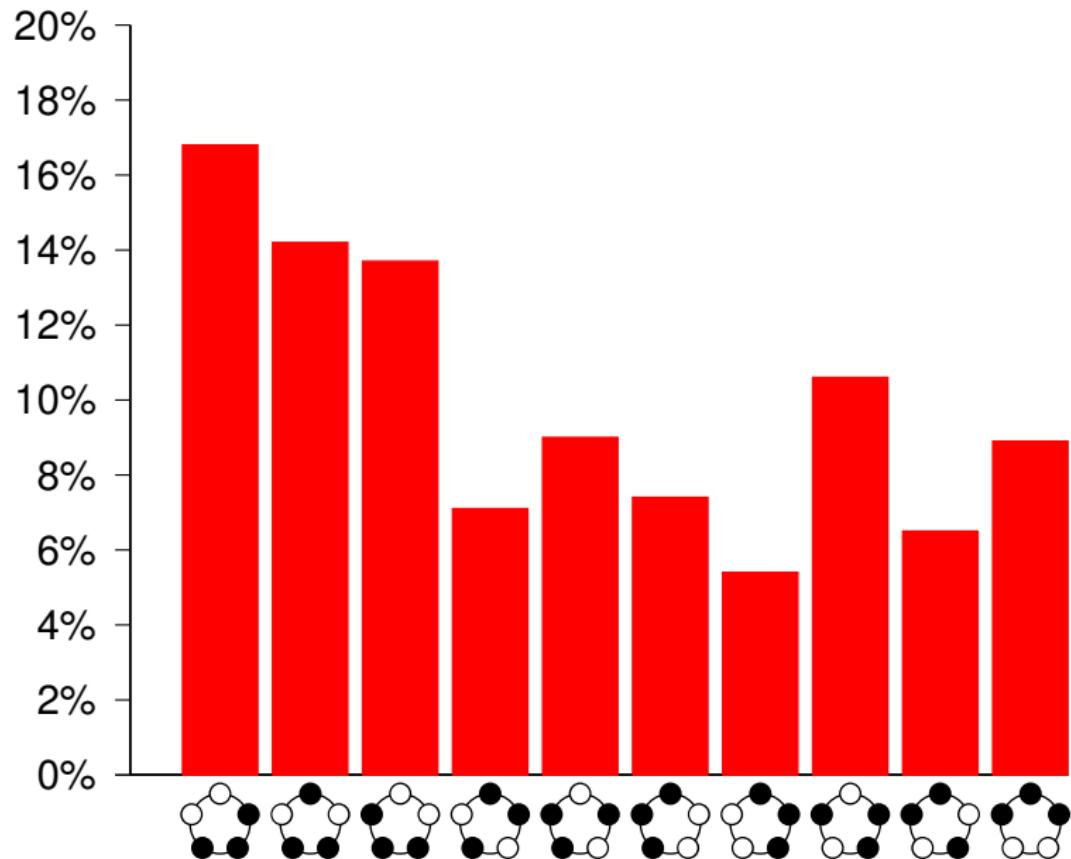
Stationary distribution



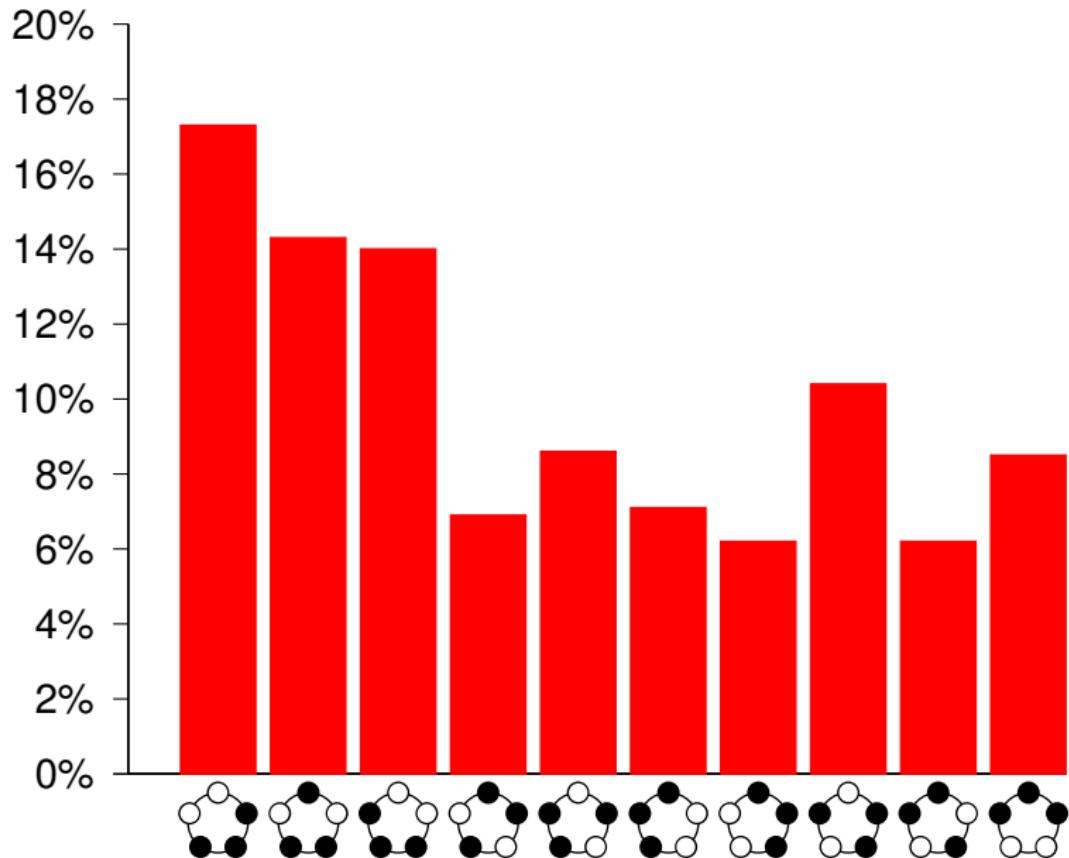
Stationary distribution



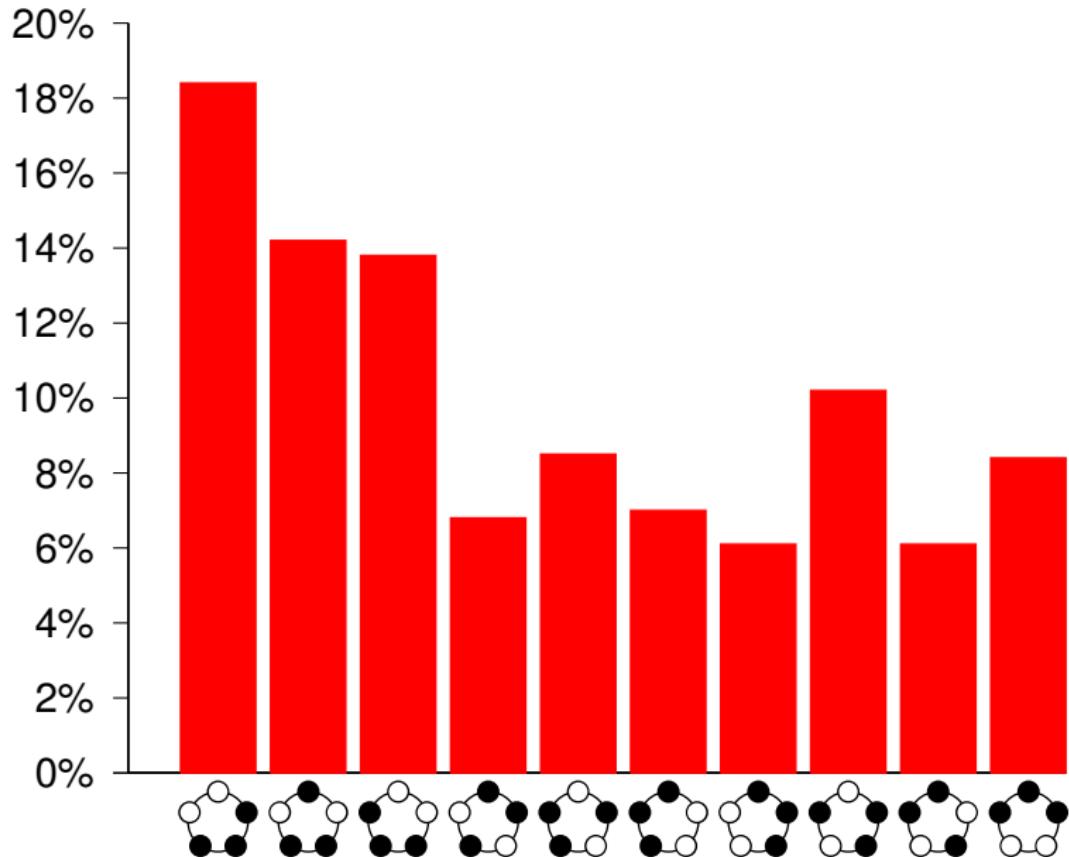
Stationary distribution



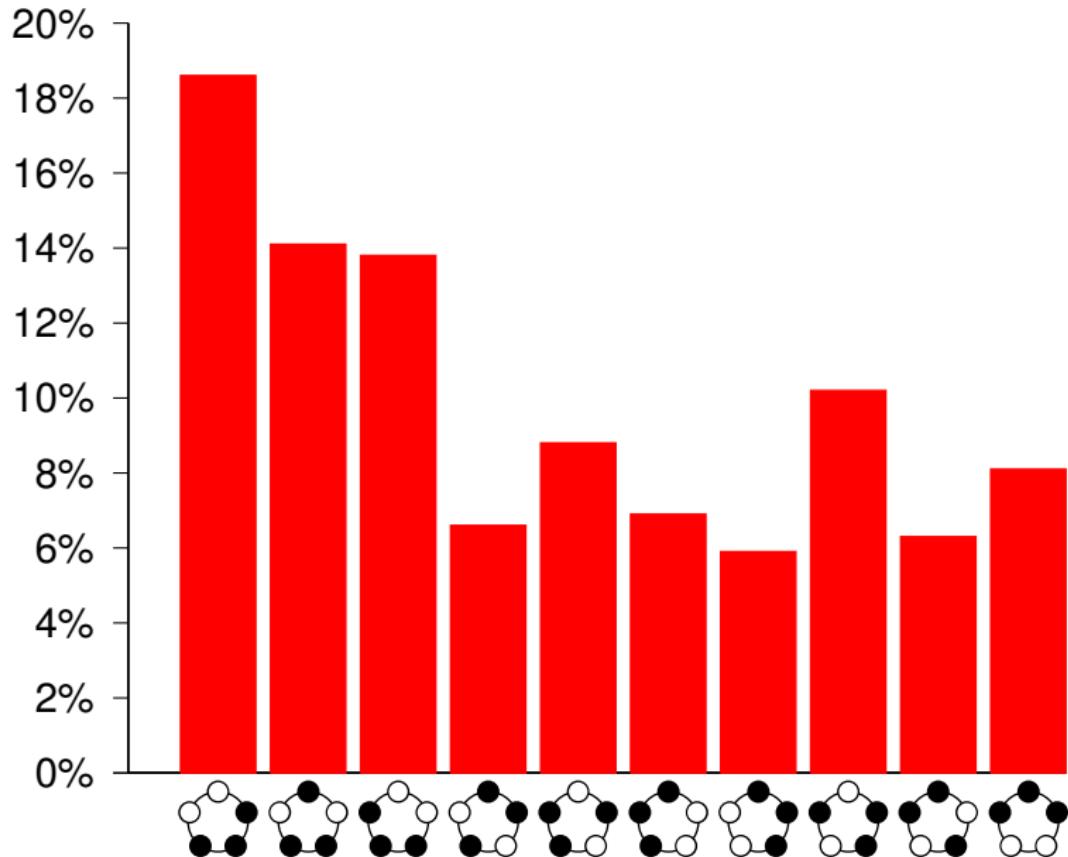
Stationary distribution



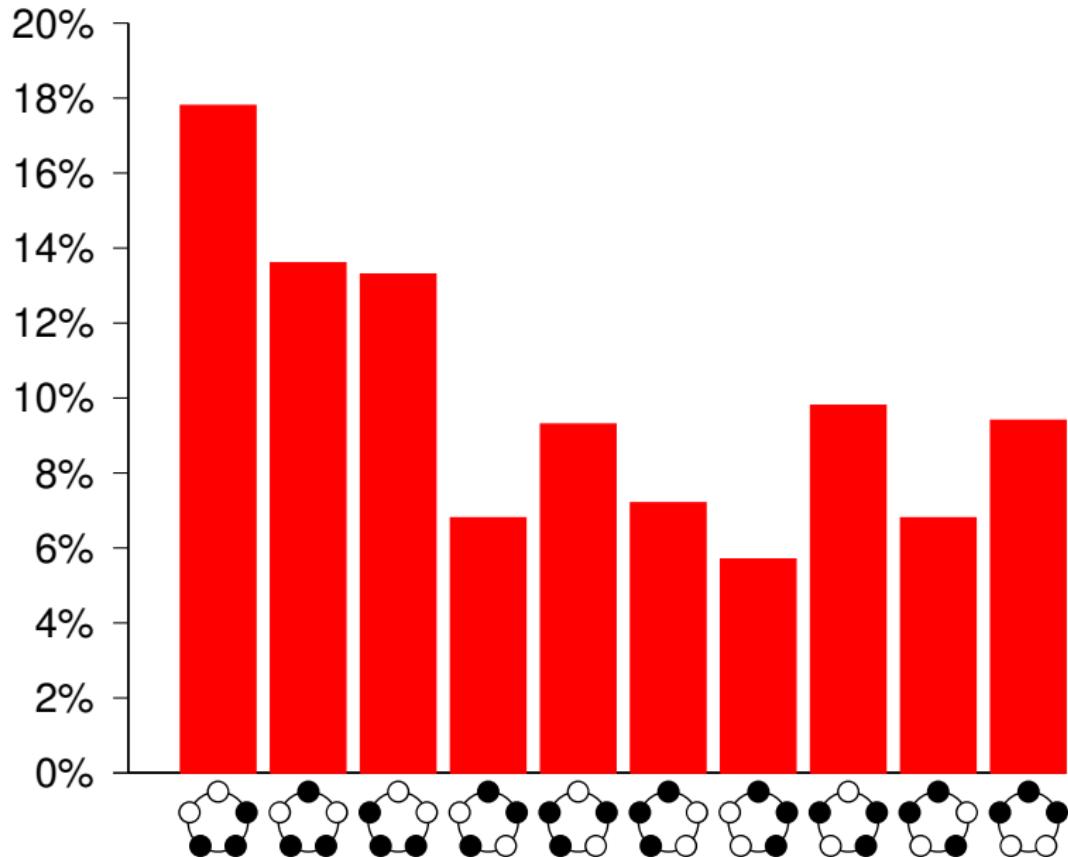
Stationary distribution



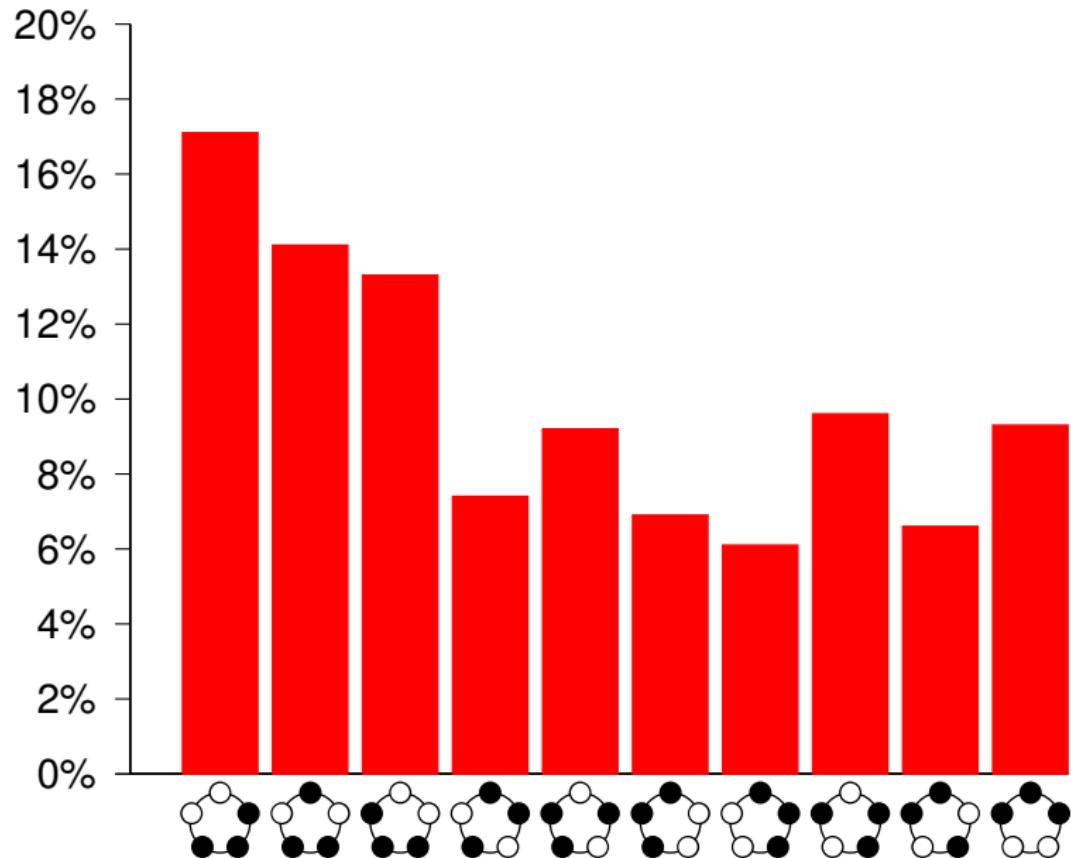
Stationary distribution



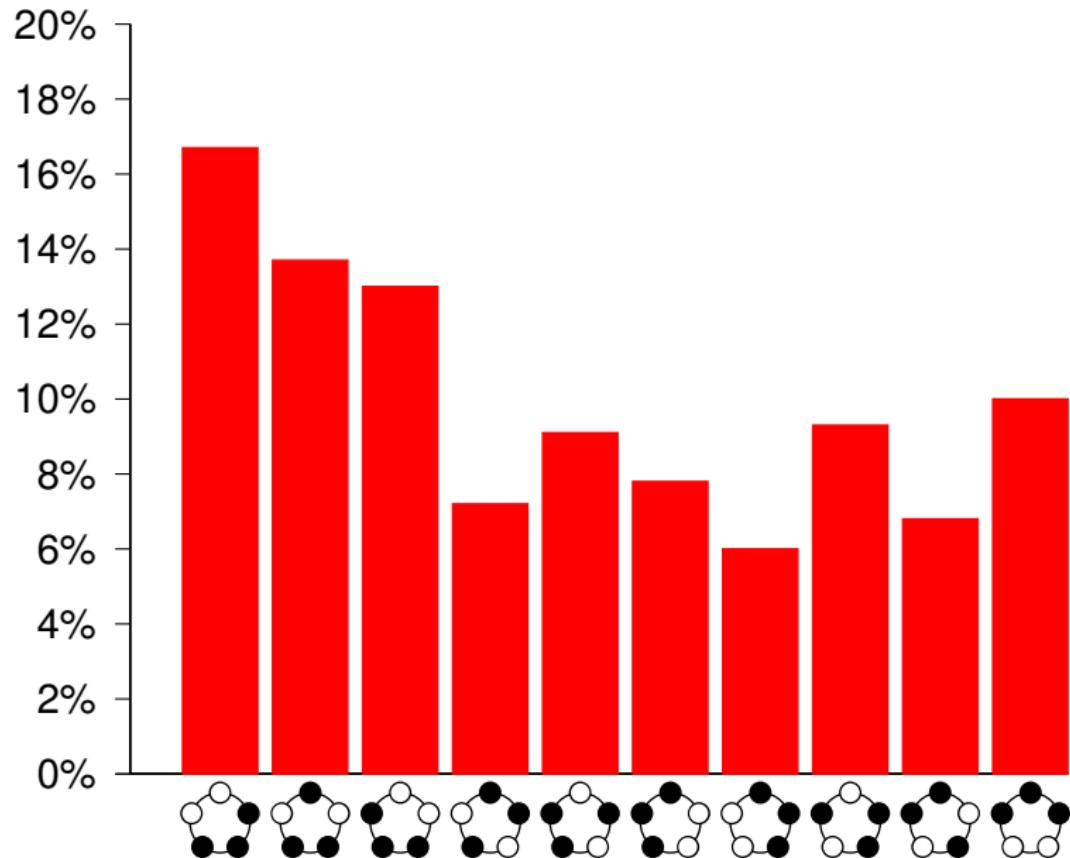
Stationary distribution



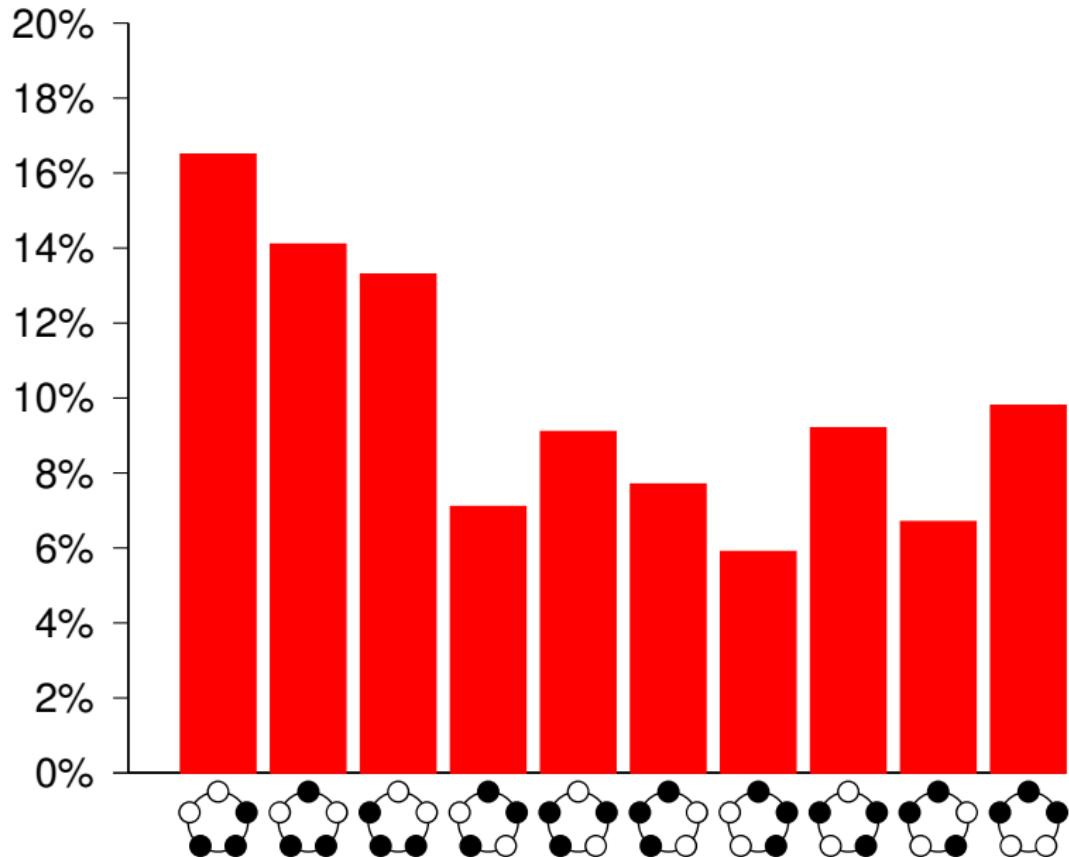
Stationary distribution



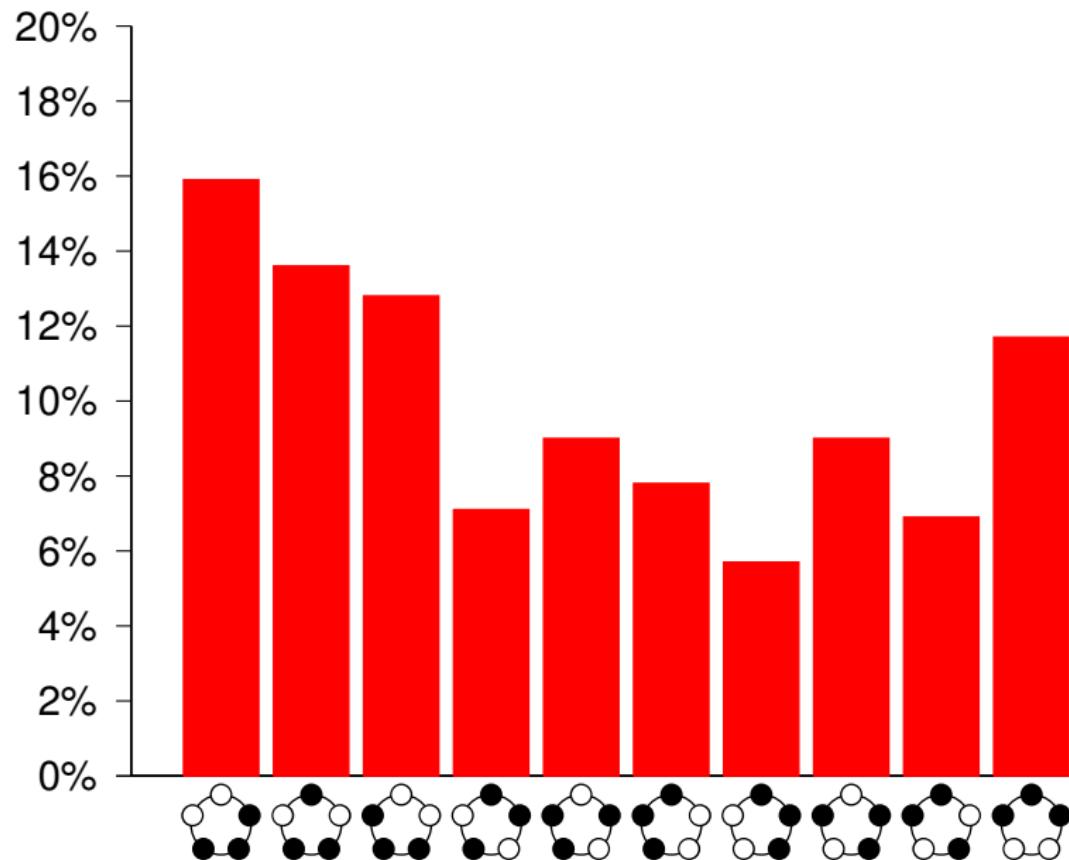
Stationary distribution



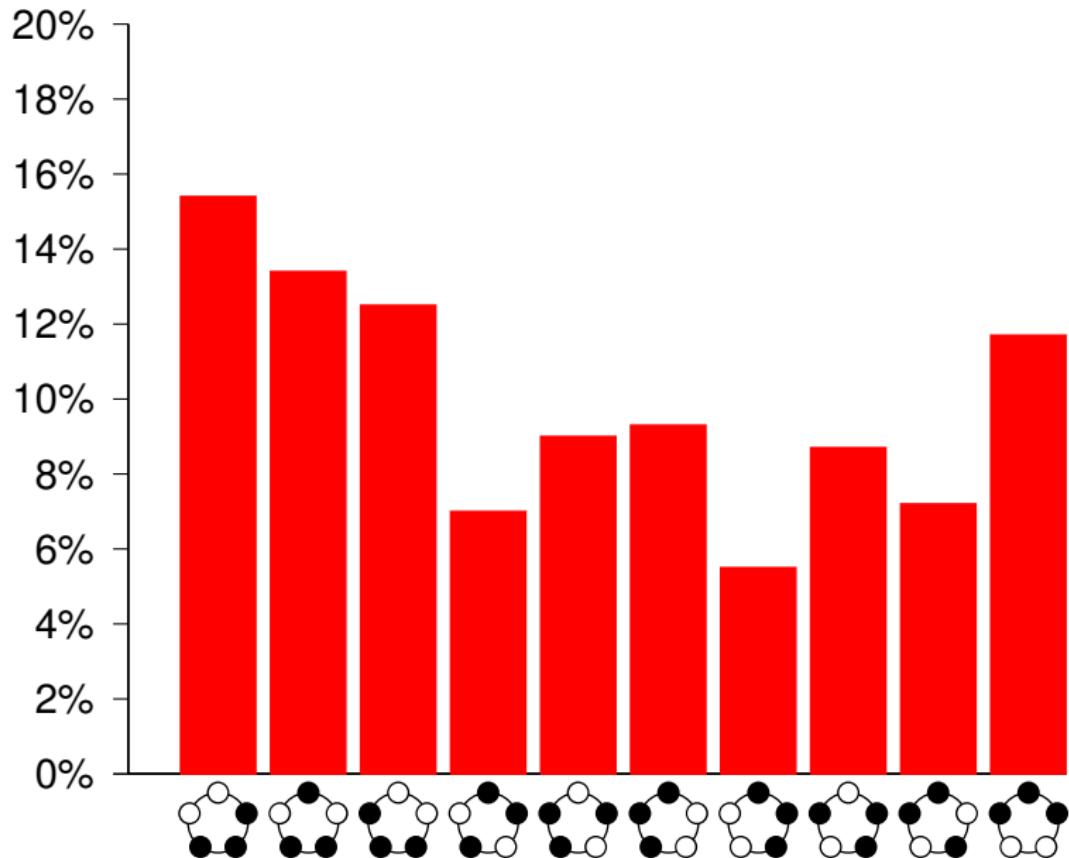
Stationary distribution



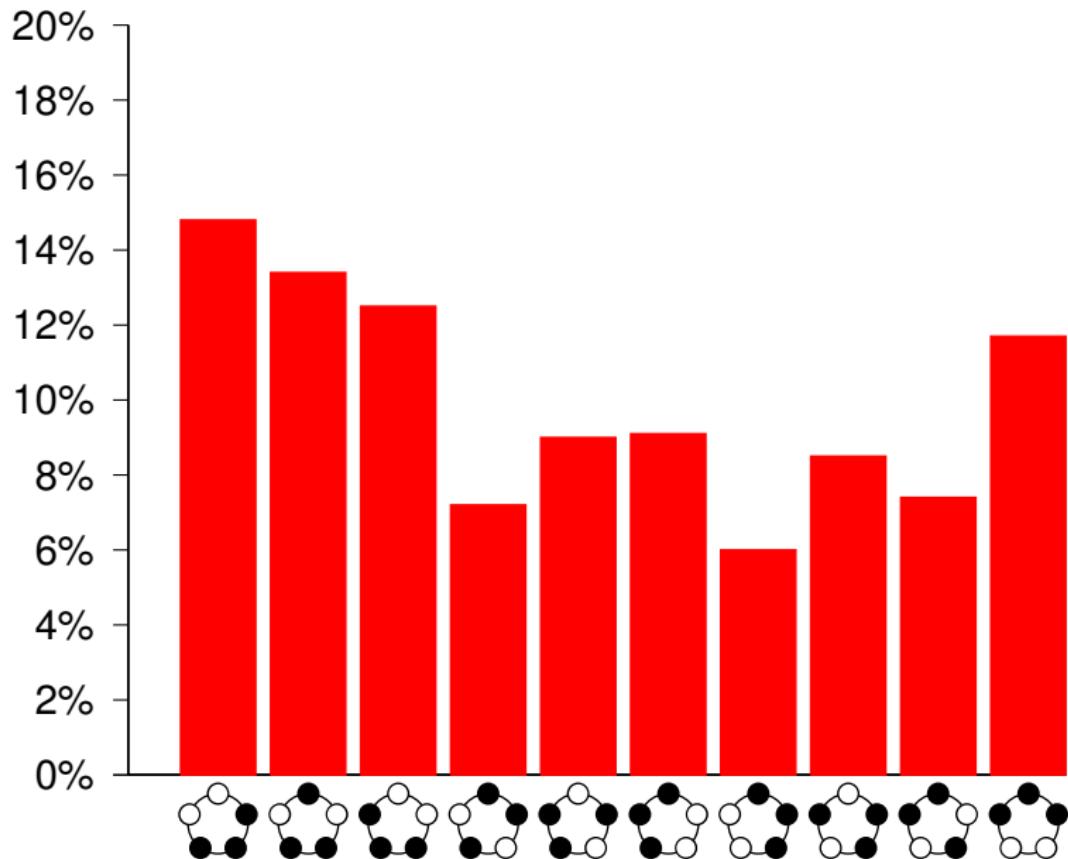
Stationary distribution



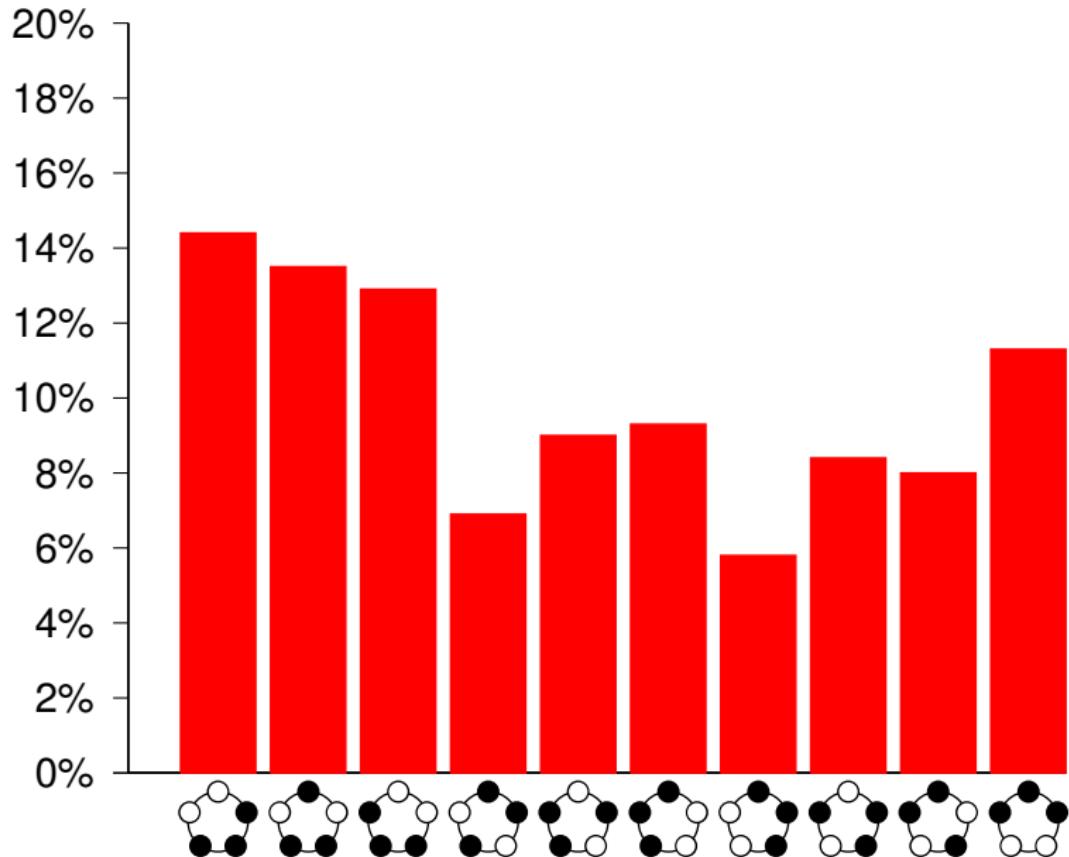
Stationary distribution



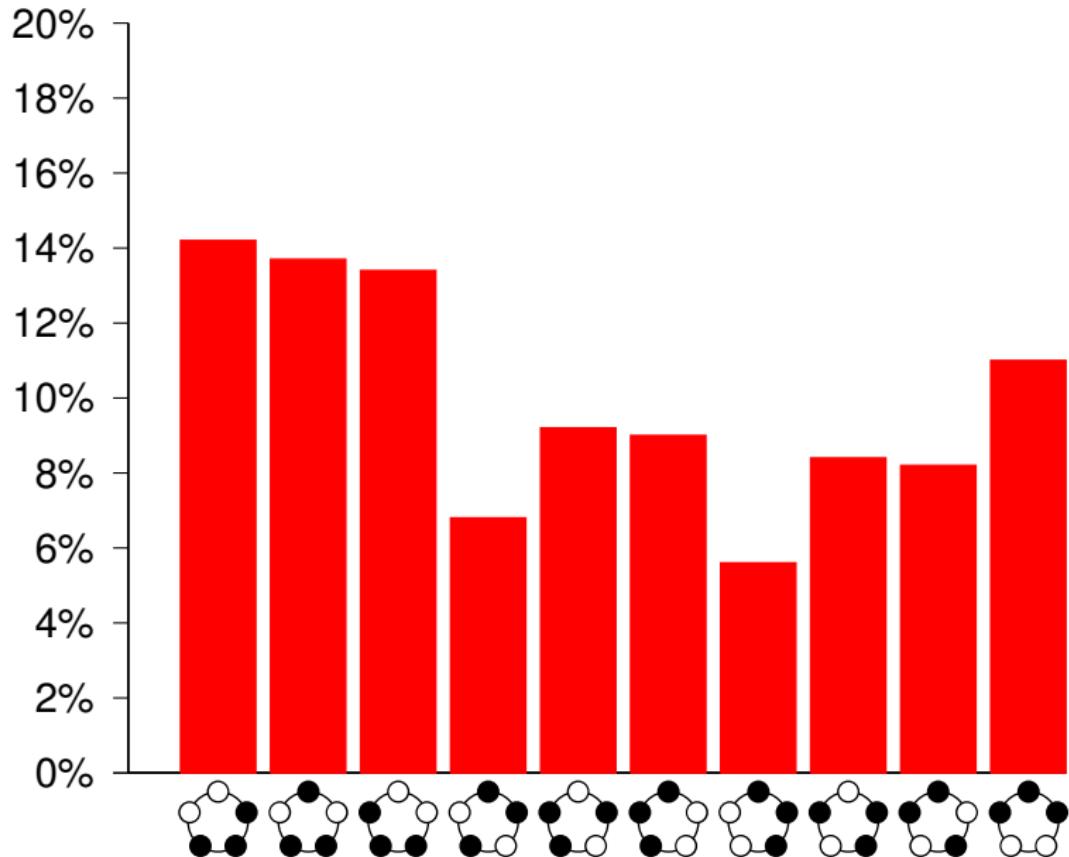
Stationary distribution



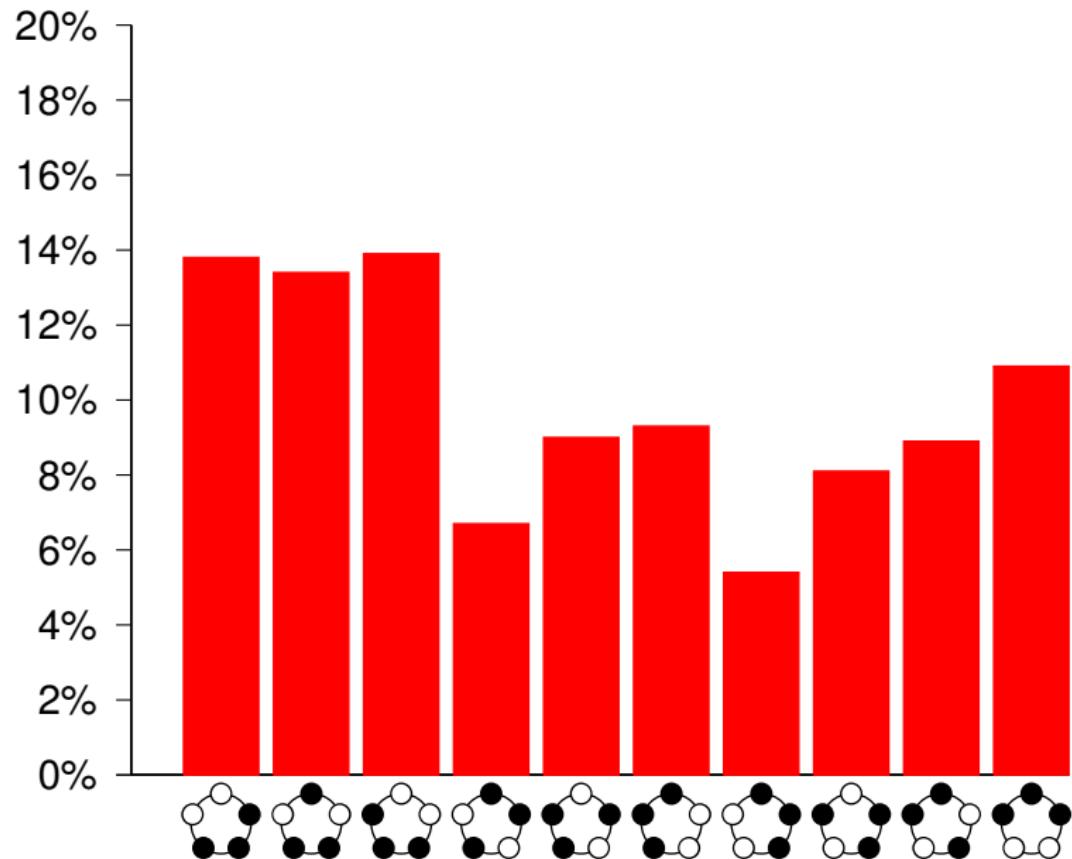
Stationary distribution



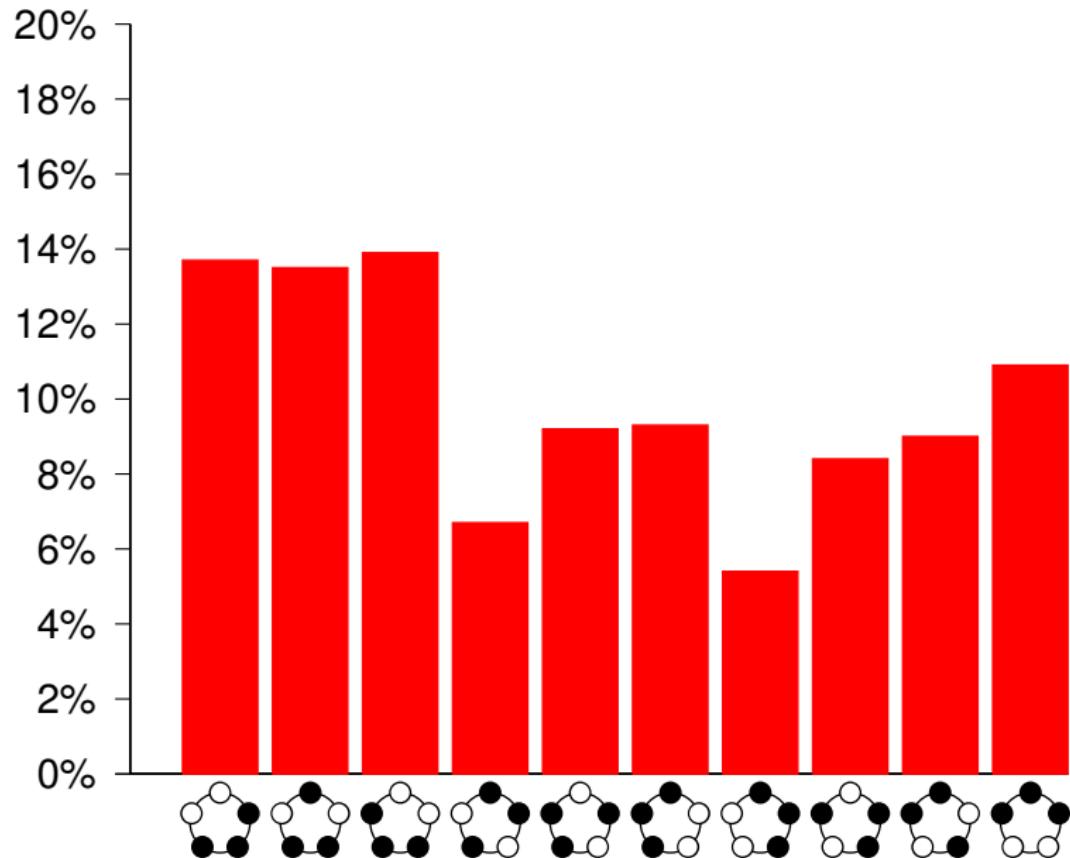
Stationary distribution



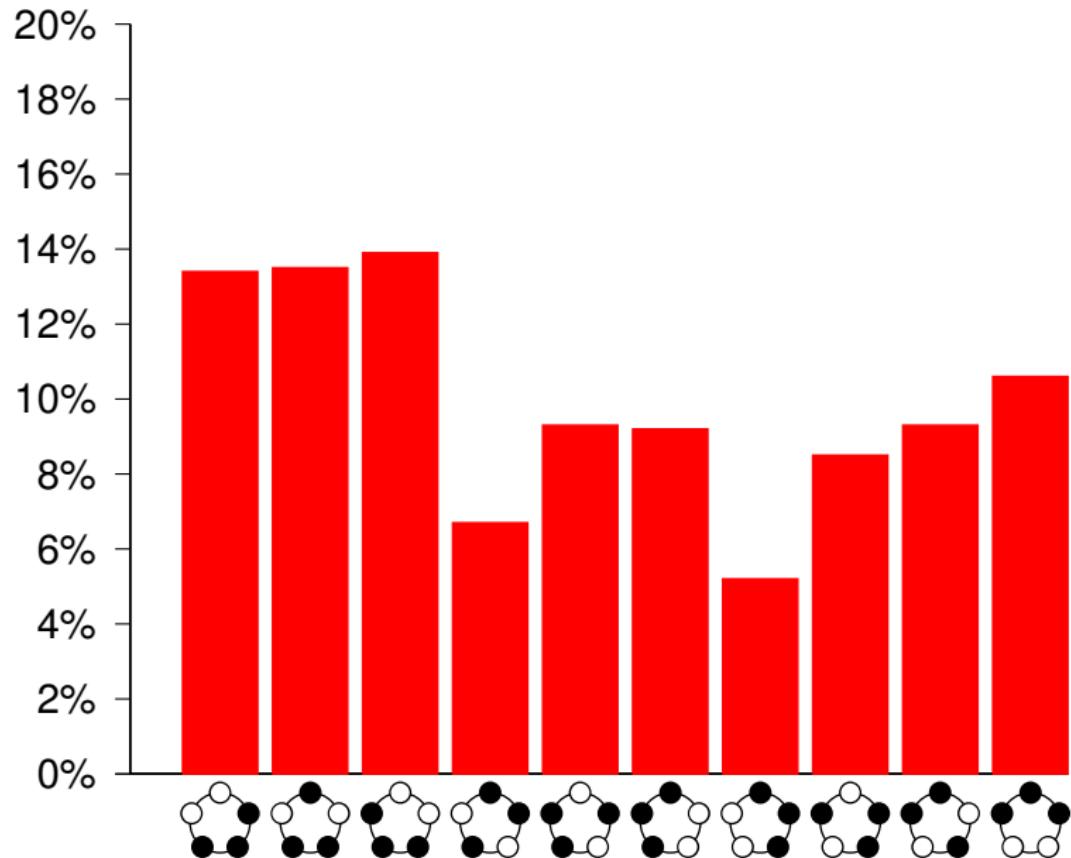
Stationary distribution



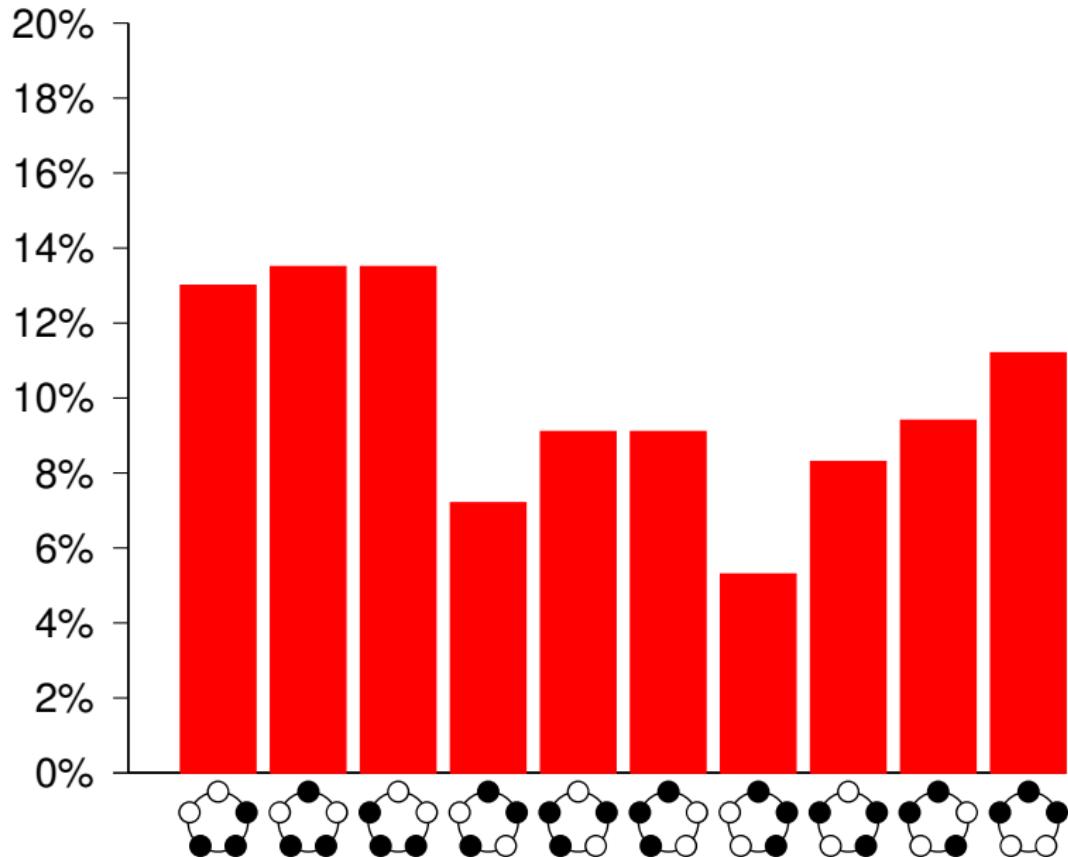
Stationary distribution



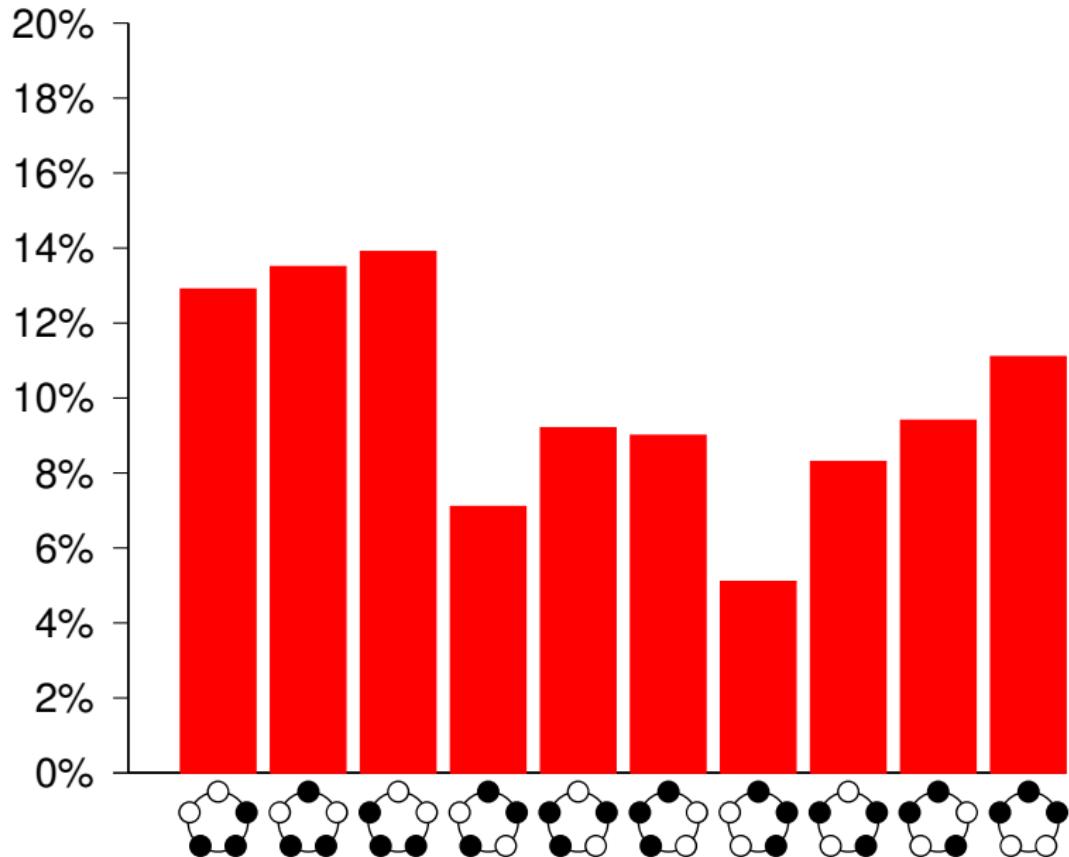
Stationary distribution



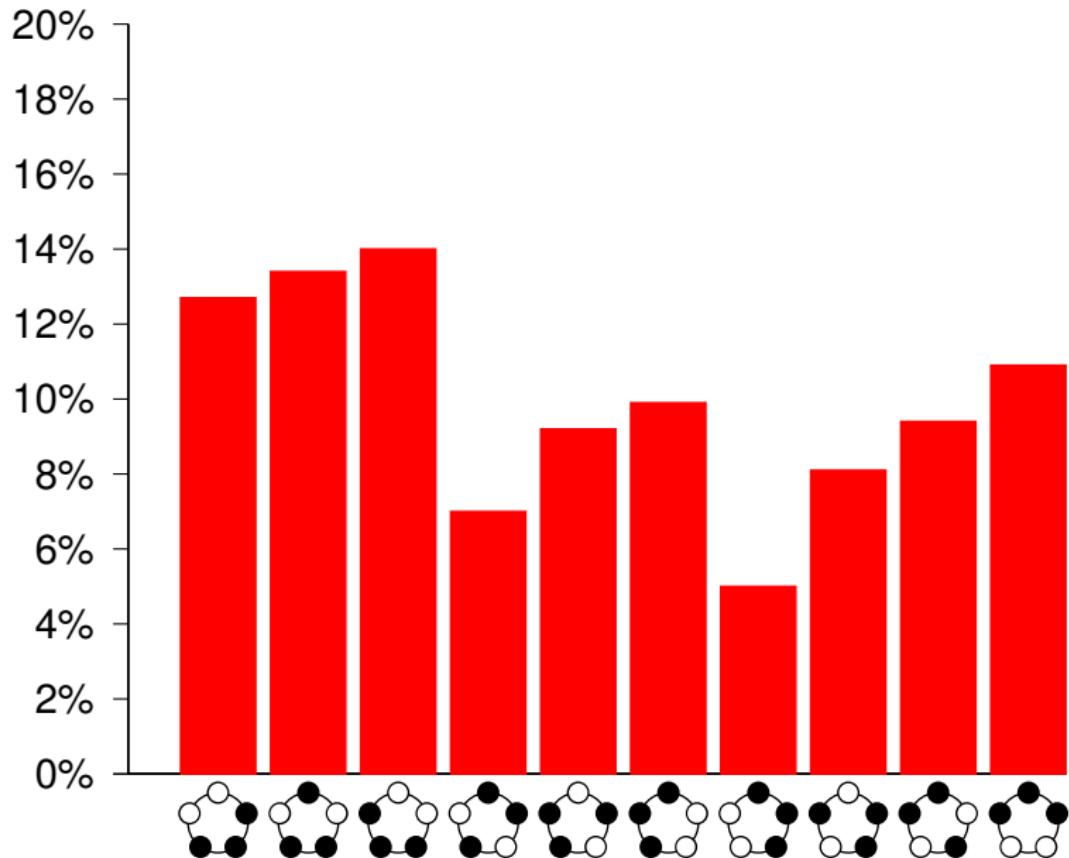
Stationary distribution



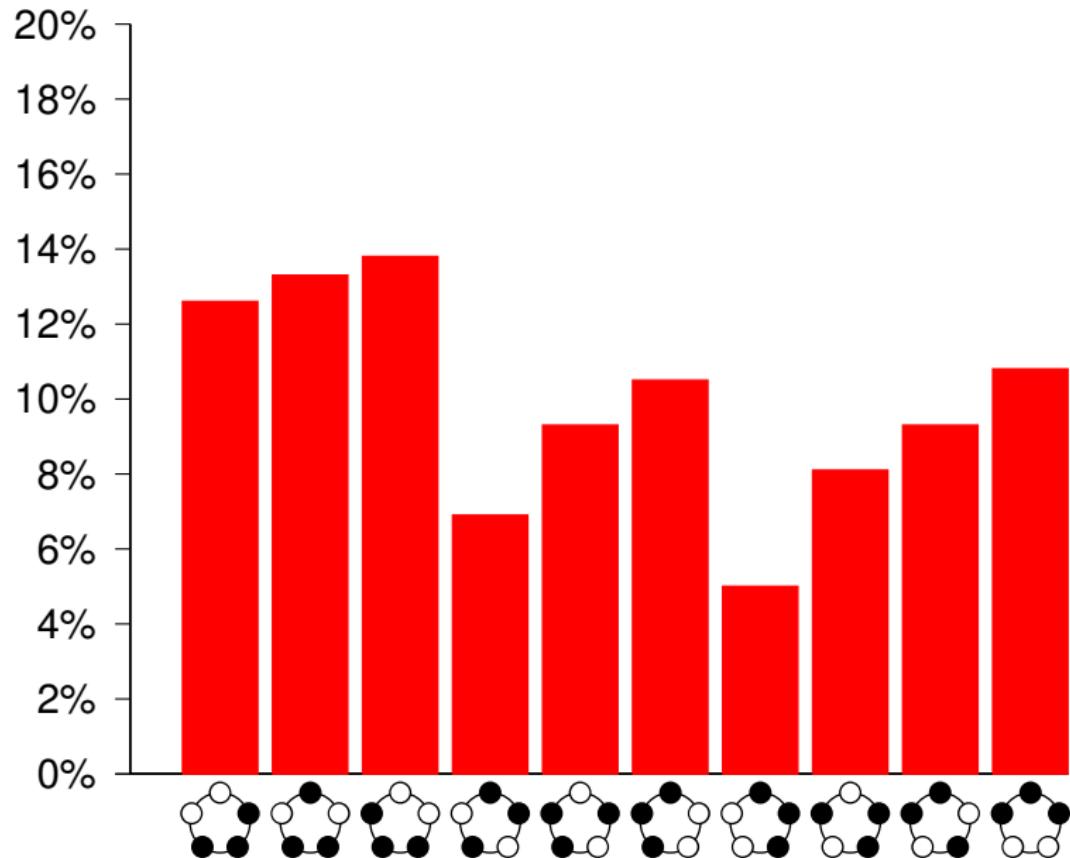
Stationary distribution



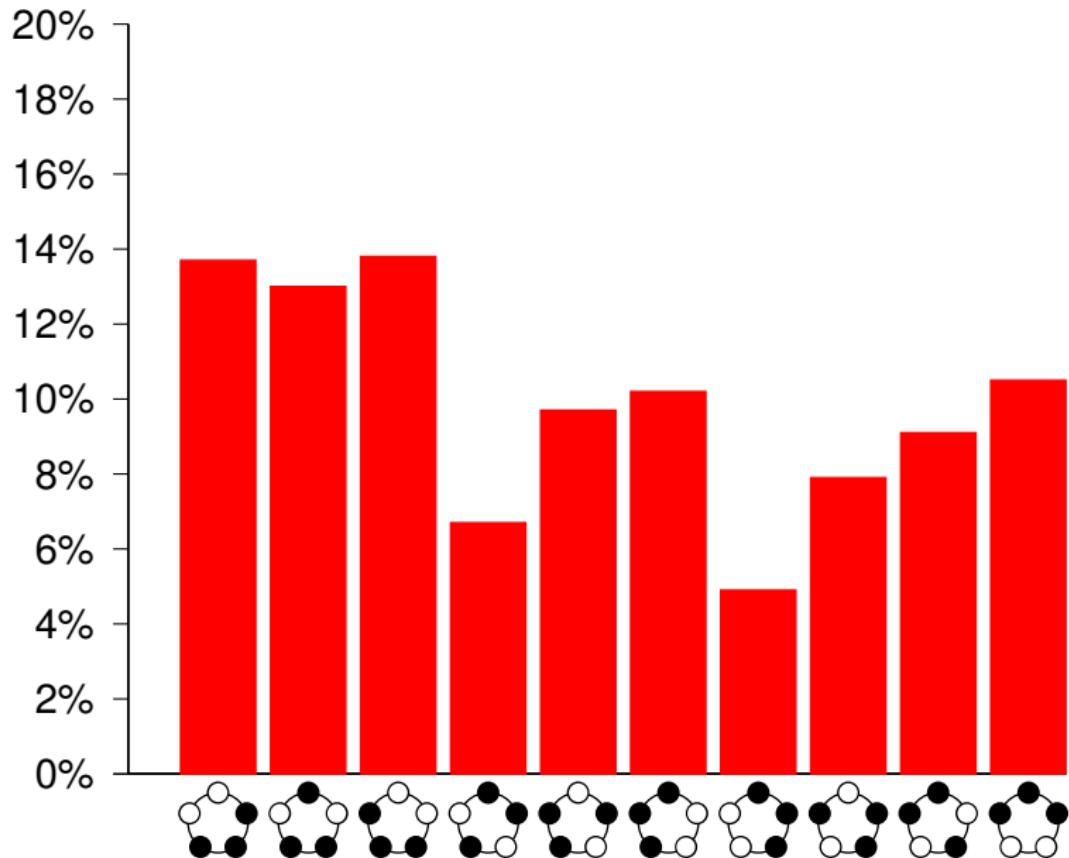
Stationary distribution



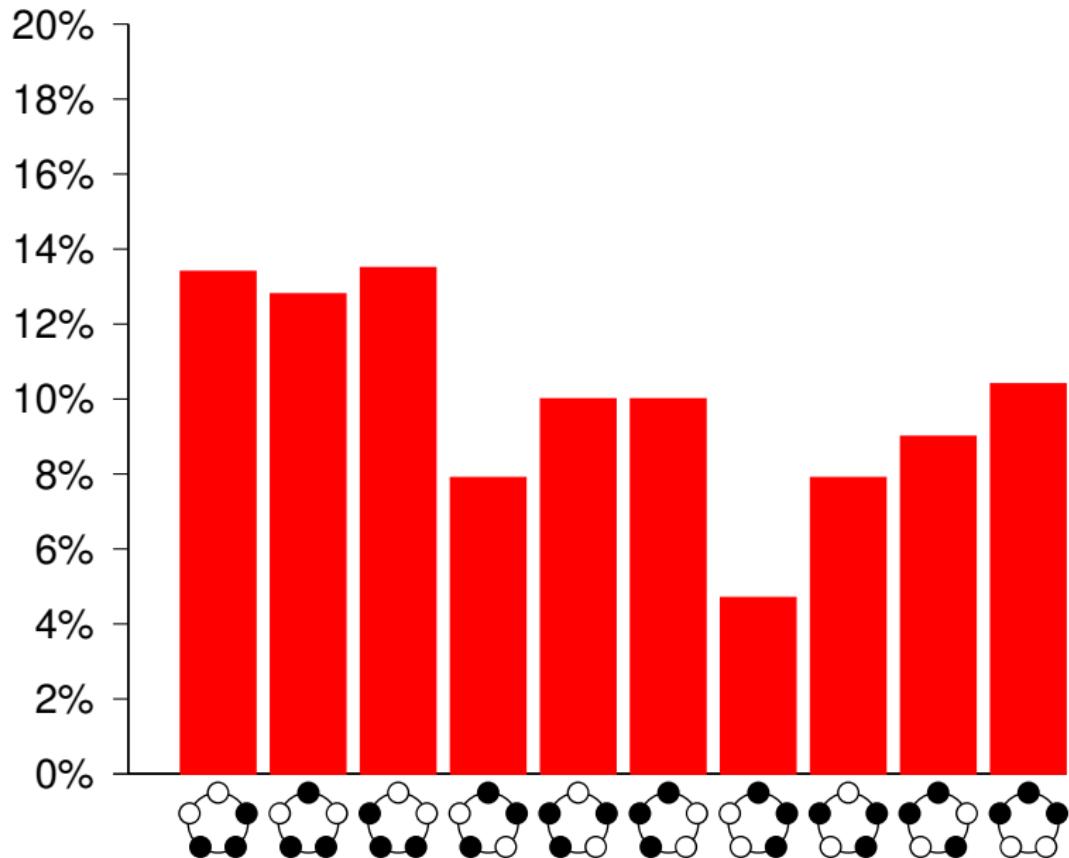
Stationary distribution



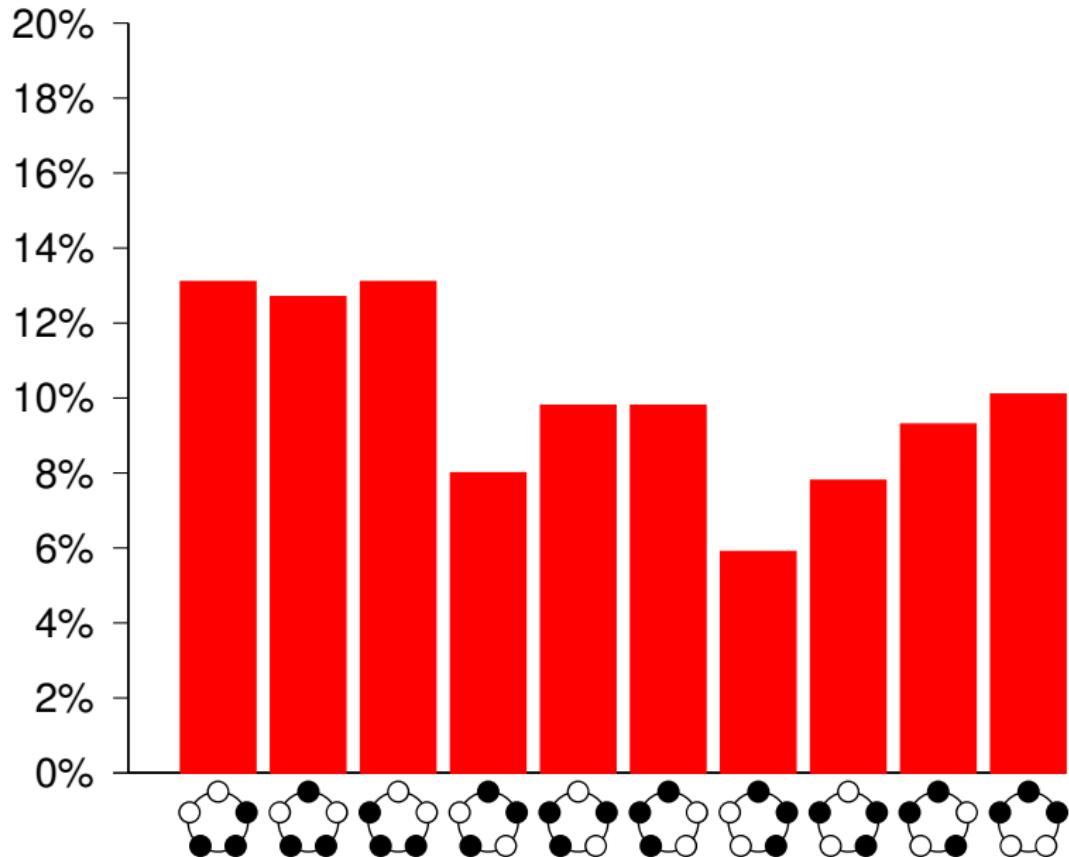
Stationary distribution



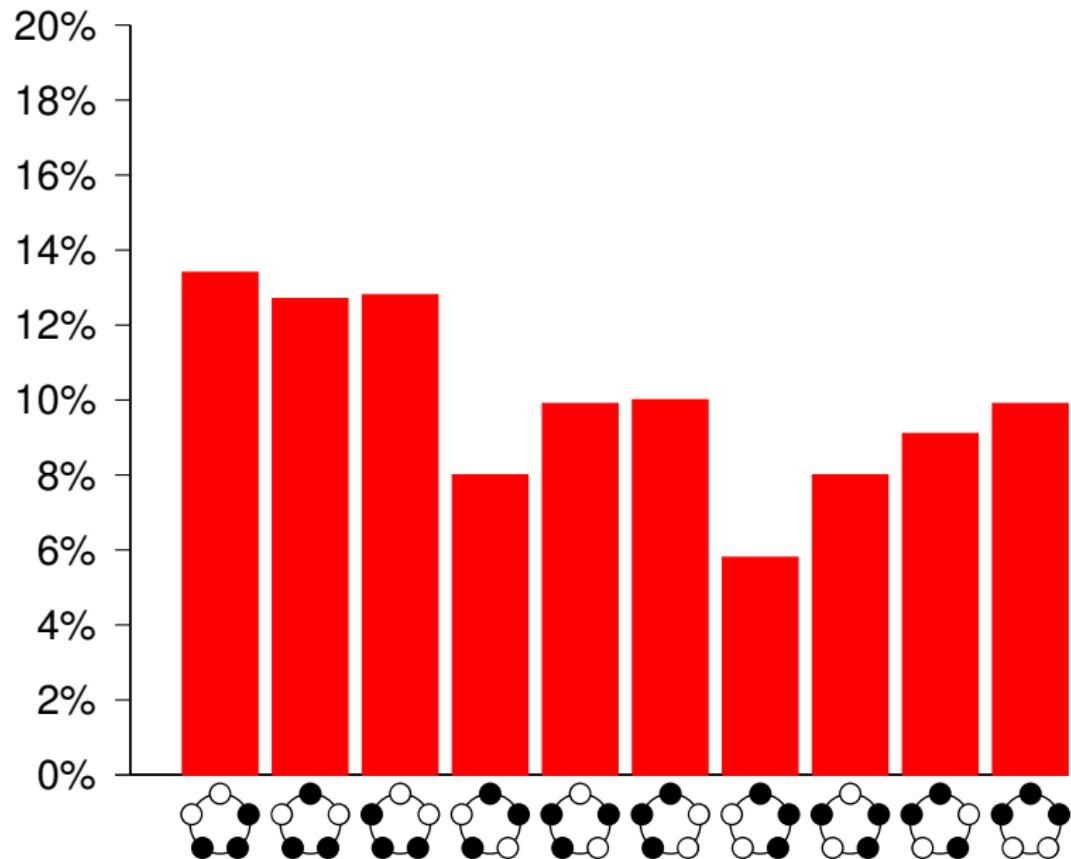
Stationary distribution



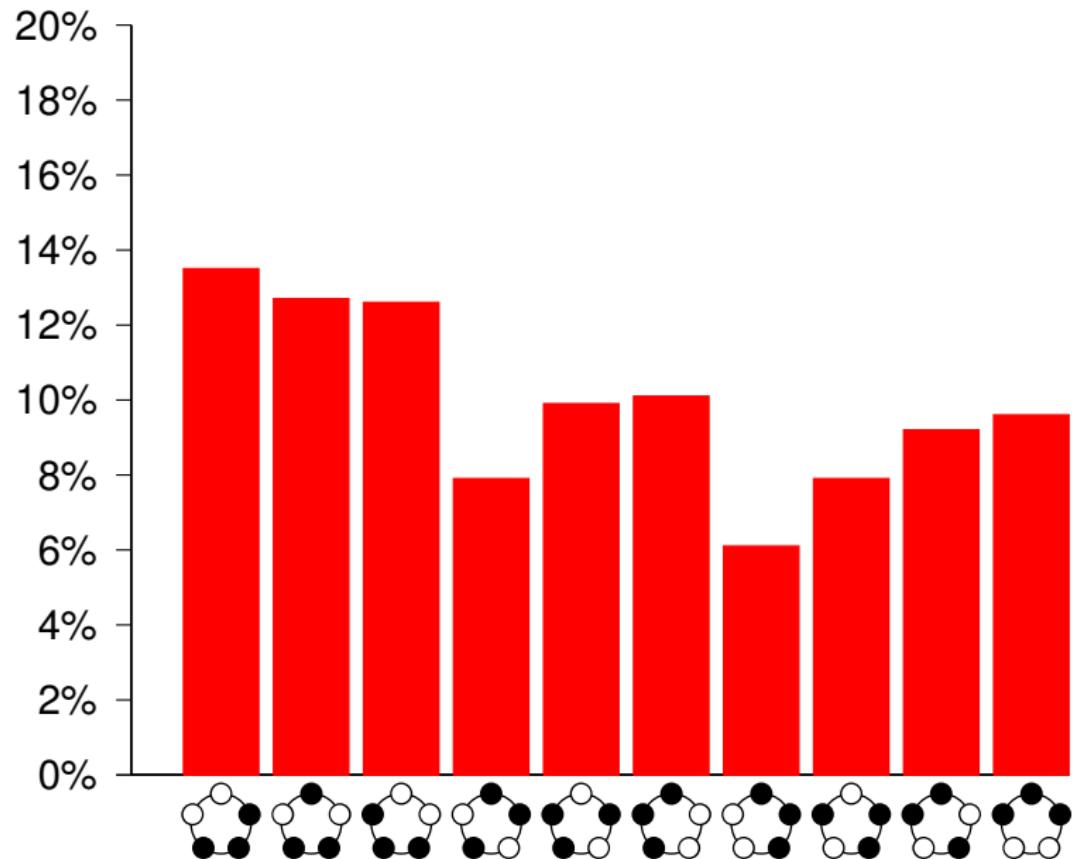
Stationary distribution



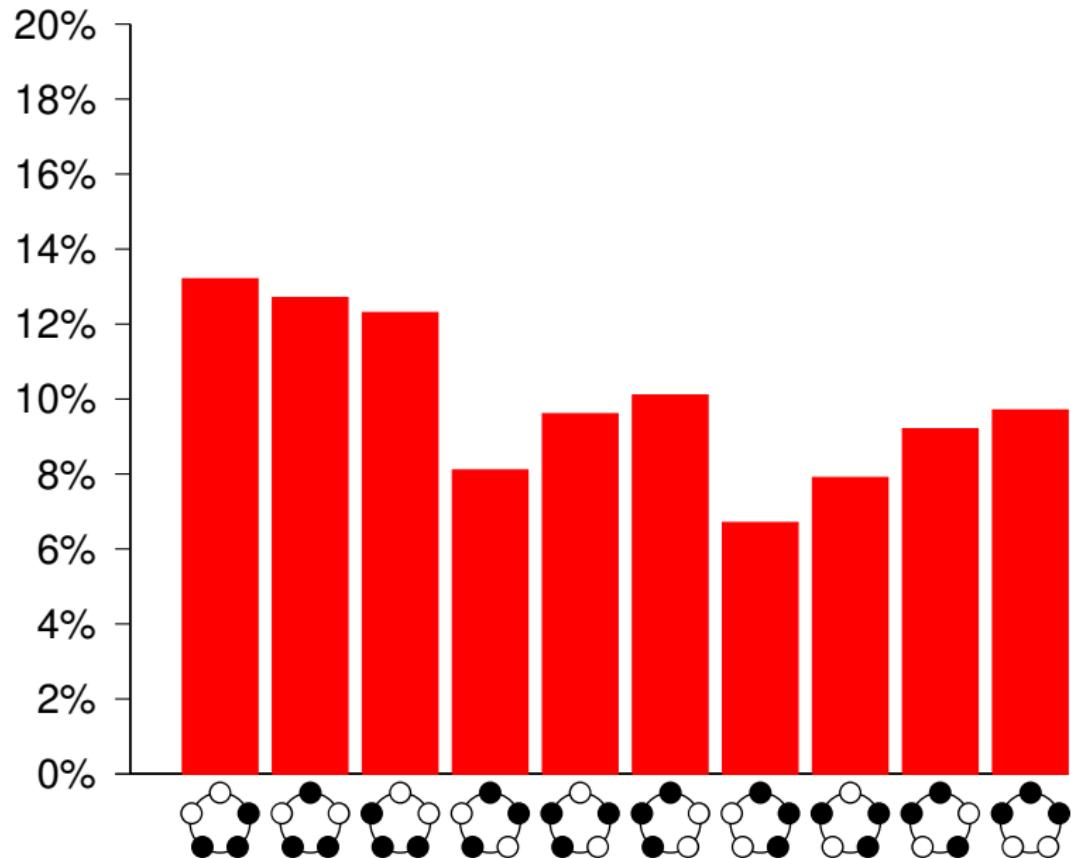
Stationary distribution



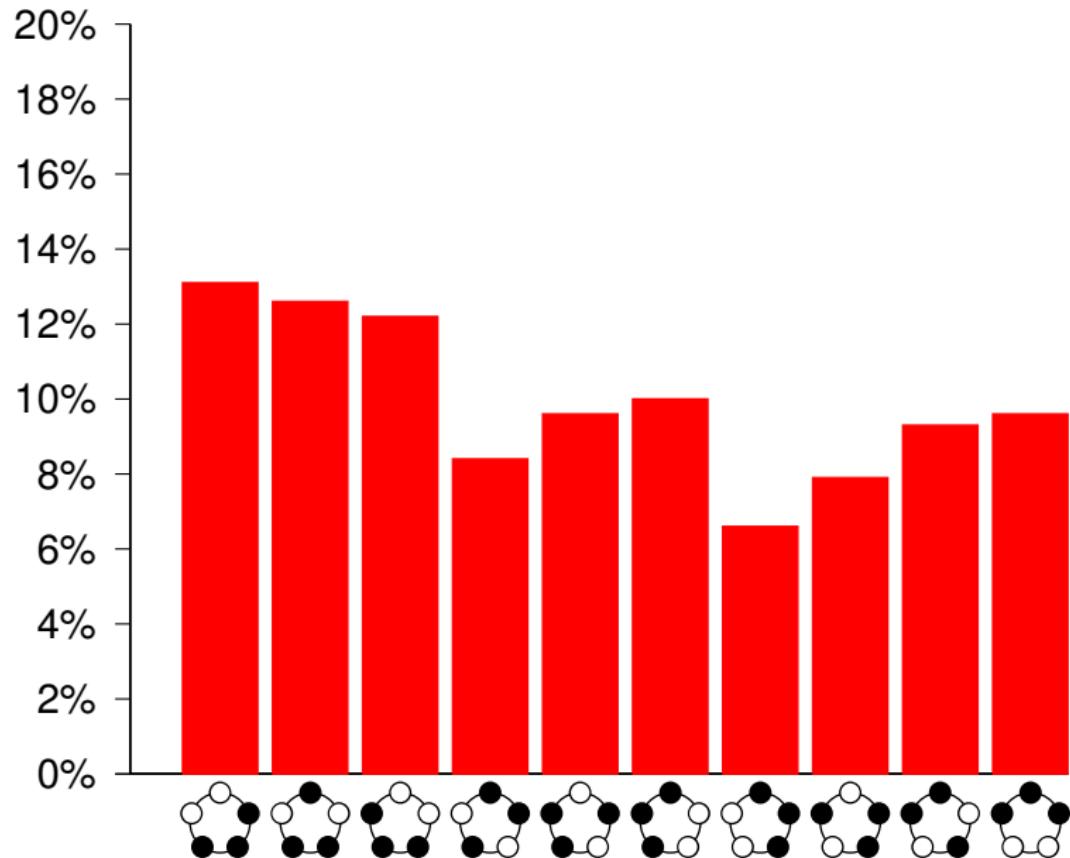
Stationary distribution



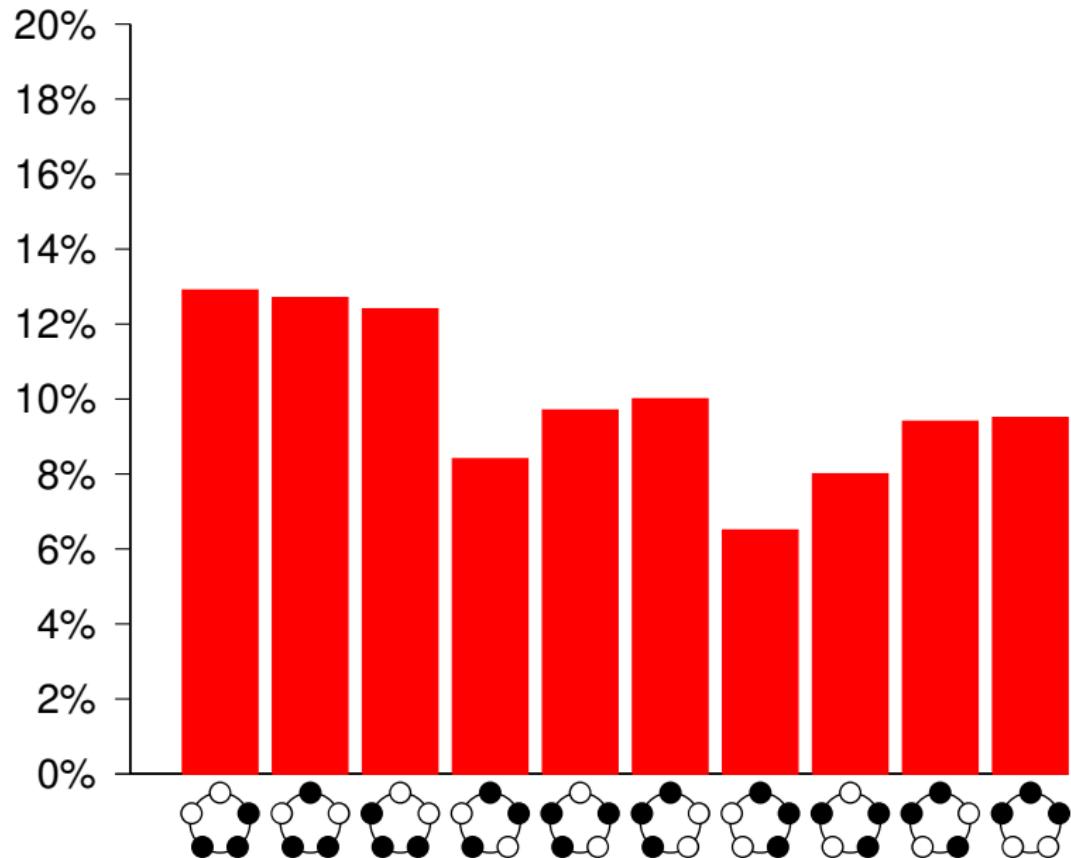
Stationary distribution



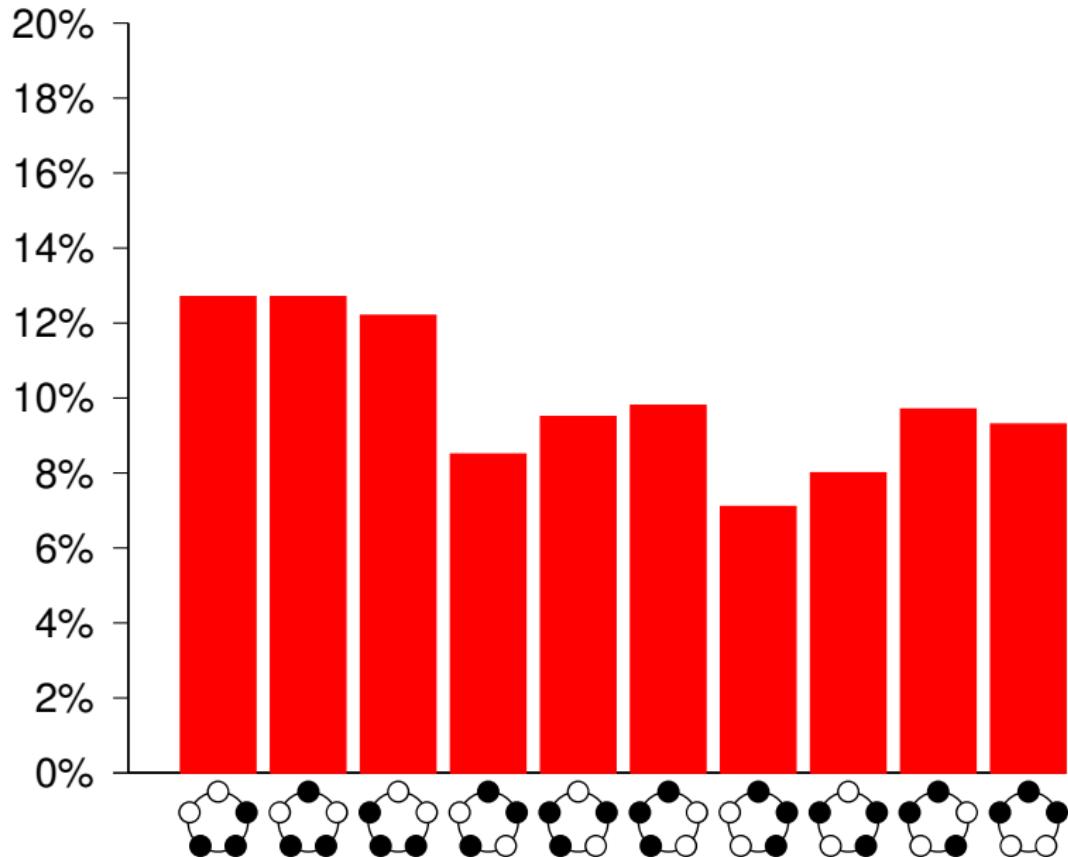
Stationary distribution



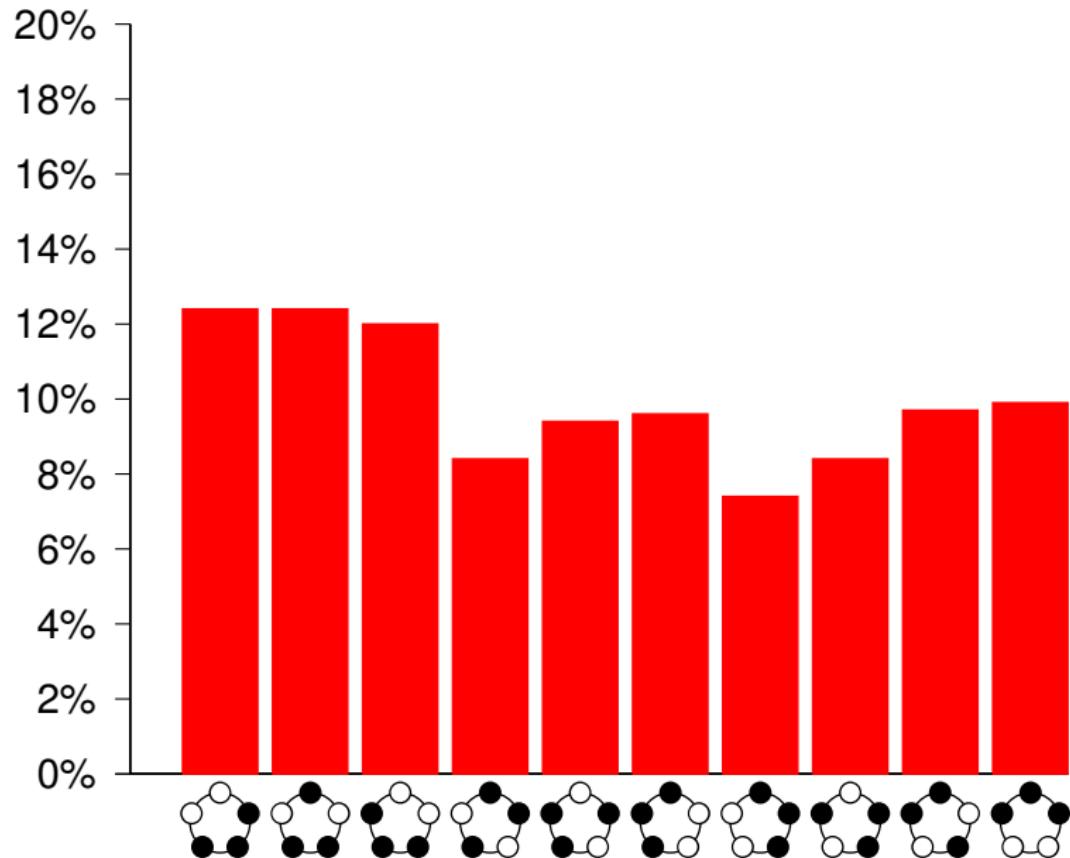
Stationary distribution



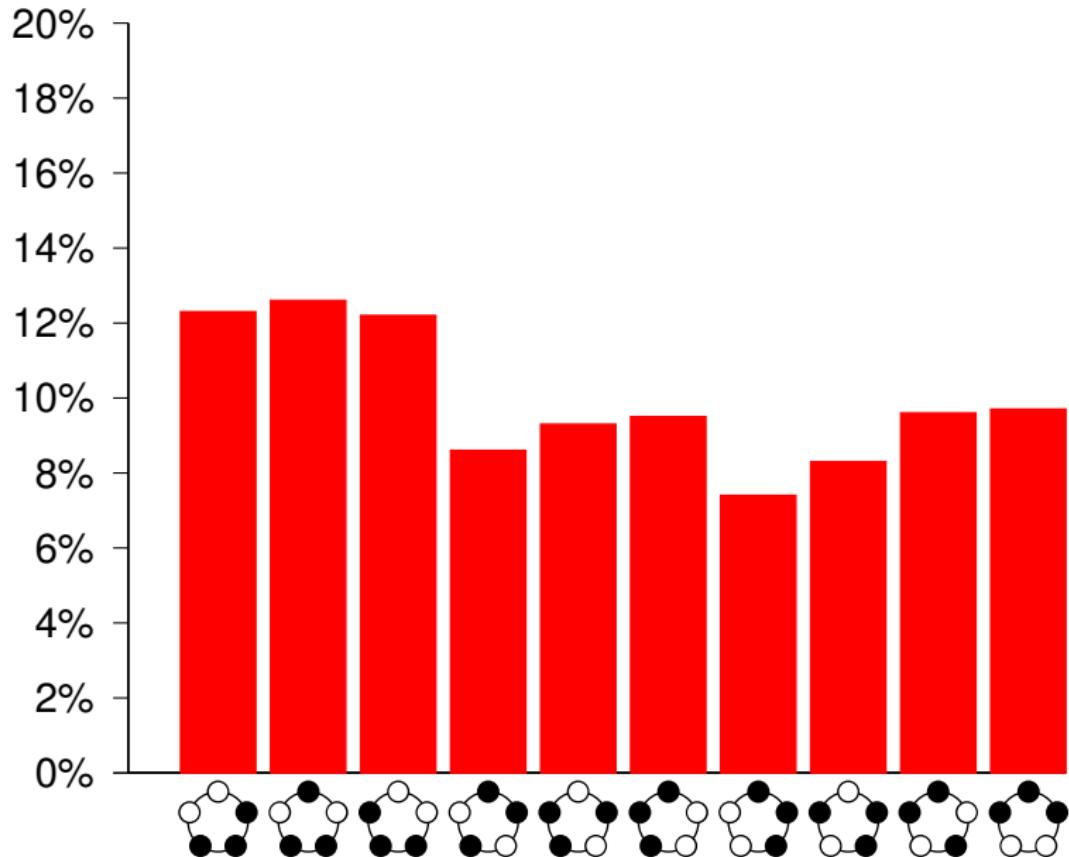
Stationary distribution



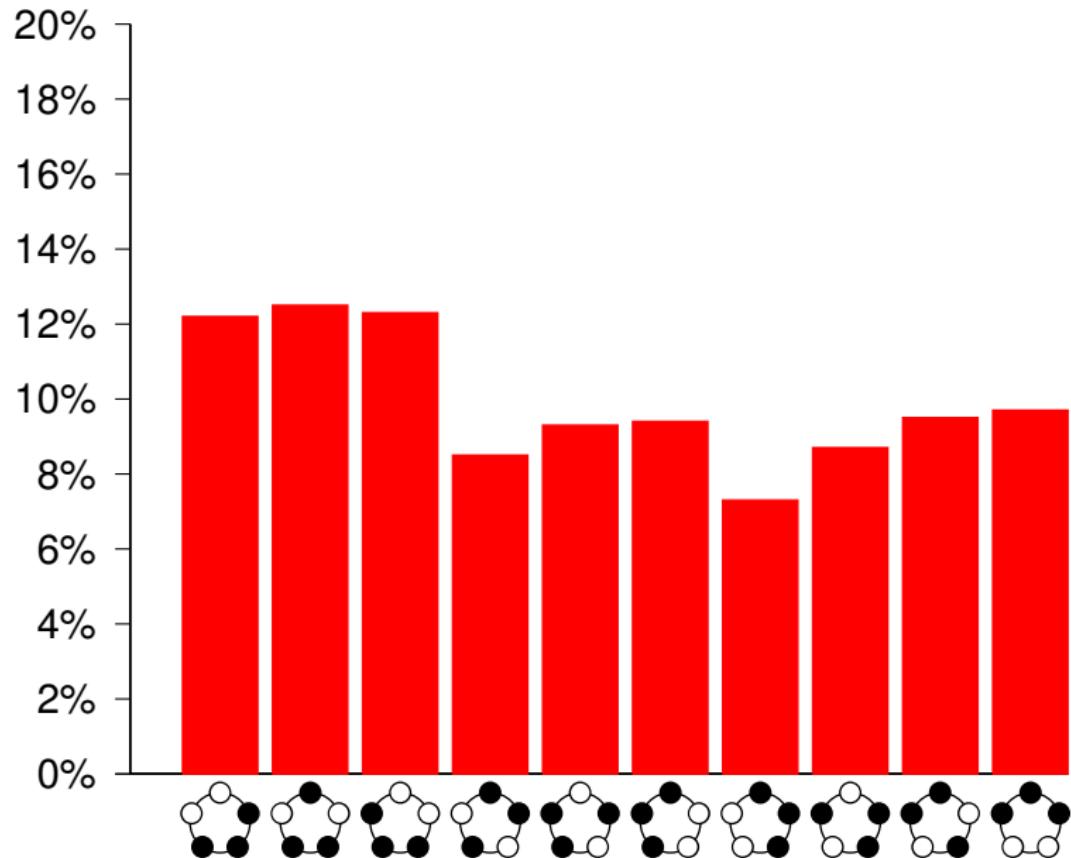
Stationary distribution



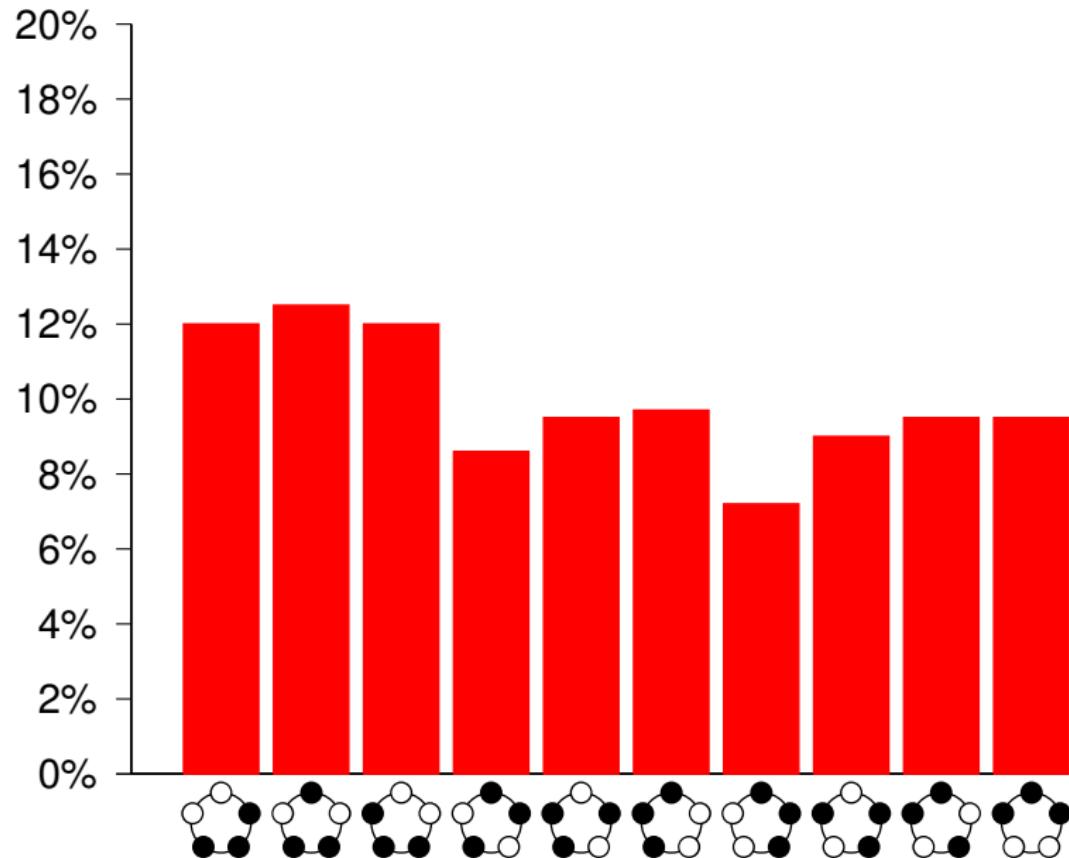
Stationary distribution



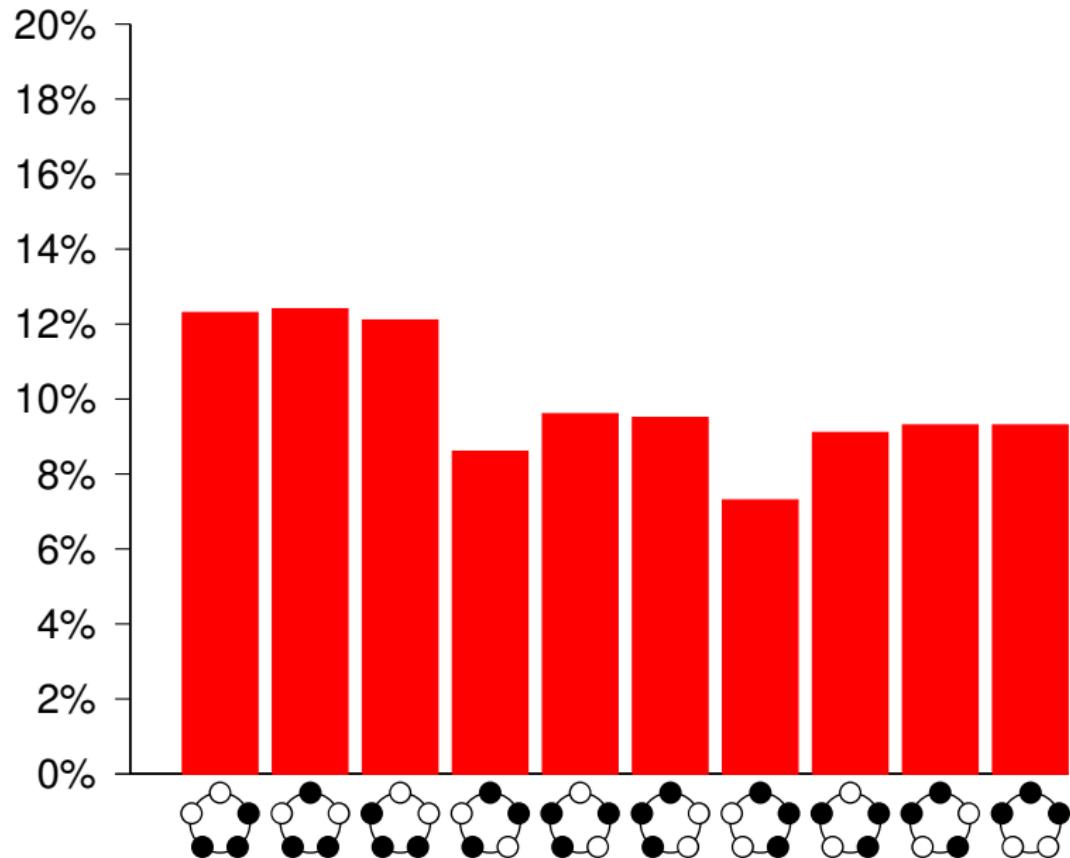
Stationary distribution



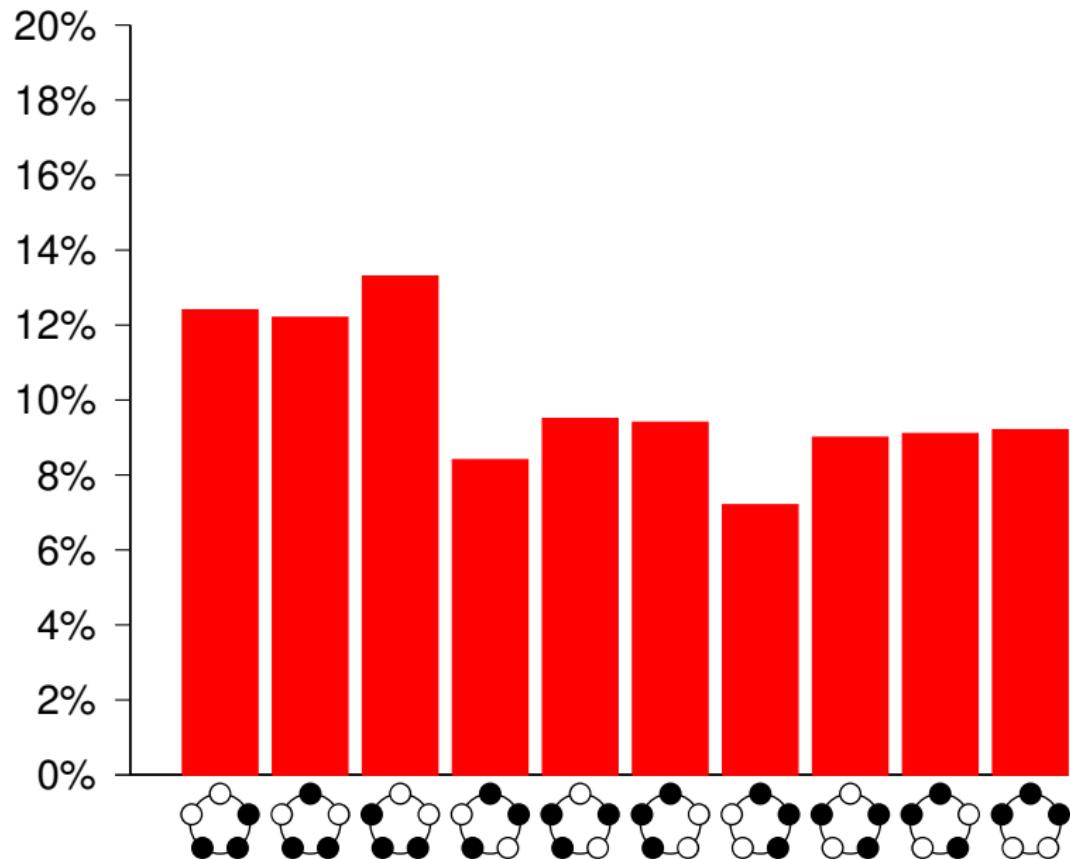
Stationary distribution



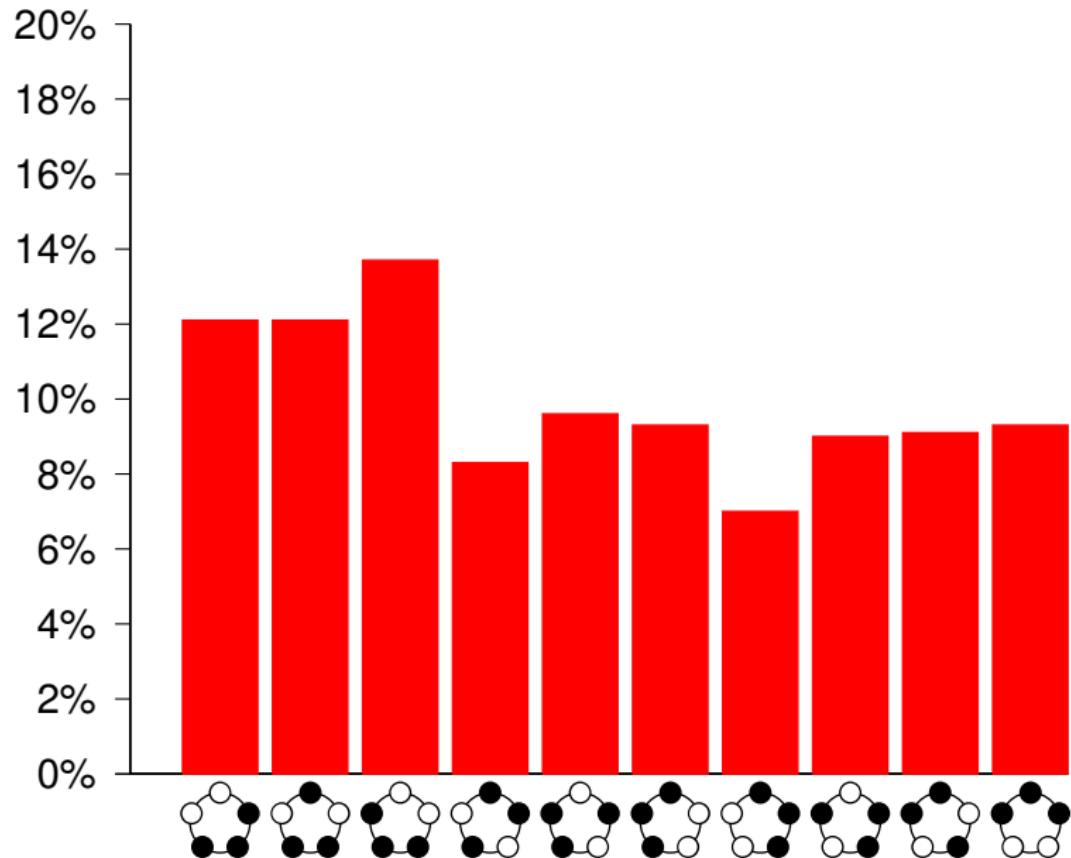
Stationary distribution



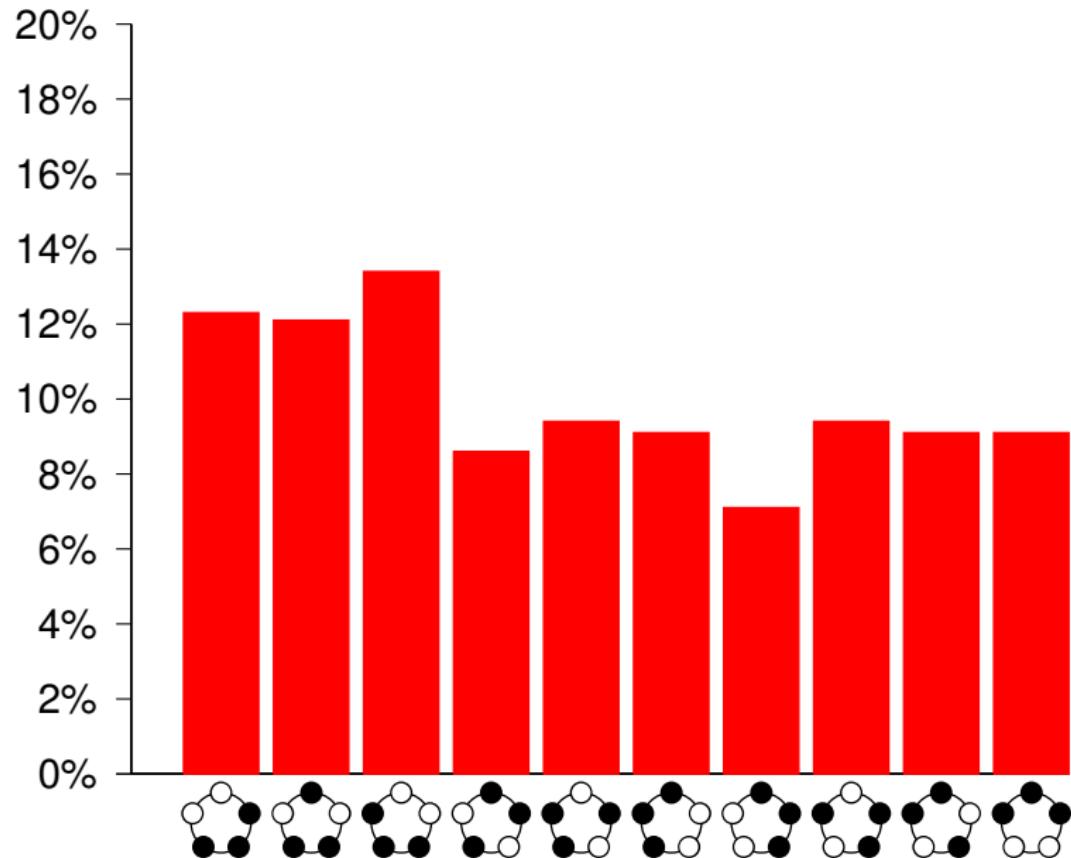
Stationary distribution



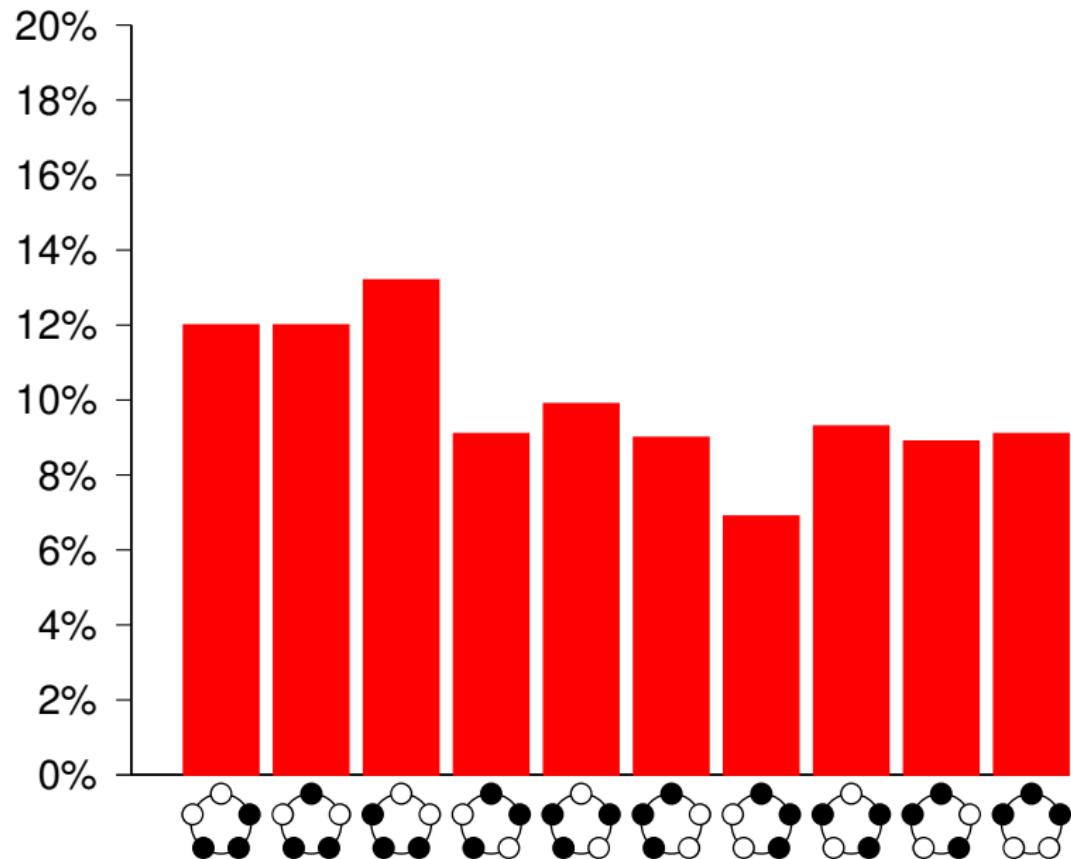
Stationary distribution



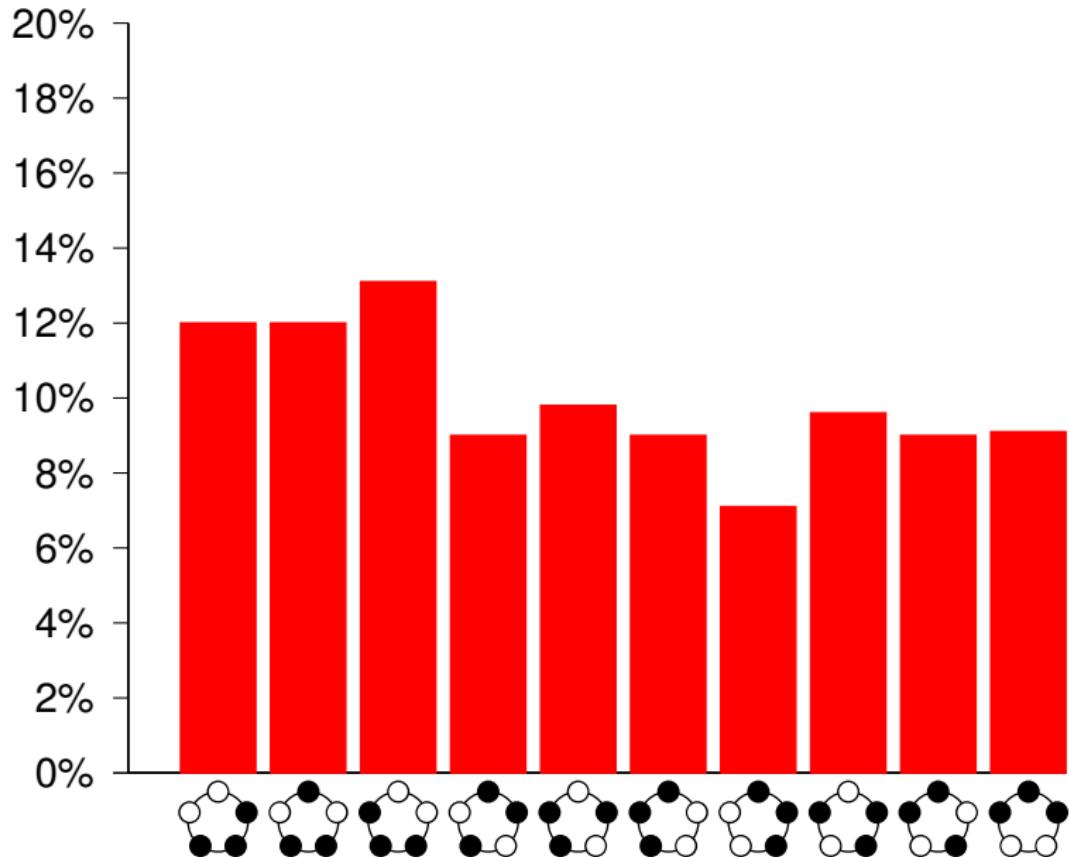
Stationary distribution



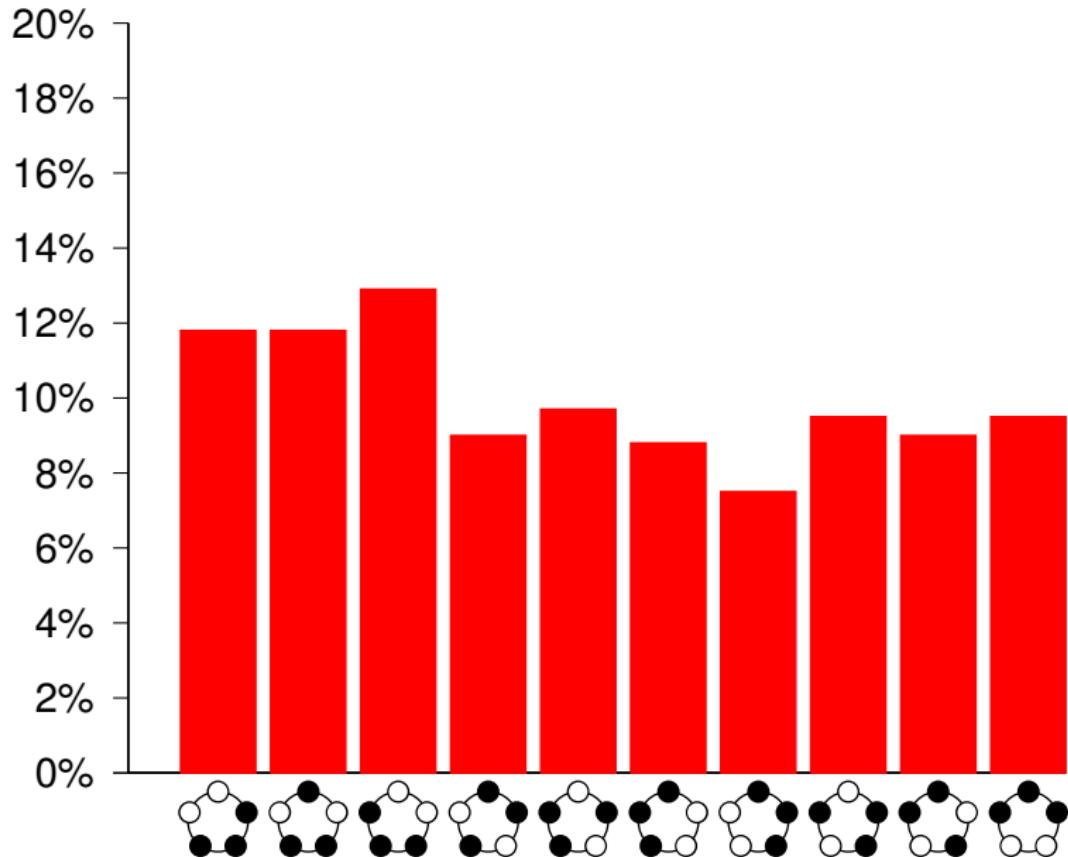
Stationary distribution



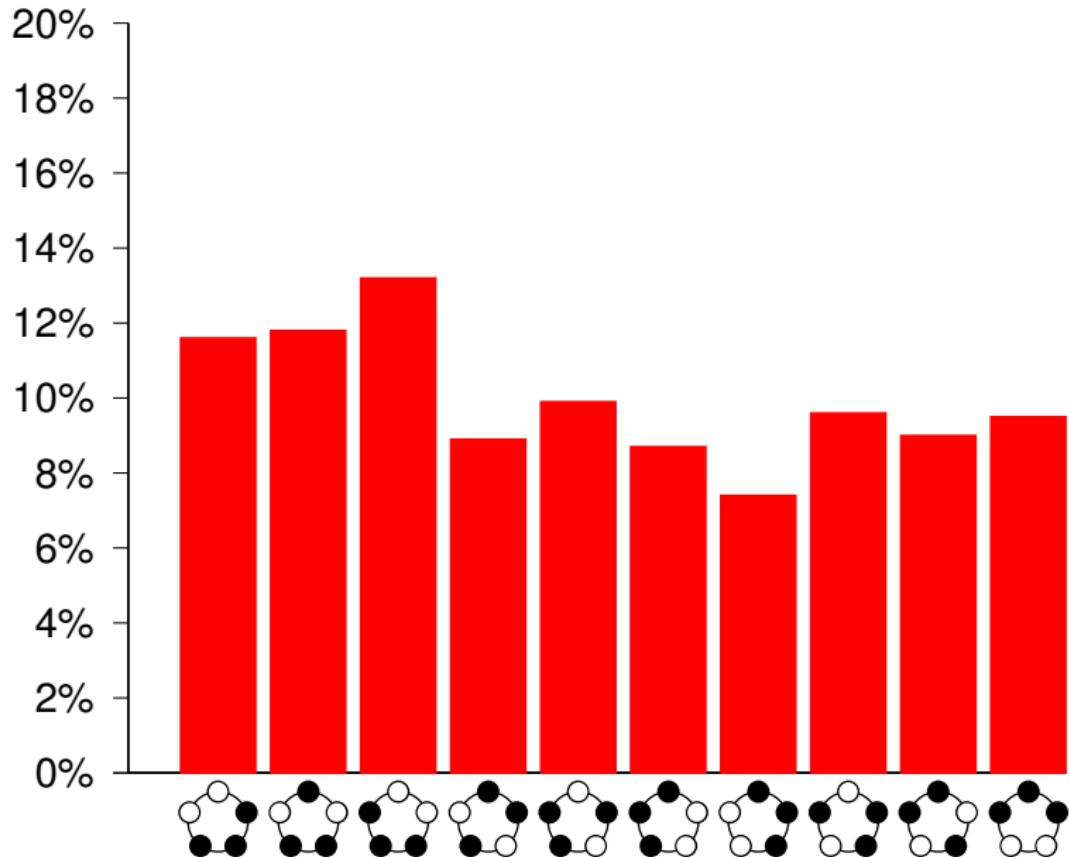
Stationary distribution



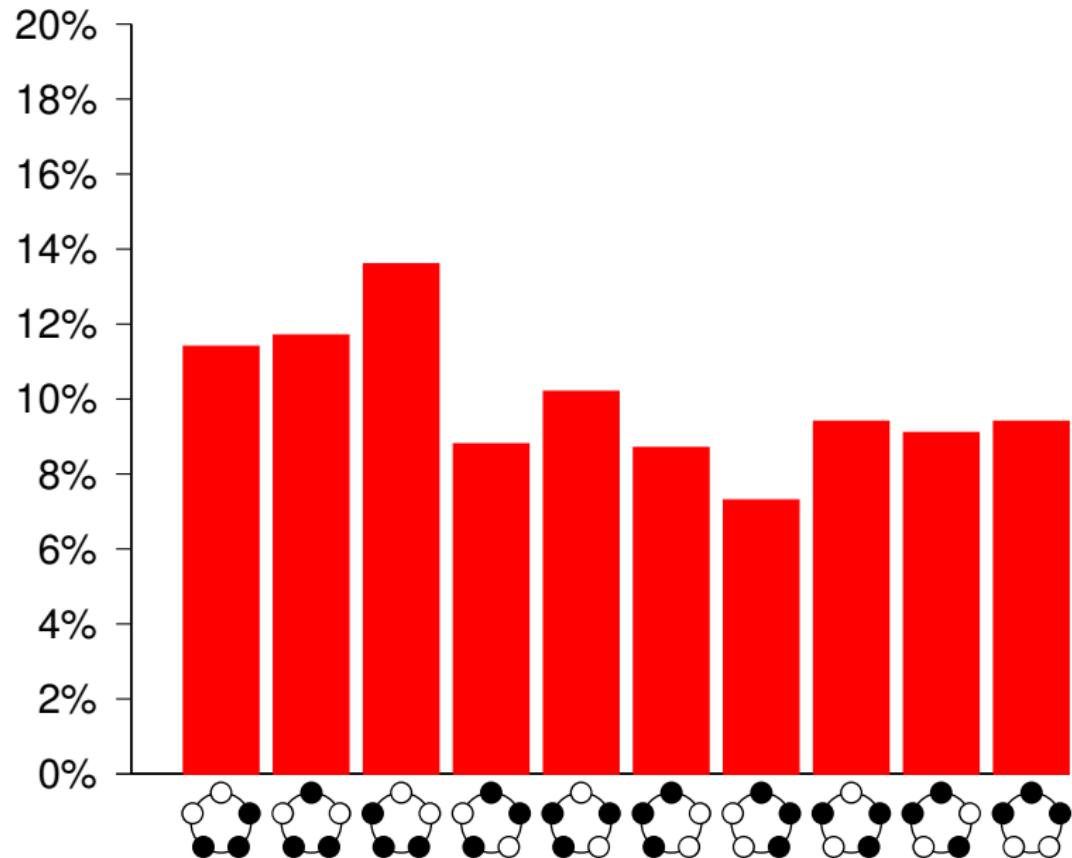
Stationary distribution



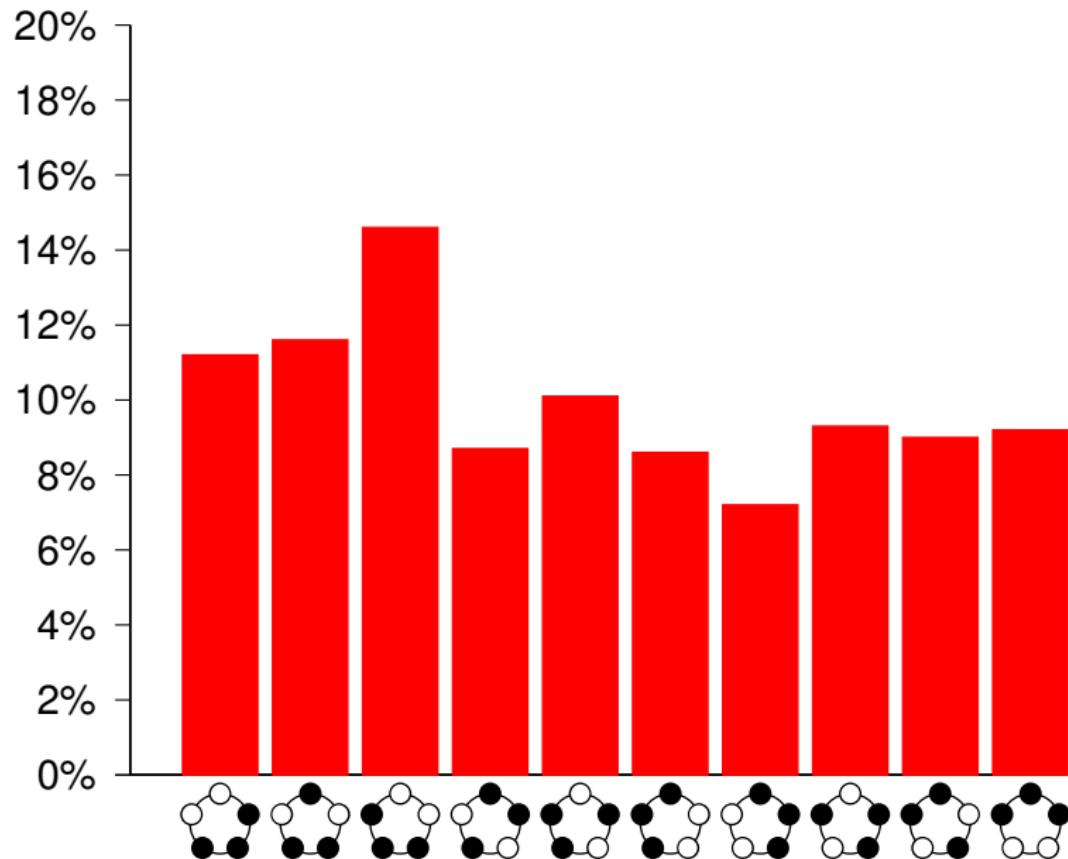
Stationary distribution



Stationary distribution



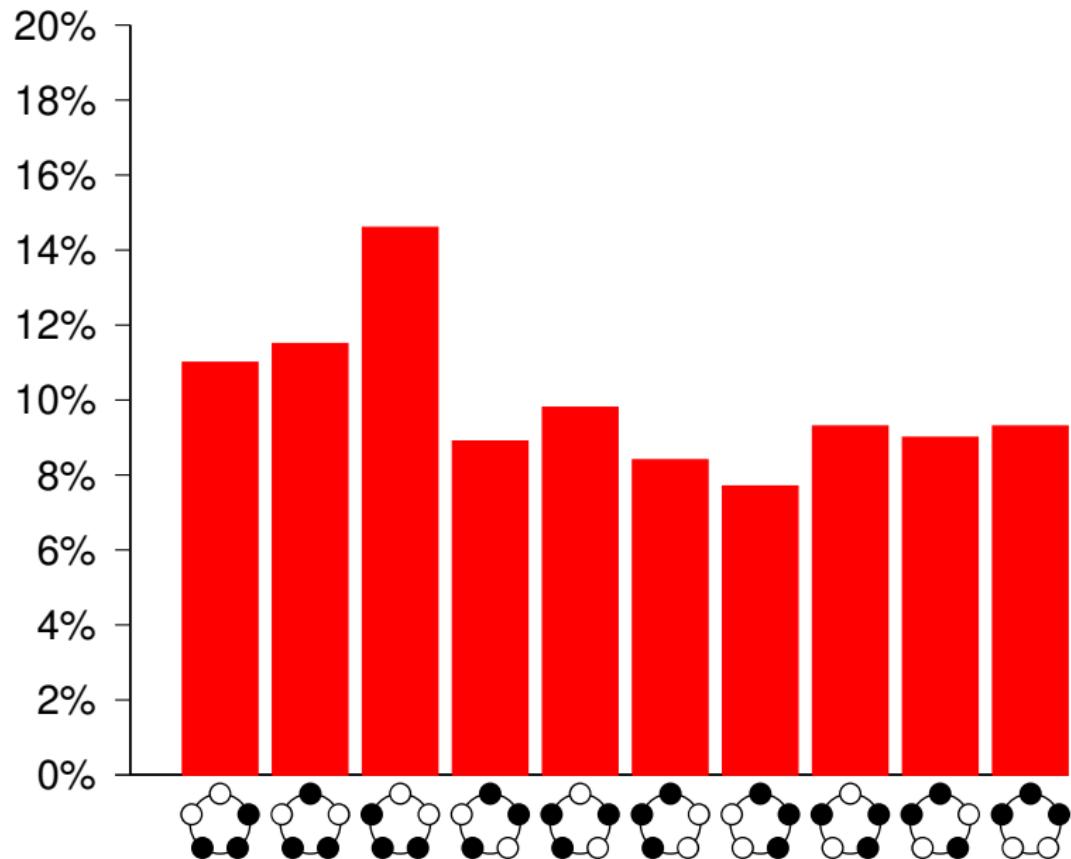
Stationary distribution



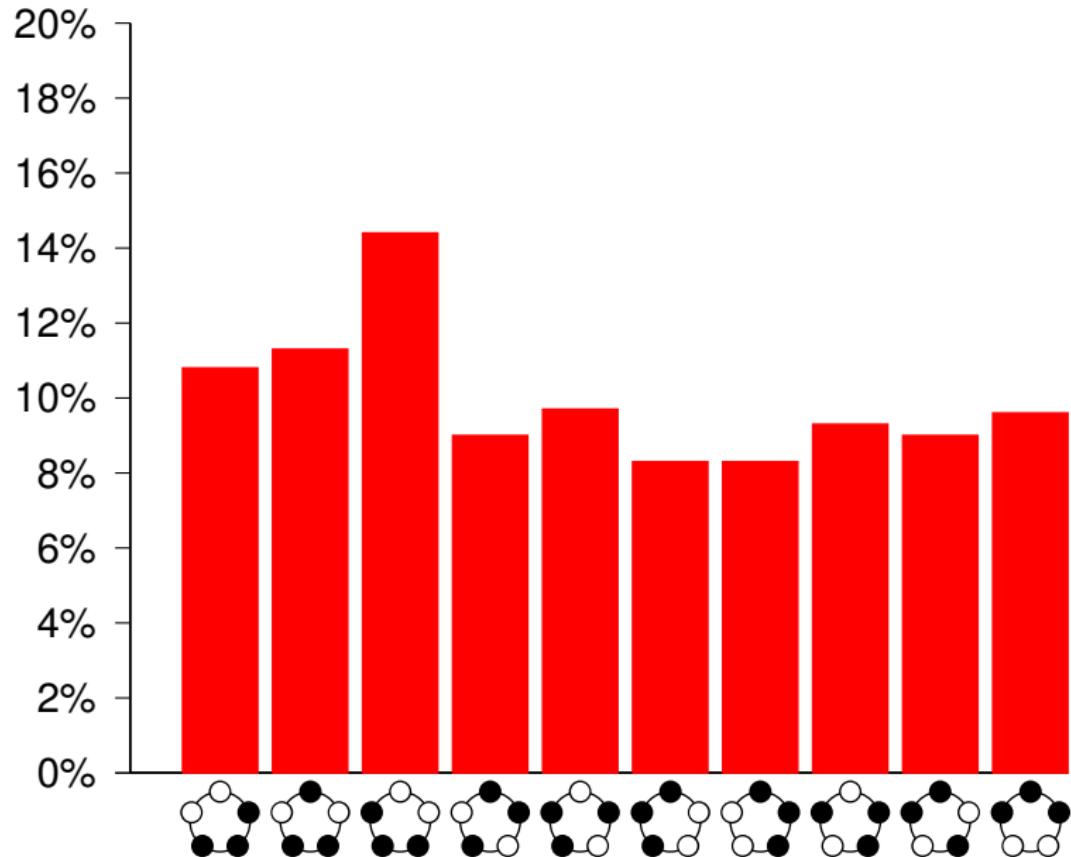
Stationary distribution



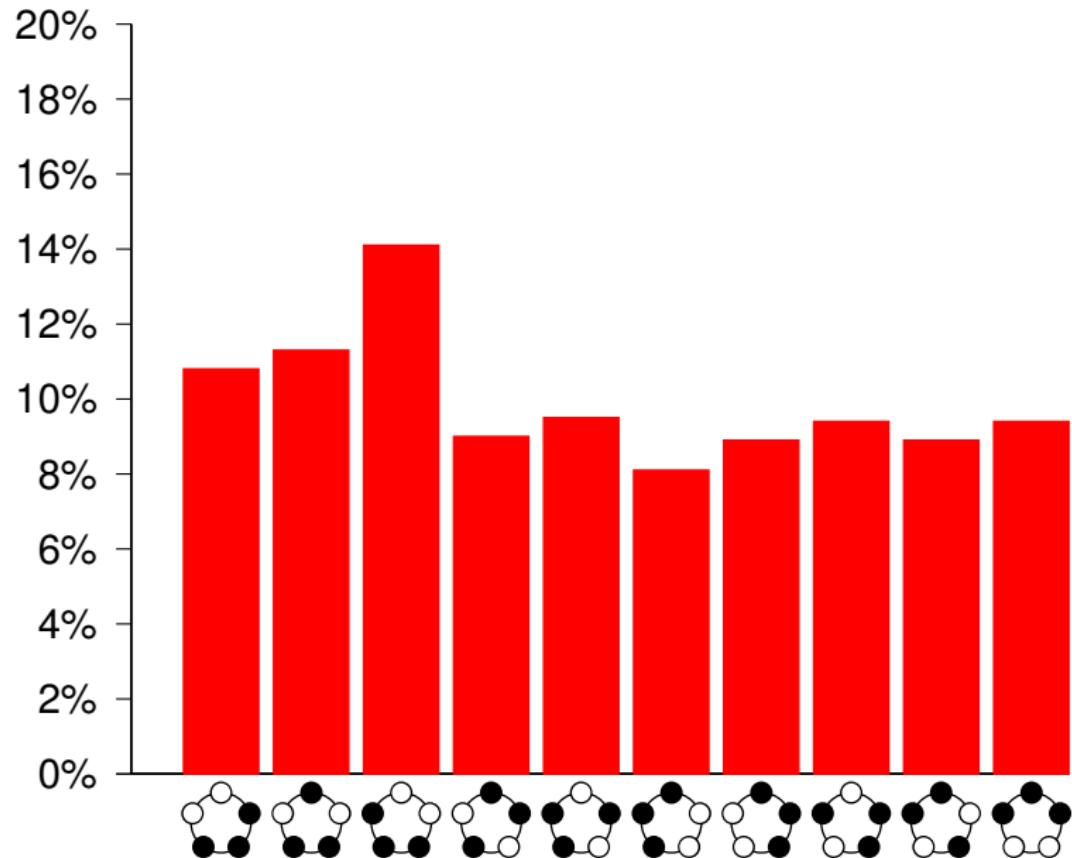
Stationary distribution



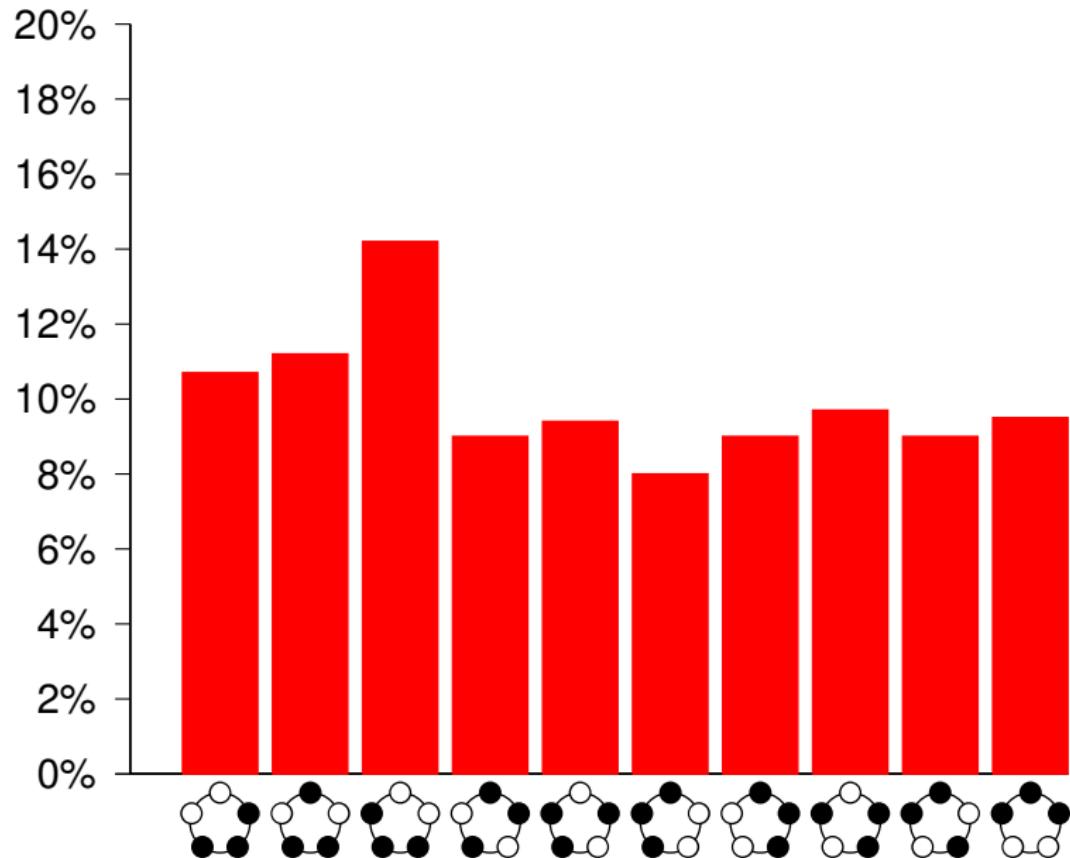
Stationary distribution



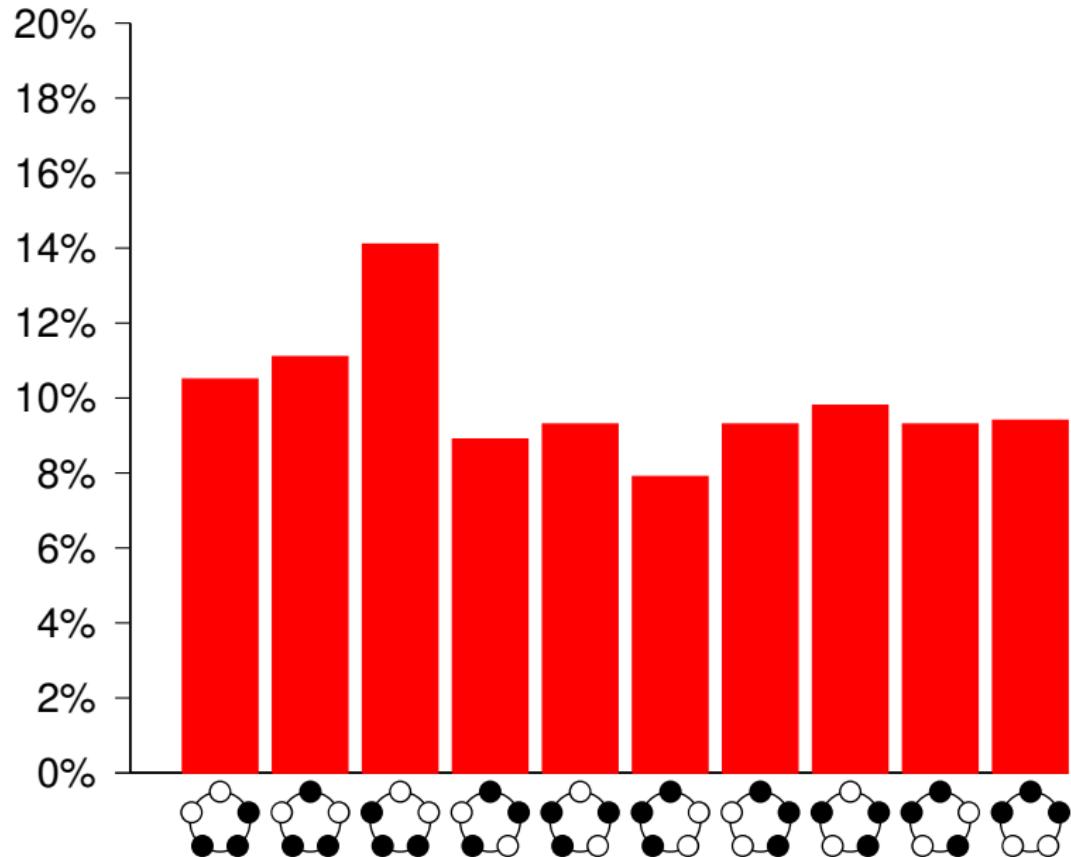
Stationary distribution



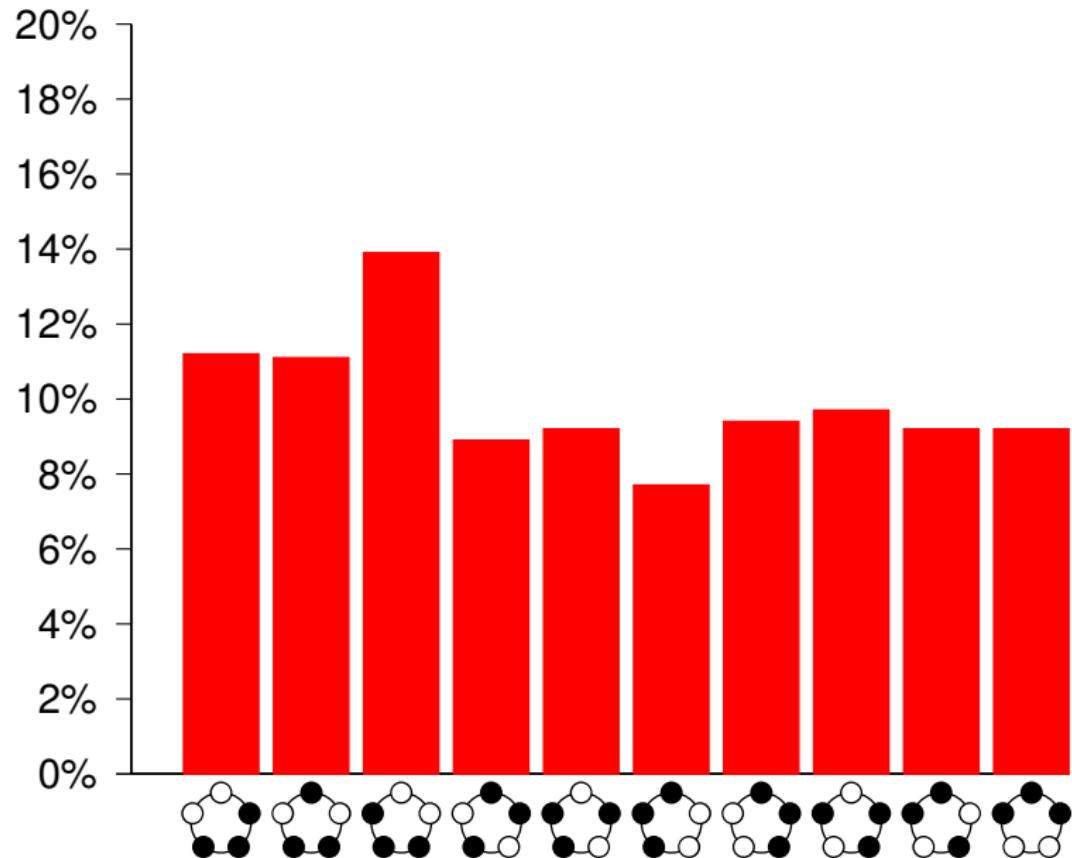
Stationary distribution



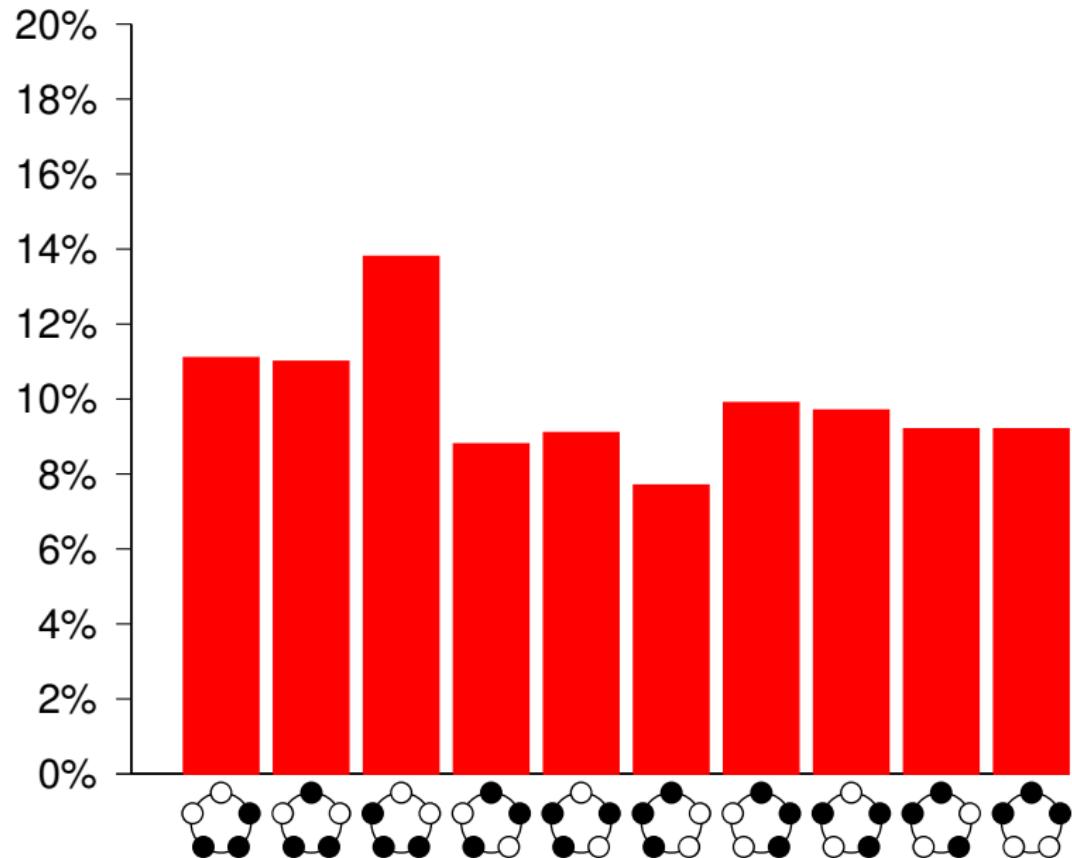
Stationary distribution



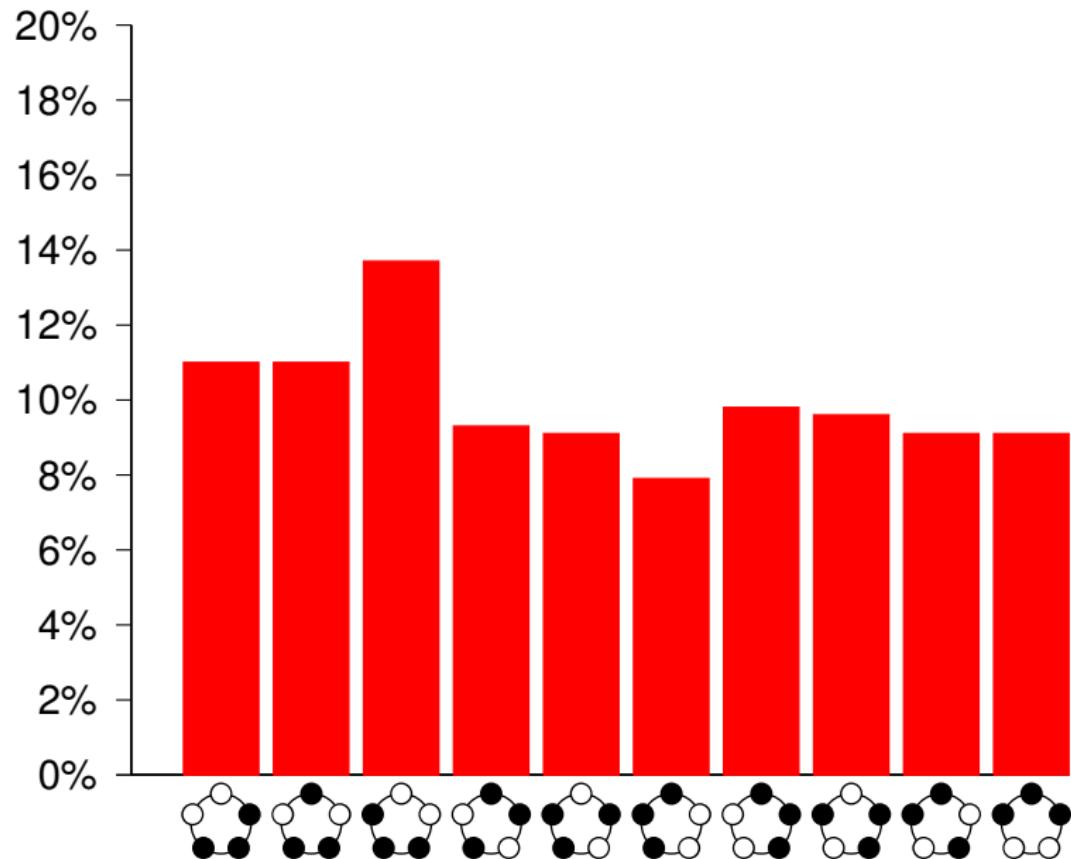
Stationary distribution



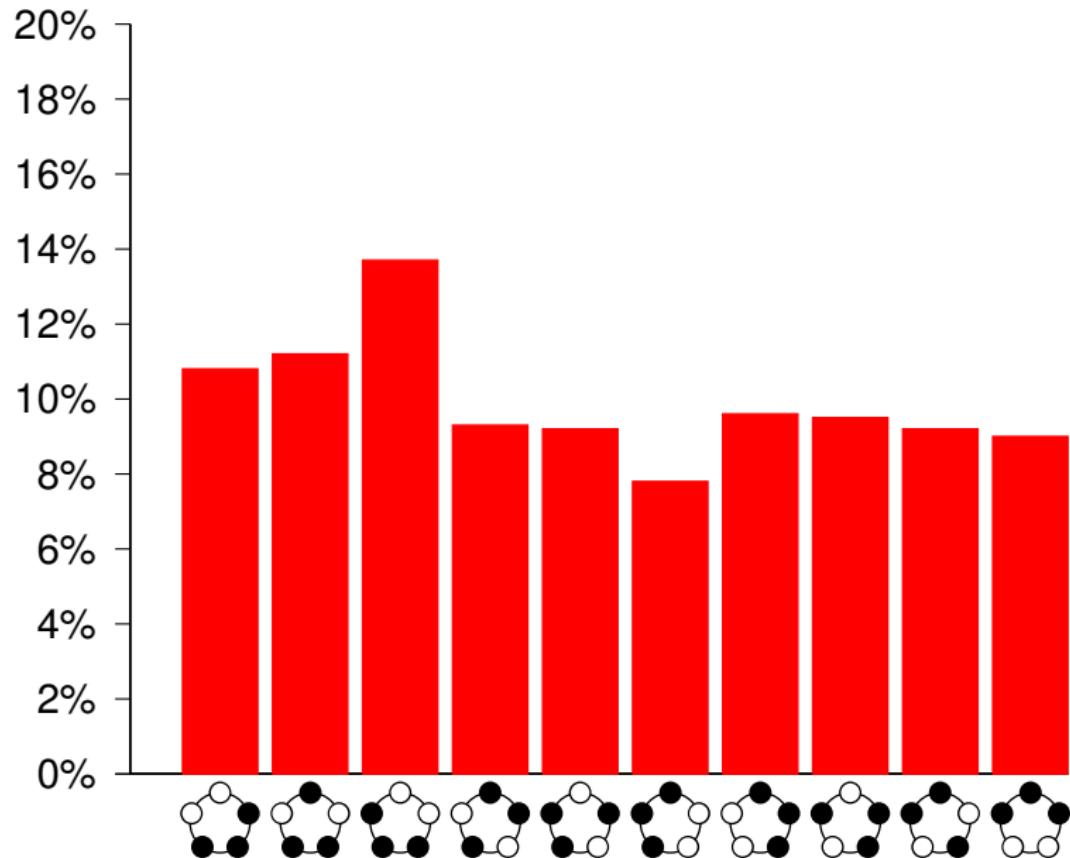
Stationary distribution



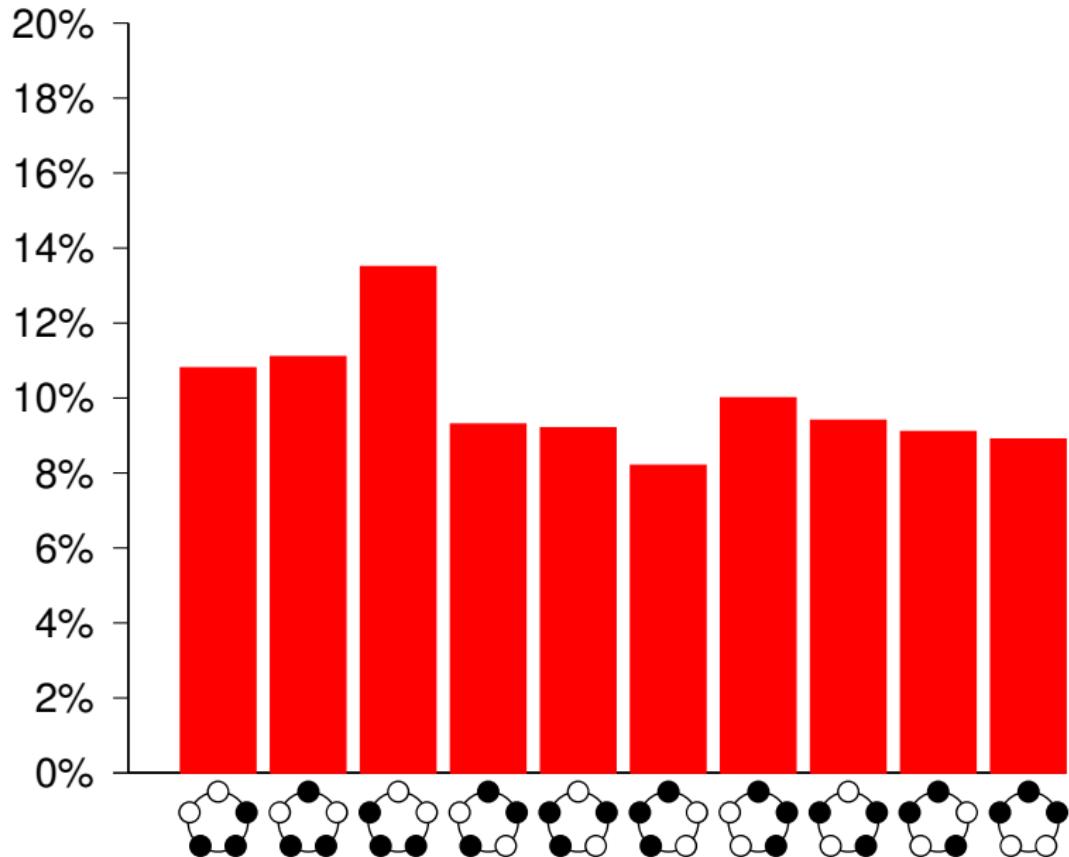
Stationary distribution



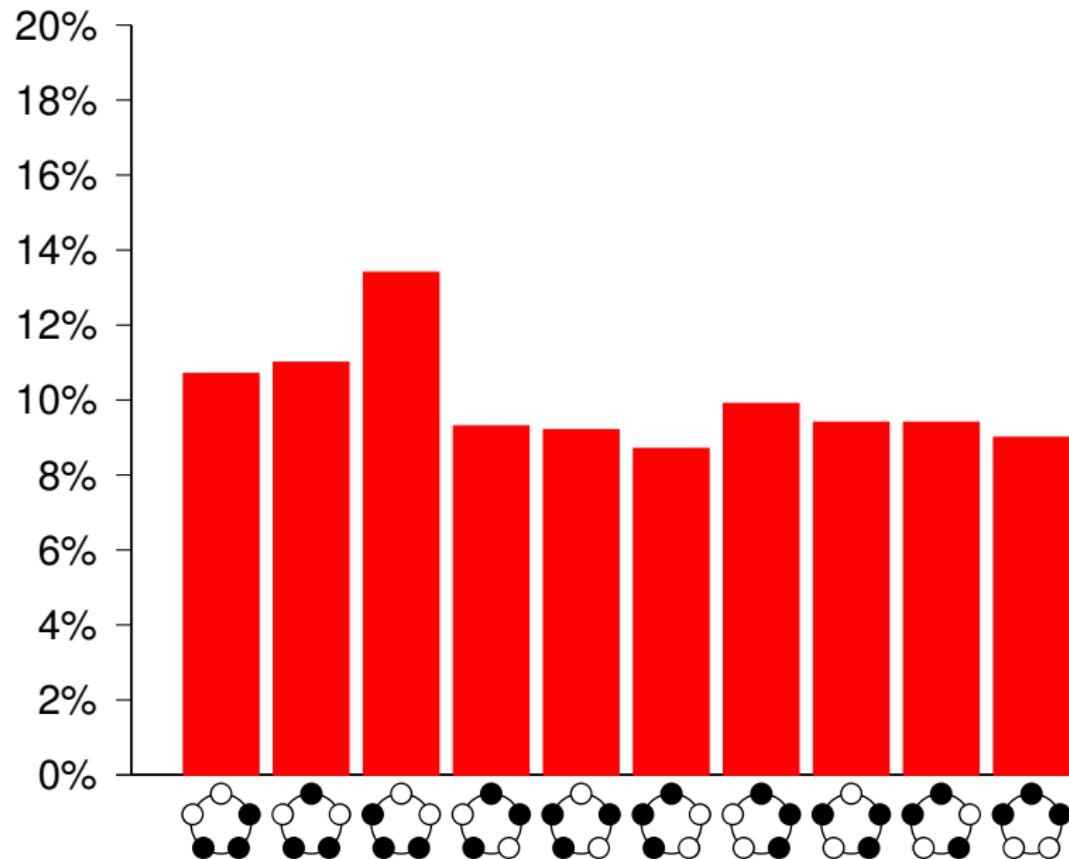
Stationary distribution



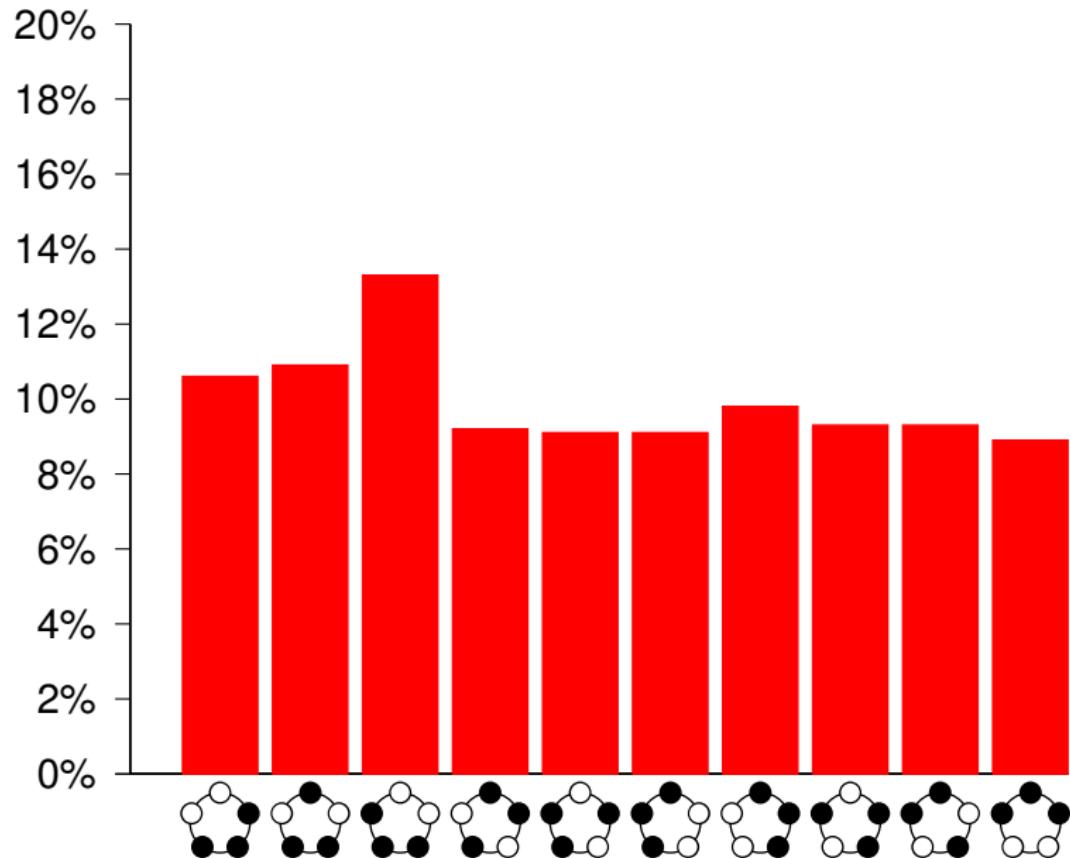
Stationary distribution



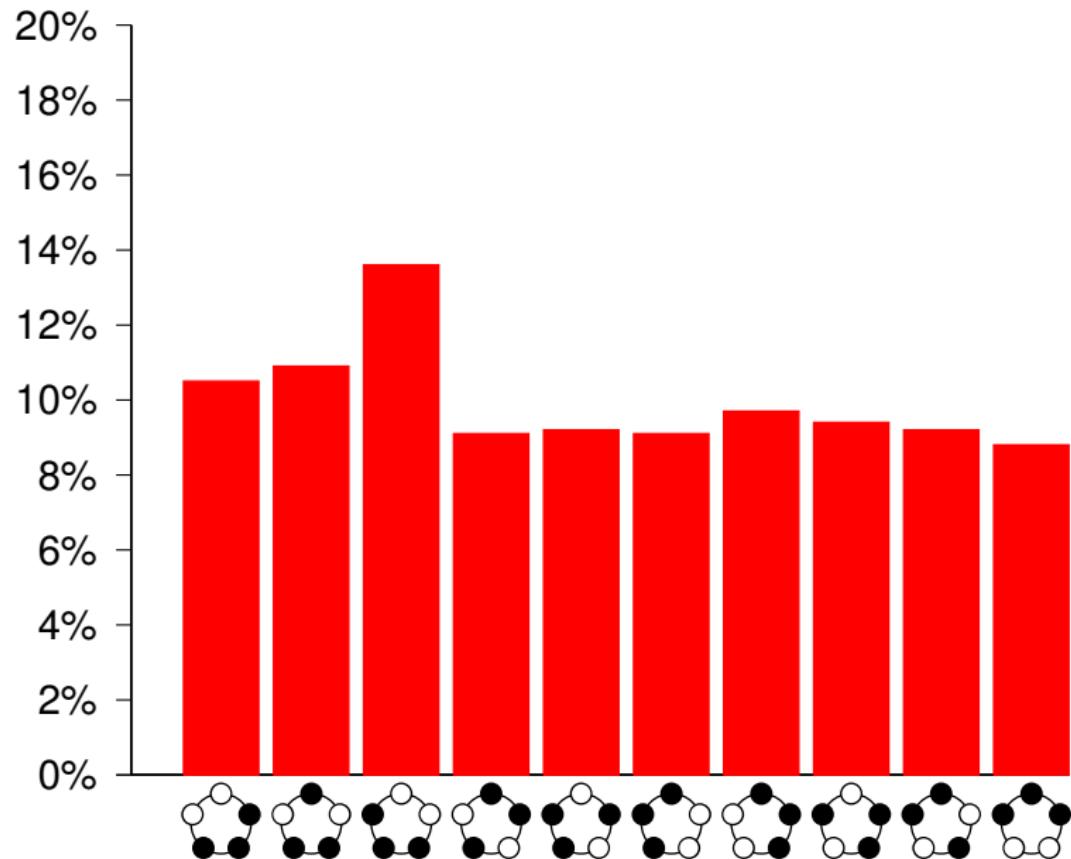
Stationary distribution



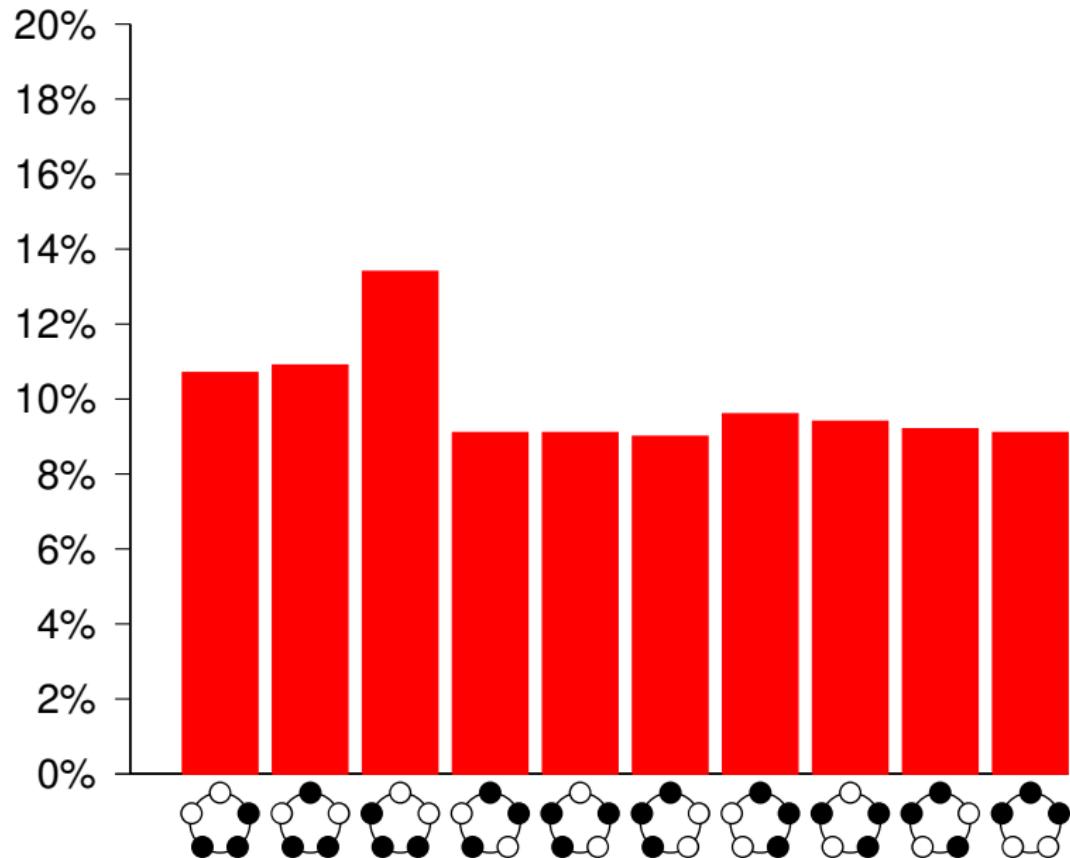
Stationary distribution



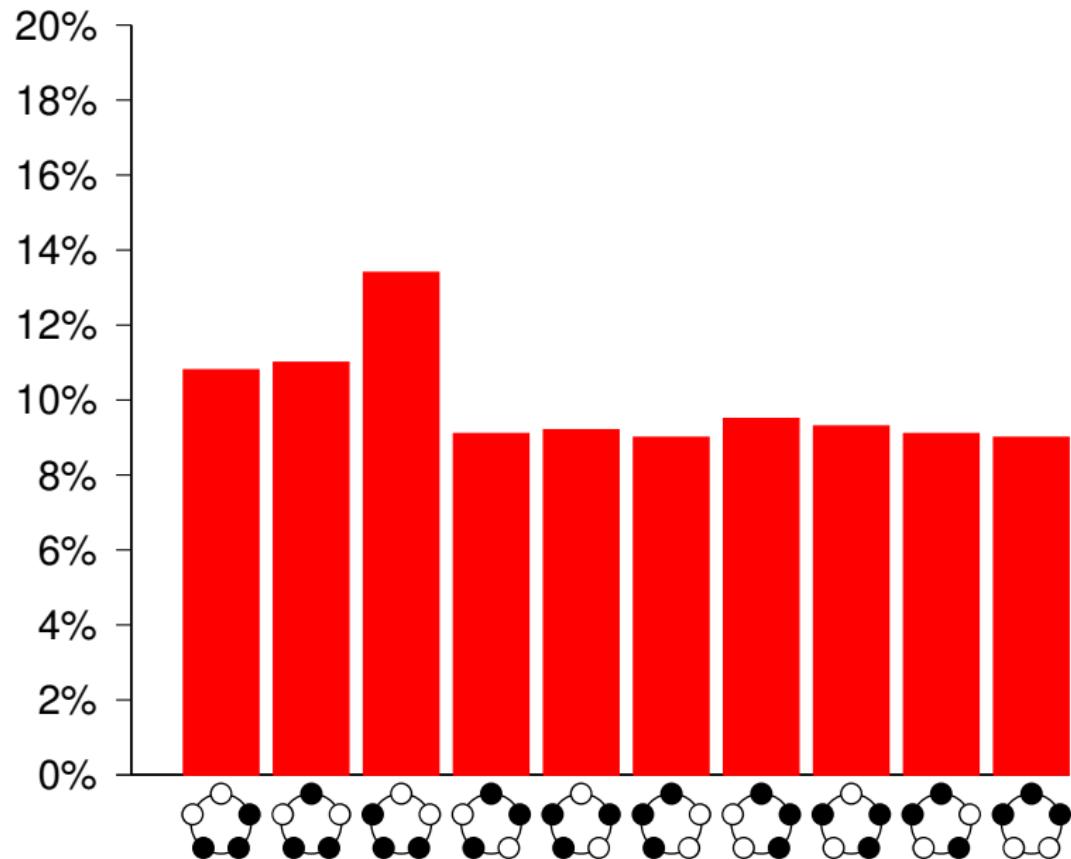
Stationary distribution



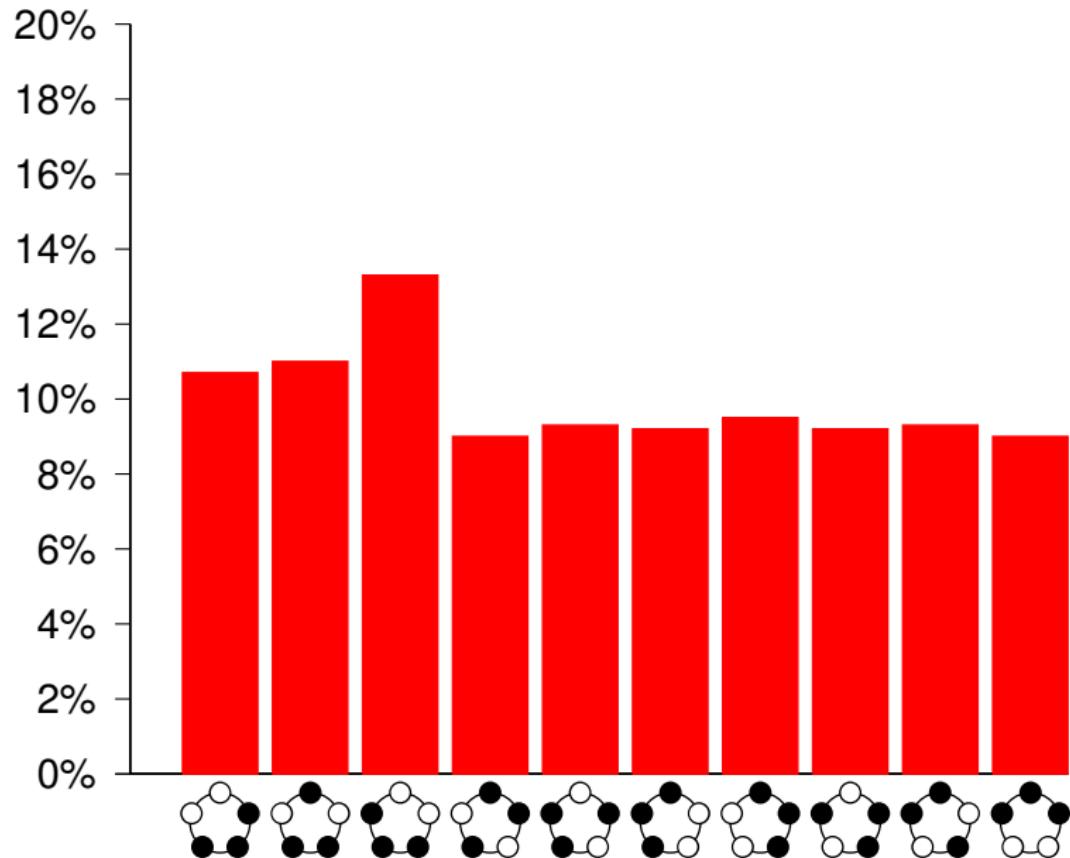
Stationary distribution



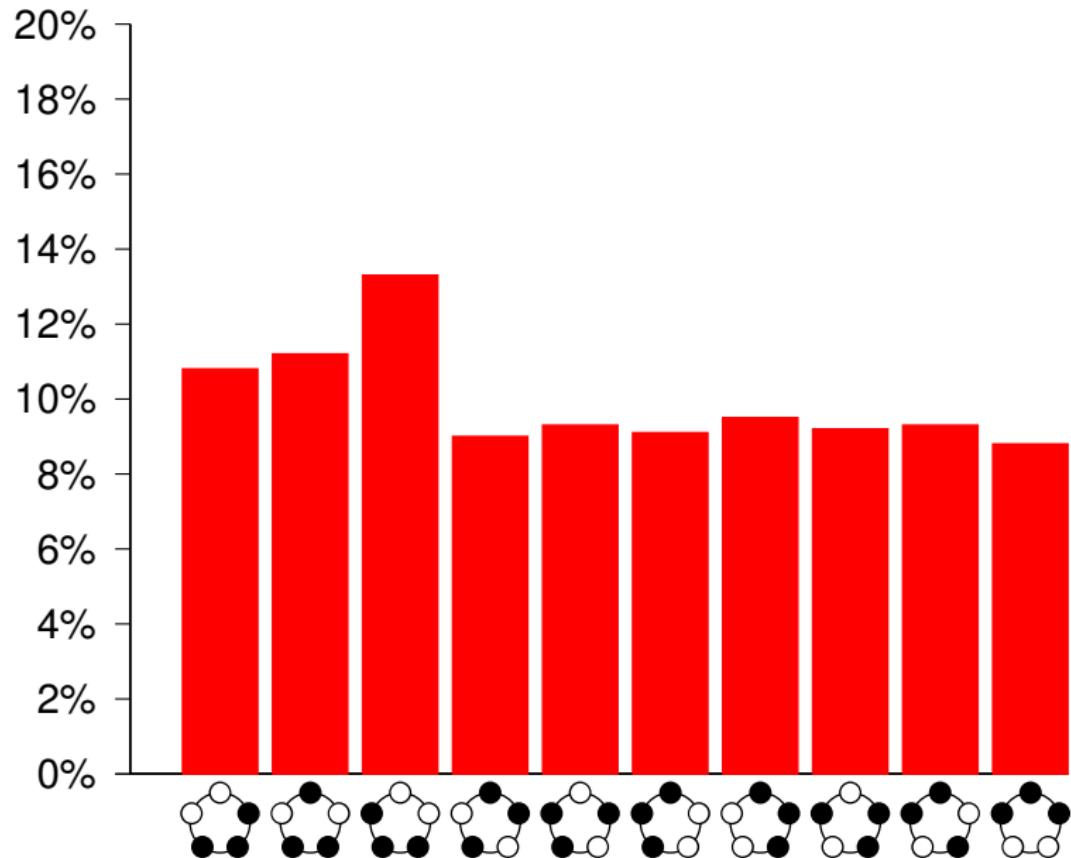
Stationary distribution



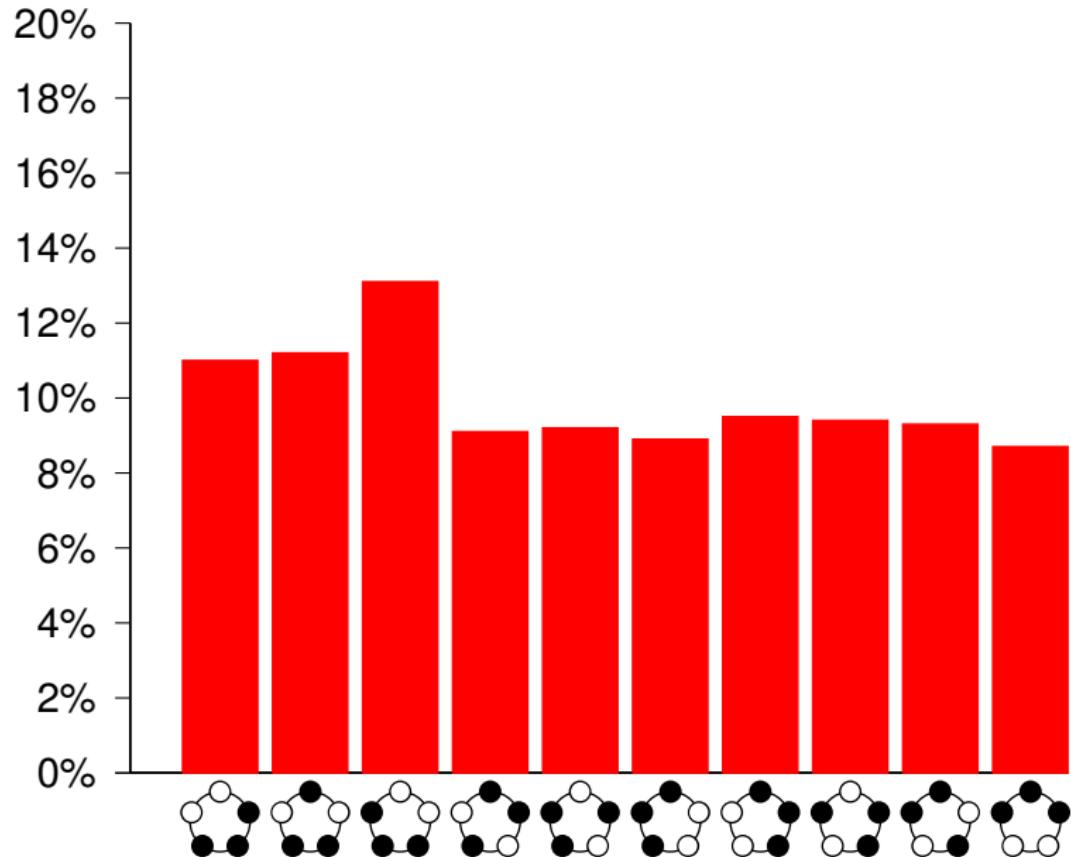
Stationary distribution



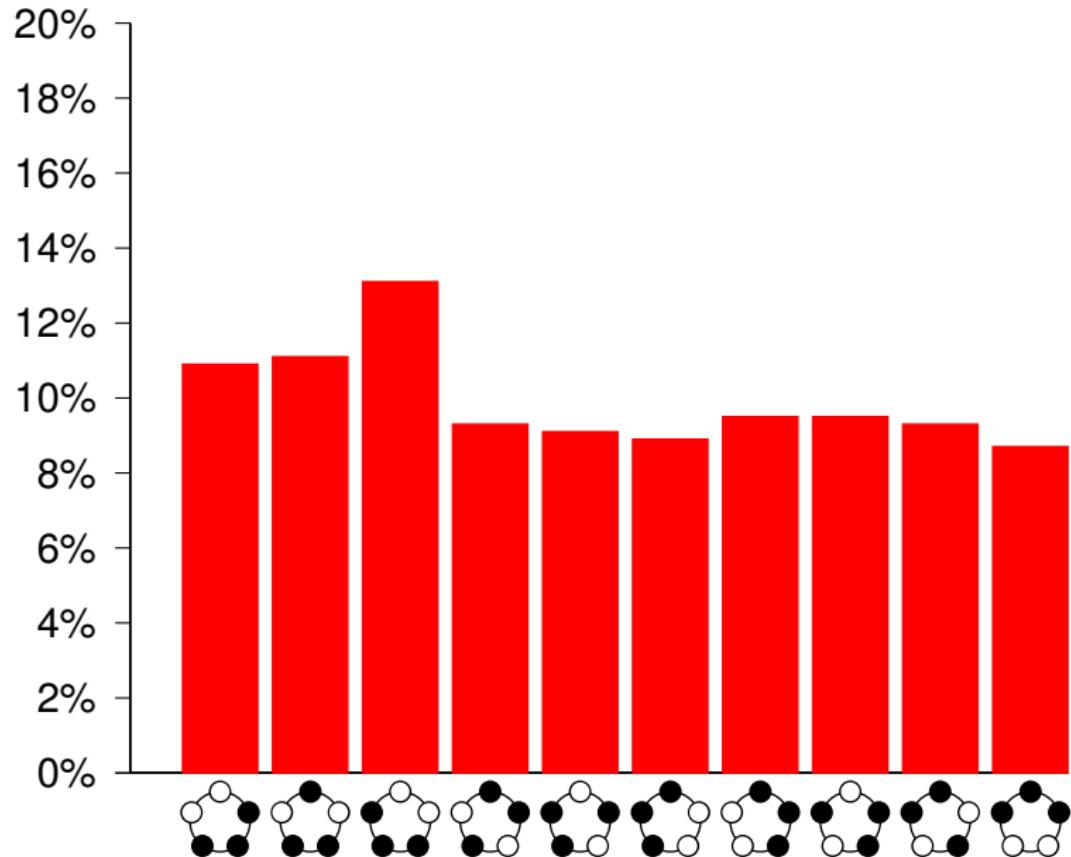
Stationary distribution



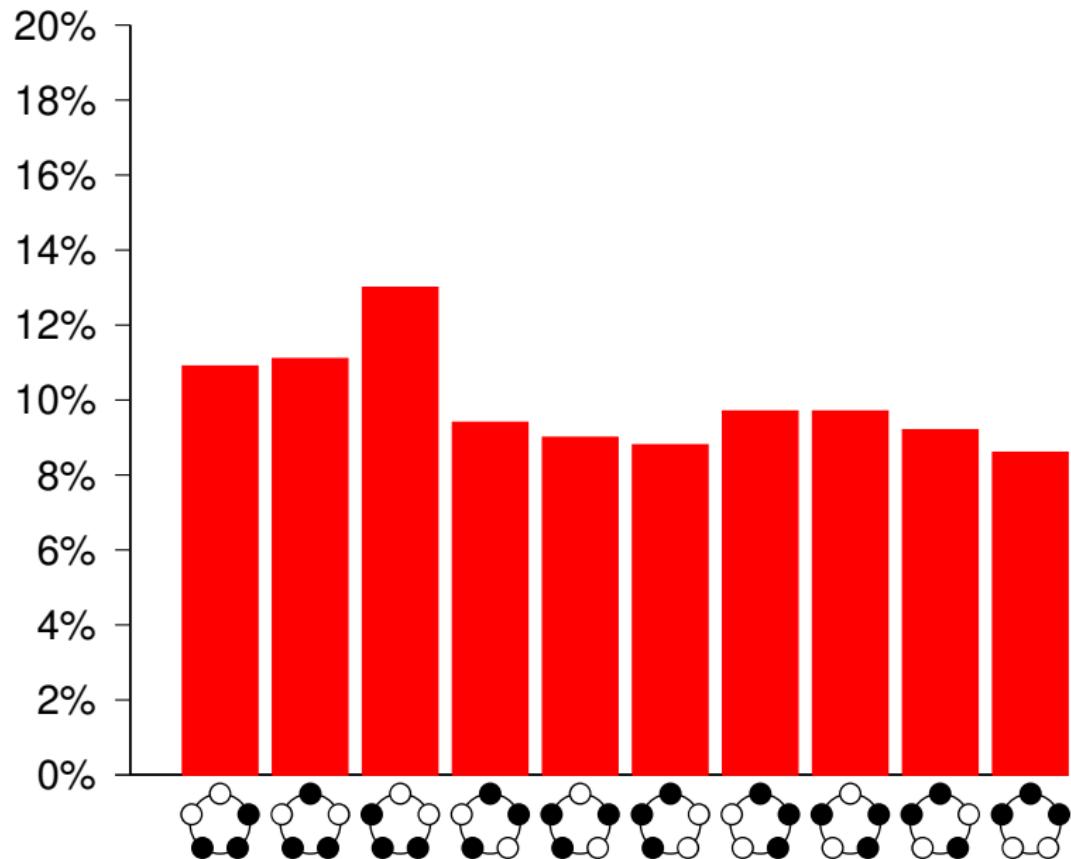
Stationary distribution



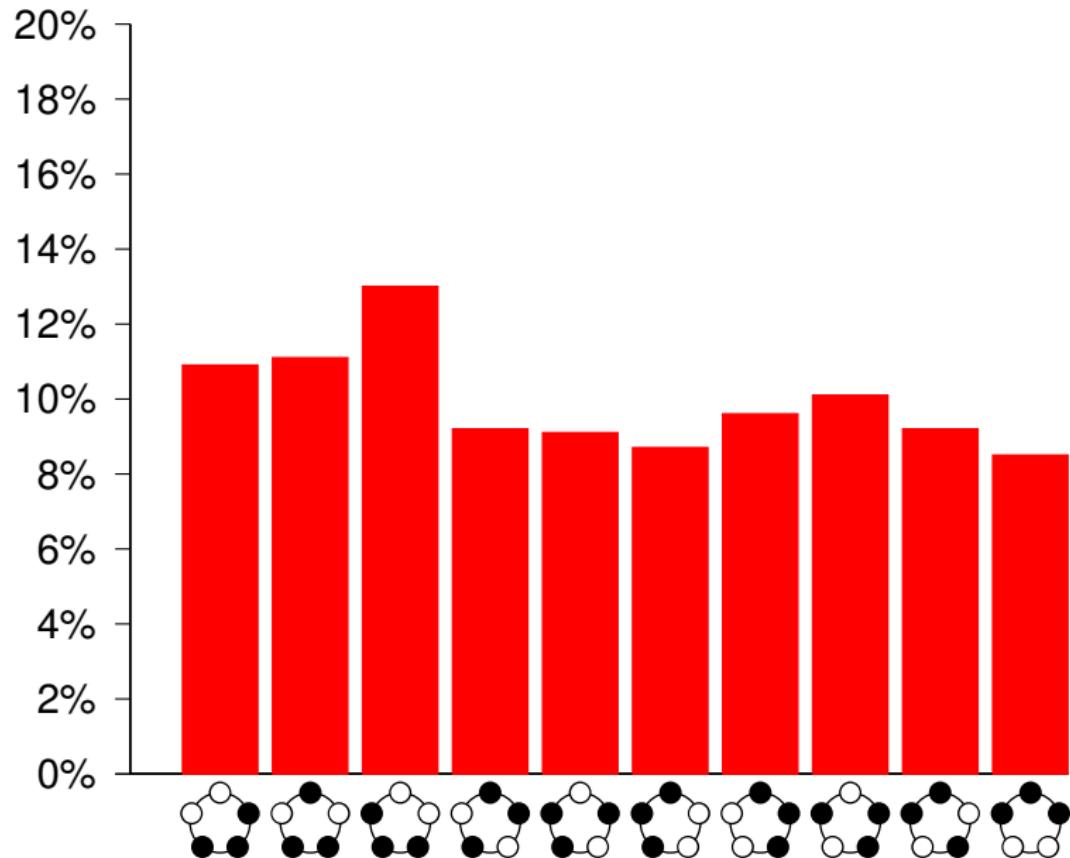
Stationary distribution



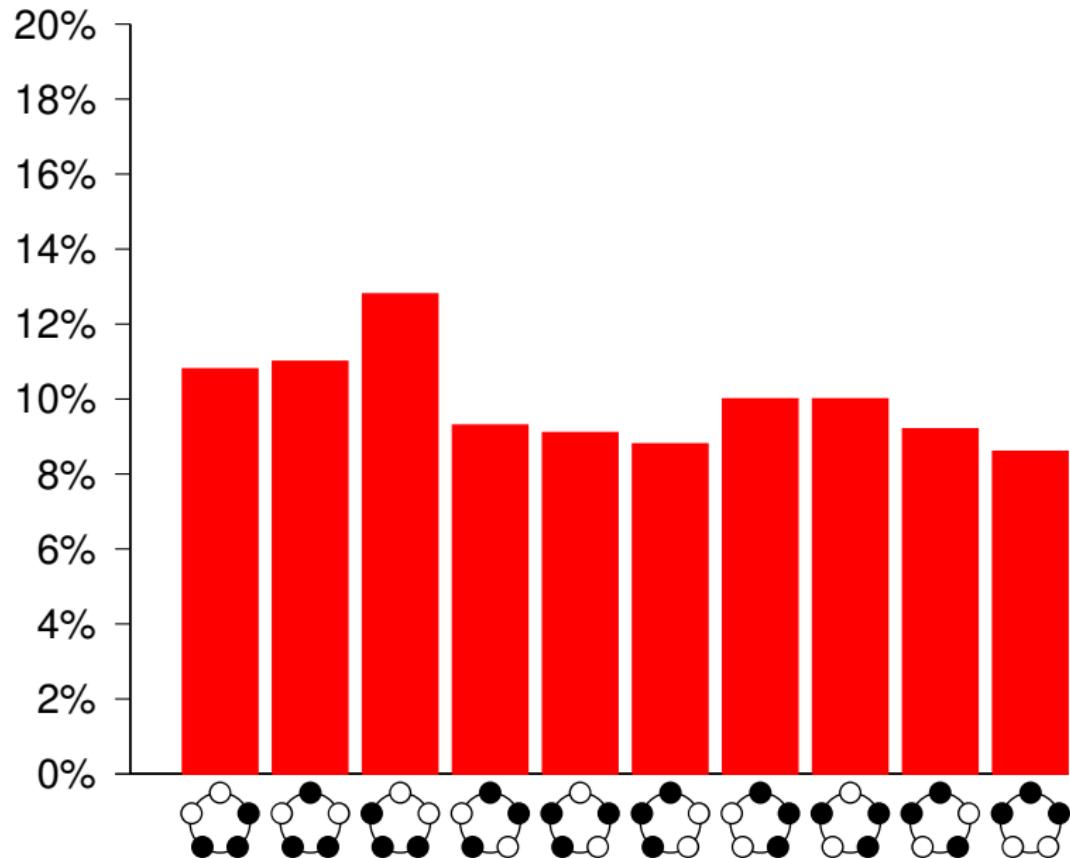
Stationary distribution



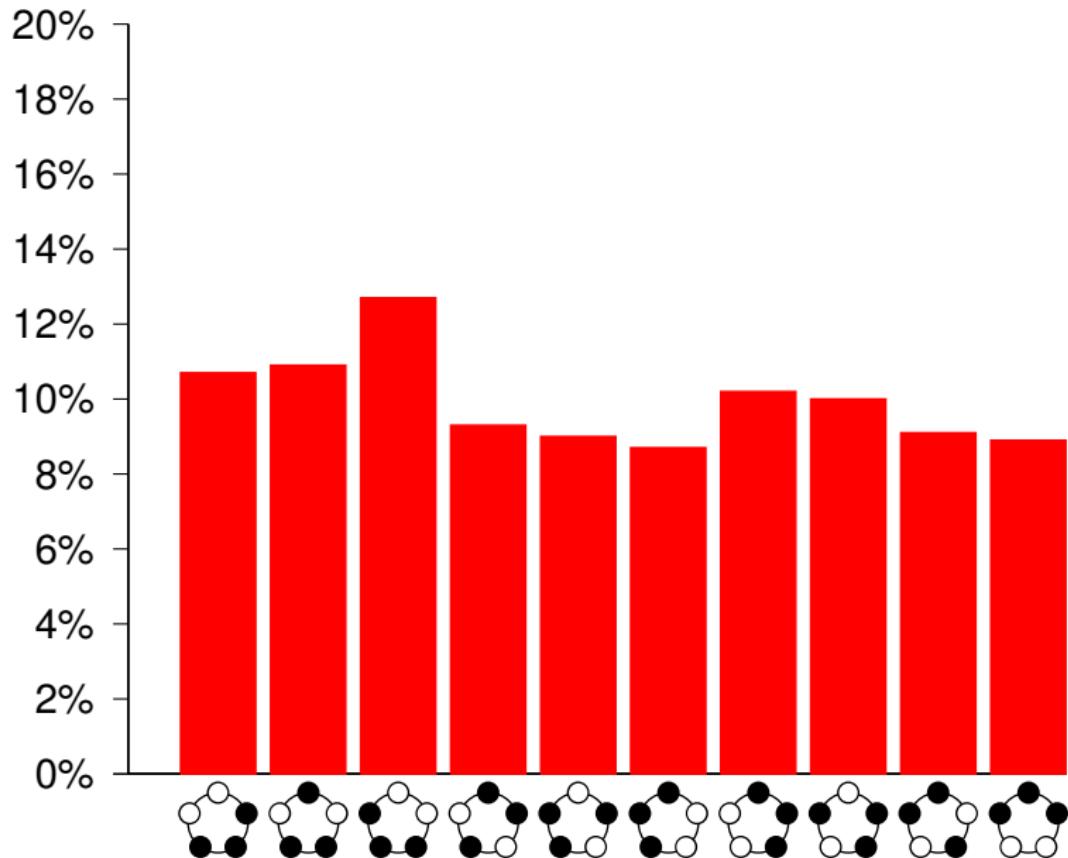
Stationary distribution



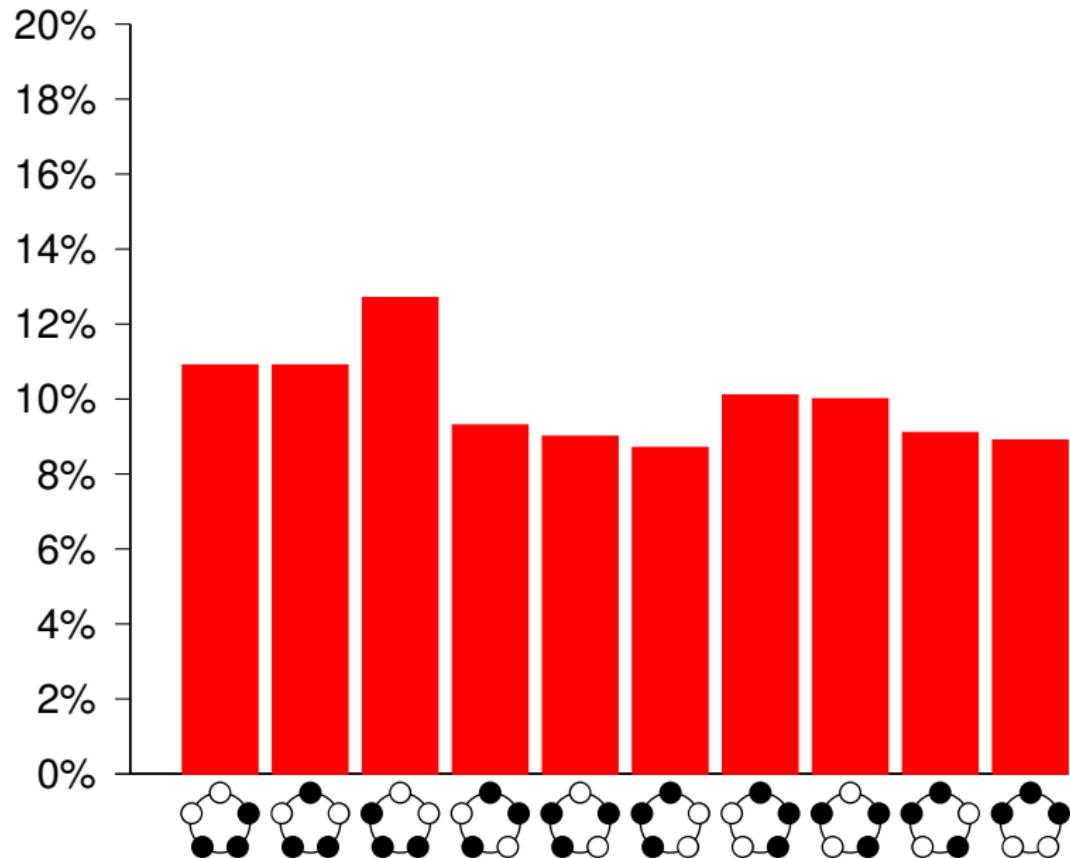
Stationary distribution



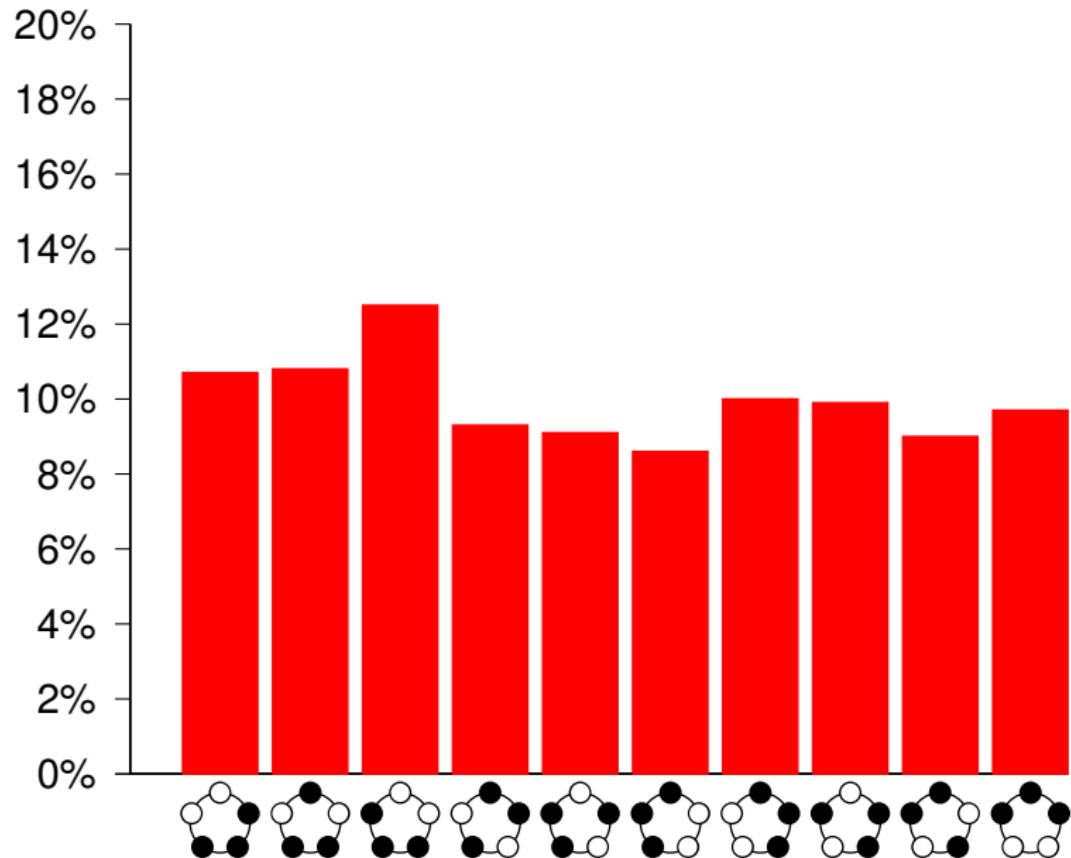
Stationary distribution



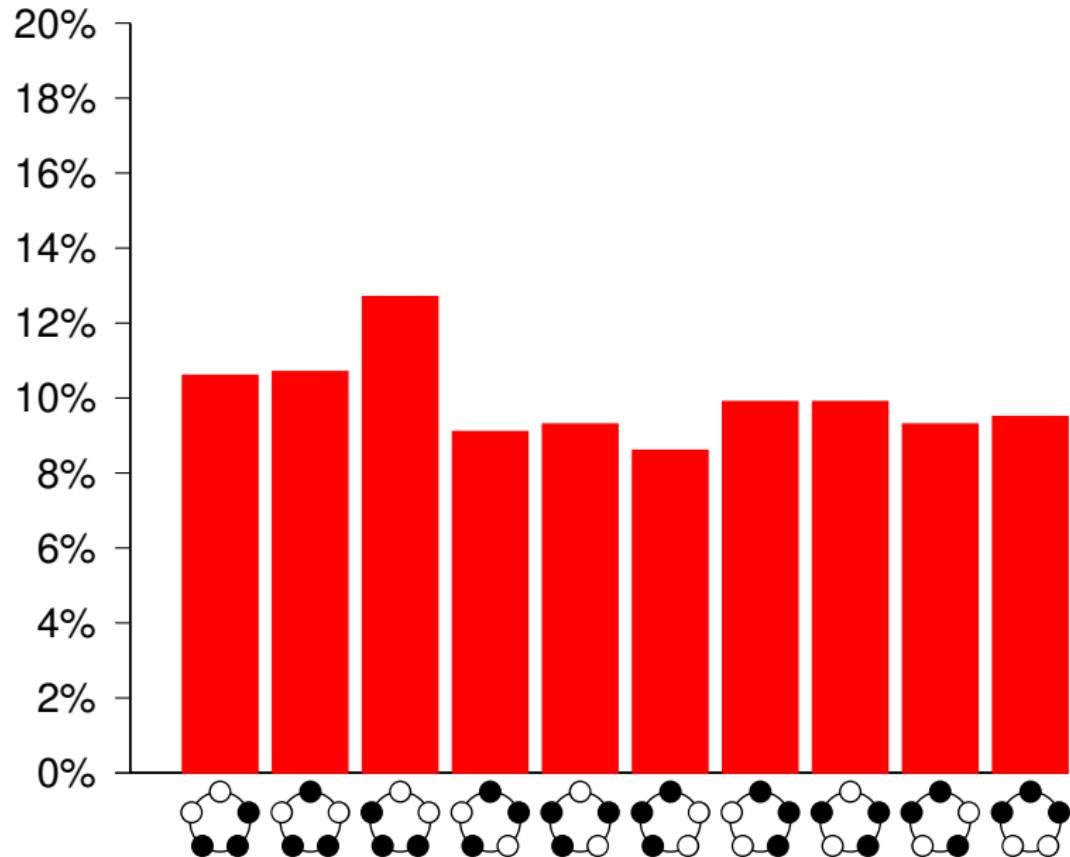
Stationary distribution



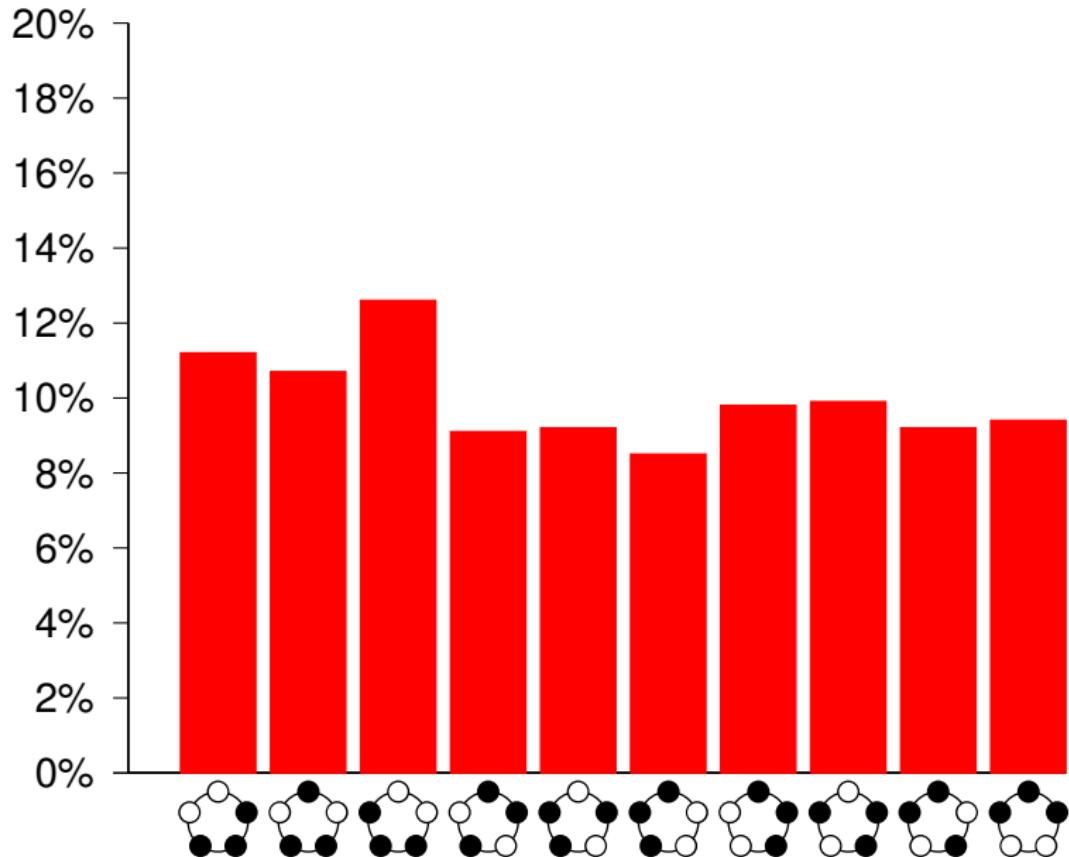
Stationary distribution



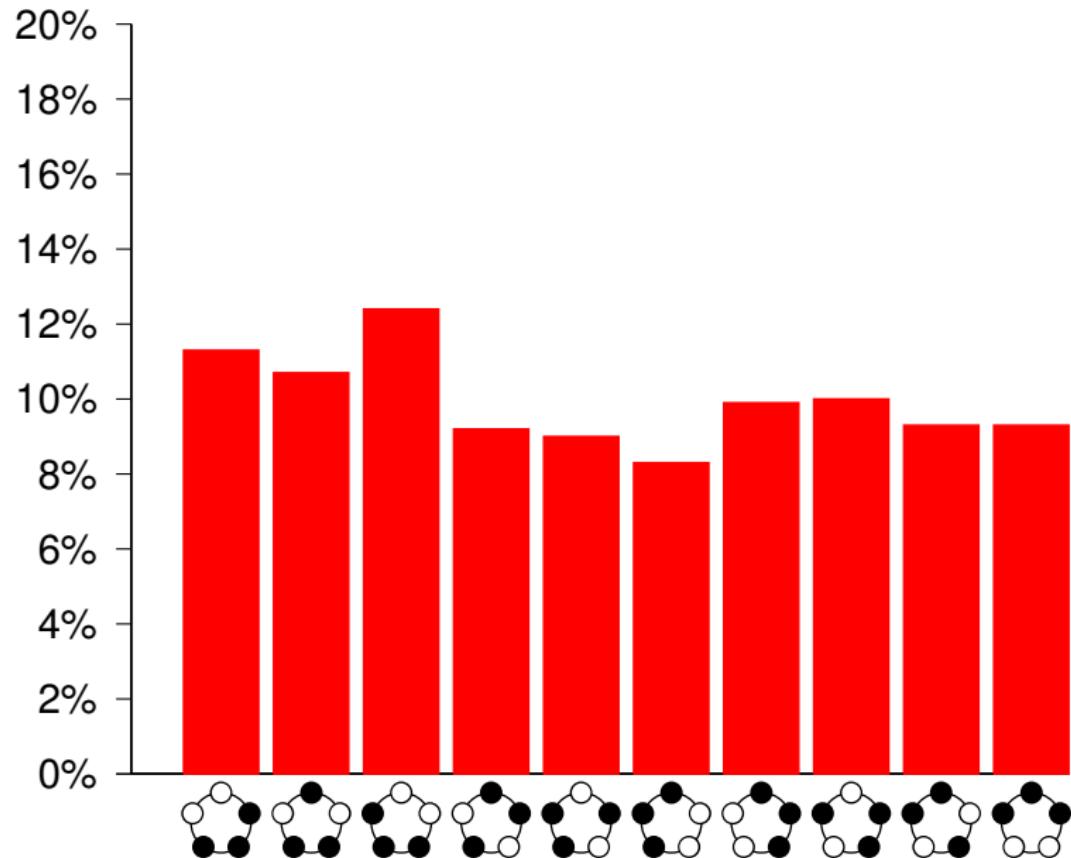
Stationary distribution



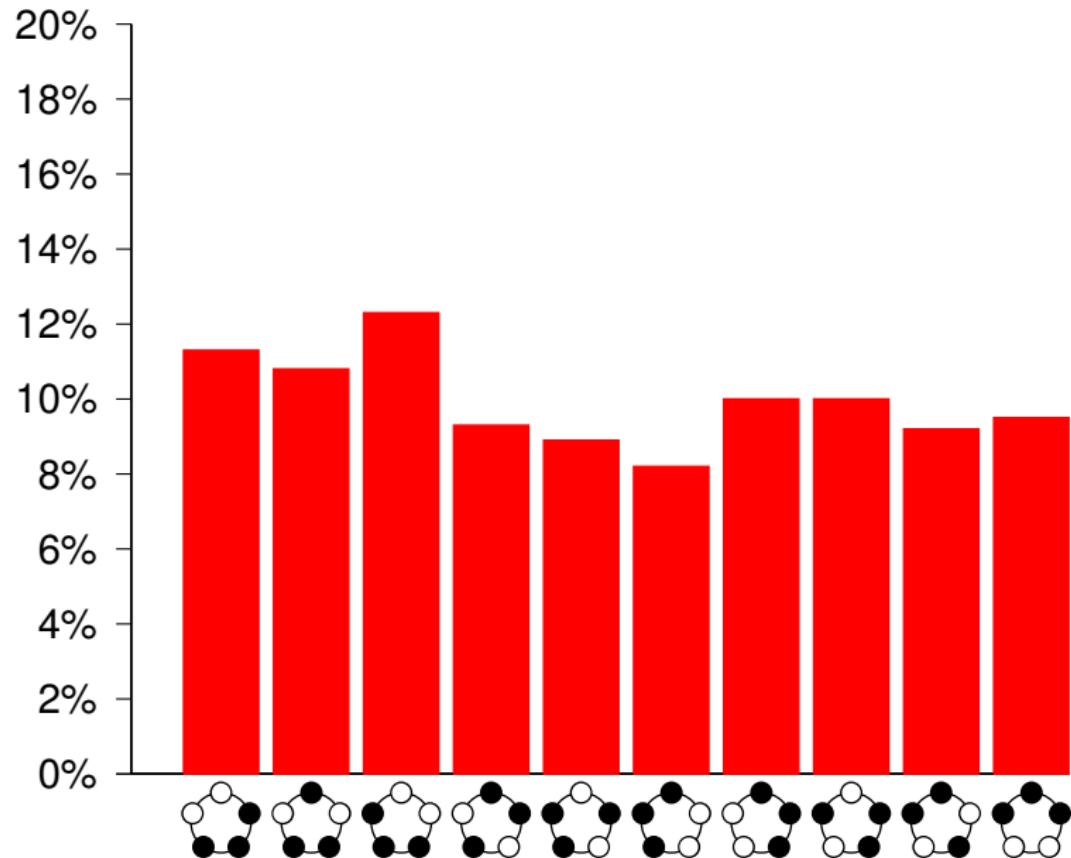
Stationary distribution



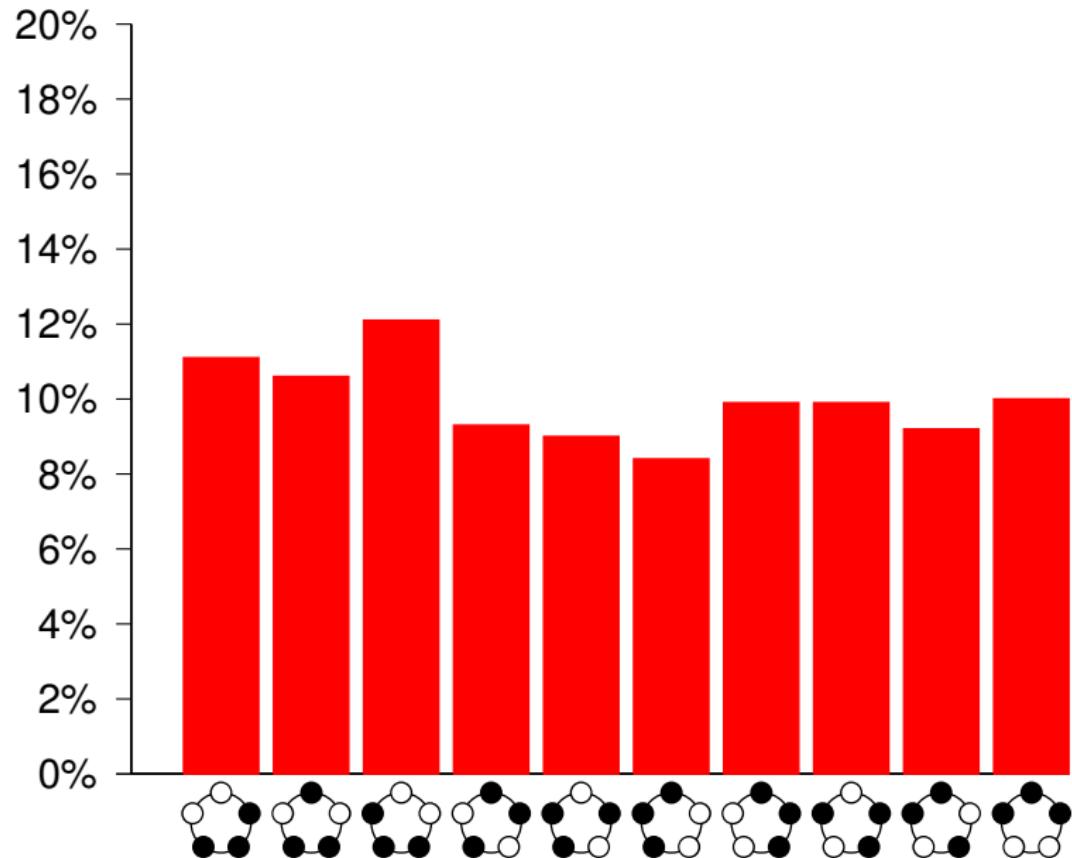
Stationary distribution



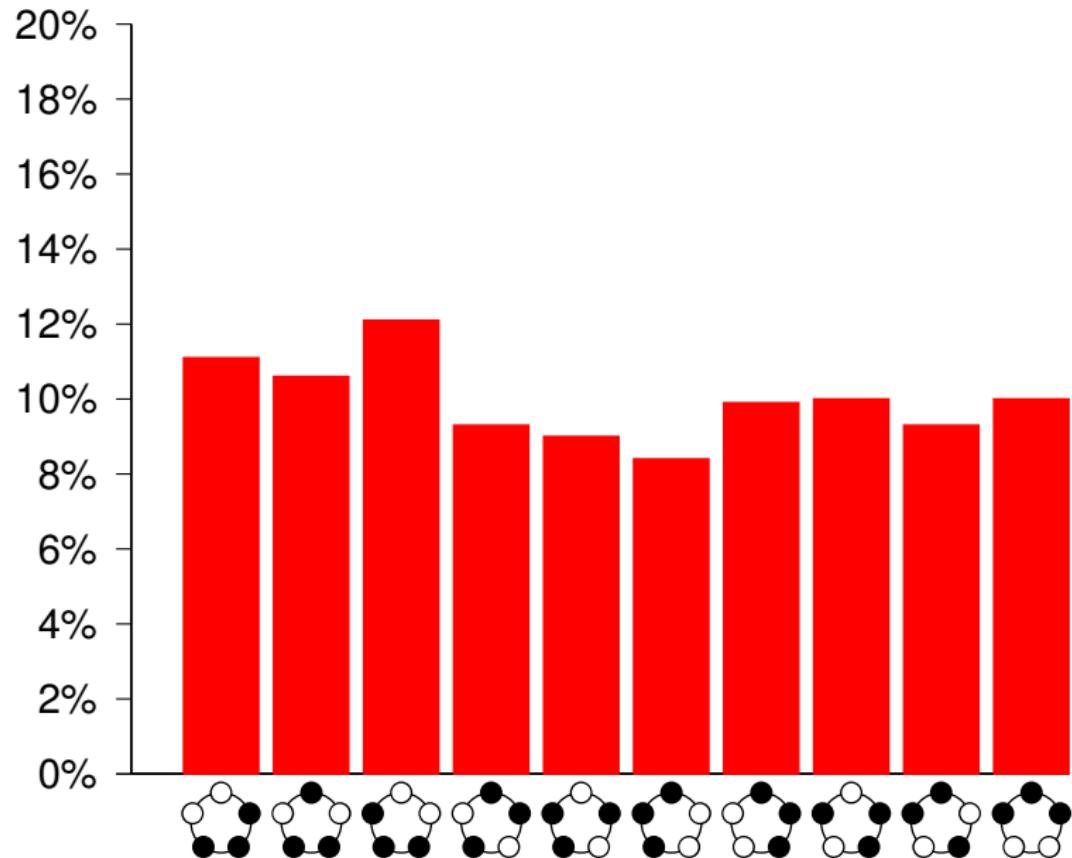
Stationary distribution



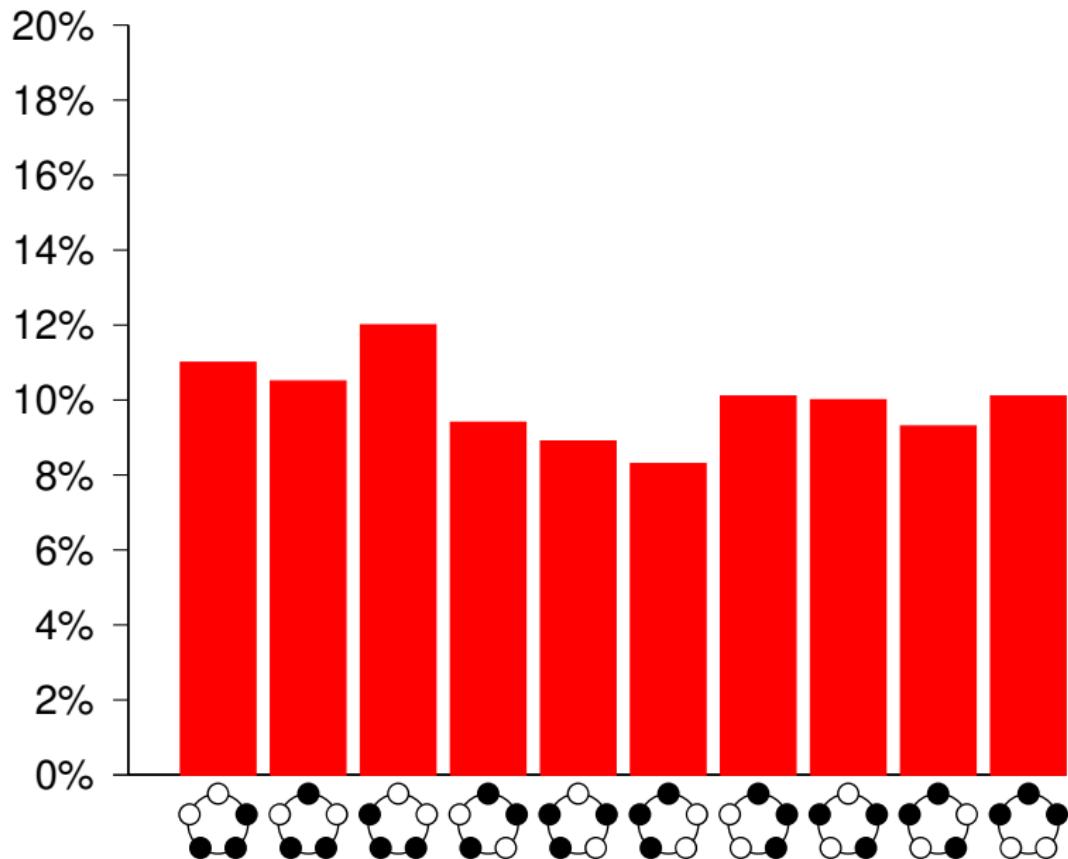
Stationary distribution



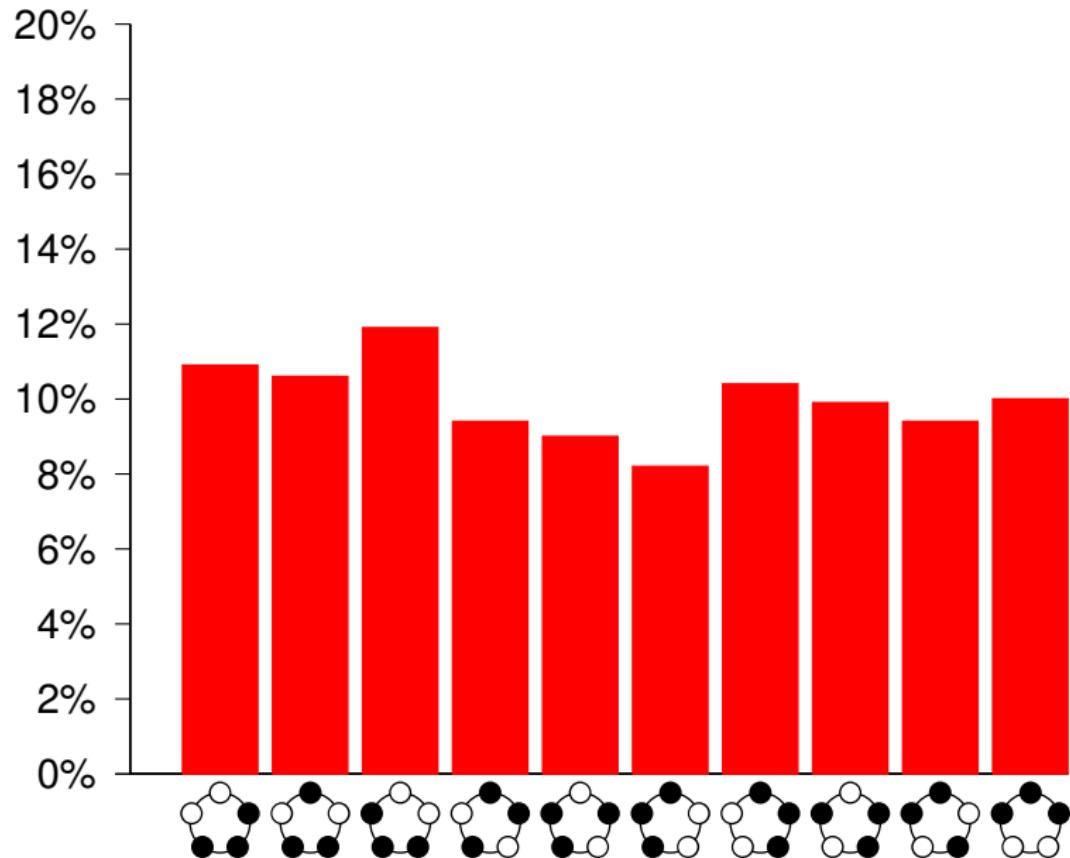
Stationary distribution



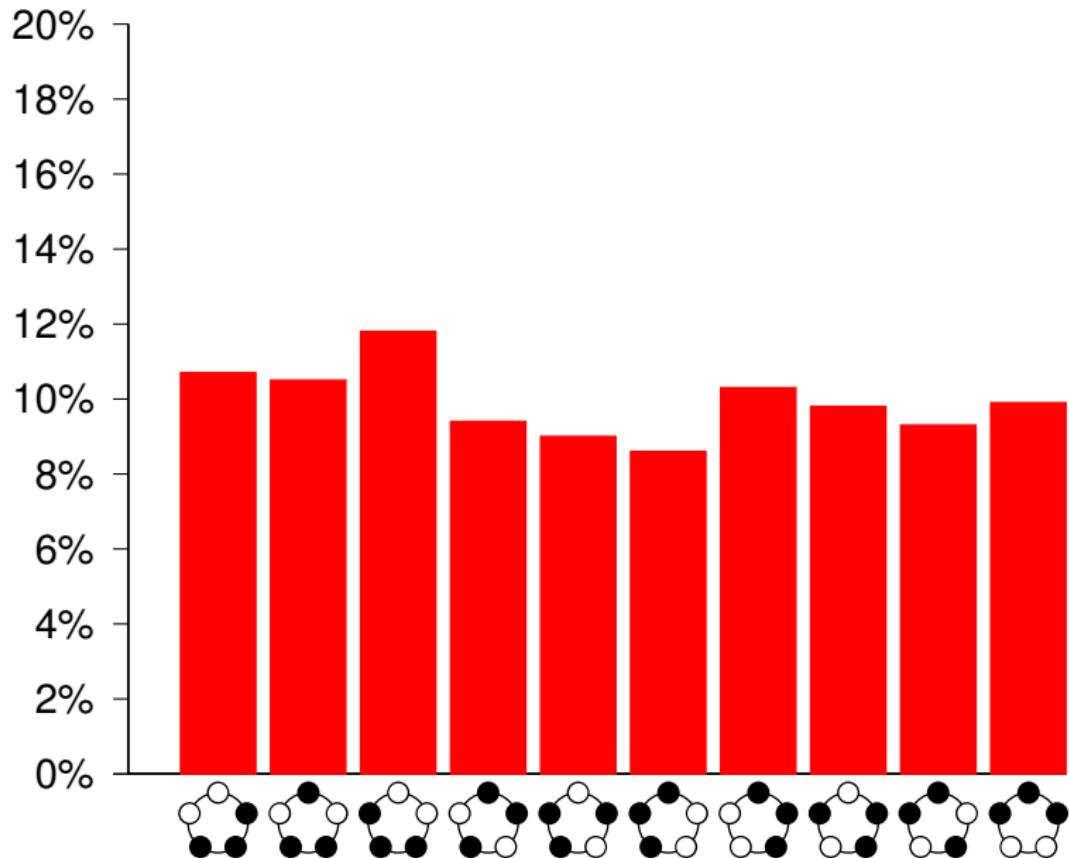
Stationary distribution



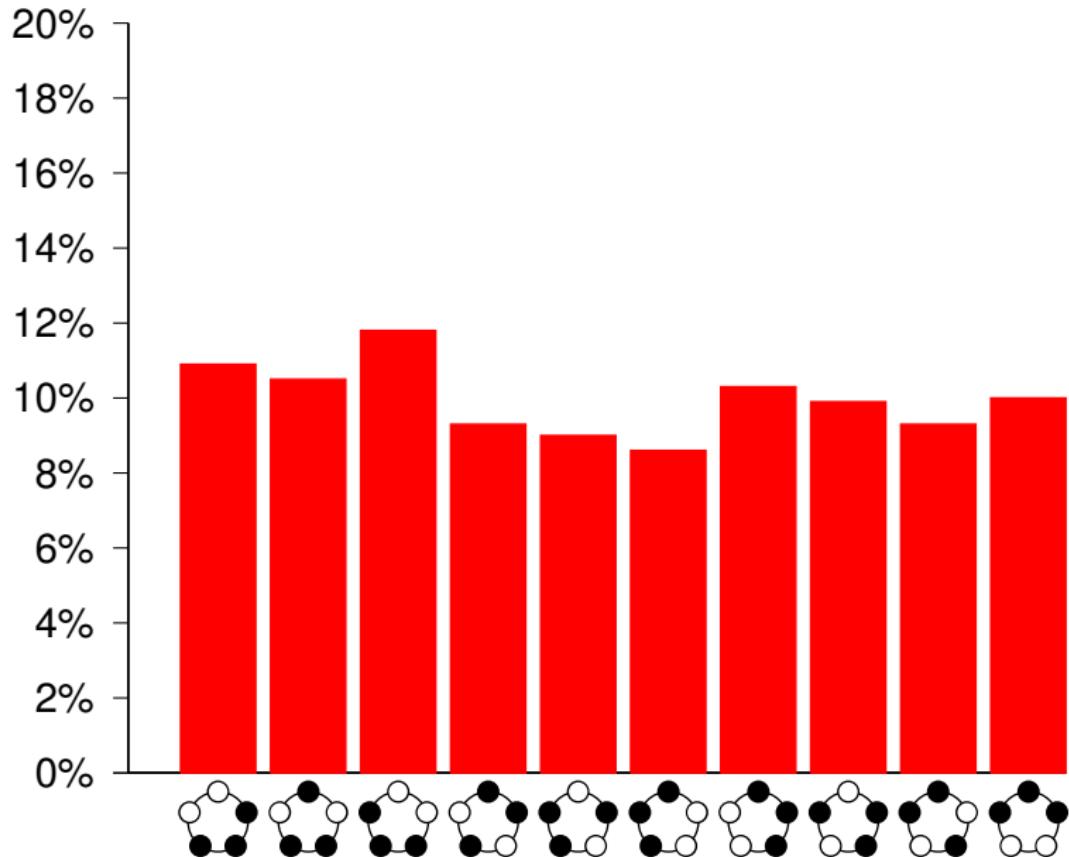
Stationary distribution



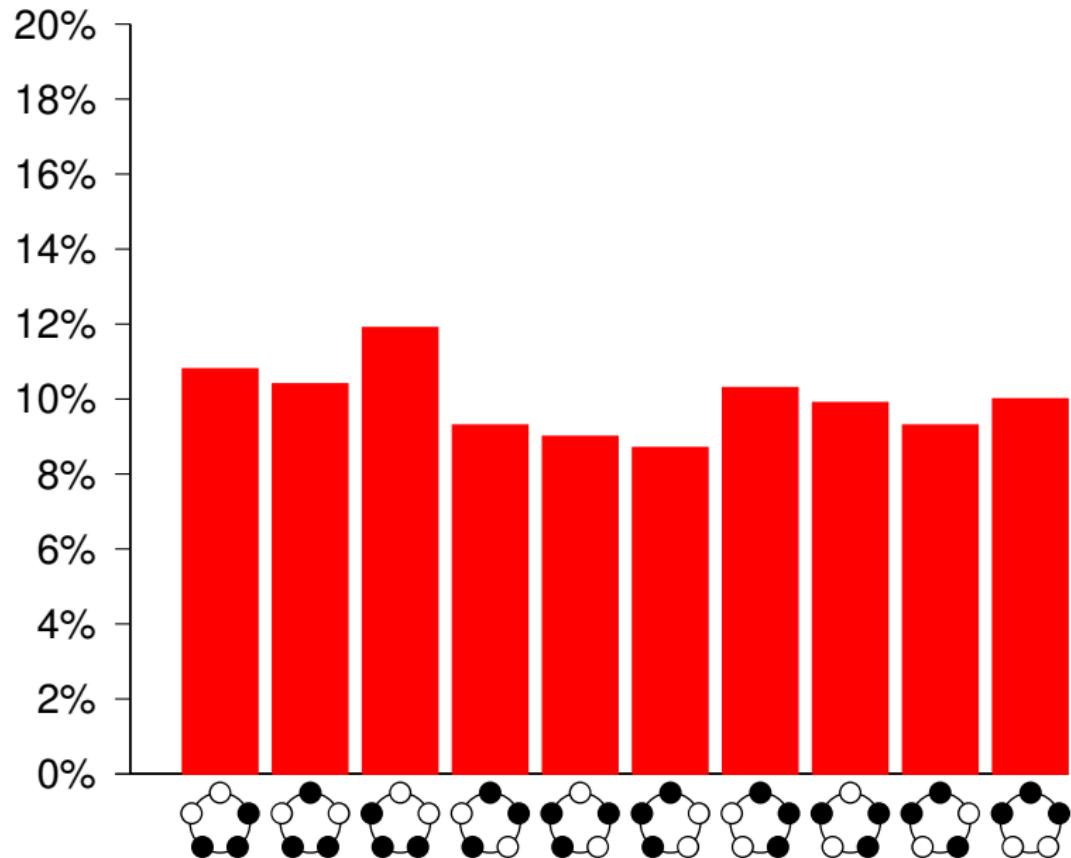
Stationary distribution



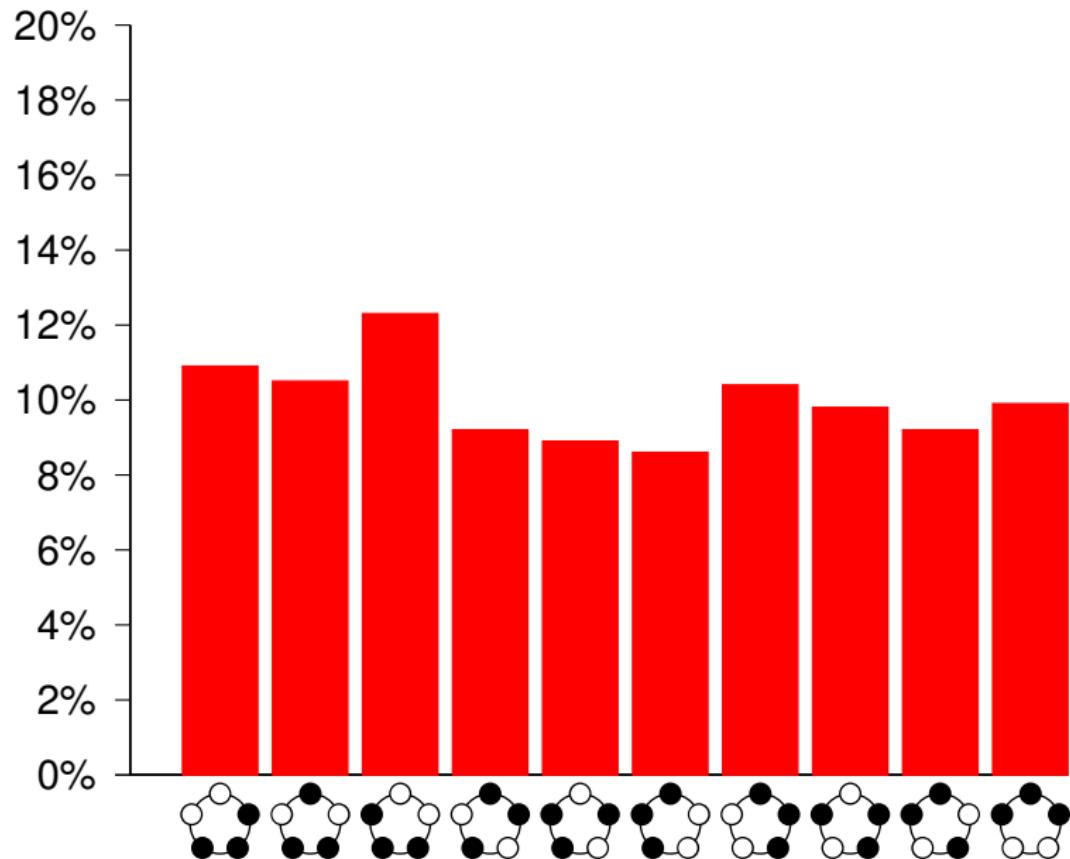
Stationary distribution



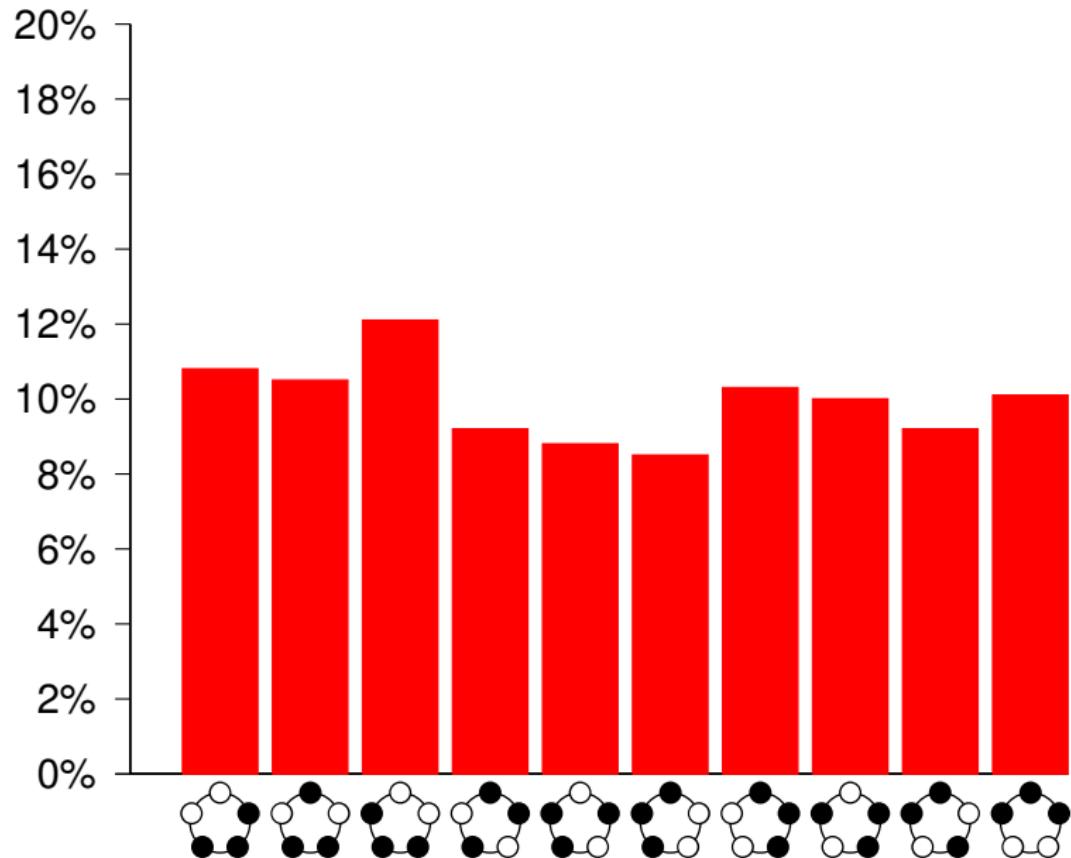
Stationary distribution



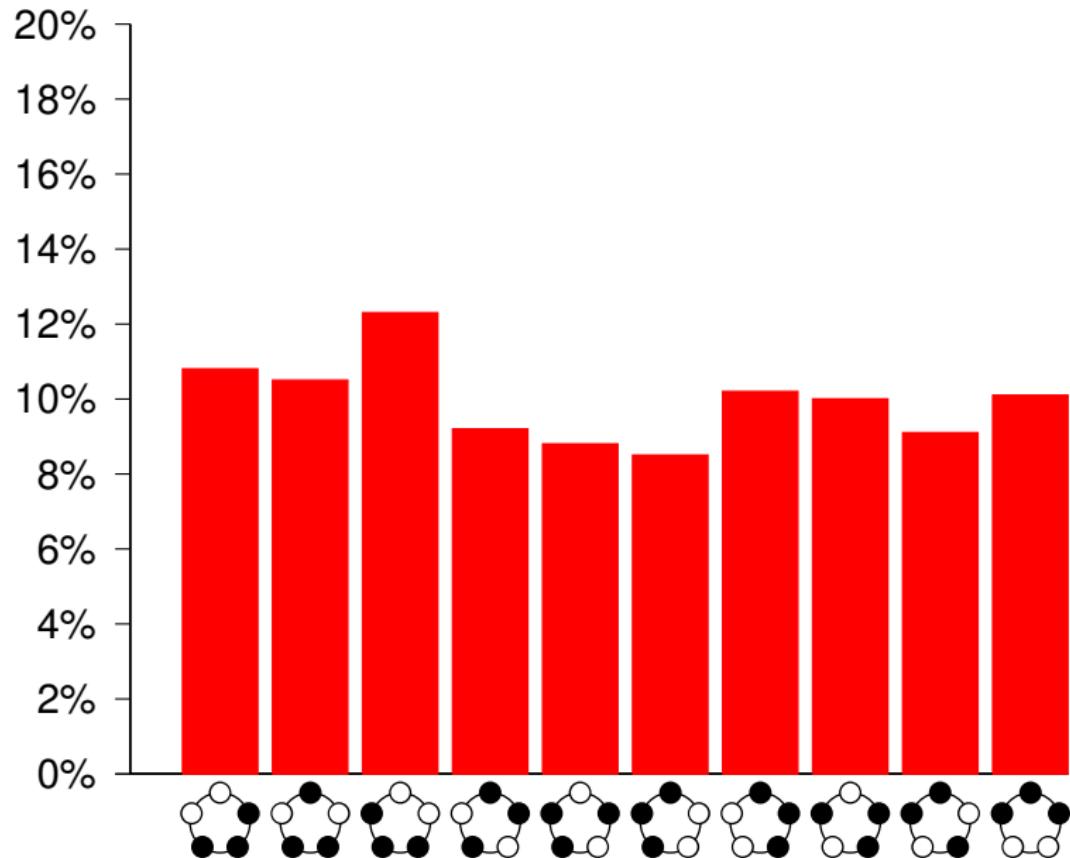
Stationary distribution



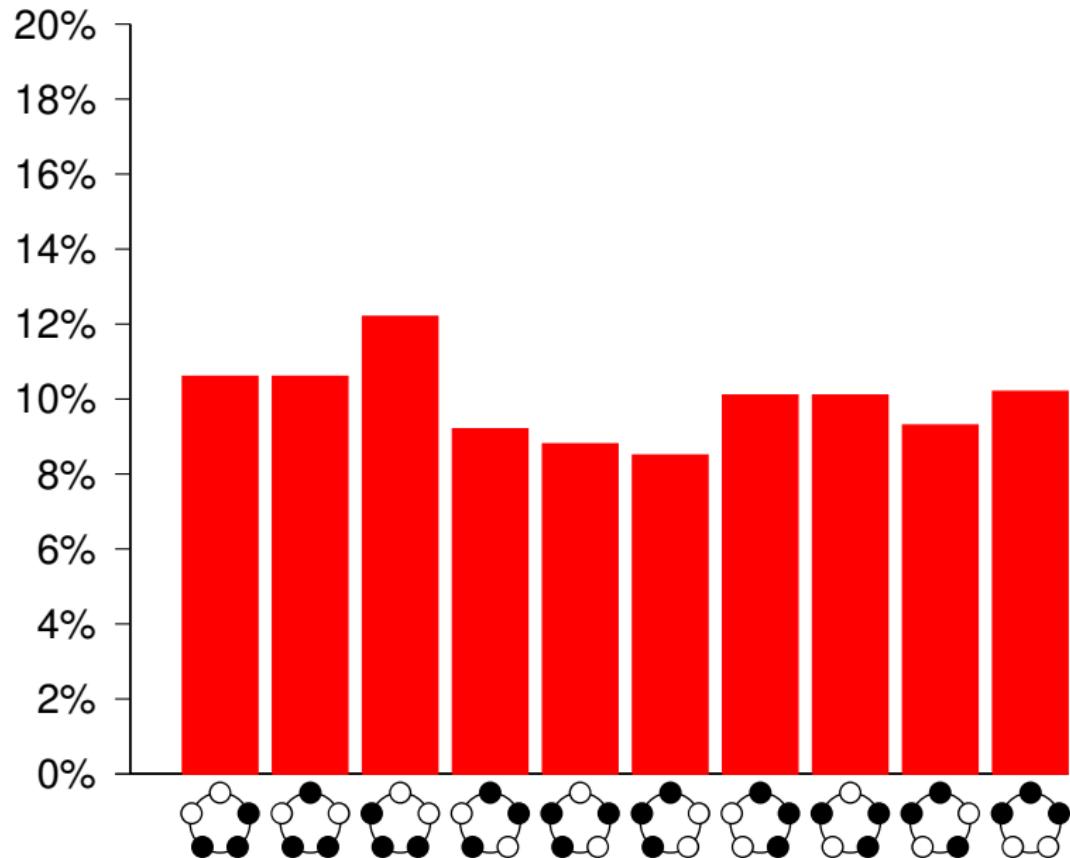
Stationary distribution



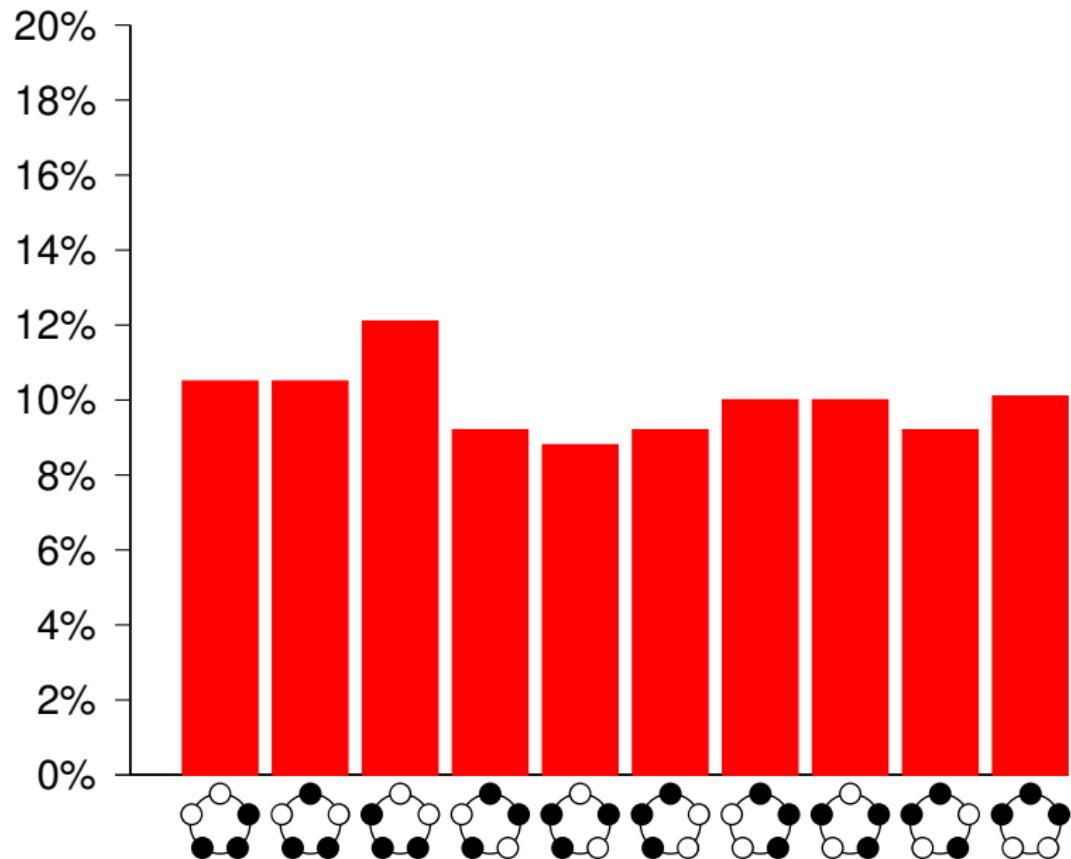
Stationary distribution



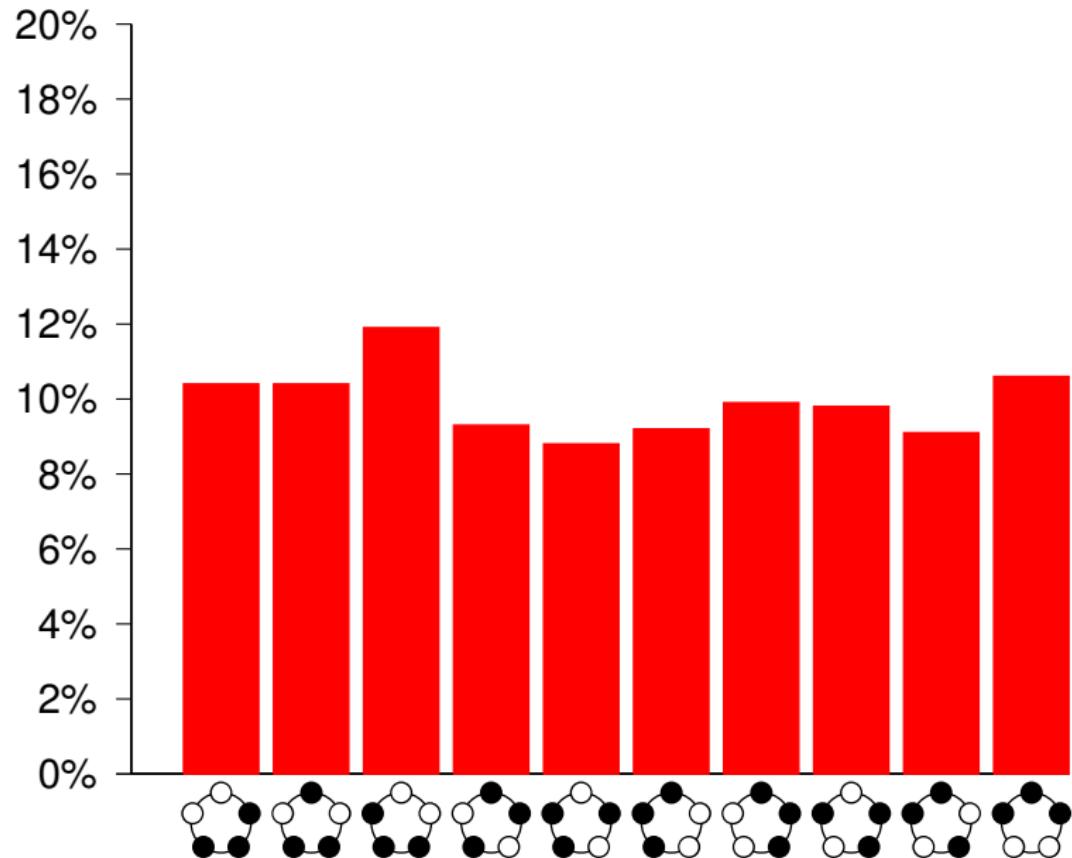
Stationary distribution



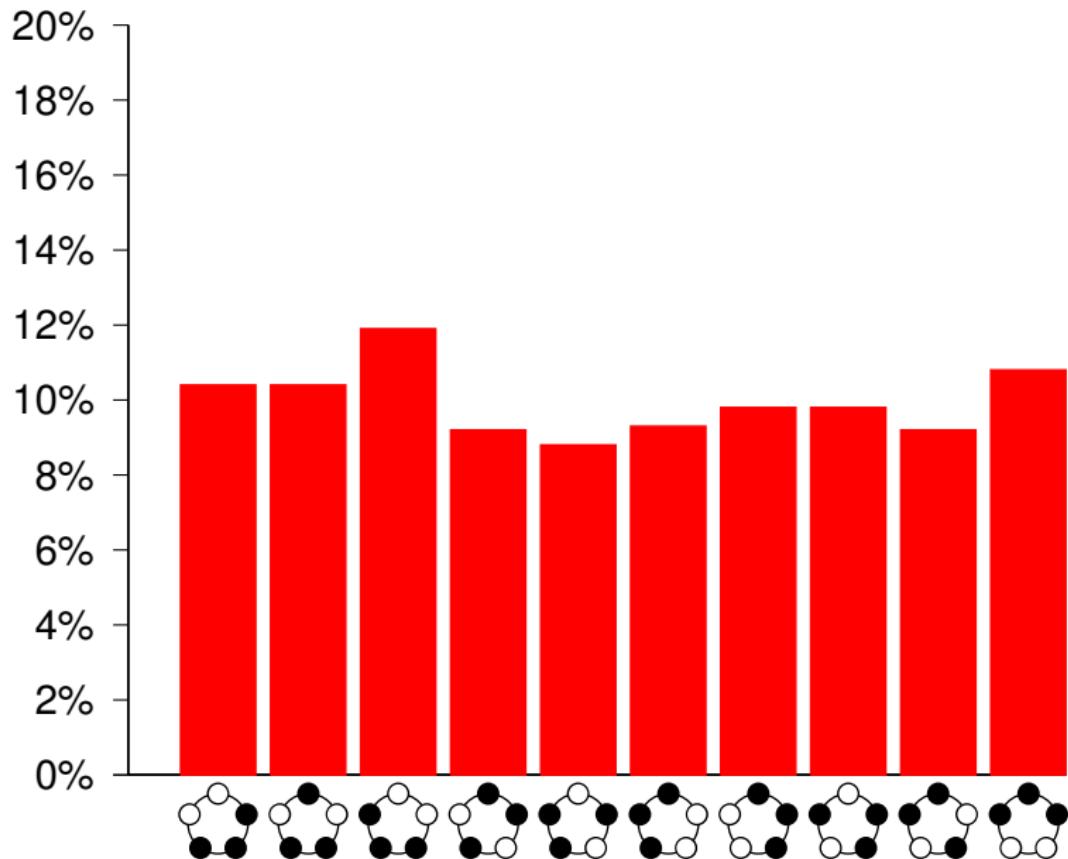
Stationary distribution



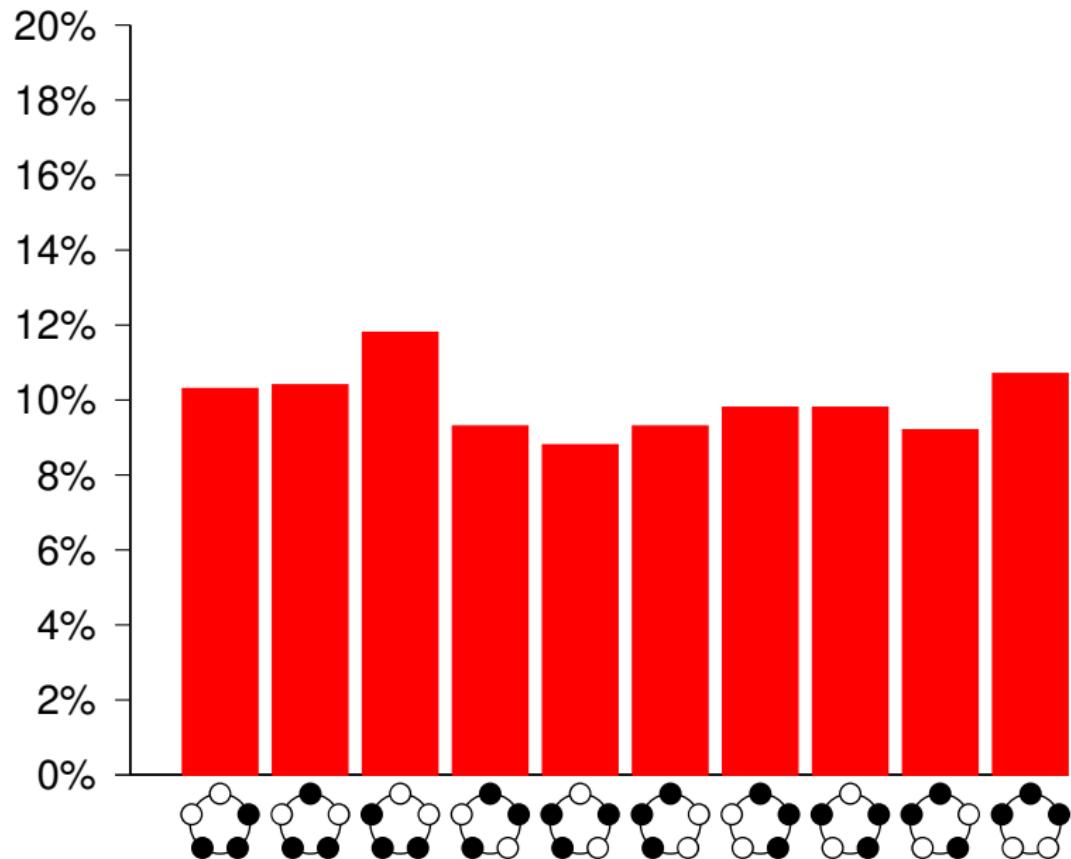
Stationary distribution



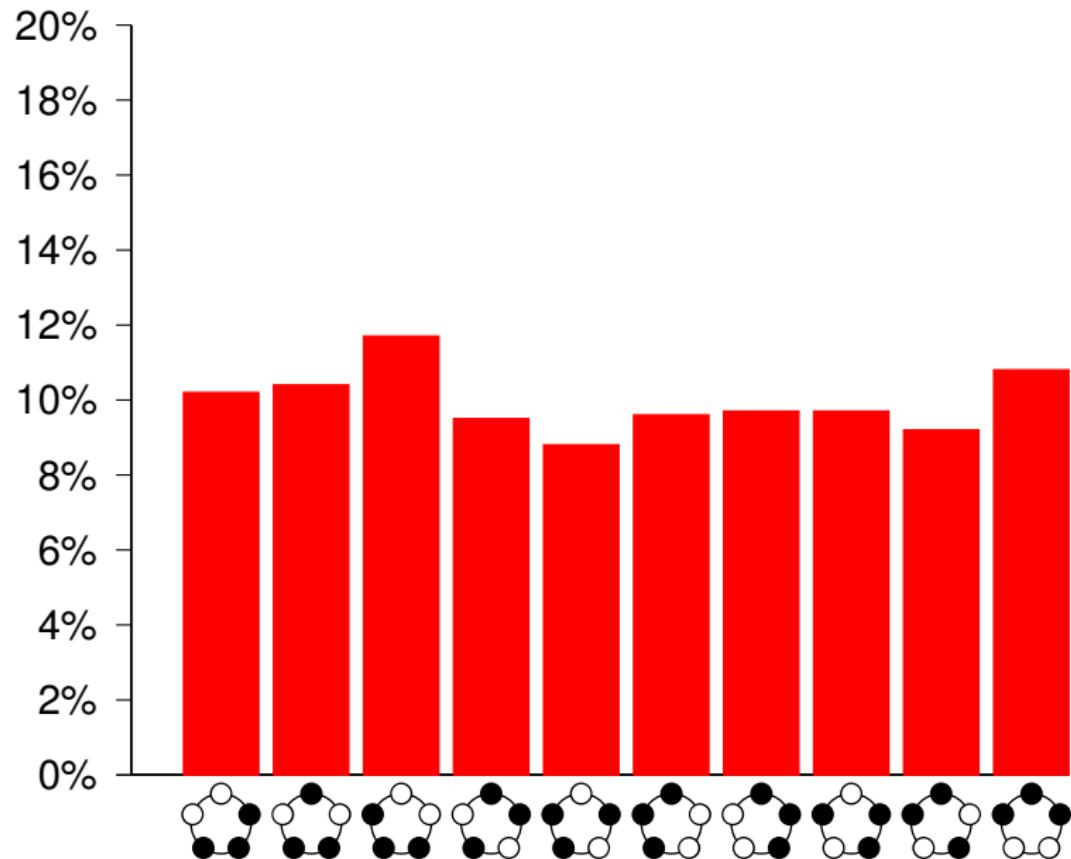
Stationary distribution



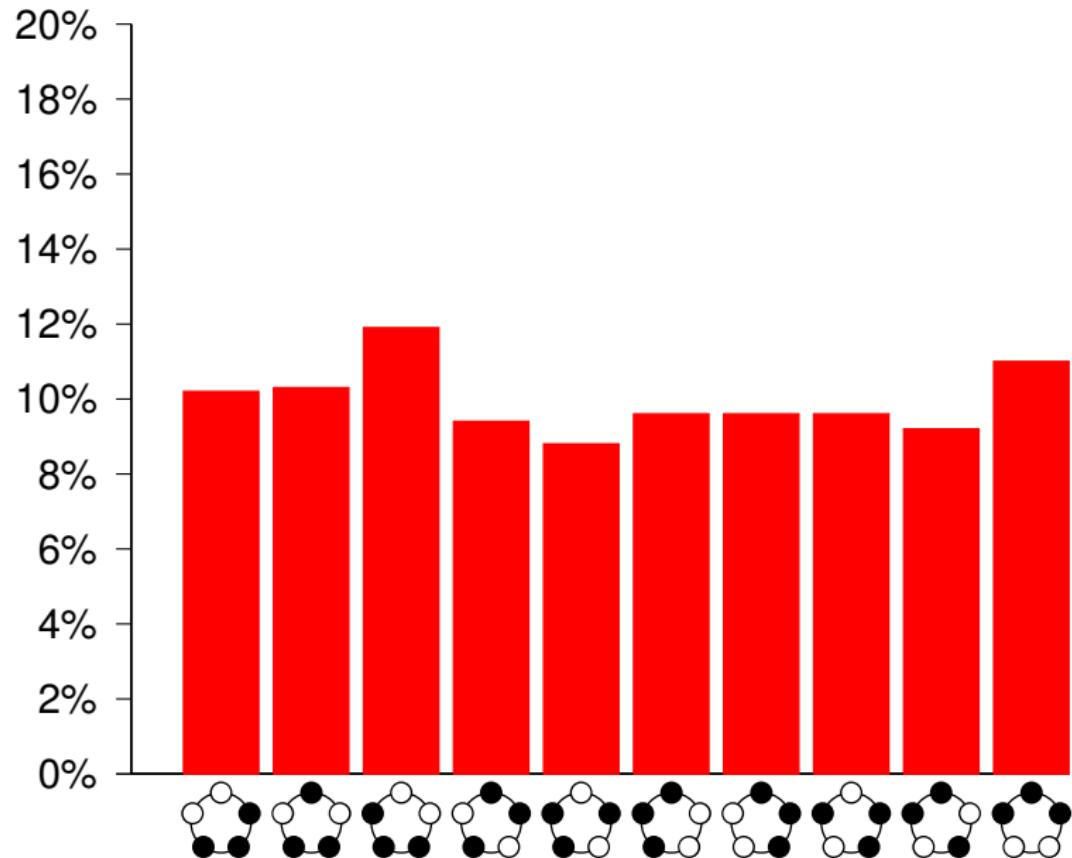
Stationary distribution



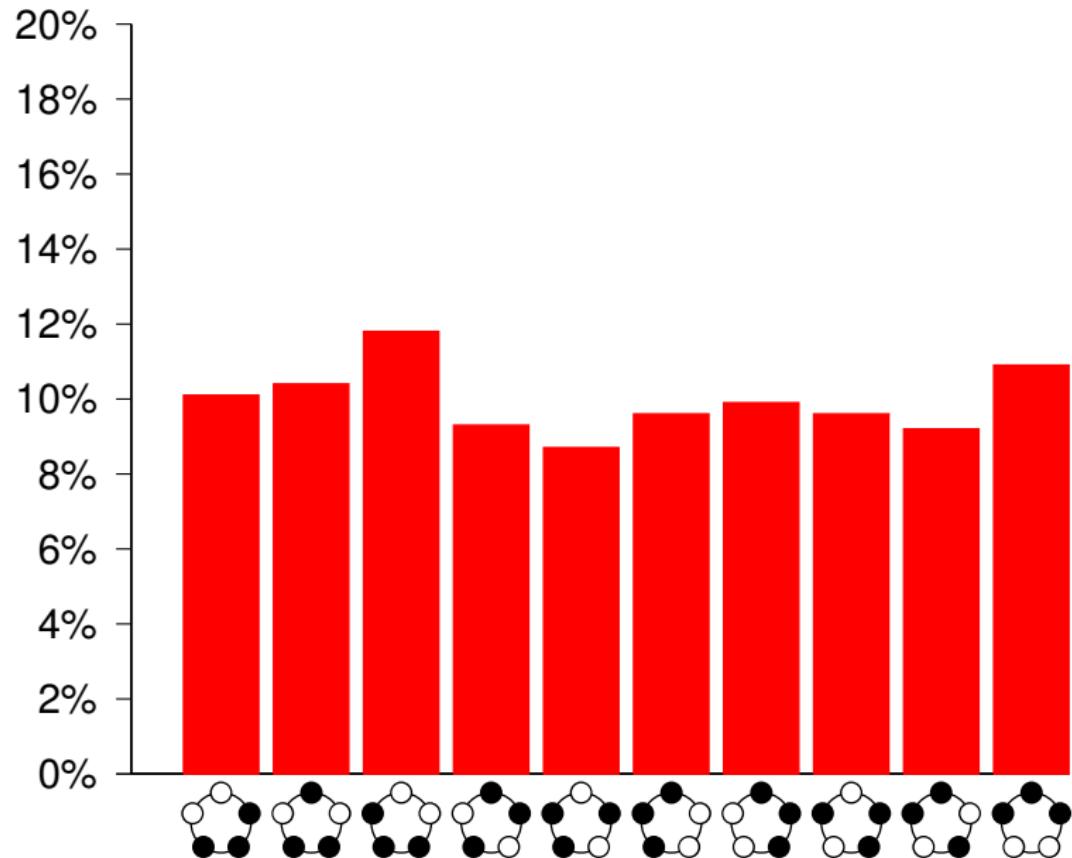
Stationary distribution



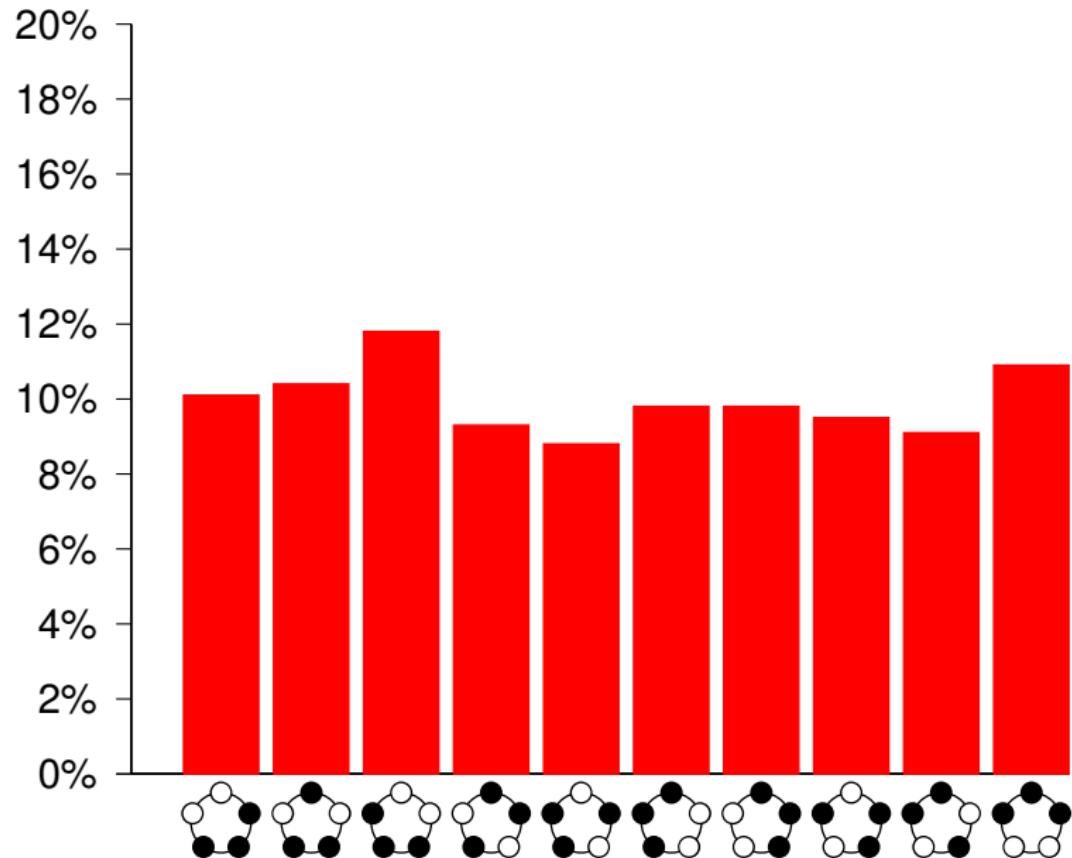
Stationary distribution



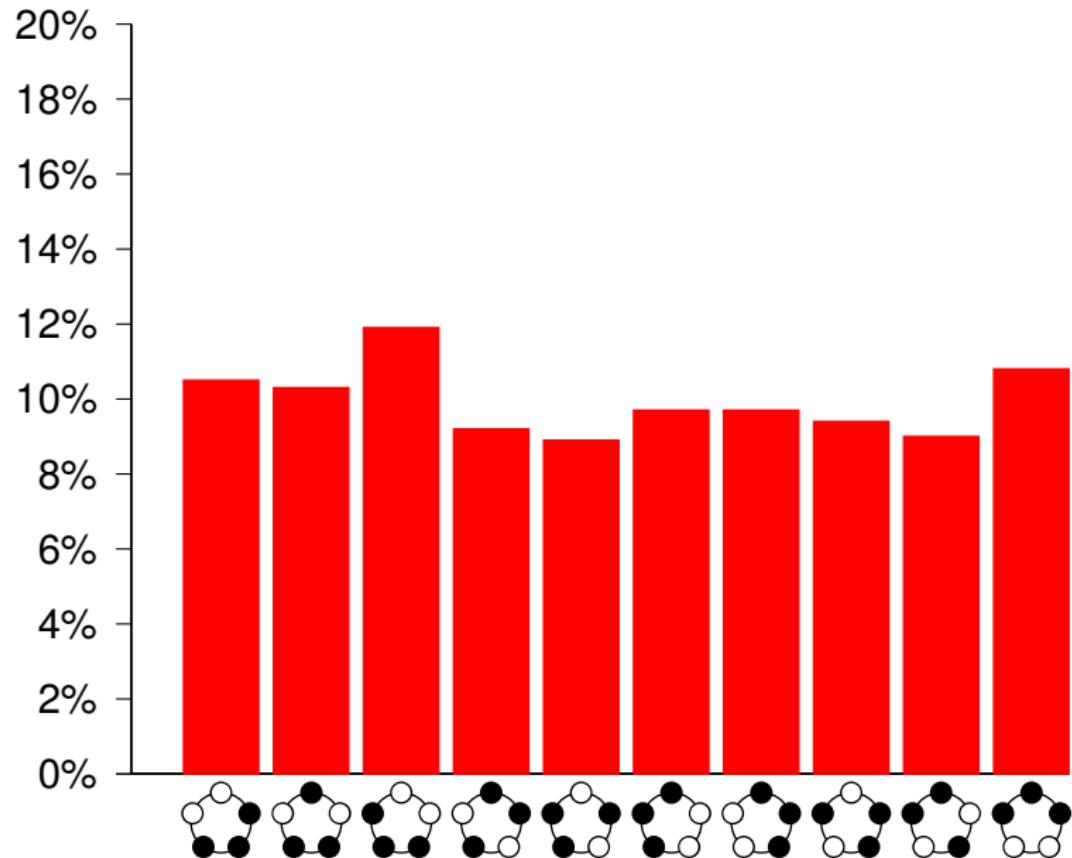
Stationary distribution



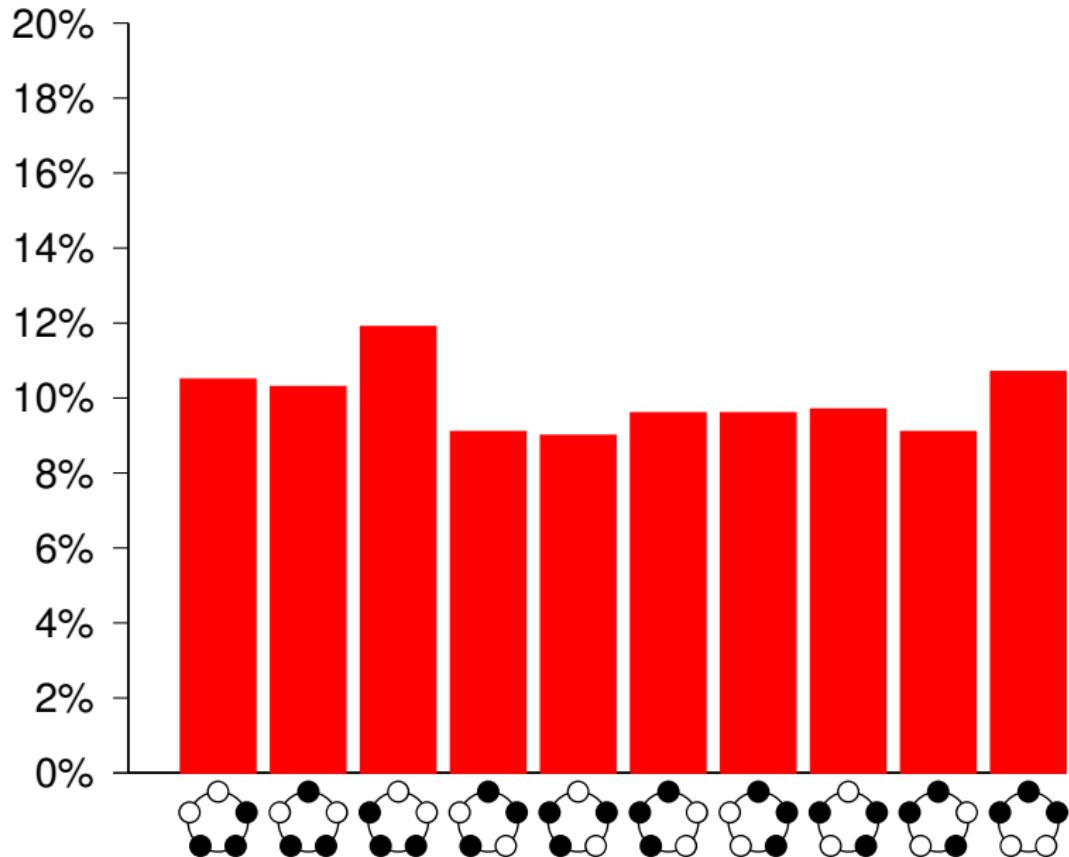
Stationary distribution



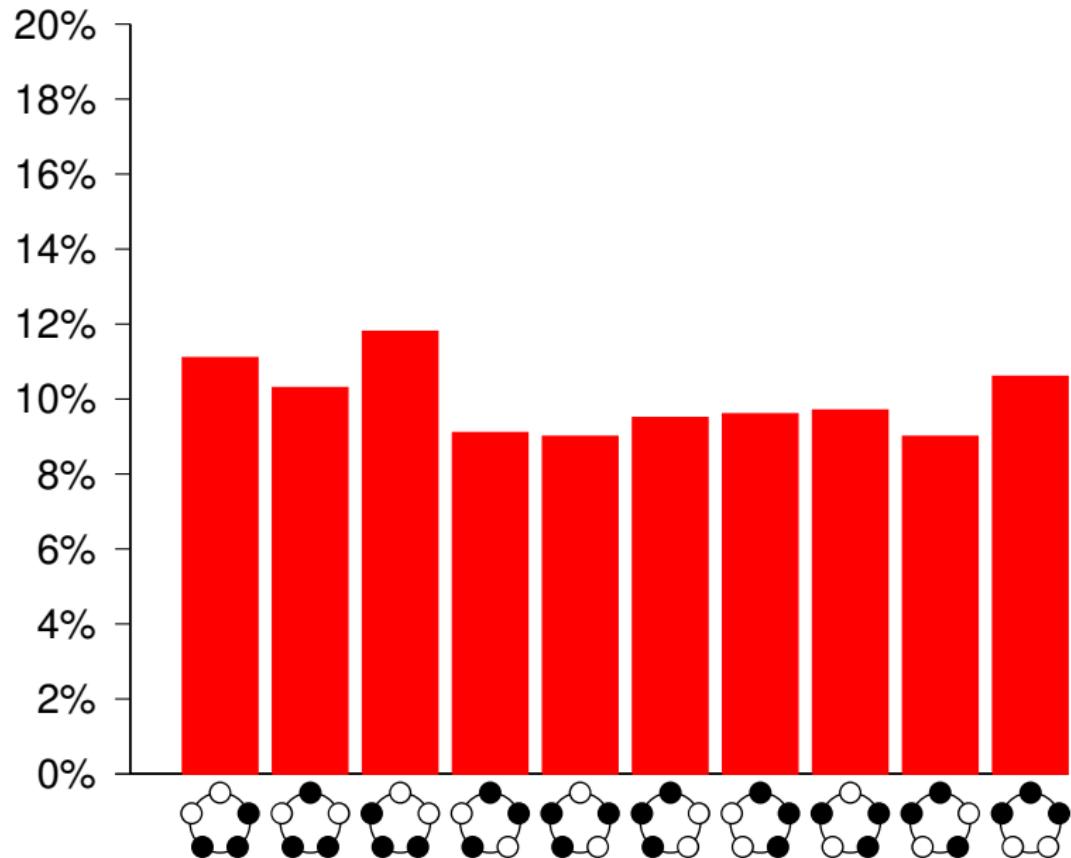
Stationary distribution



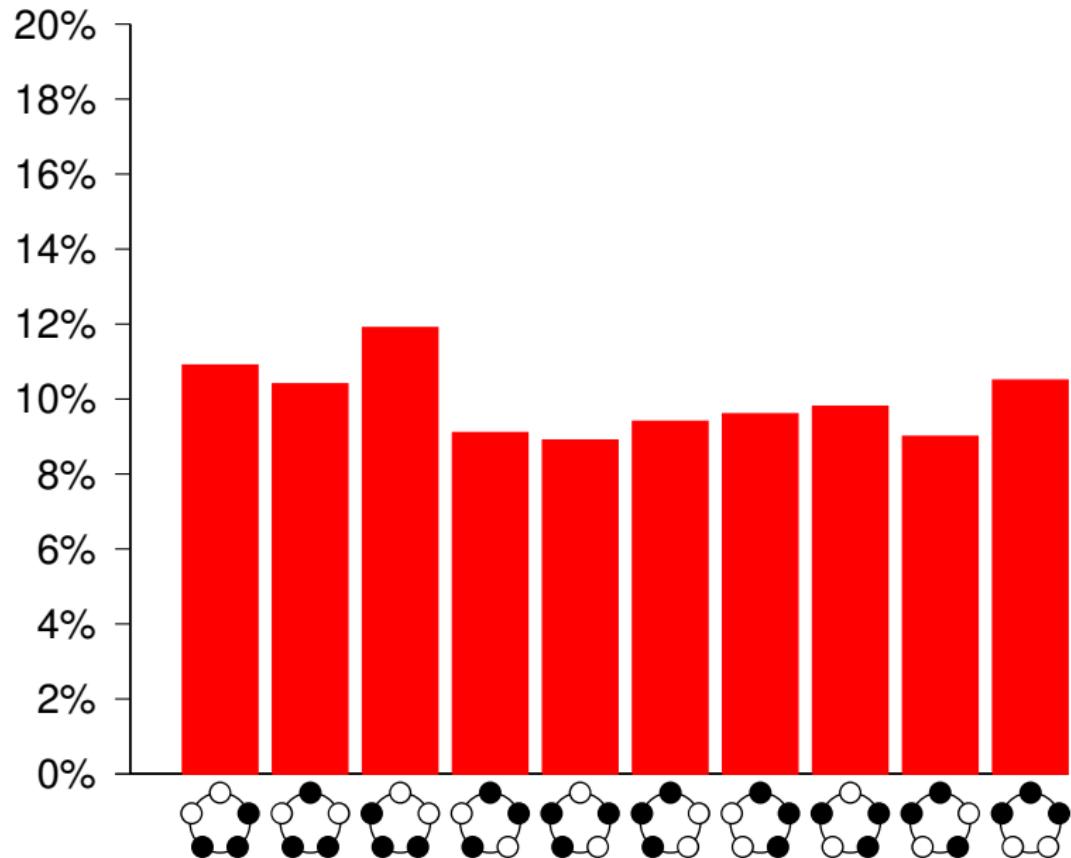
Stationary distribution



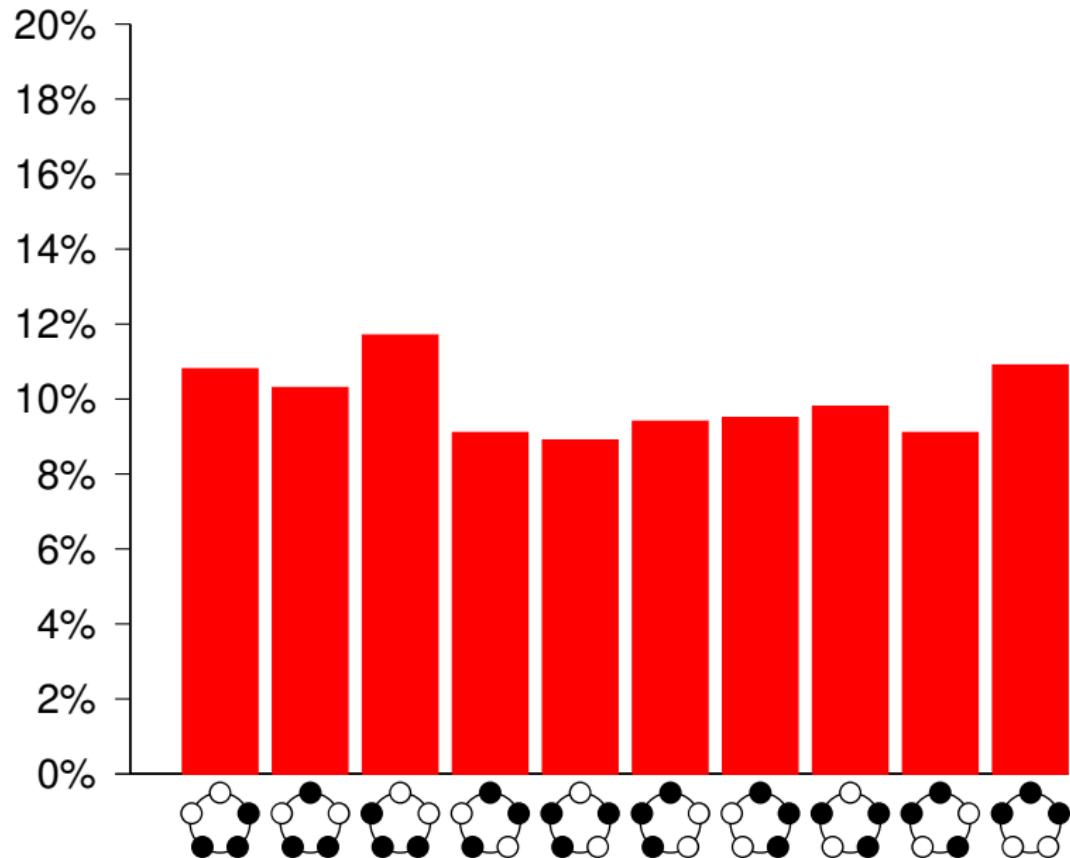
Stationary distribution



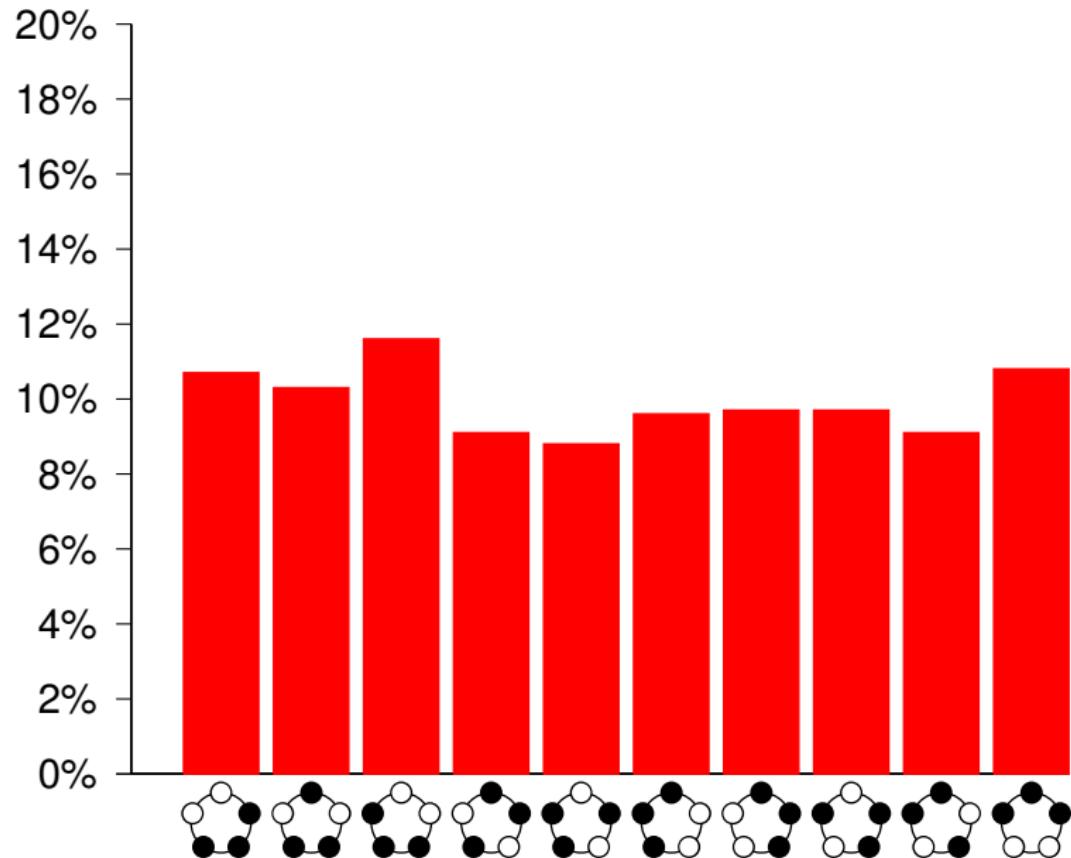
Stationary distribution



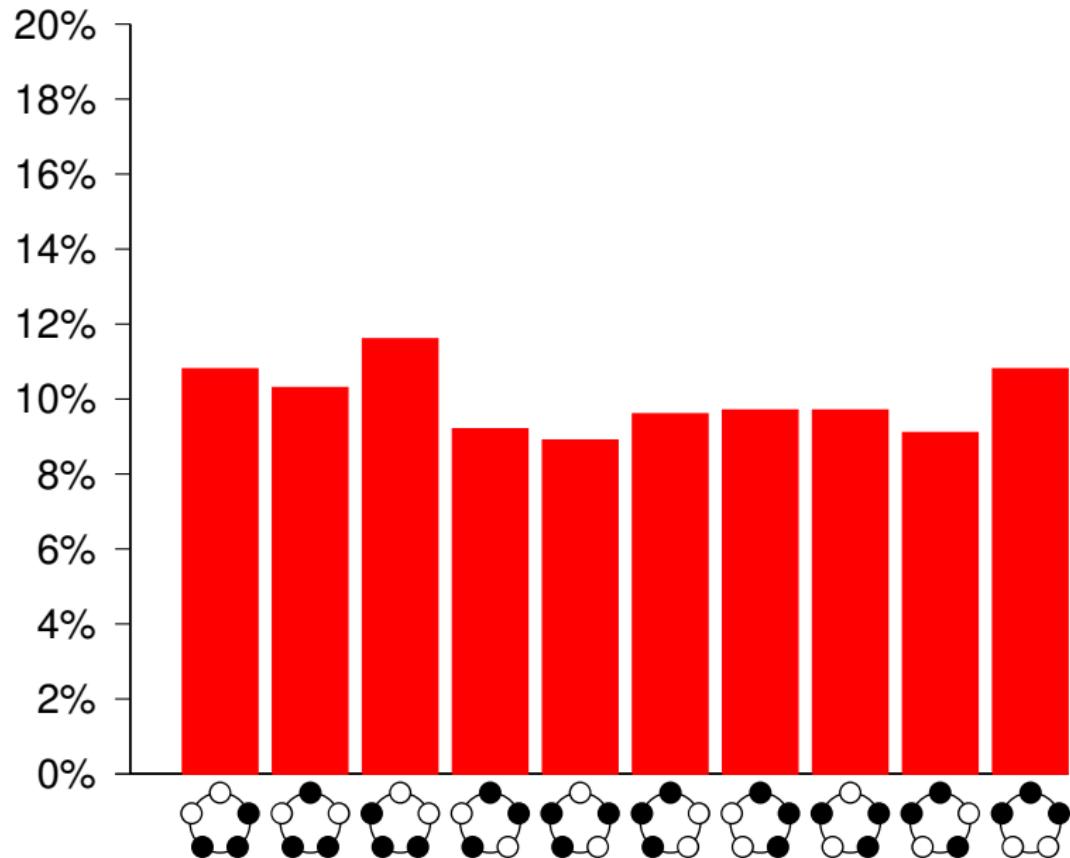
Stationary distribution



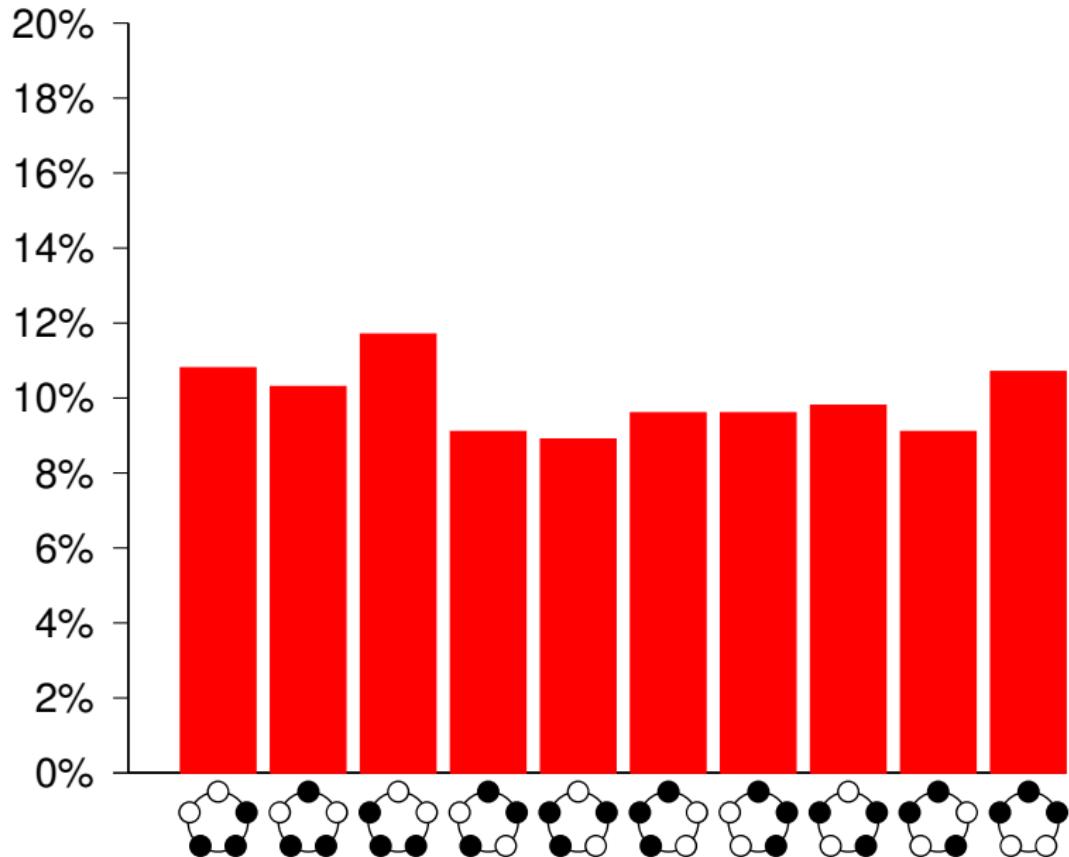
Stationary distribution



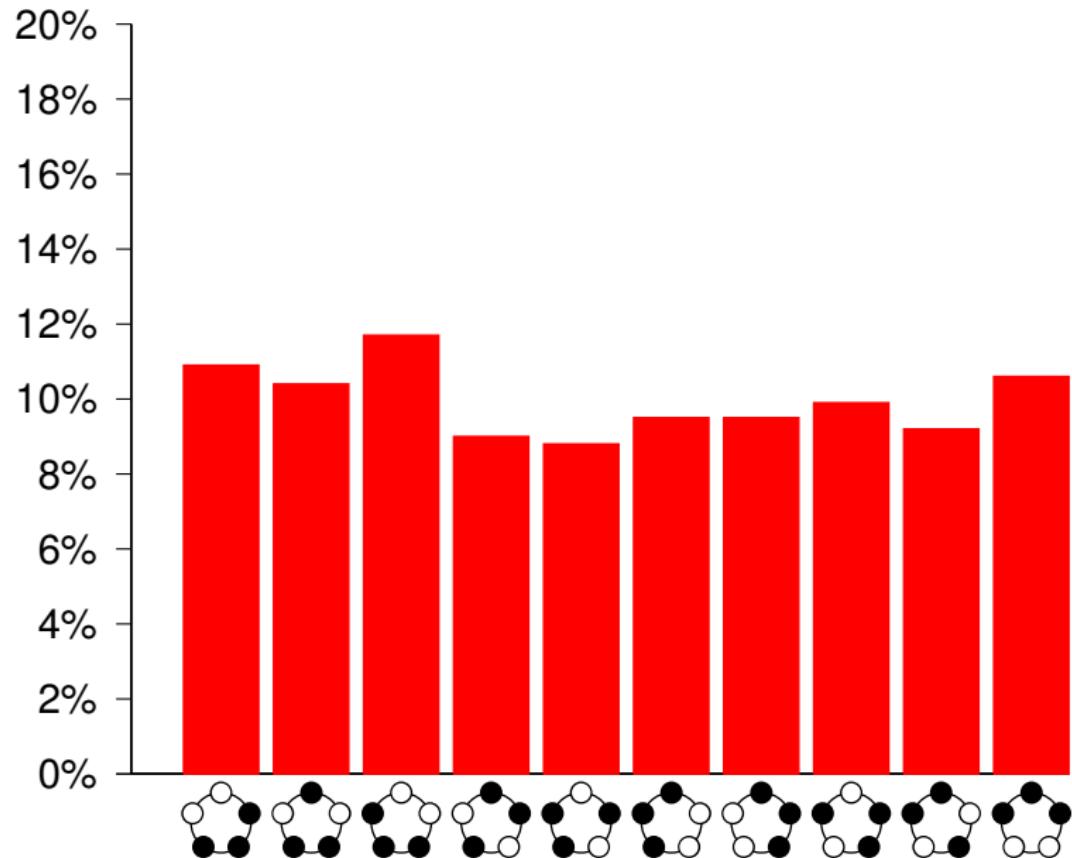
Stationary distribution



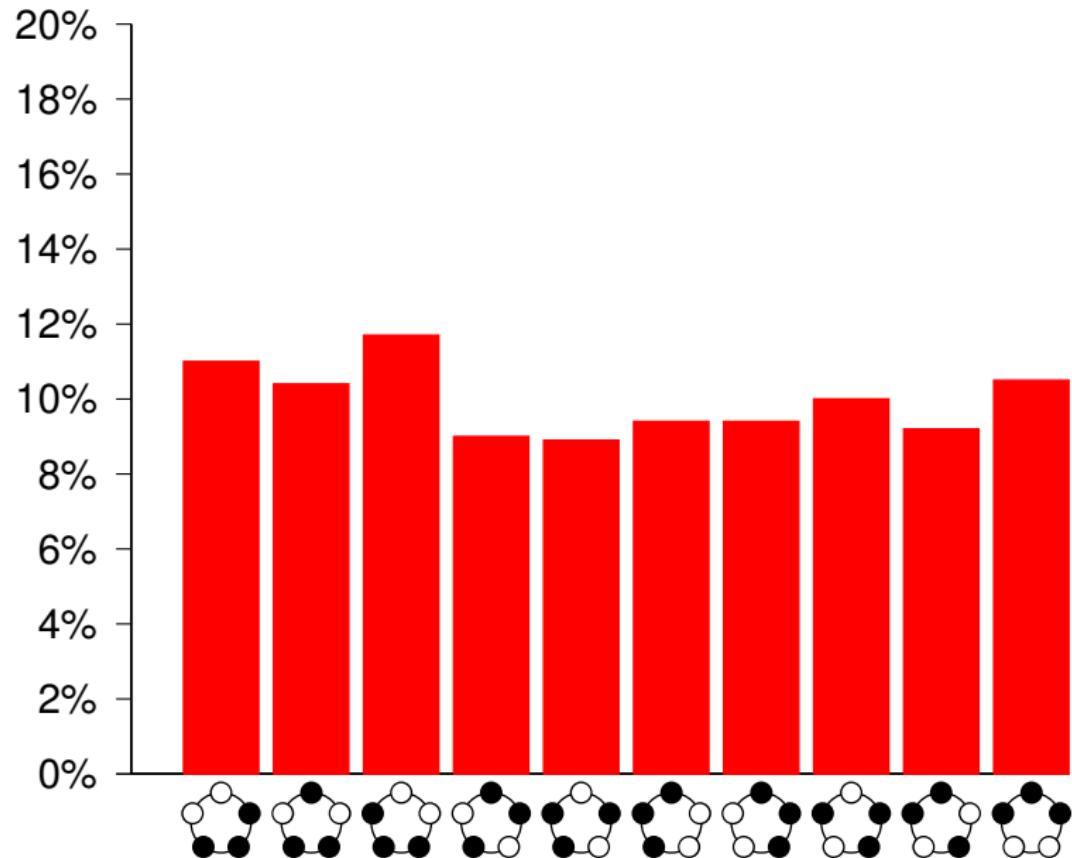
Stationary distribution



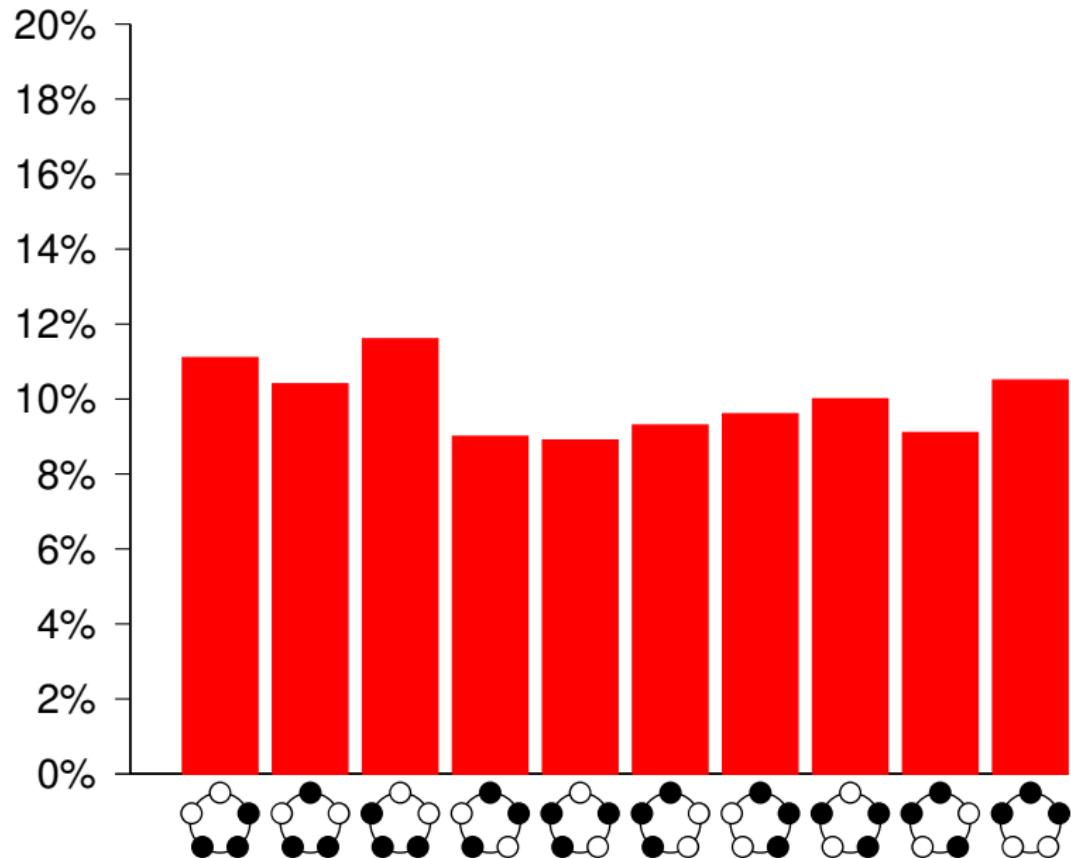
Stationary distribution



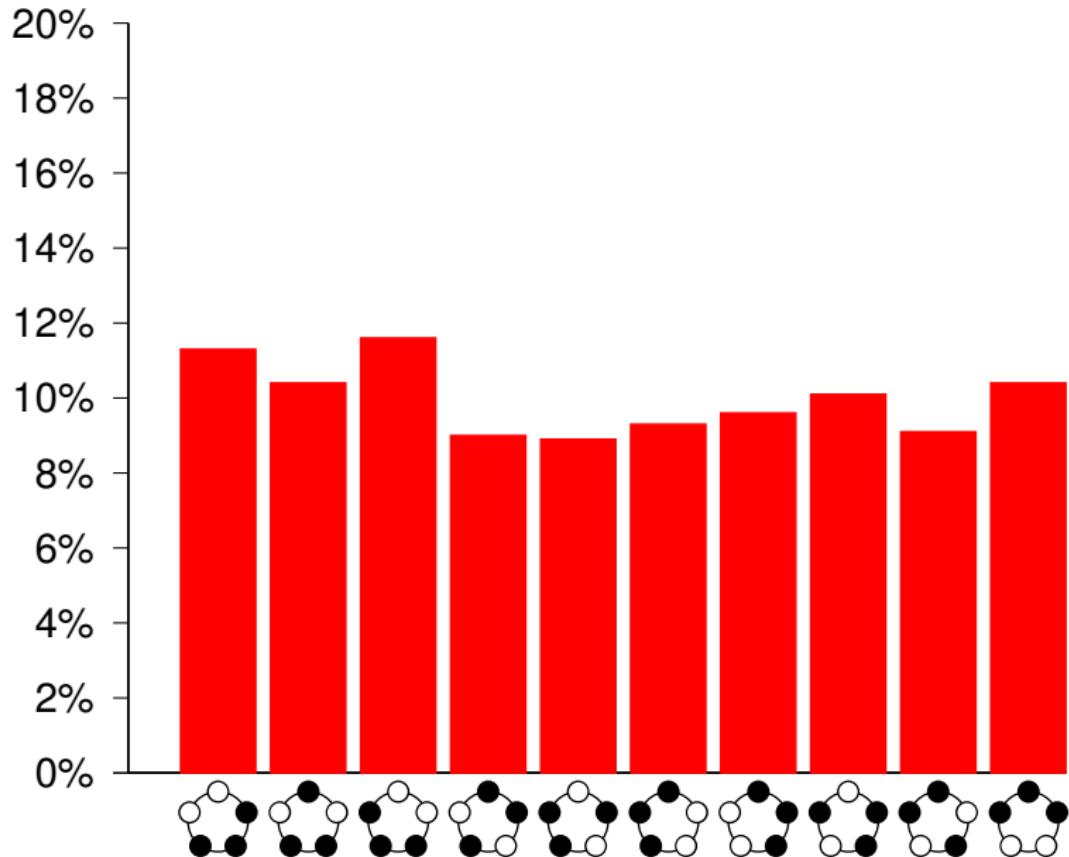
Stationary distribution



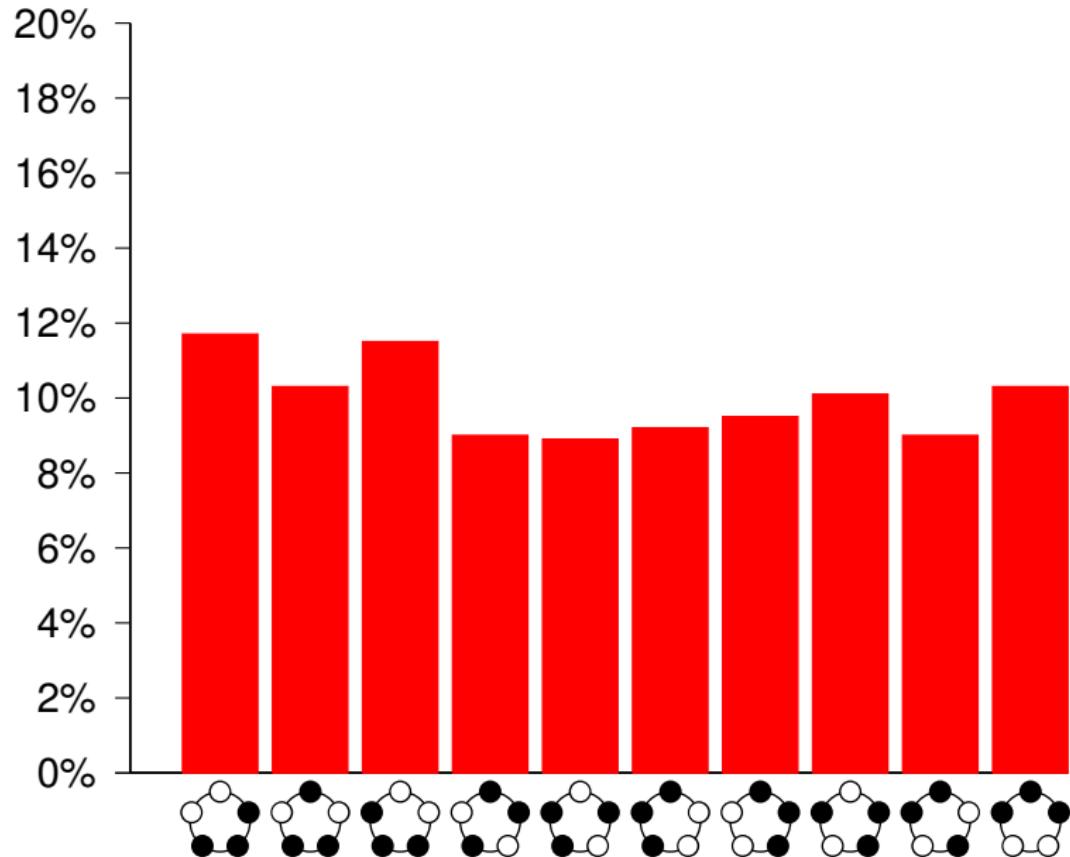
Stationary distribution



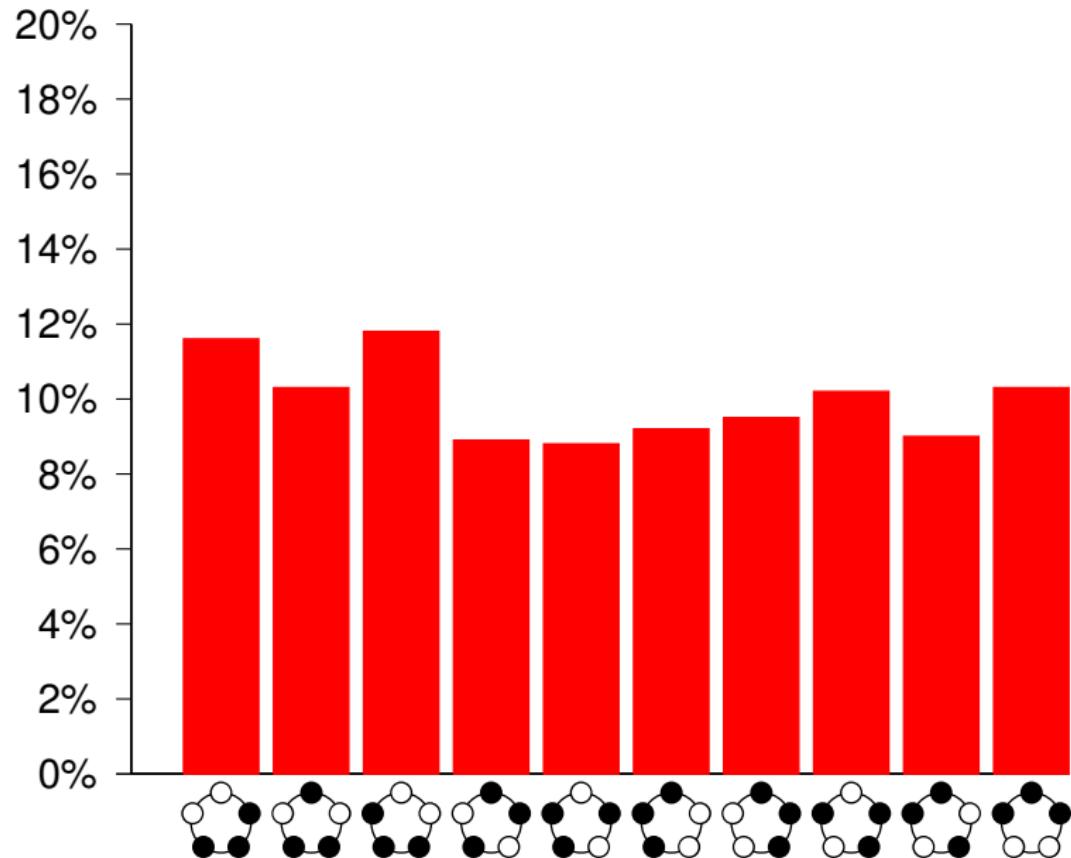
Stationary distribution



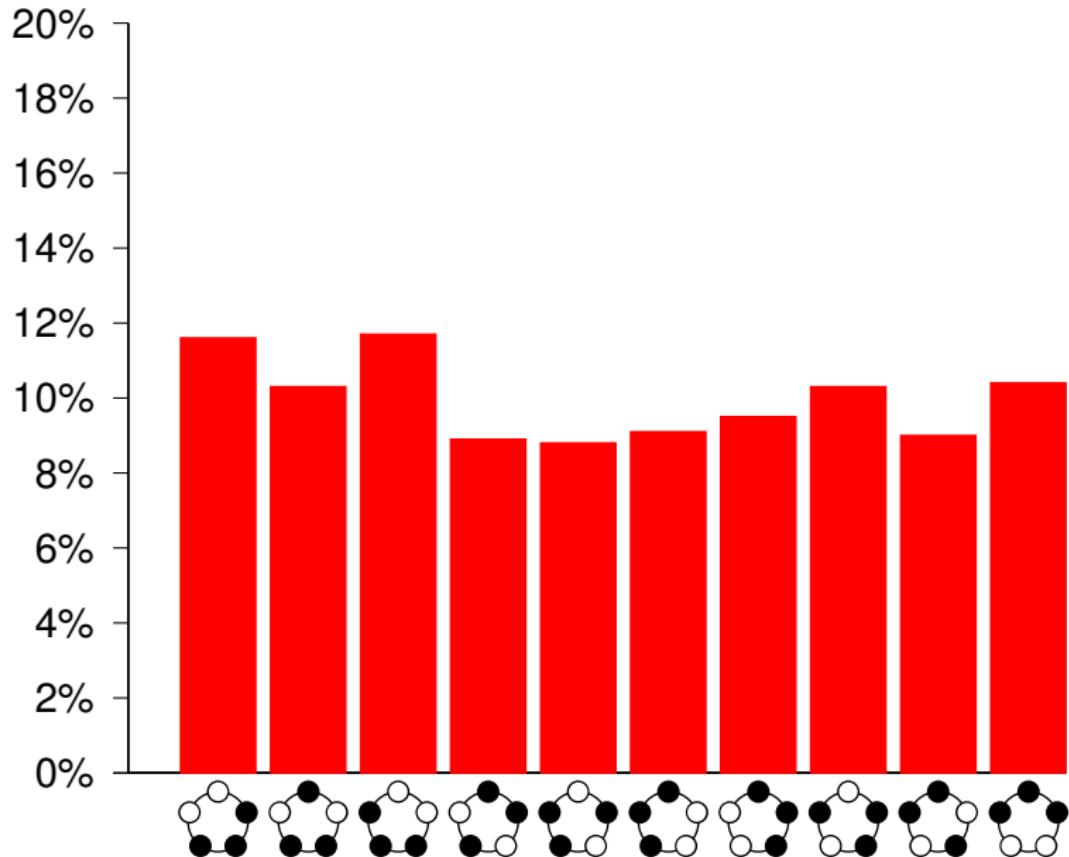
Stationary distribution



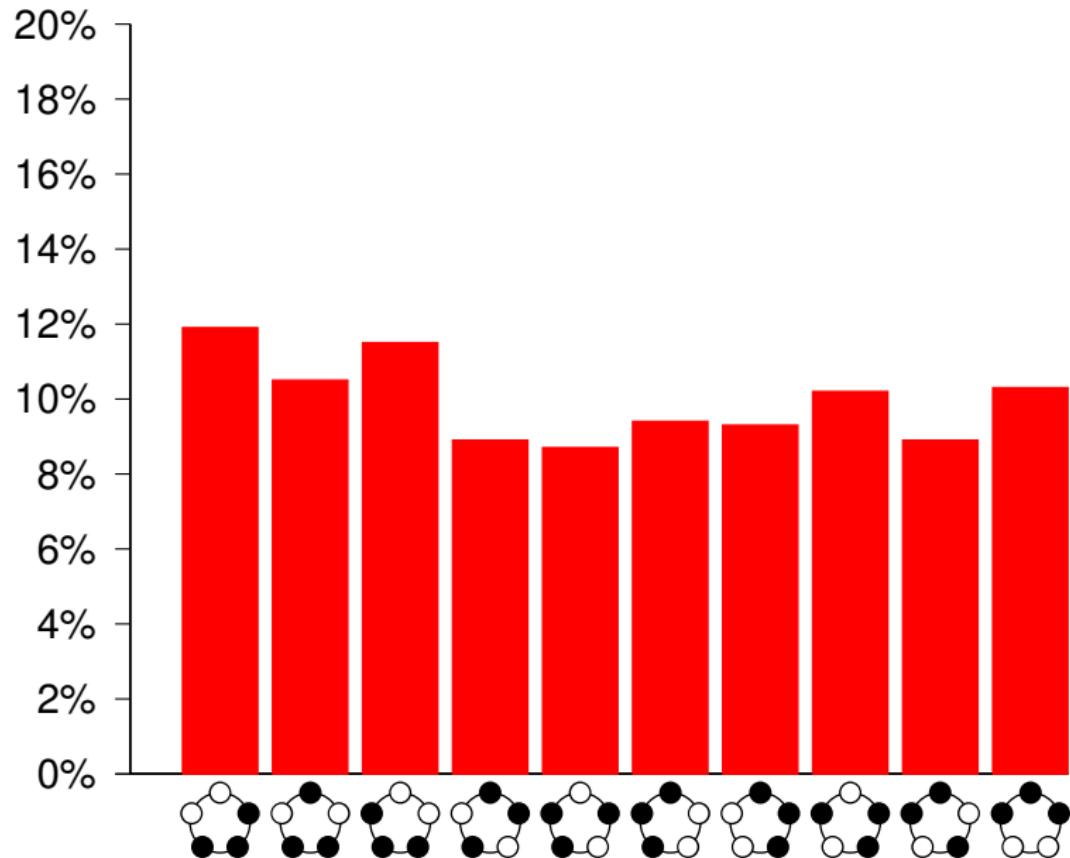
Stationary distribution



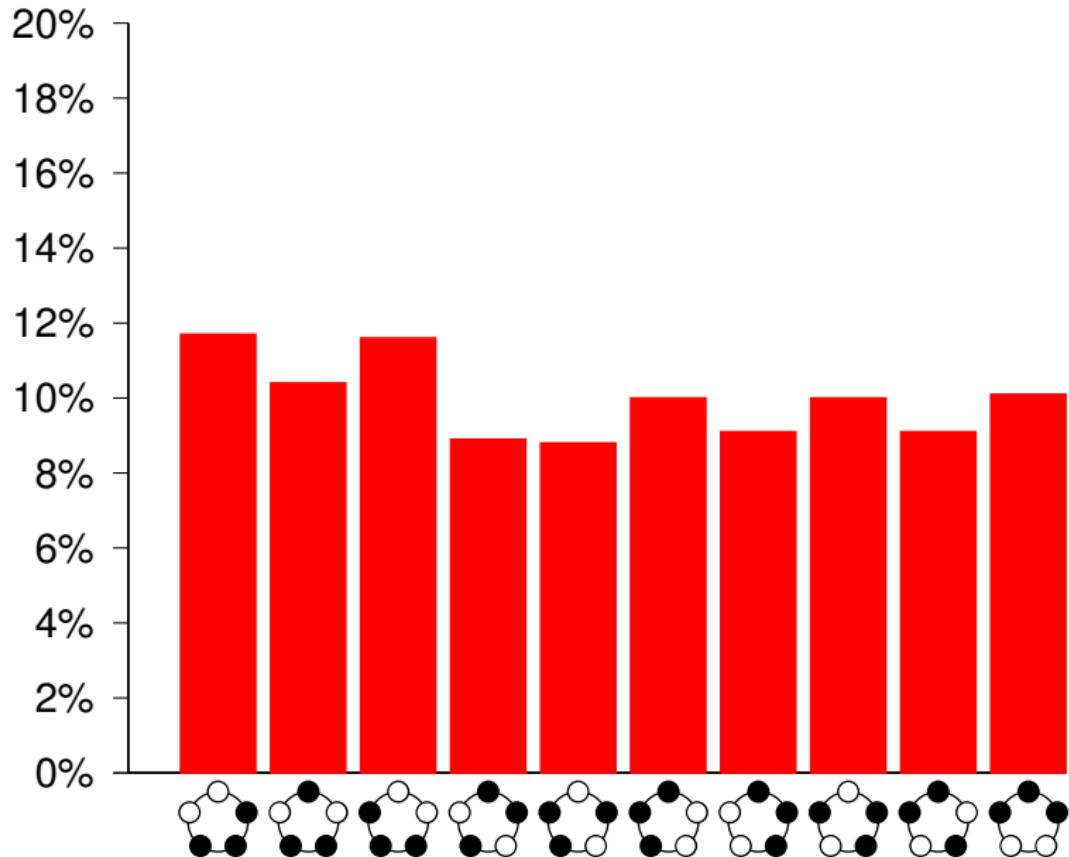
Stationary distribution



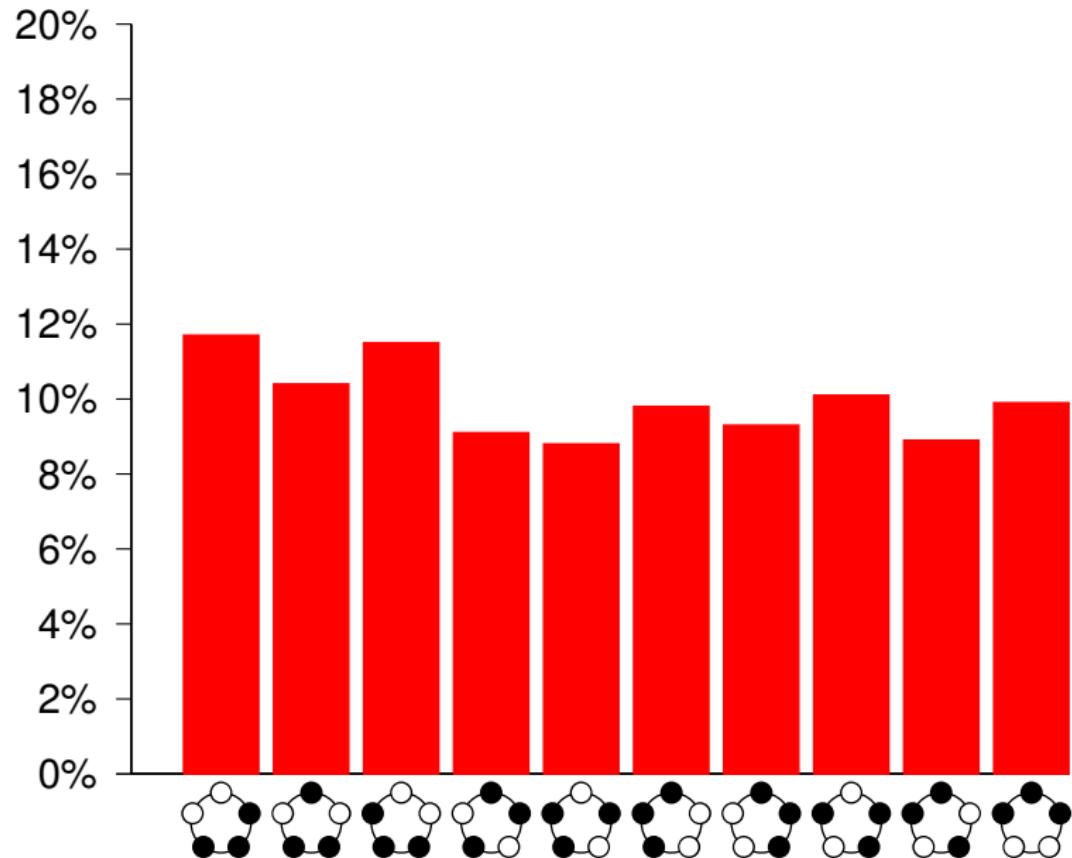
Stationary distribution



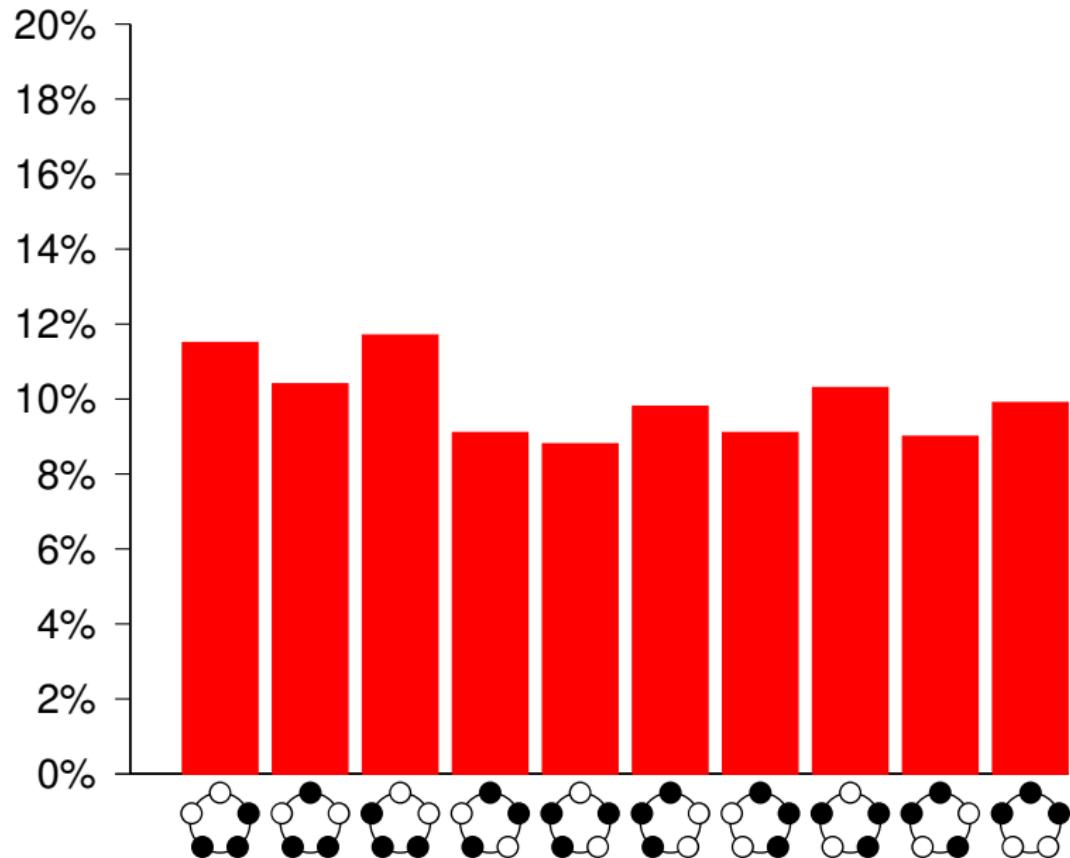
Stationary distribution



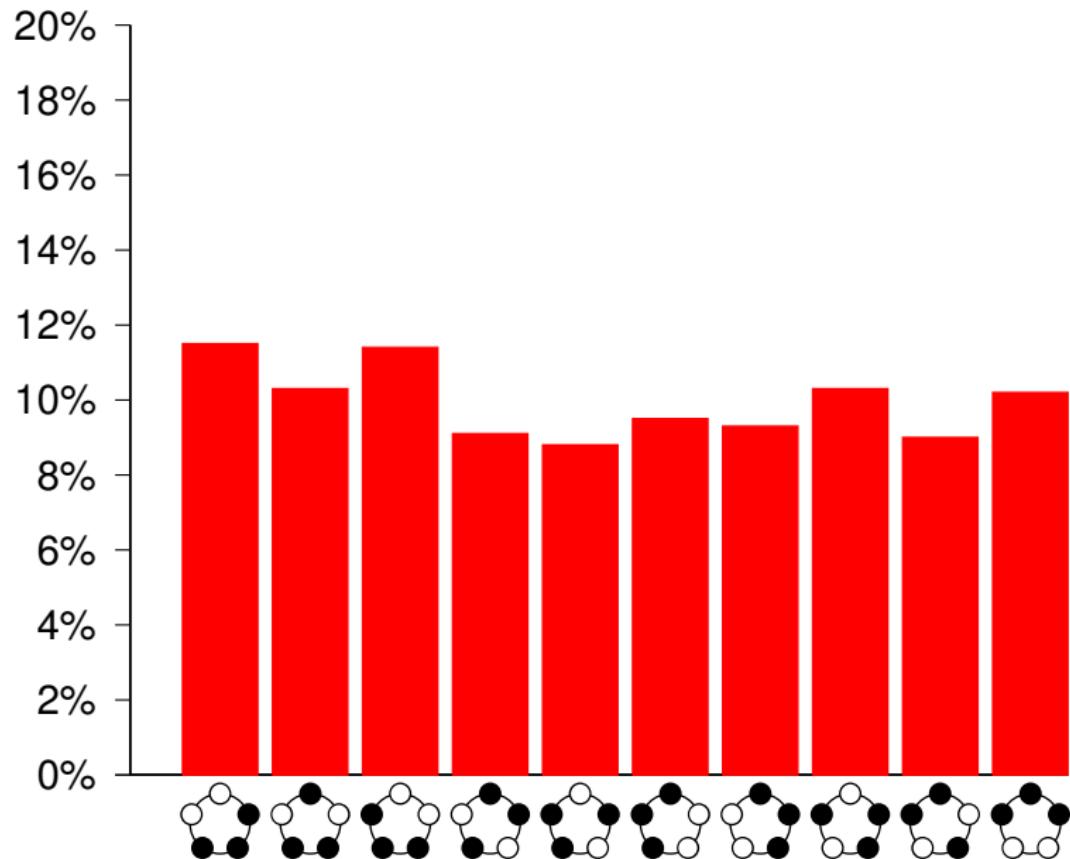
Stationary distribution



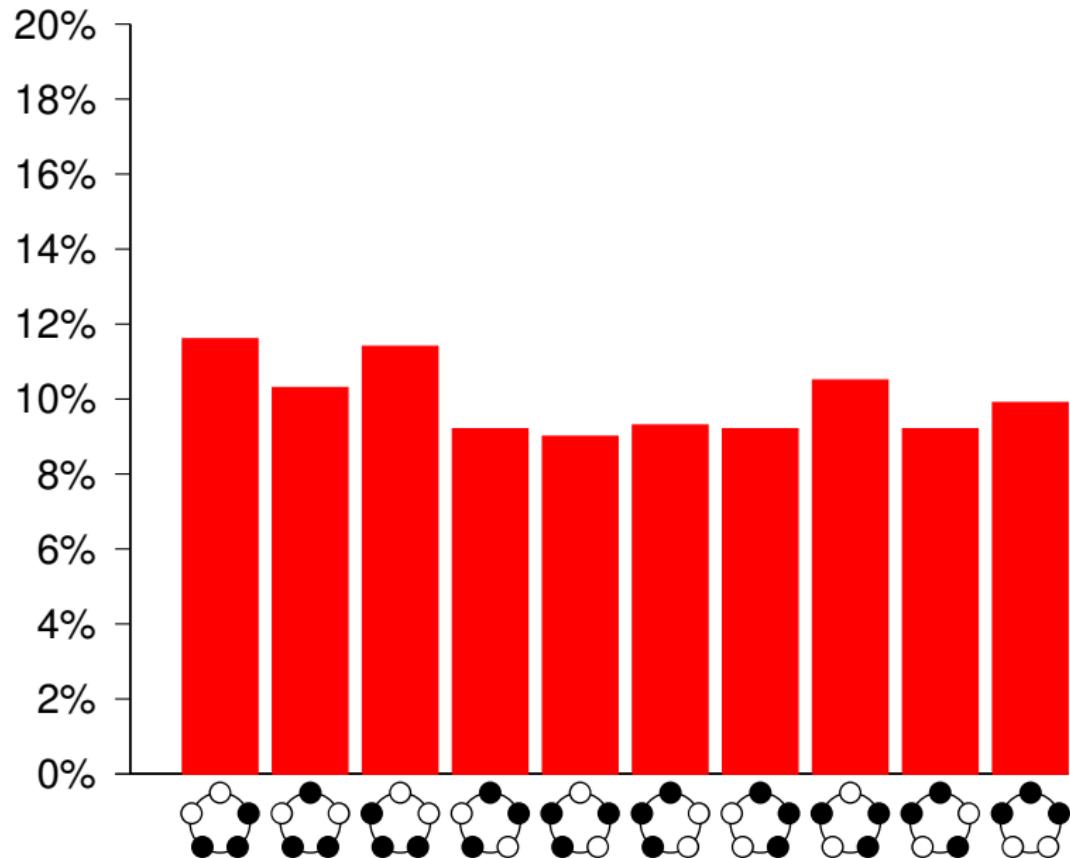
Stationary distribution



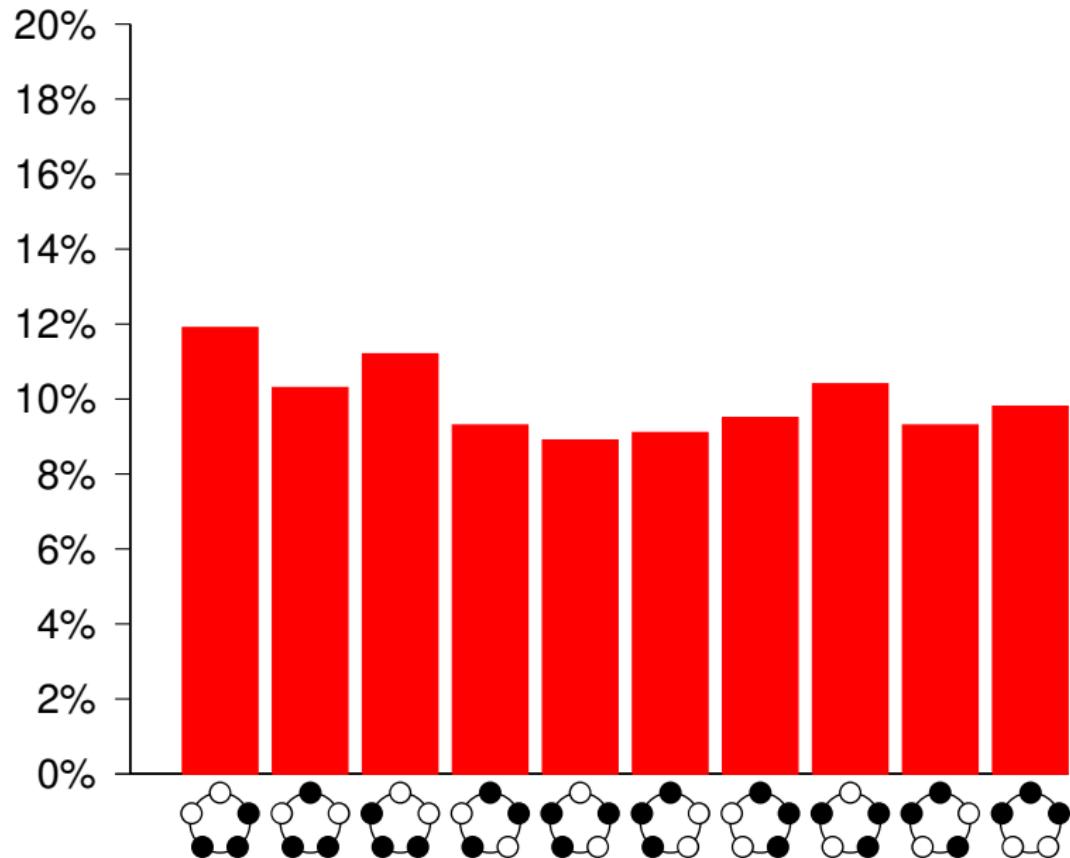
Stationary distribution



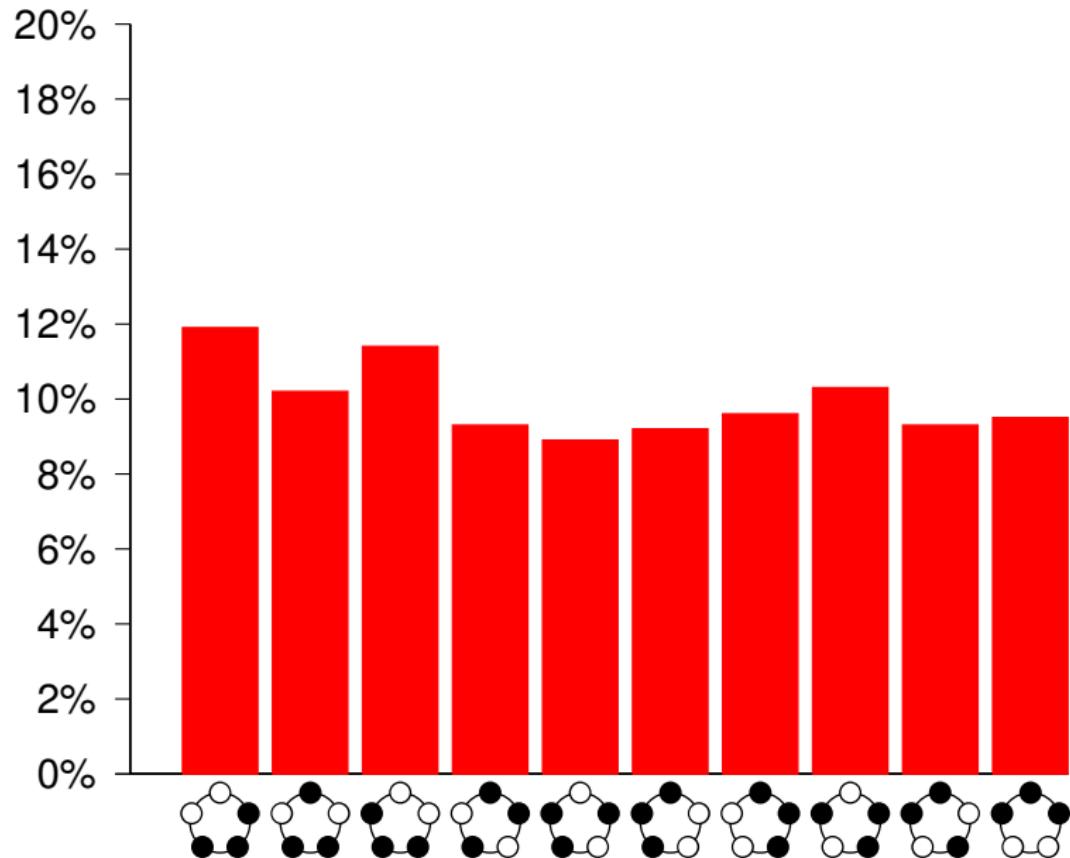
Stationary distribution



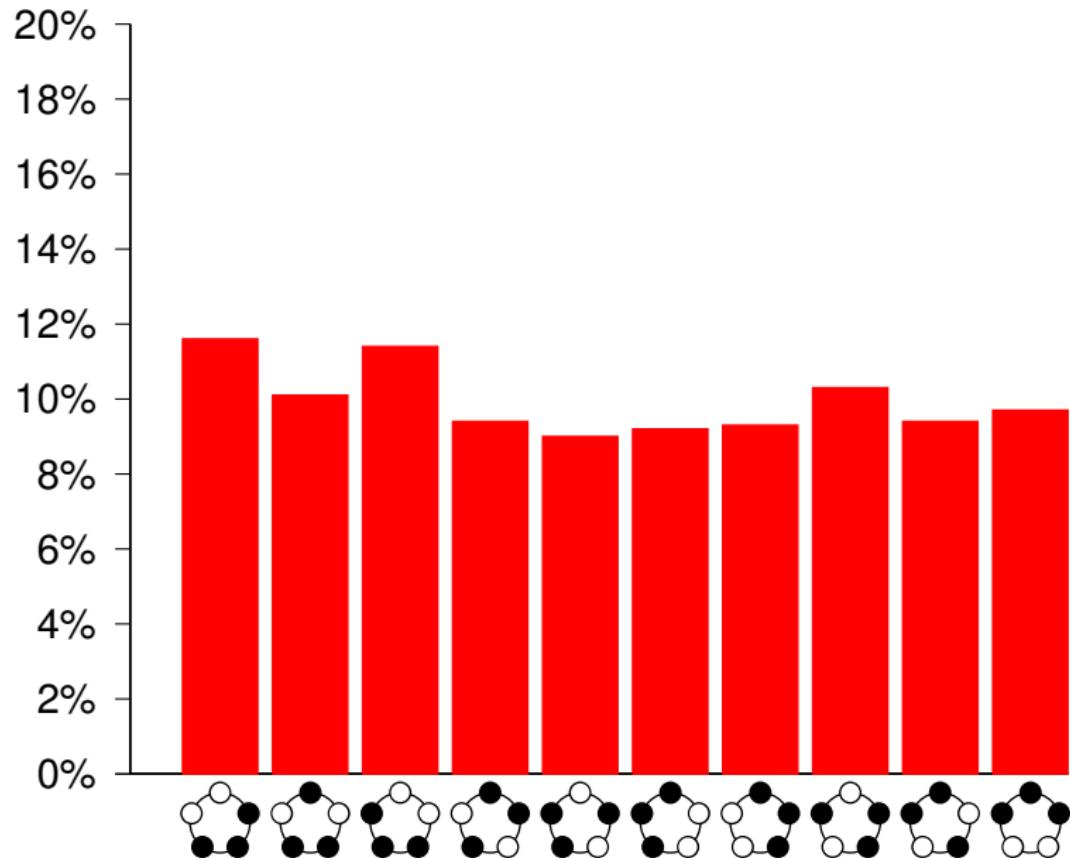
Stationary distribution



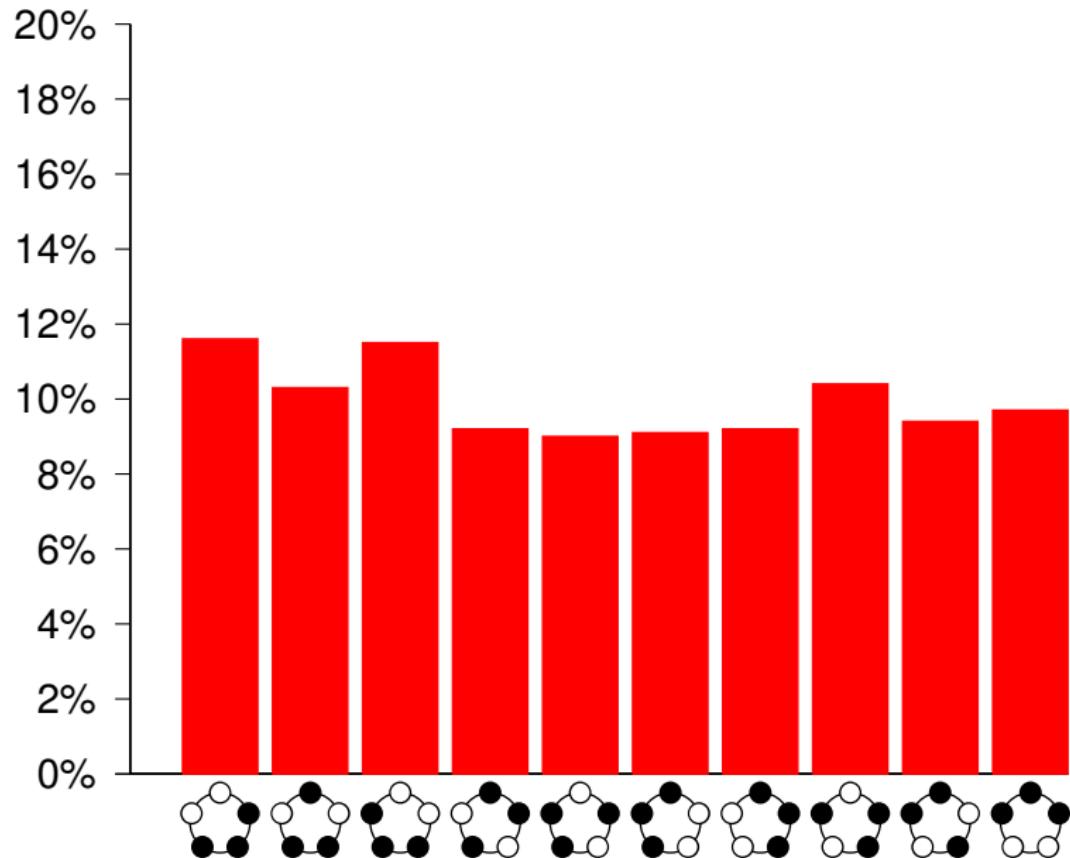
Stationary distribution



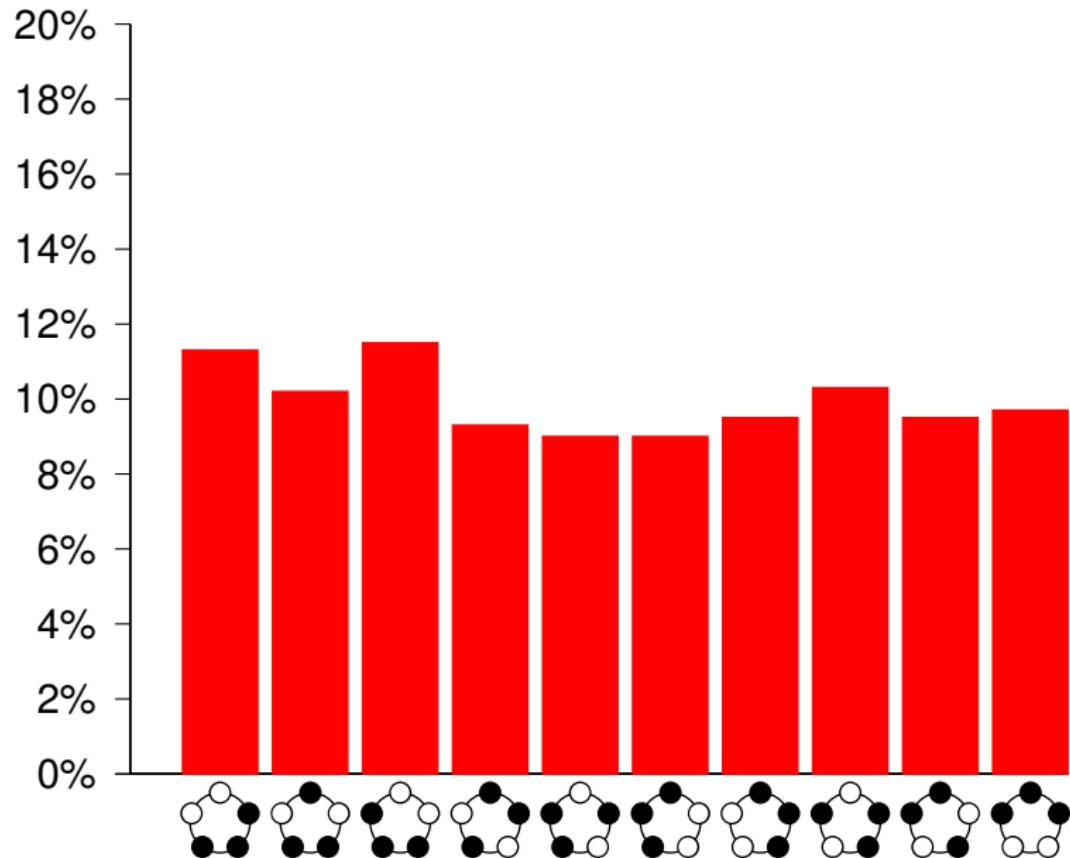
Stationary distribution



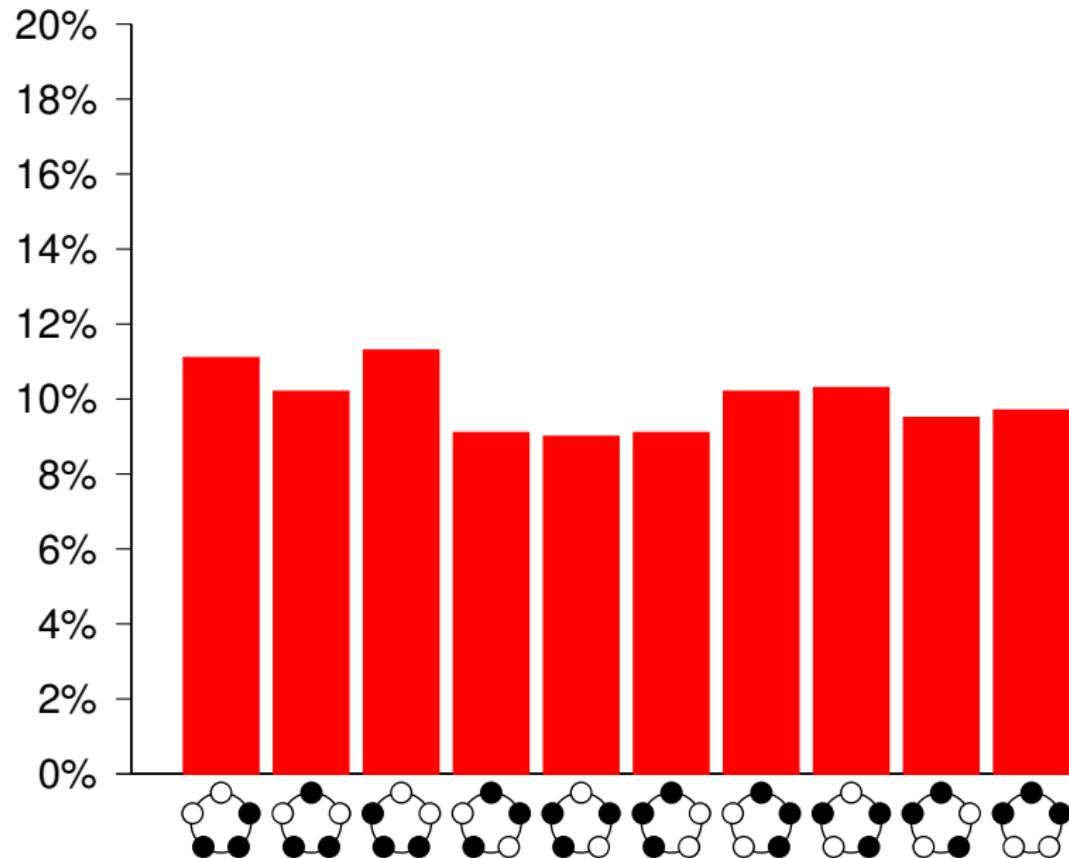
Stationary distribution



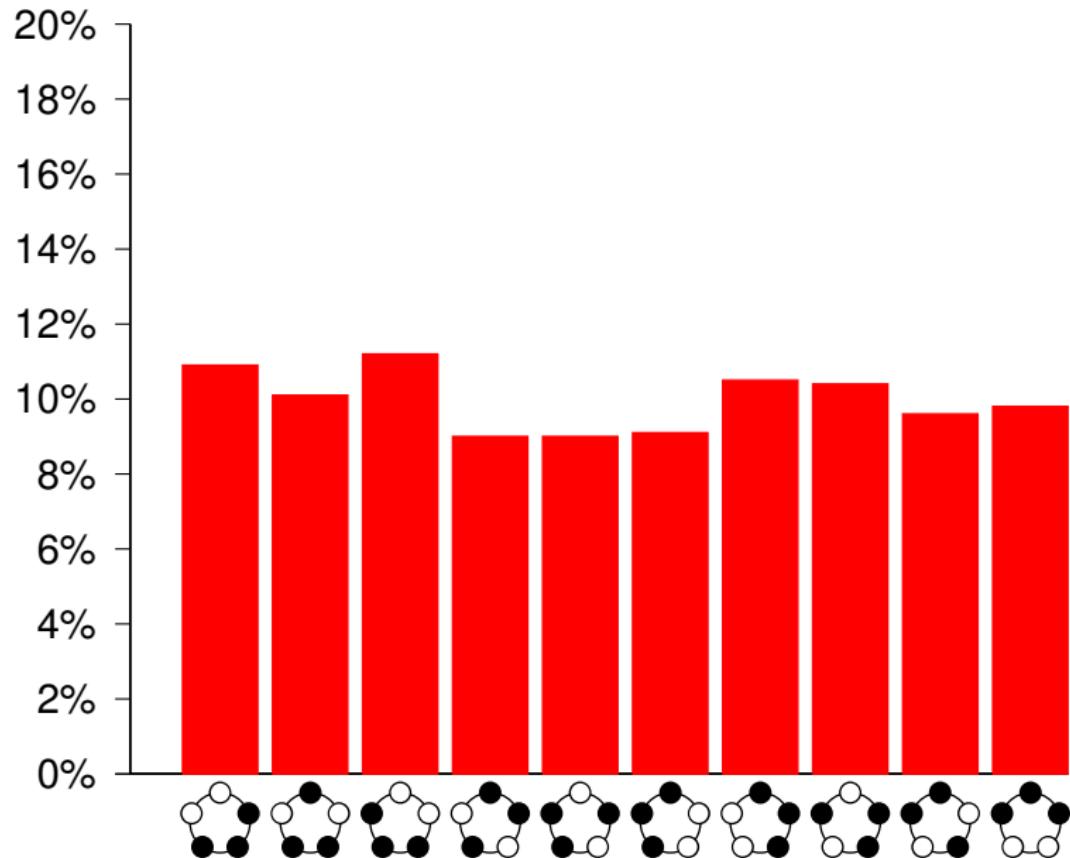
Stationary distribution



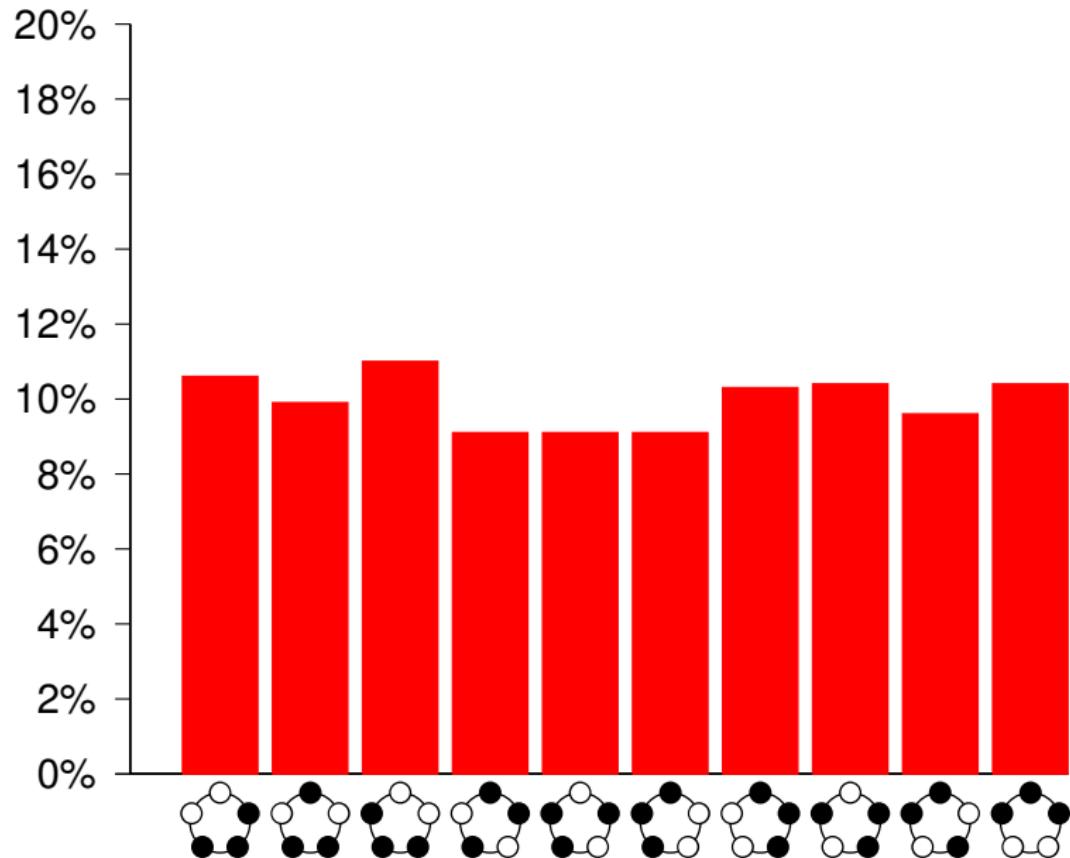
Stationary distribution



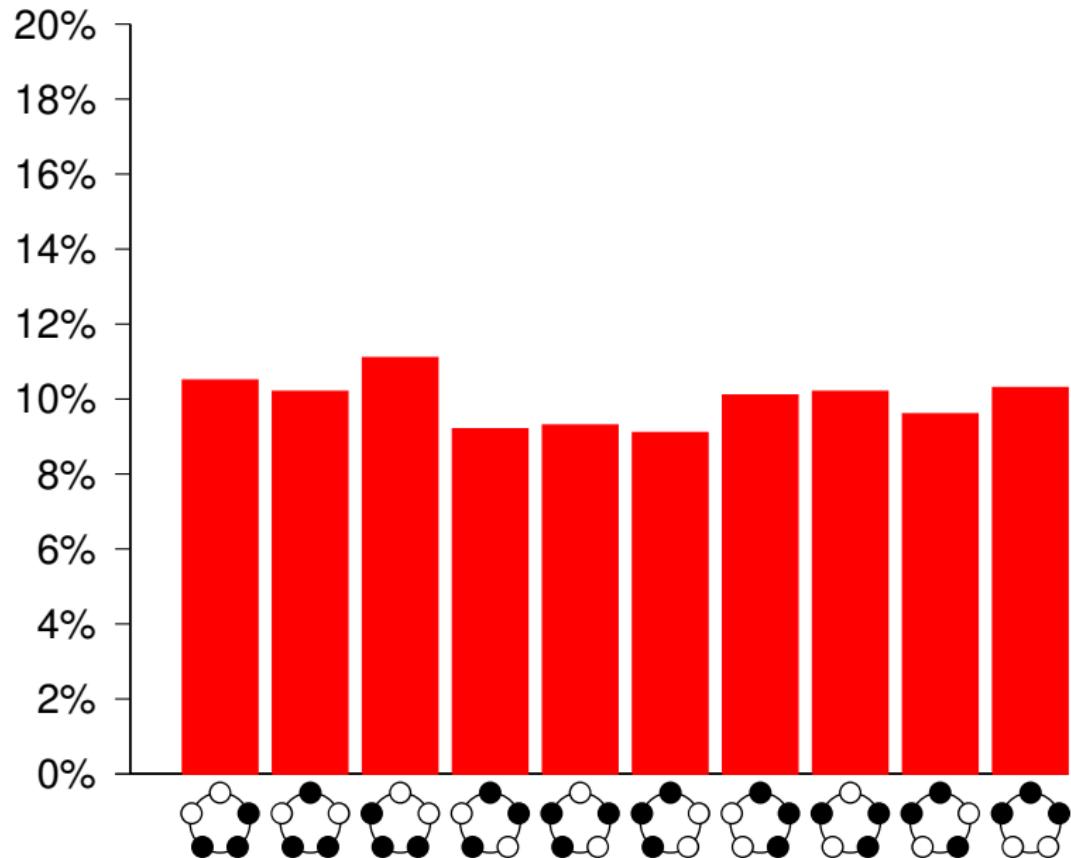
Stationary distribution



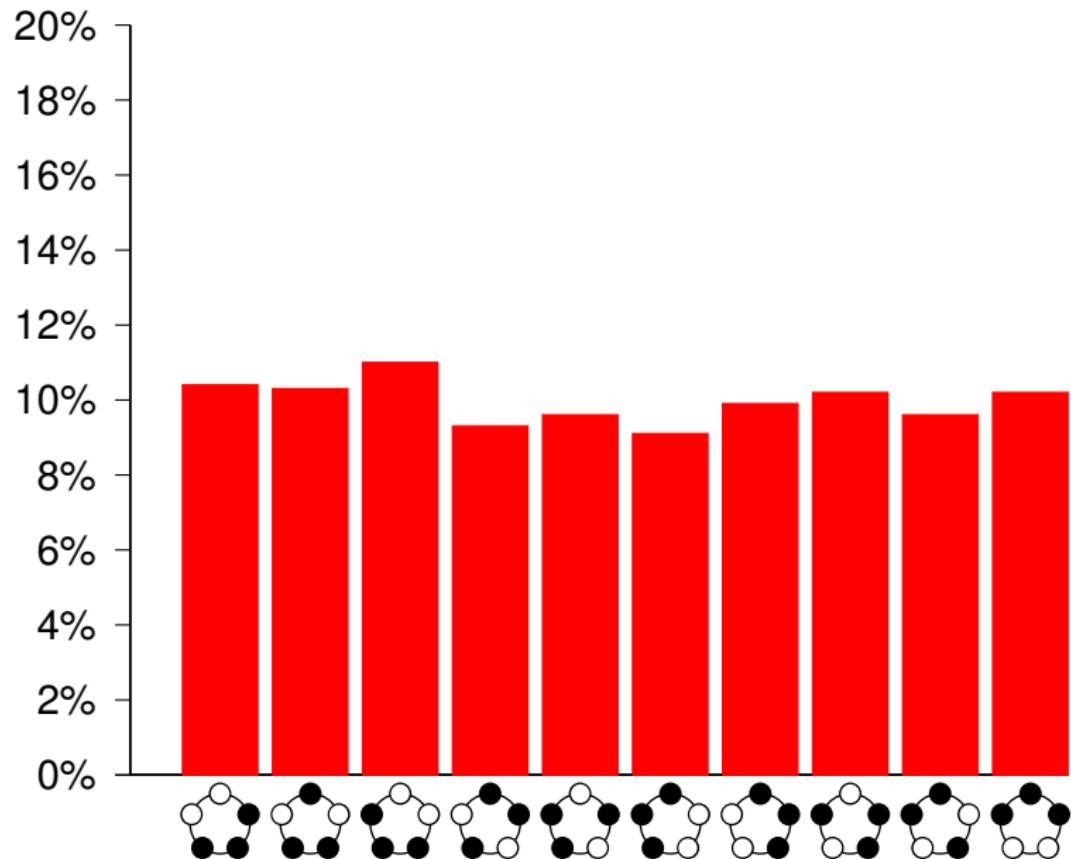
Stationary distribution



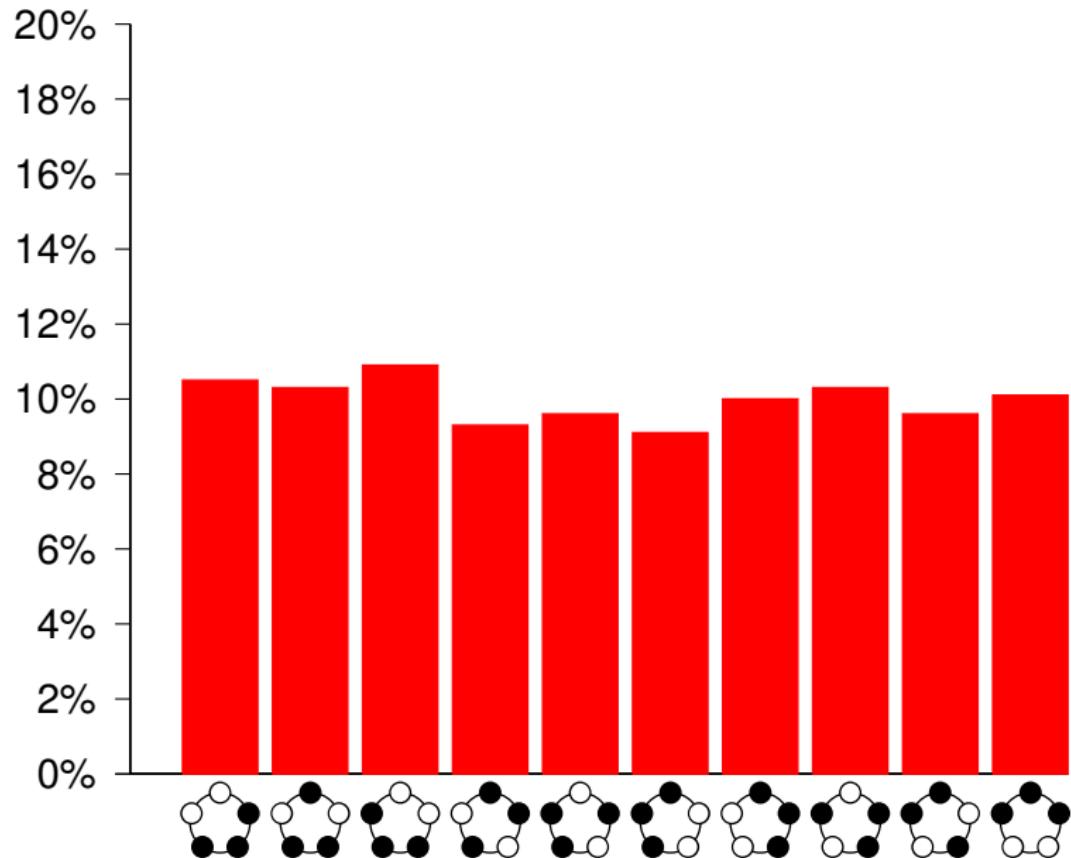
Stationary distribution



Stationary distribution



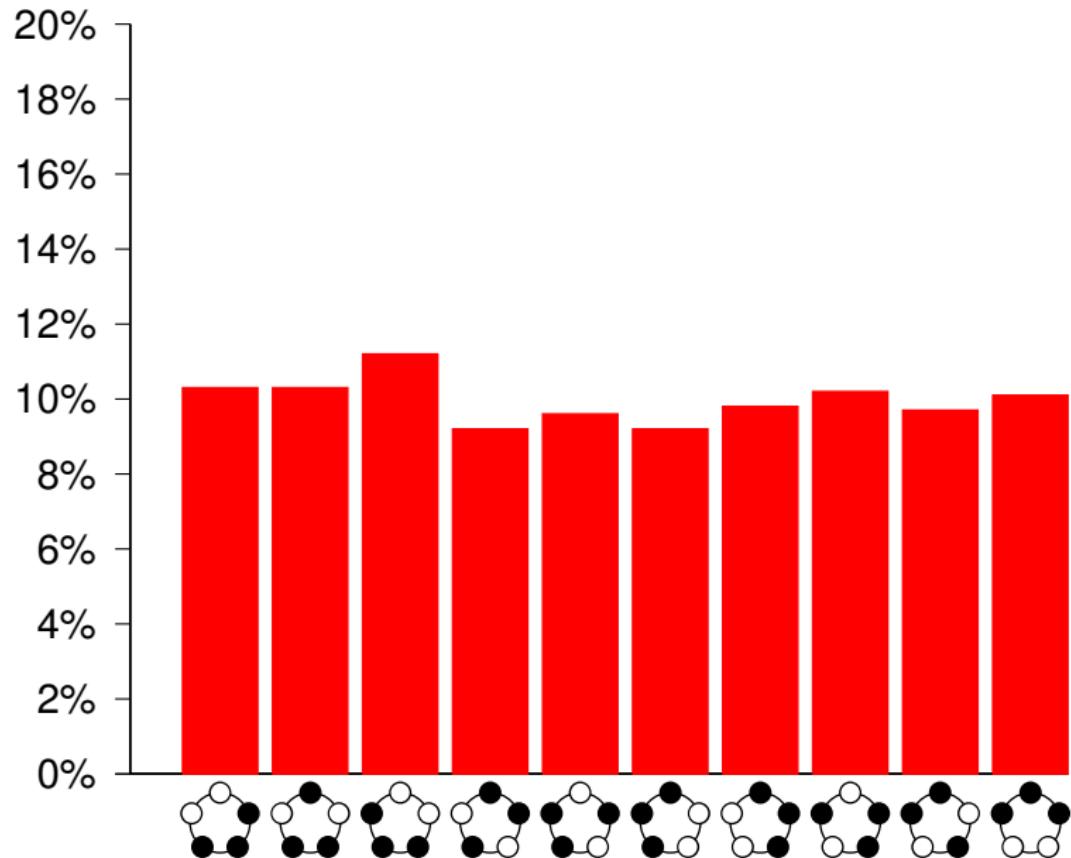
Stationary distribution



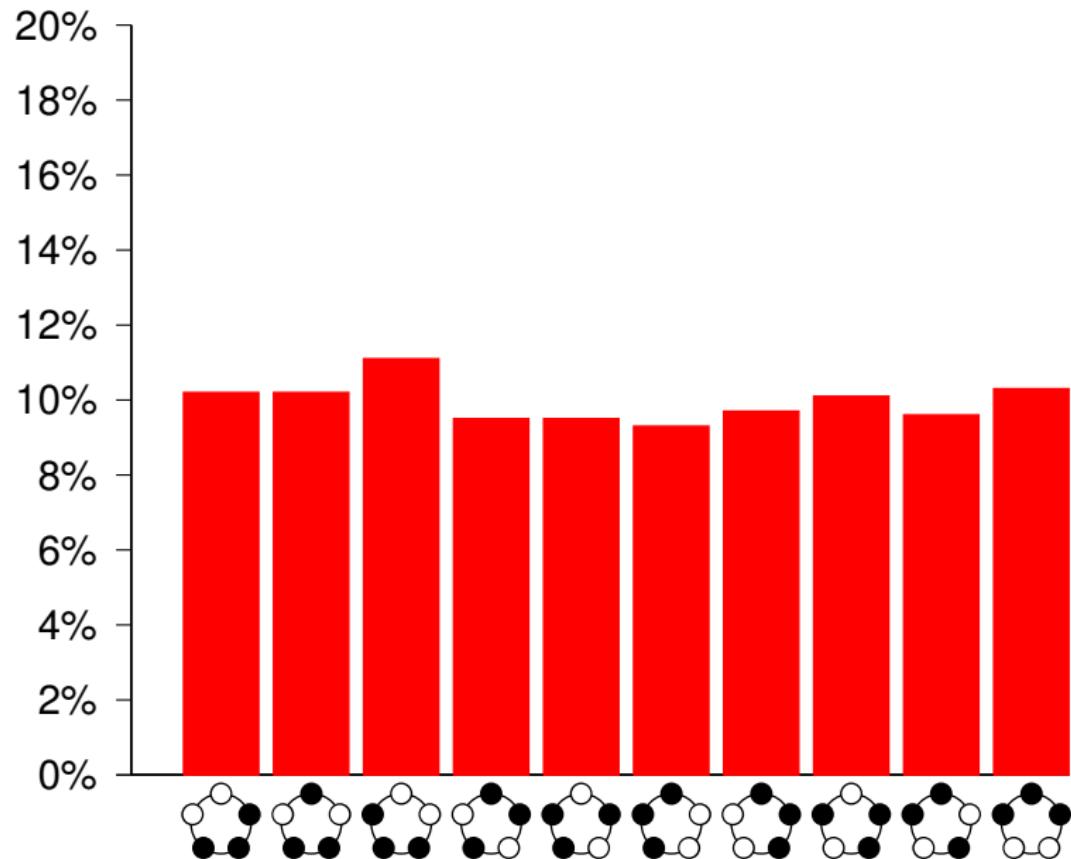
Stationary distribution



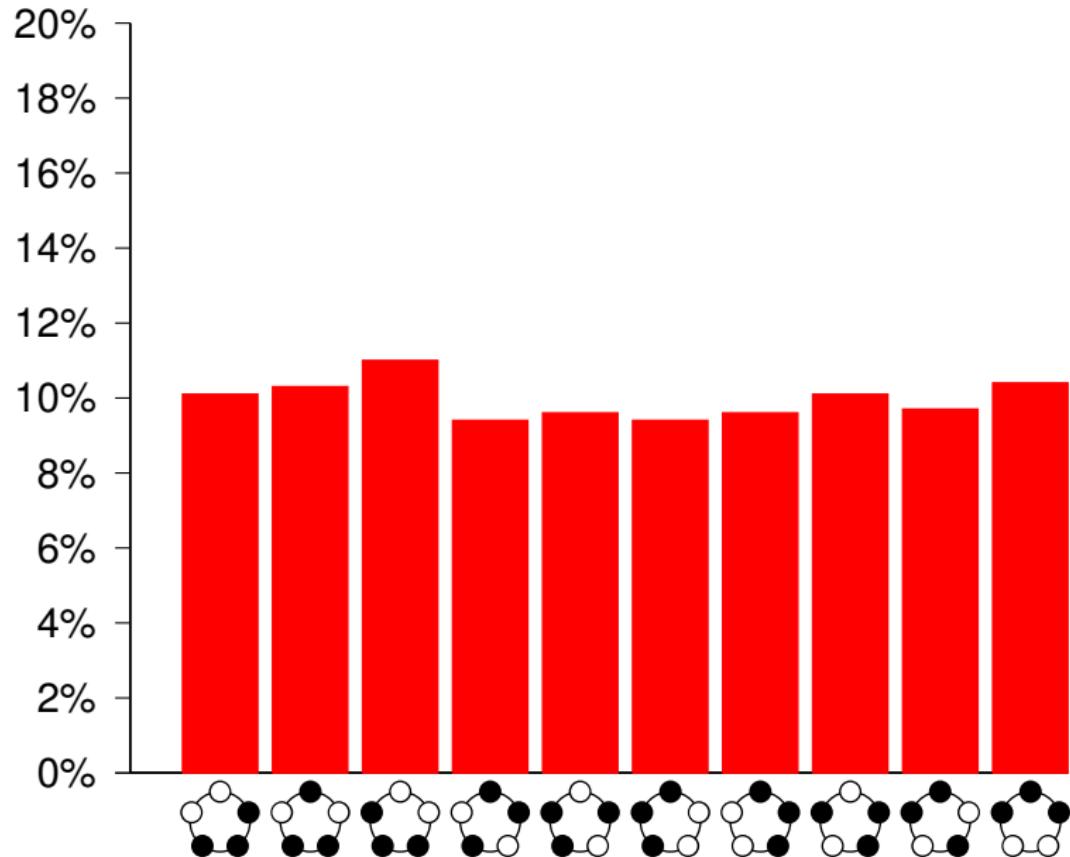
Stationary distribution



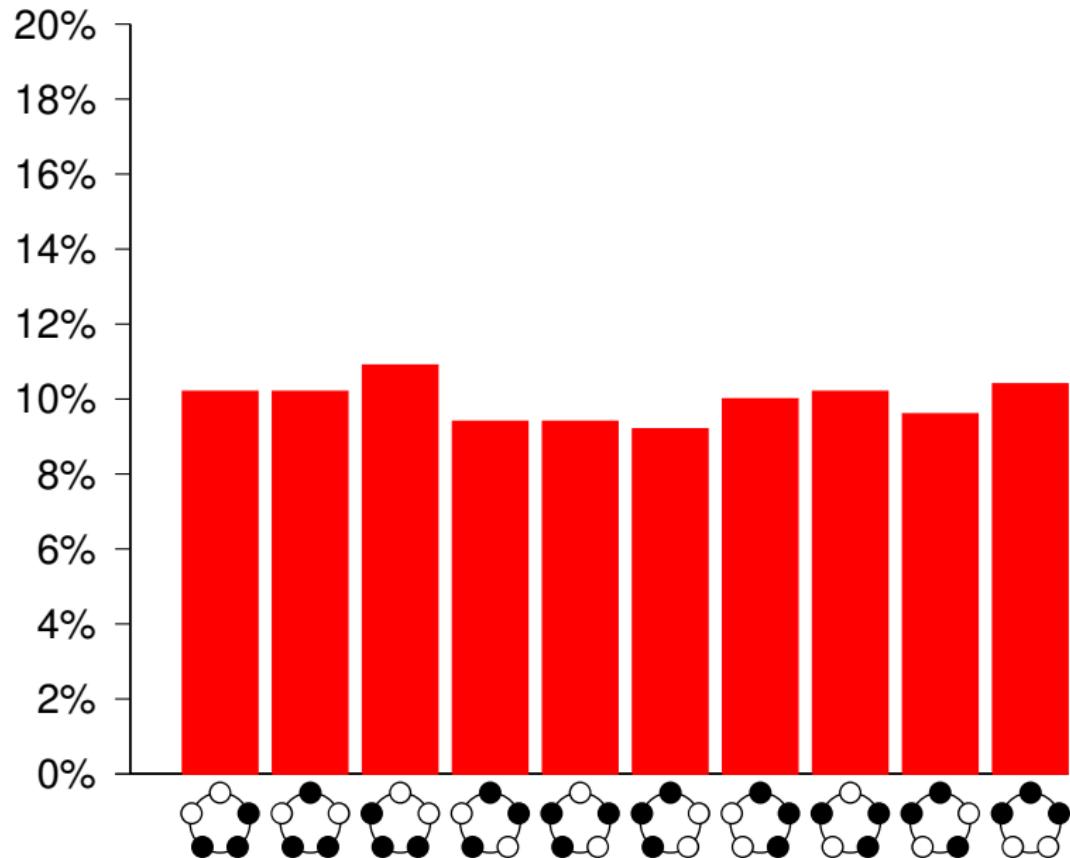
Stationary distribution



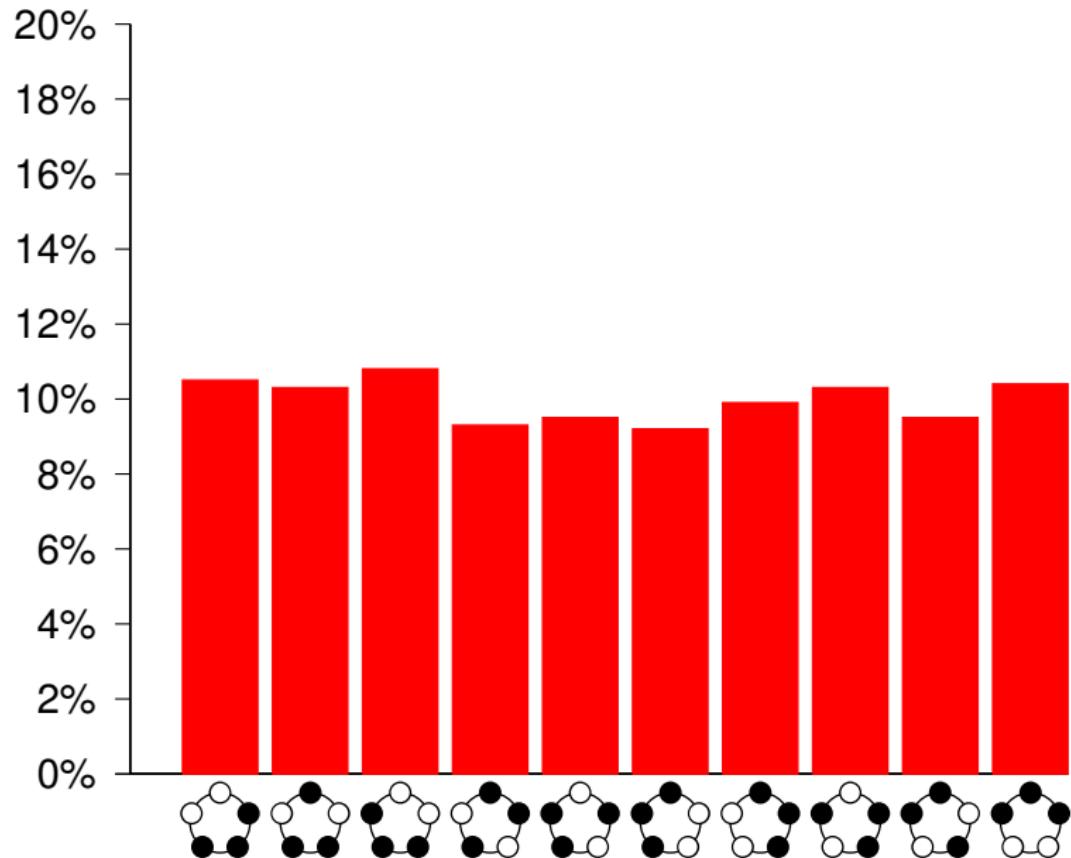
Stationary distribution



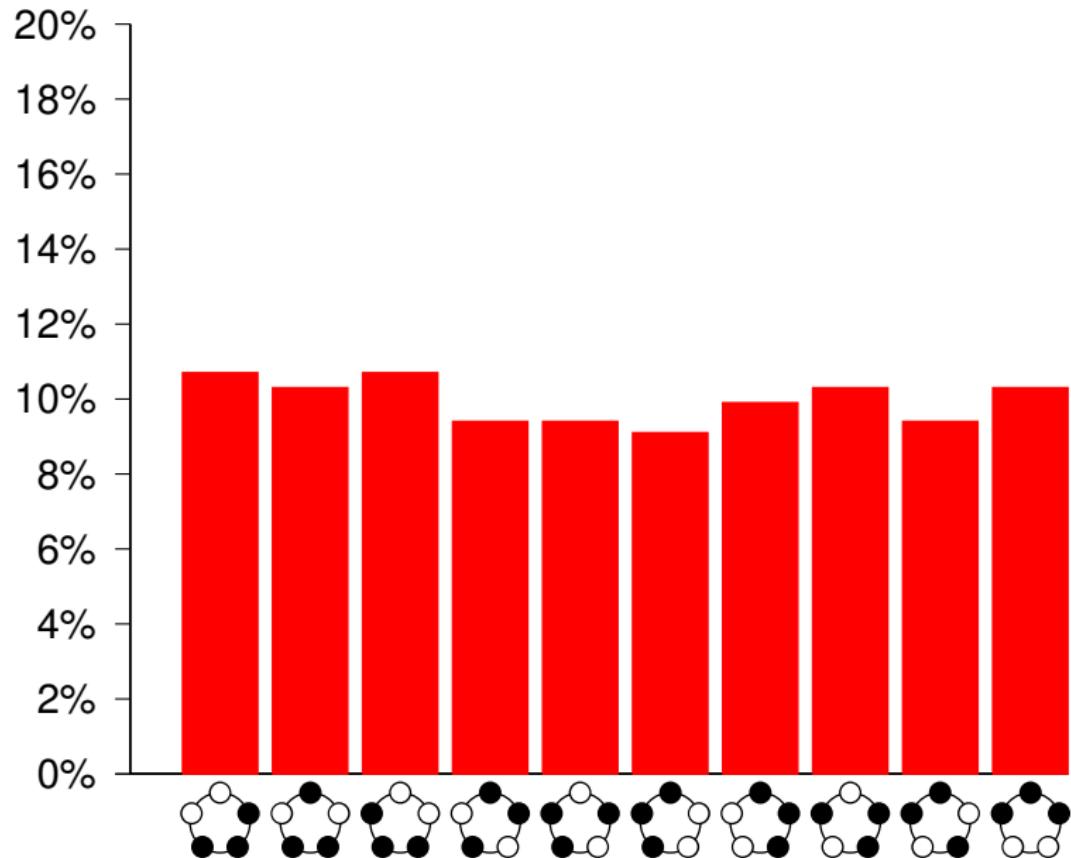
Stationary distribution



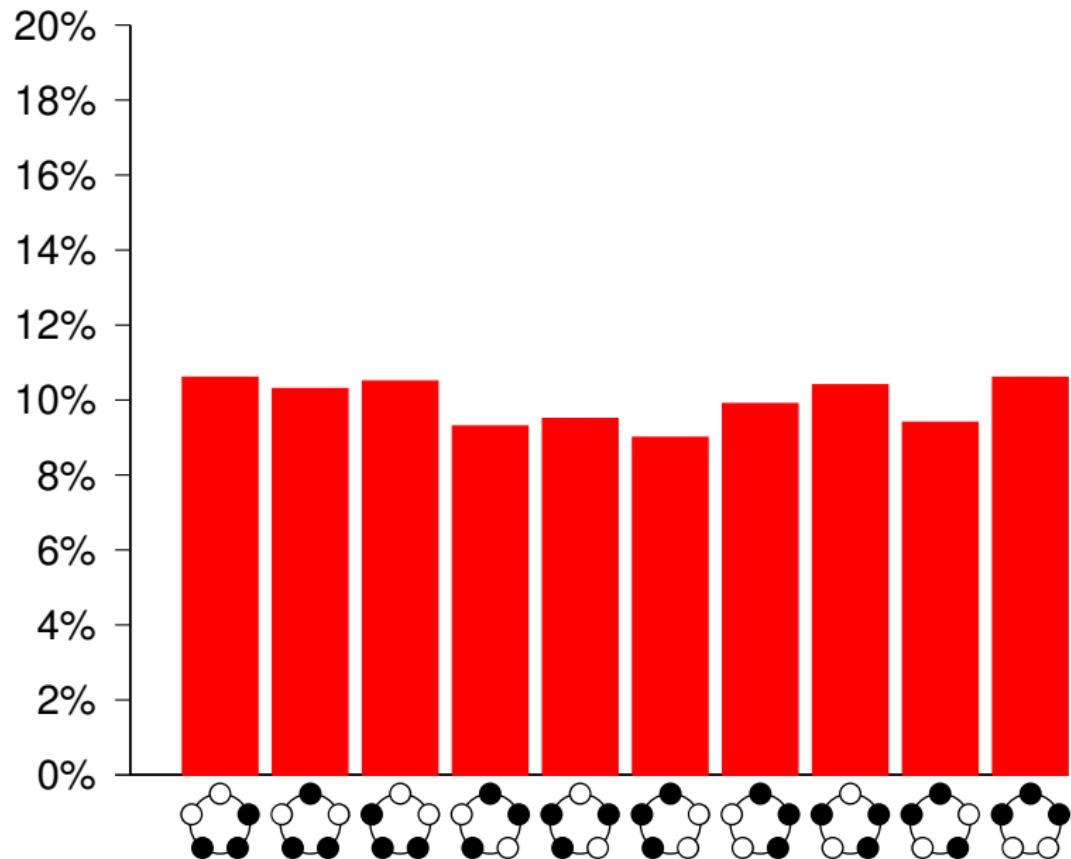
Stationary distribution



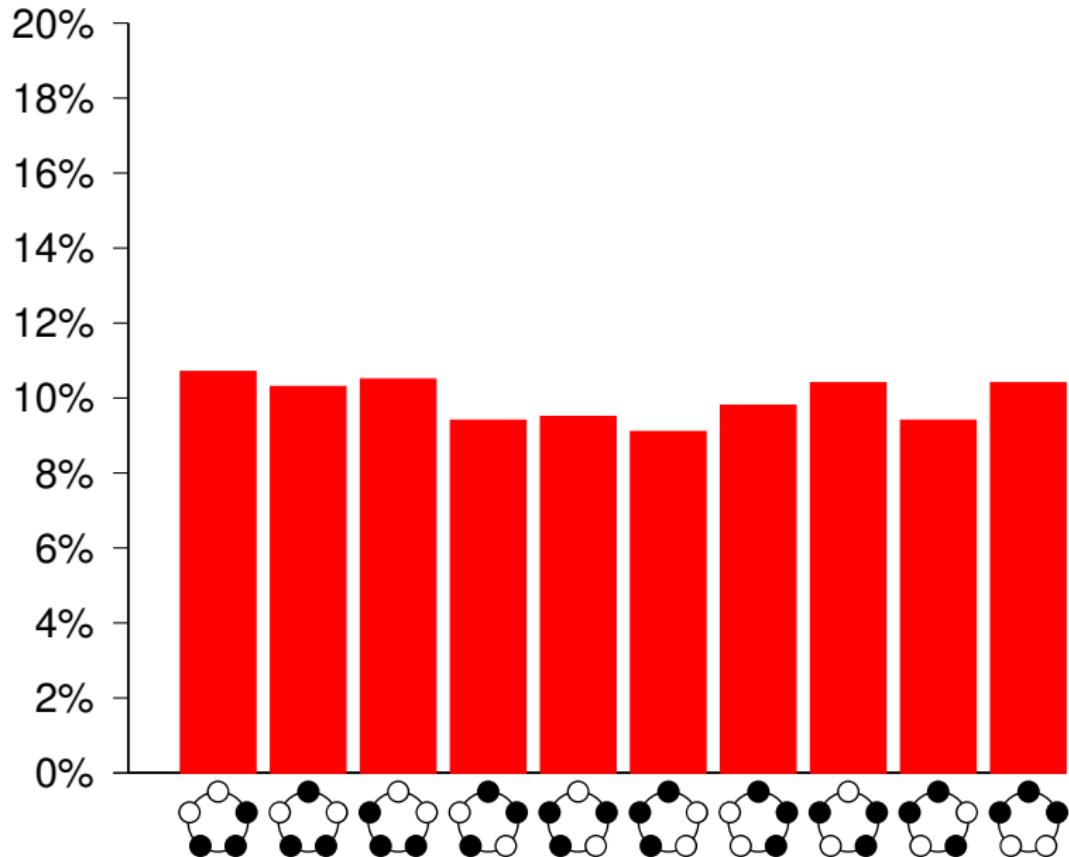
Stationary distribution



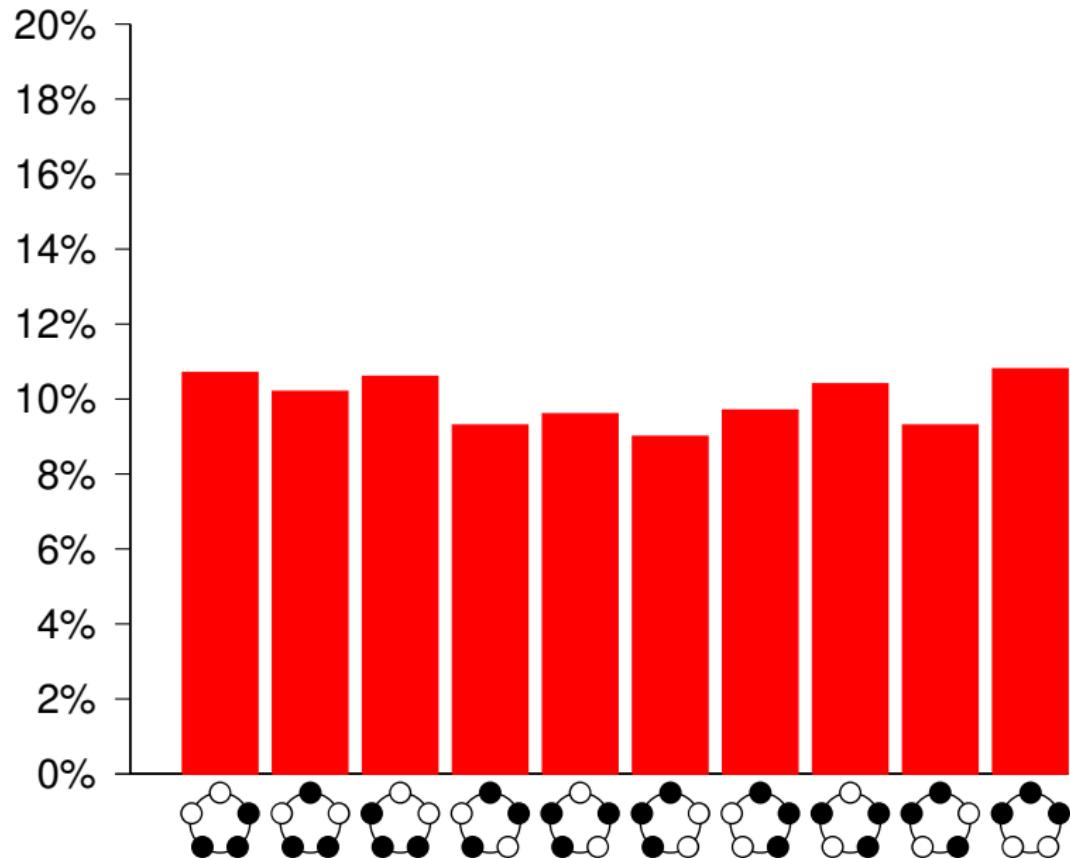
Stationary distribution



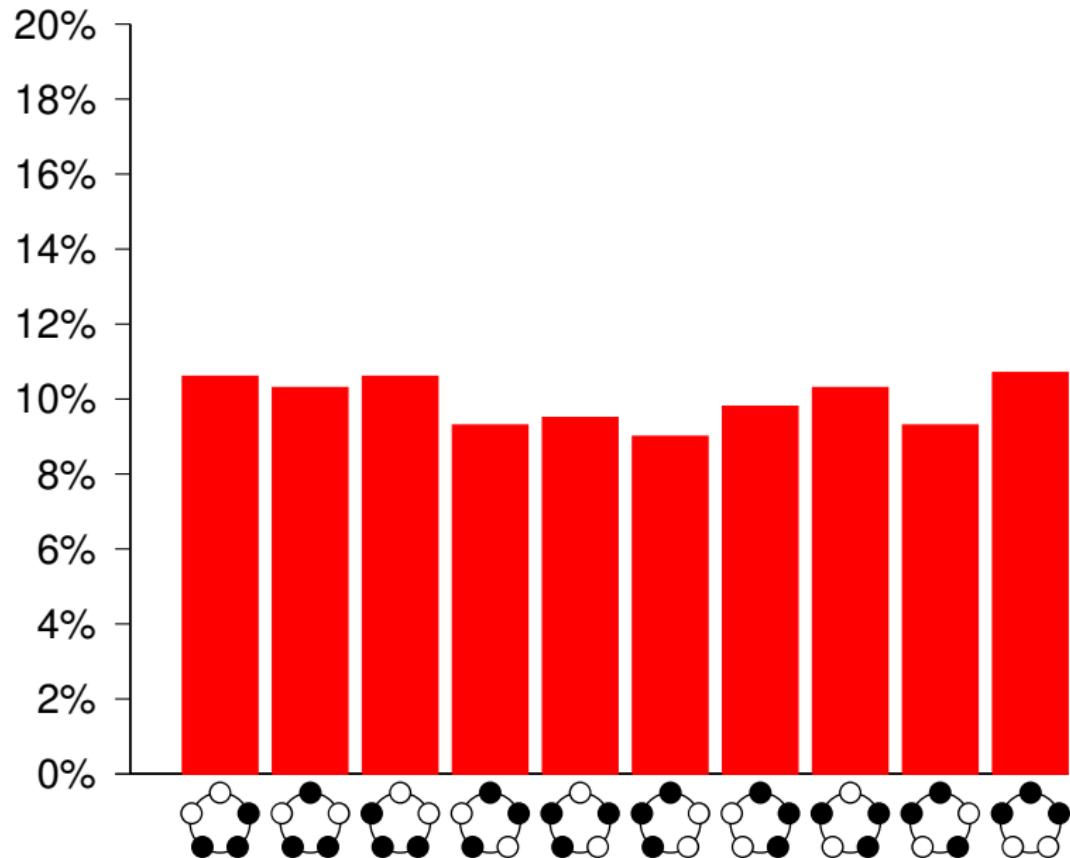
Stationary distribution



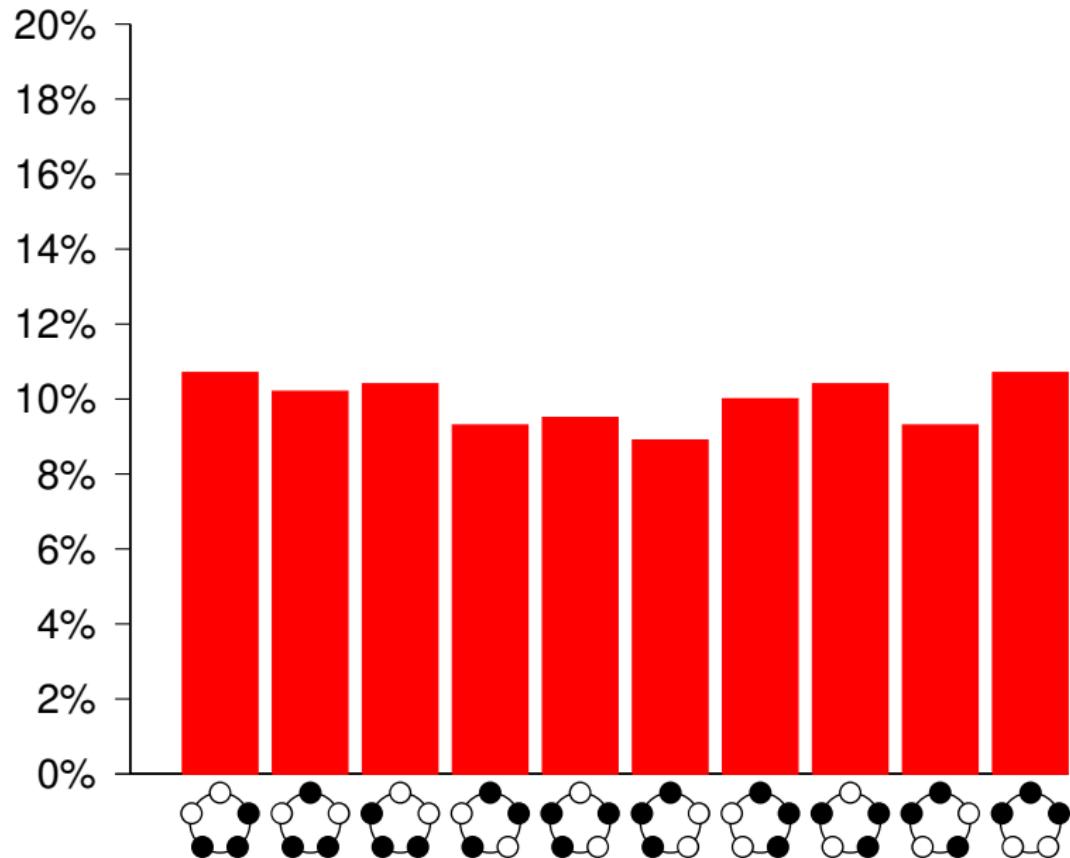
Stationary distribution



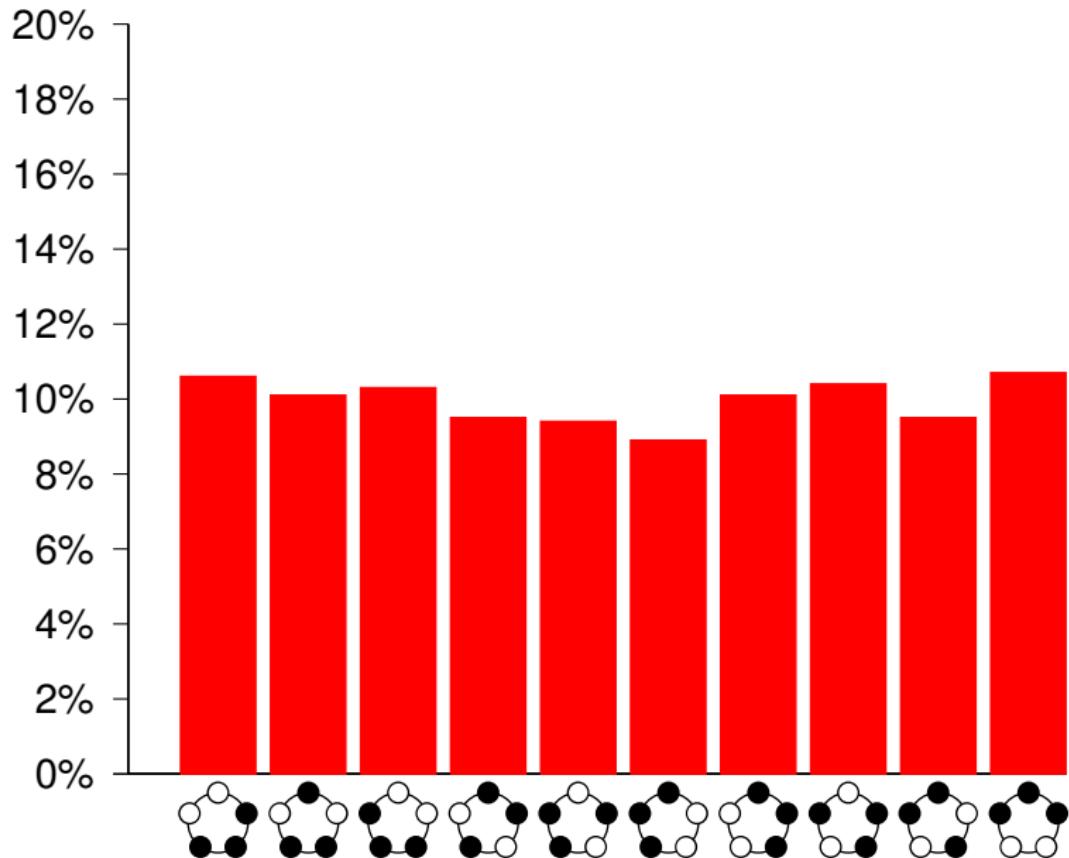
Stationary distribution



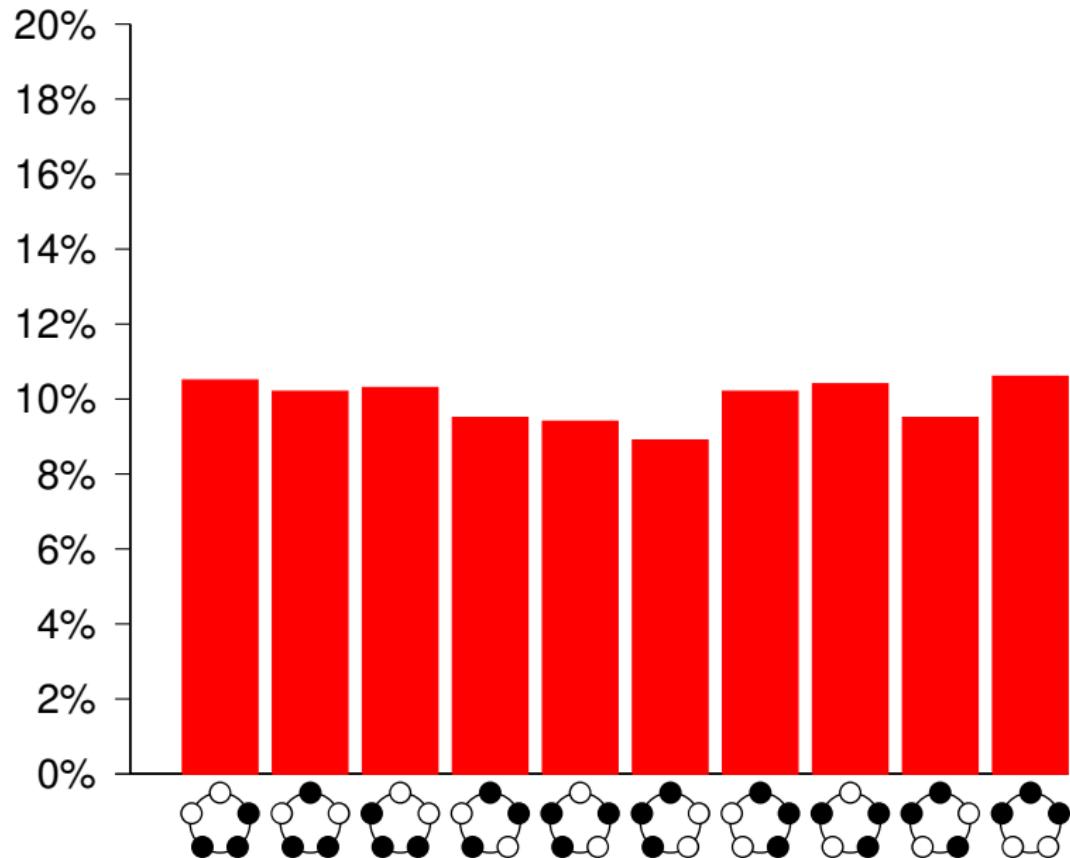
Stationary distribution



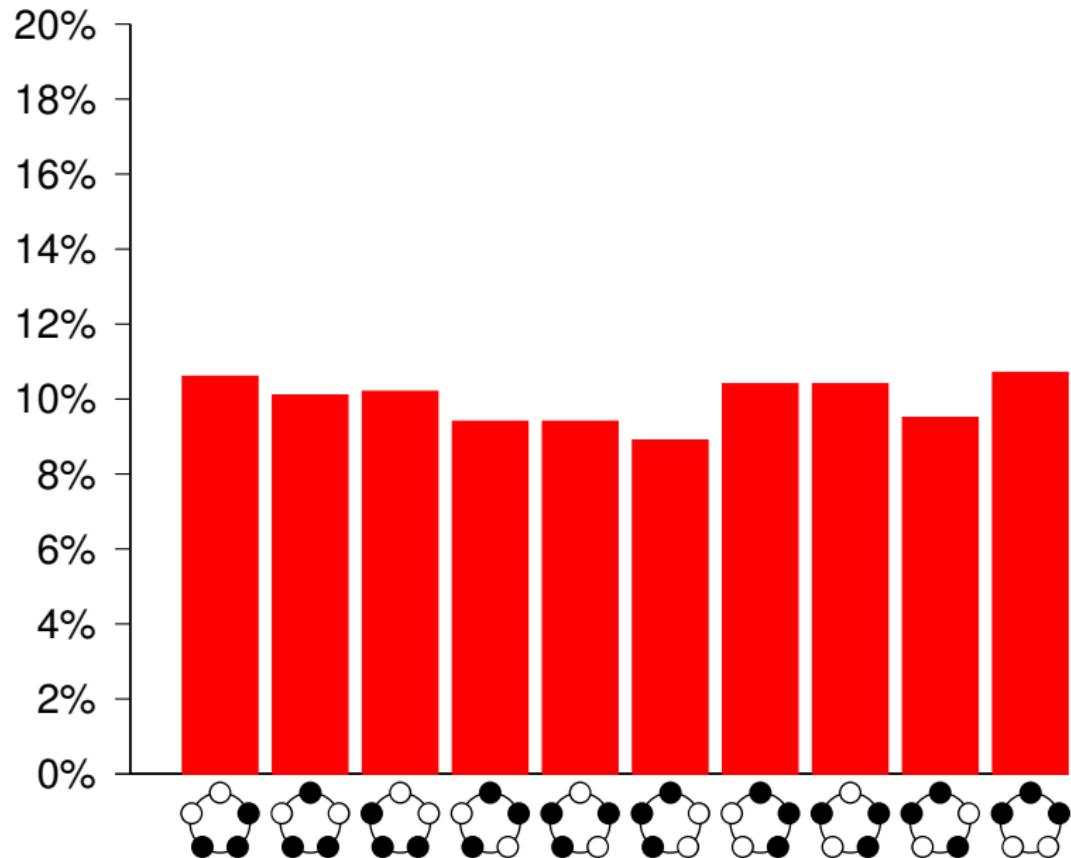
Stationary distribution



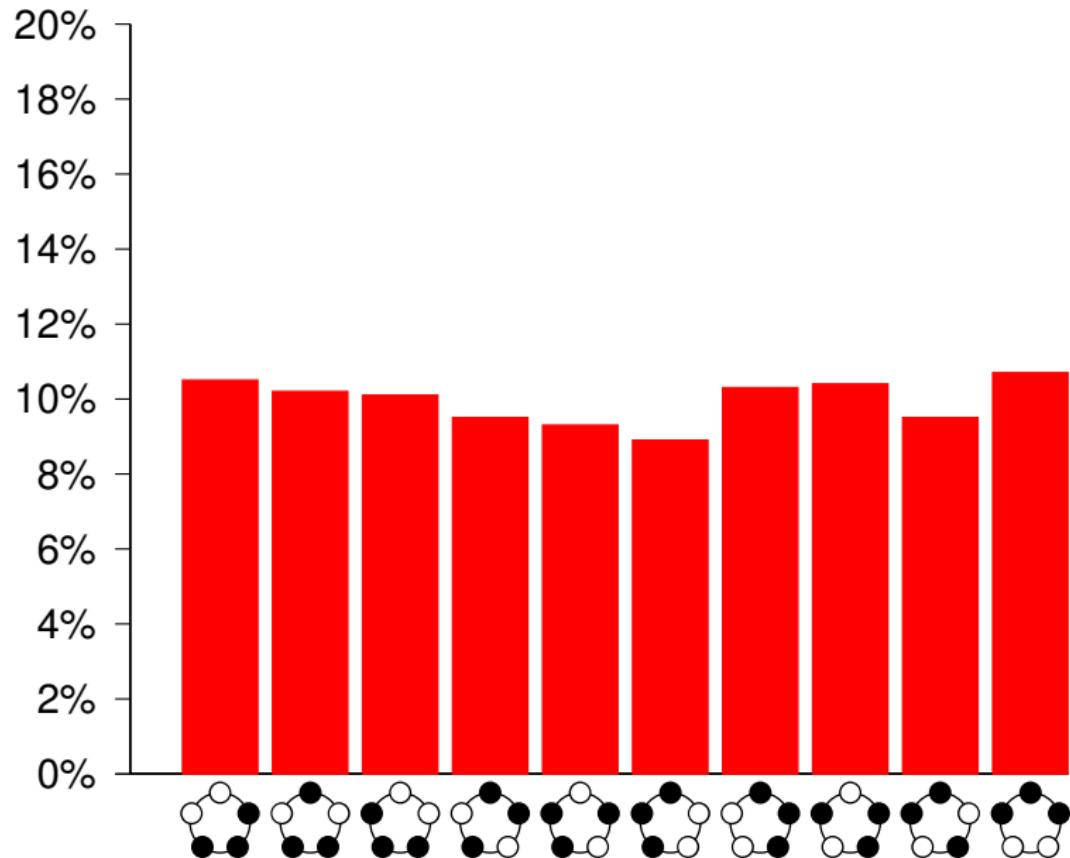
Stationary distribution



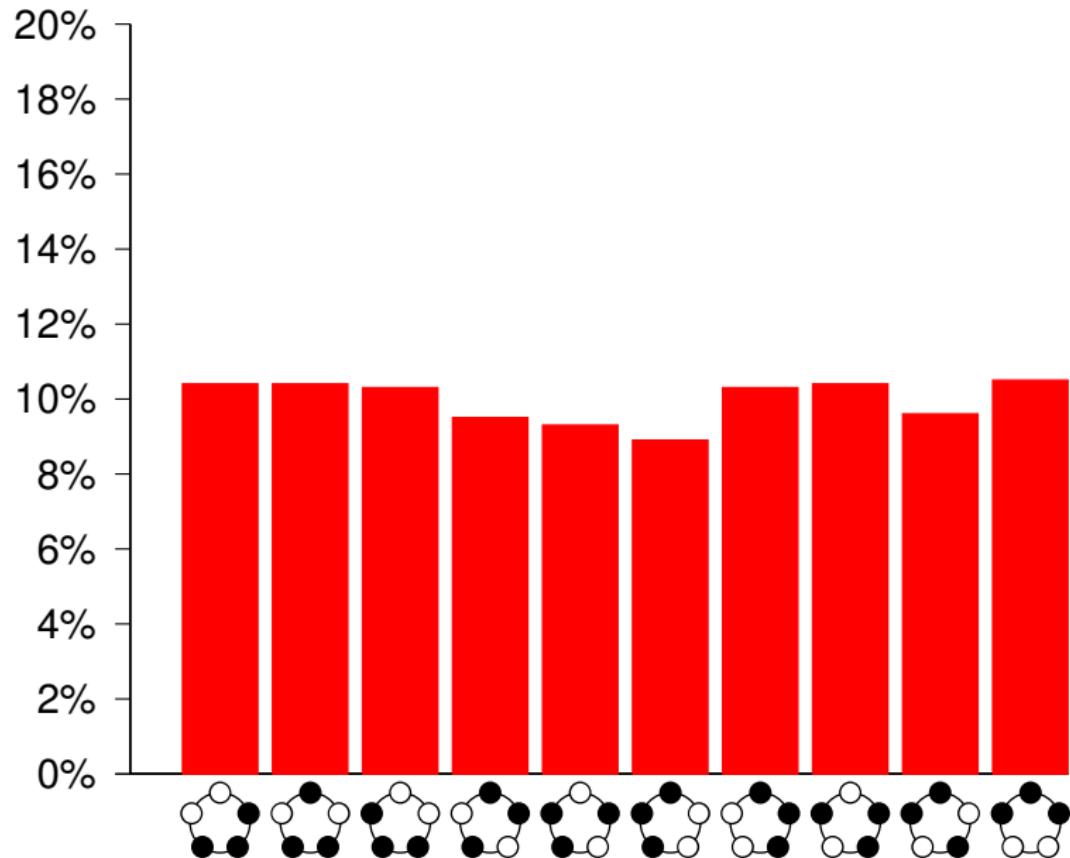
Stationary distribution



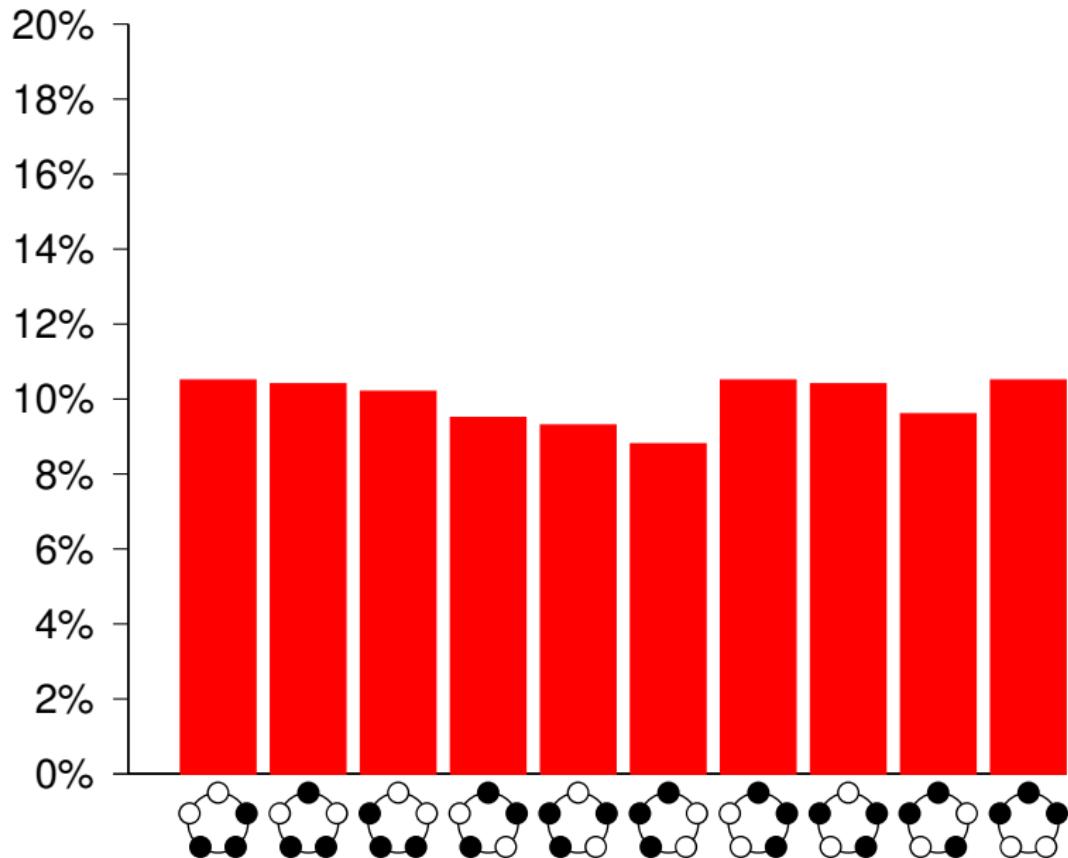
Stationary distribution



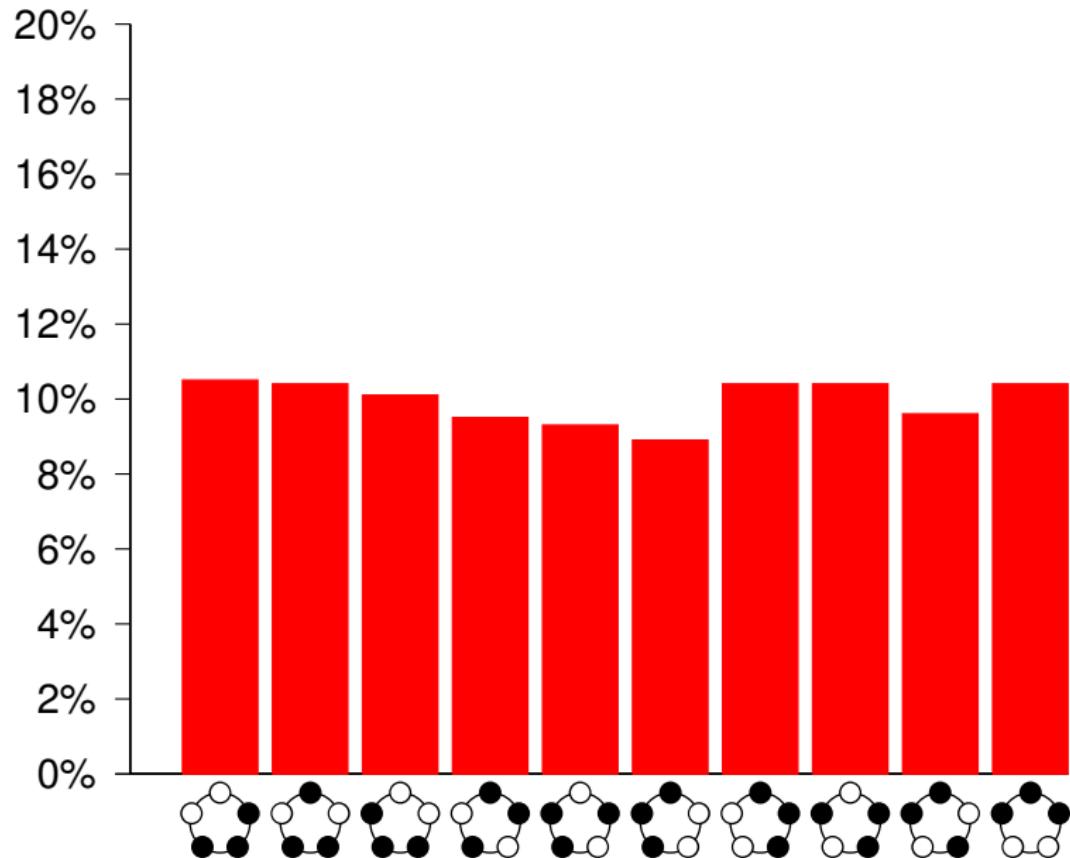
Stationary distribution



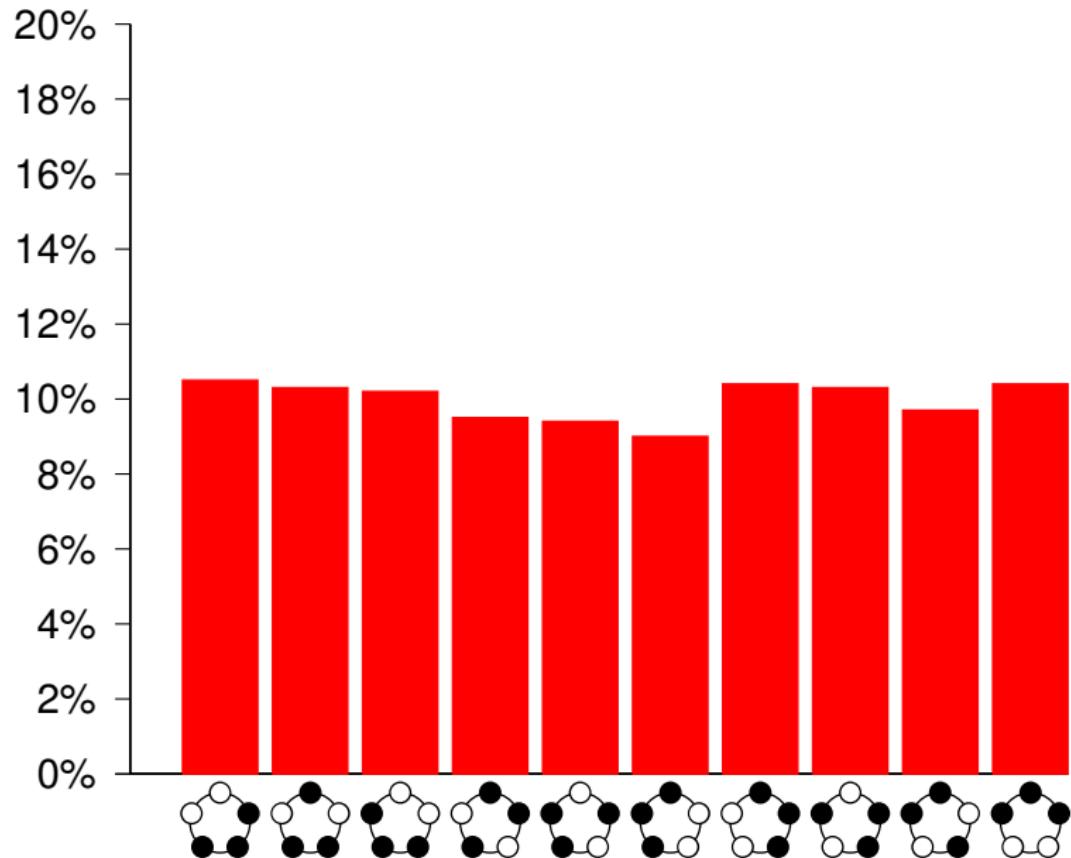
Stationary distribution



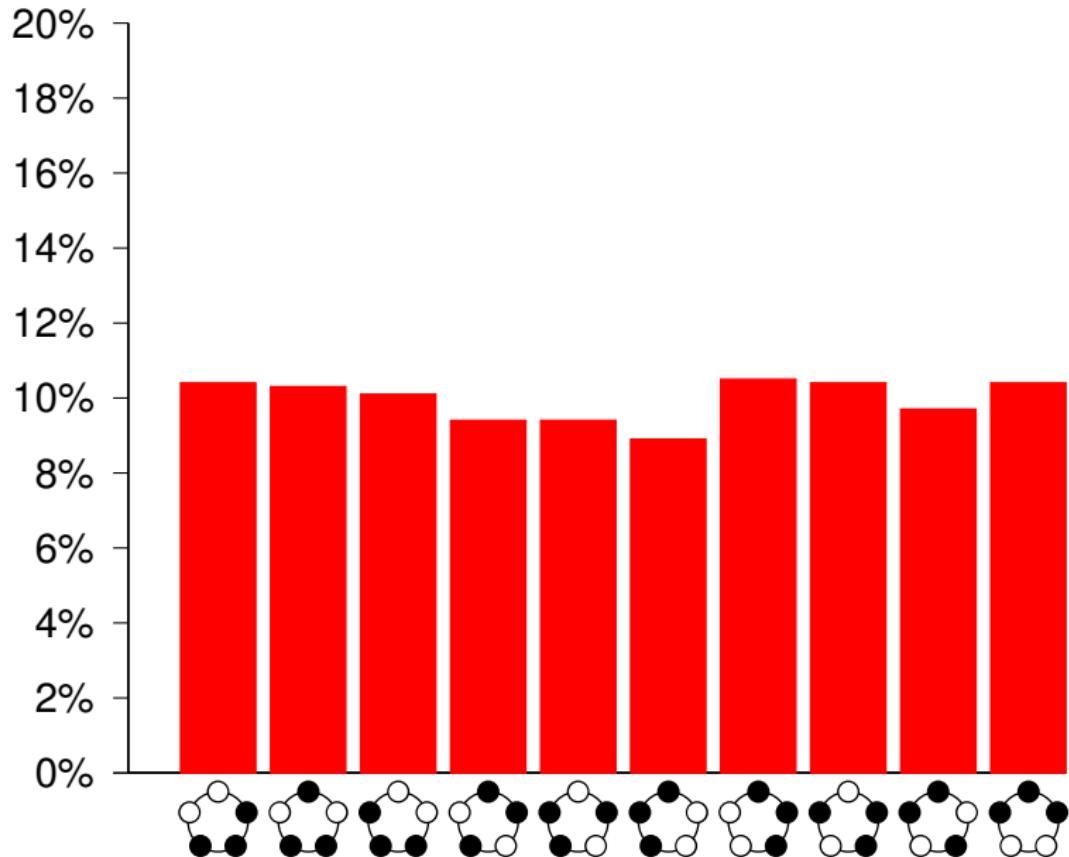
Stationary distribution



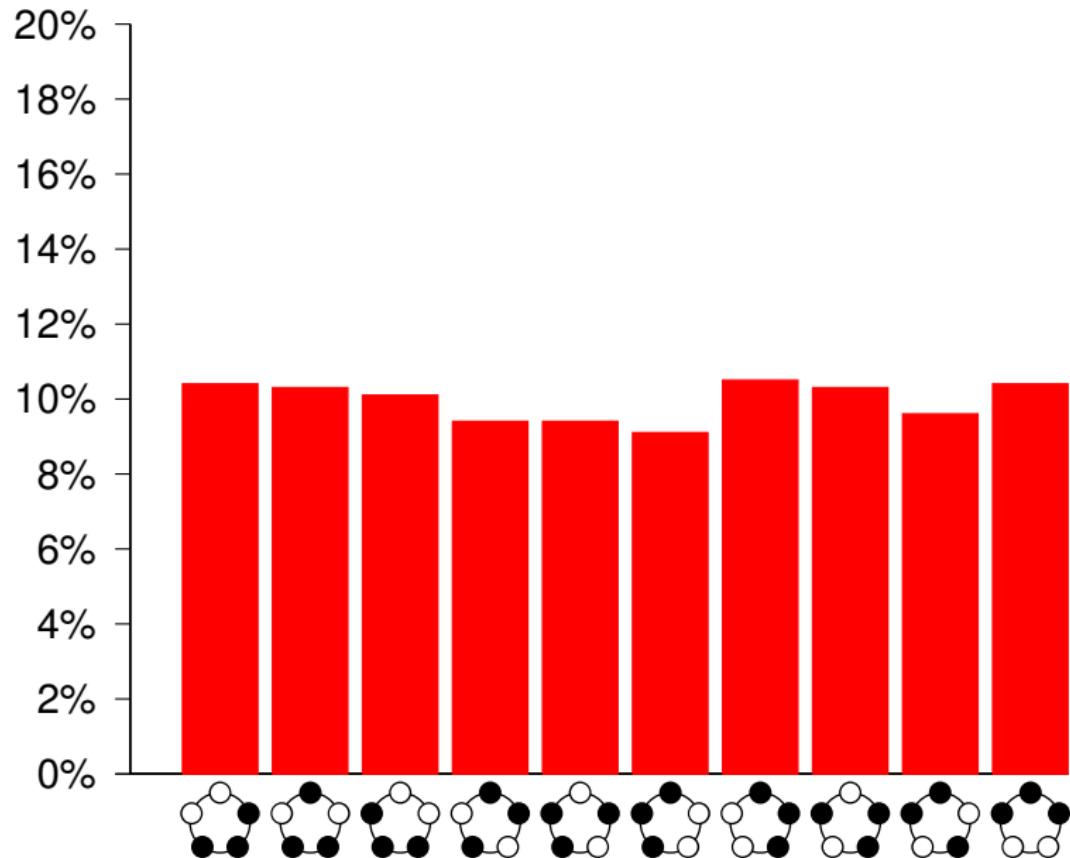
Stationary distribution



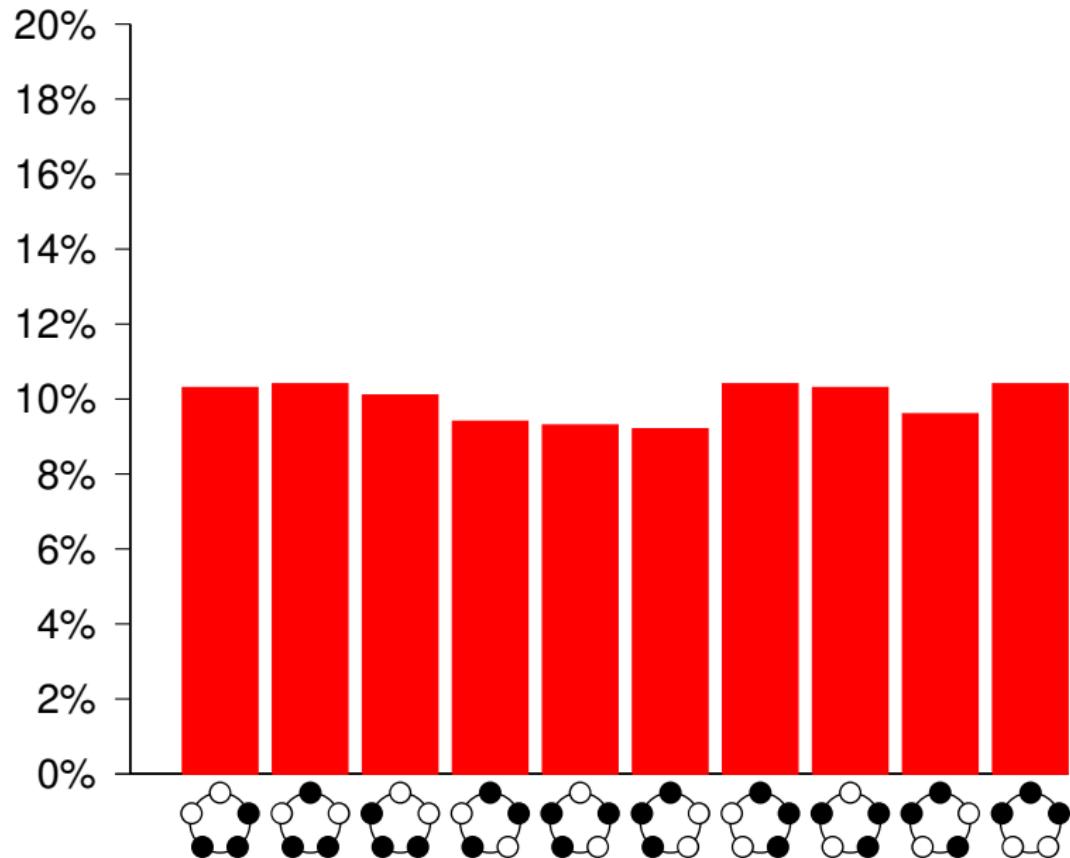
Stationary distribution



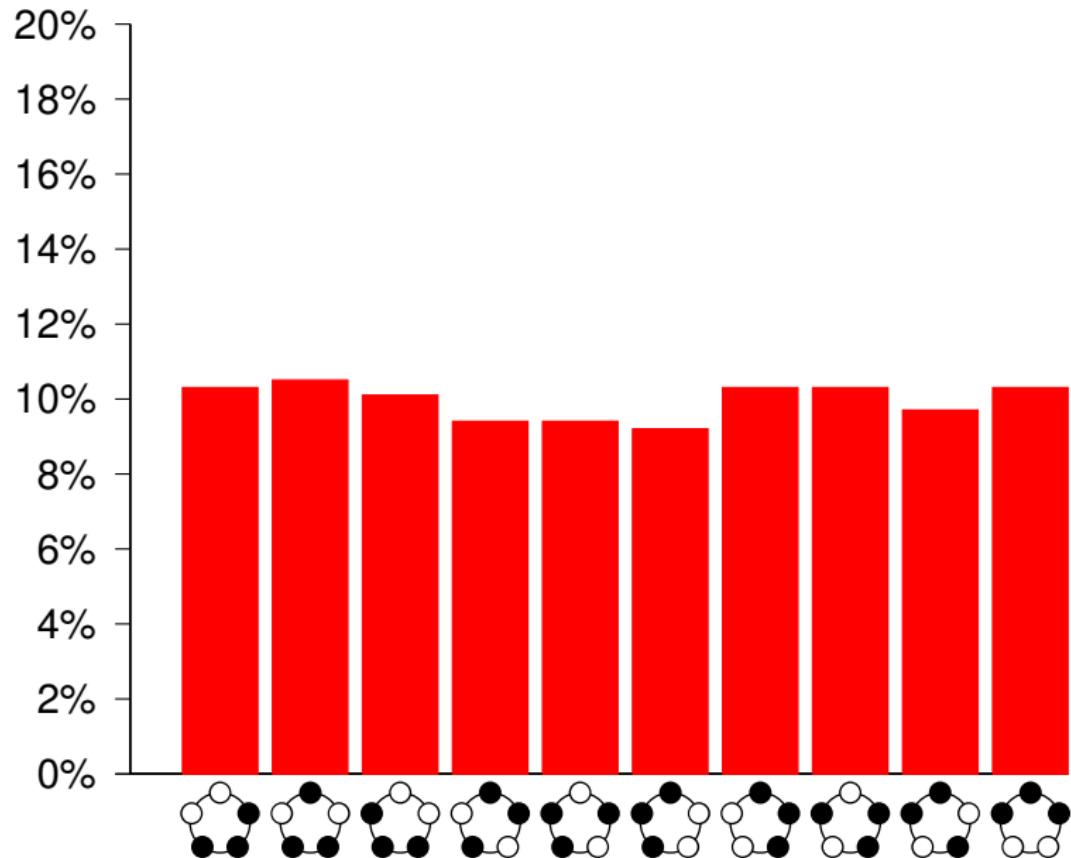
Stationary distribution



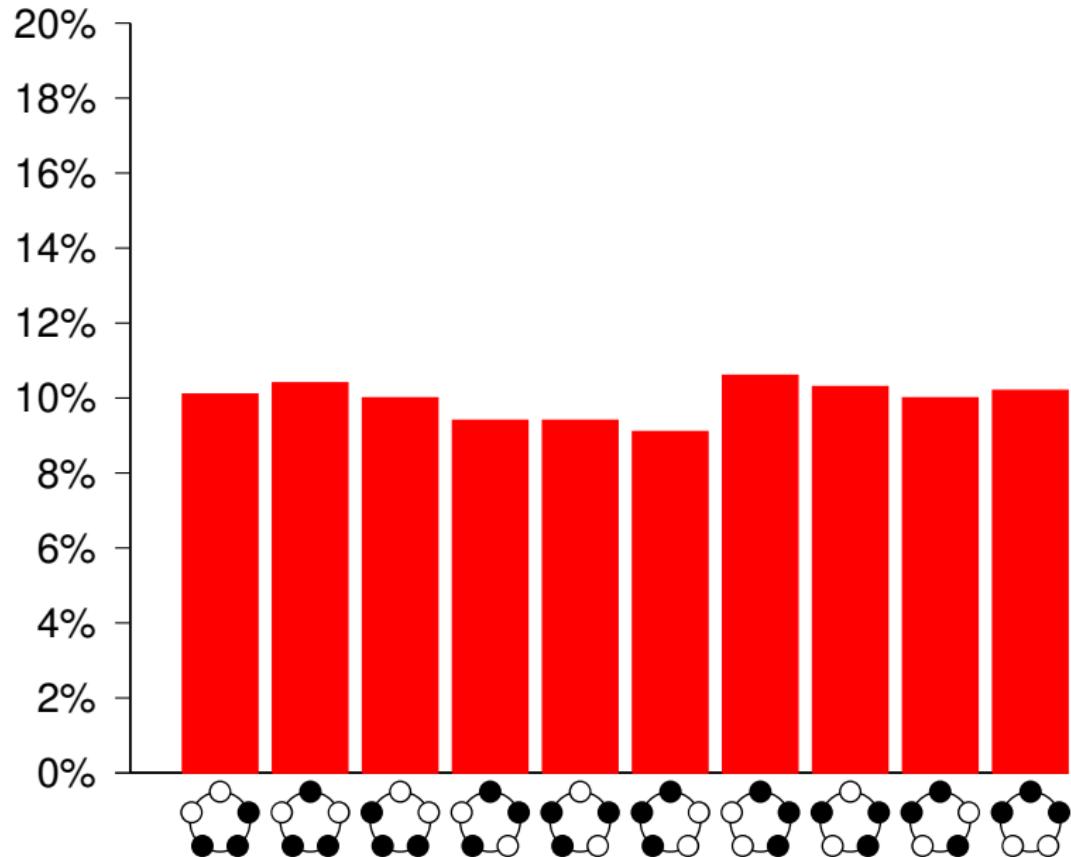
Stationary distribution



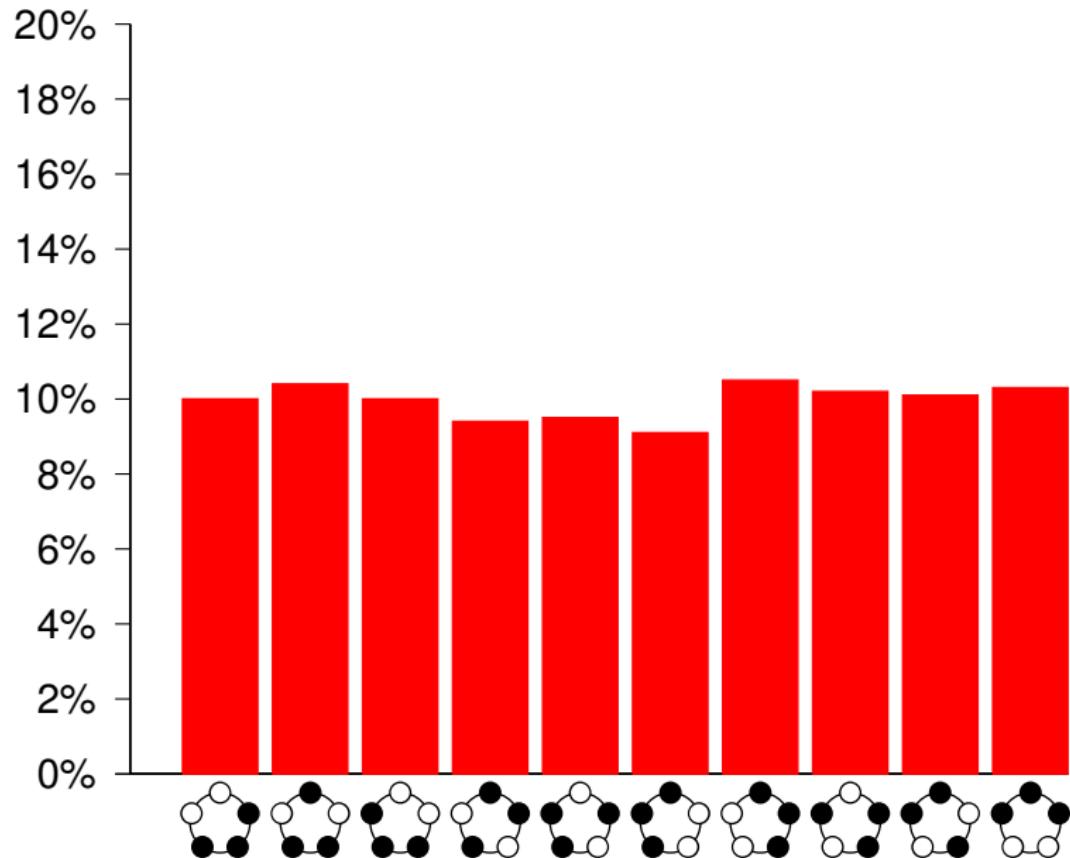
Stationary distribution



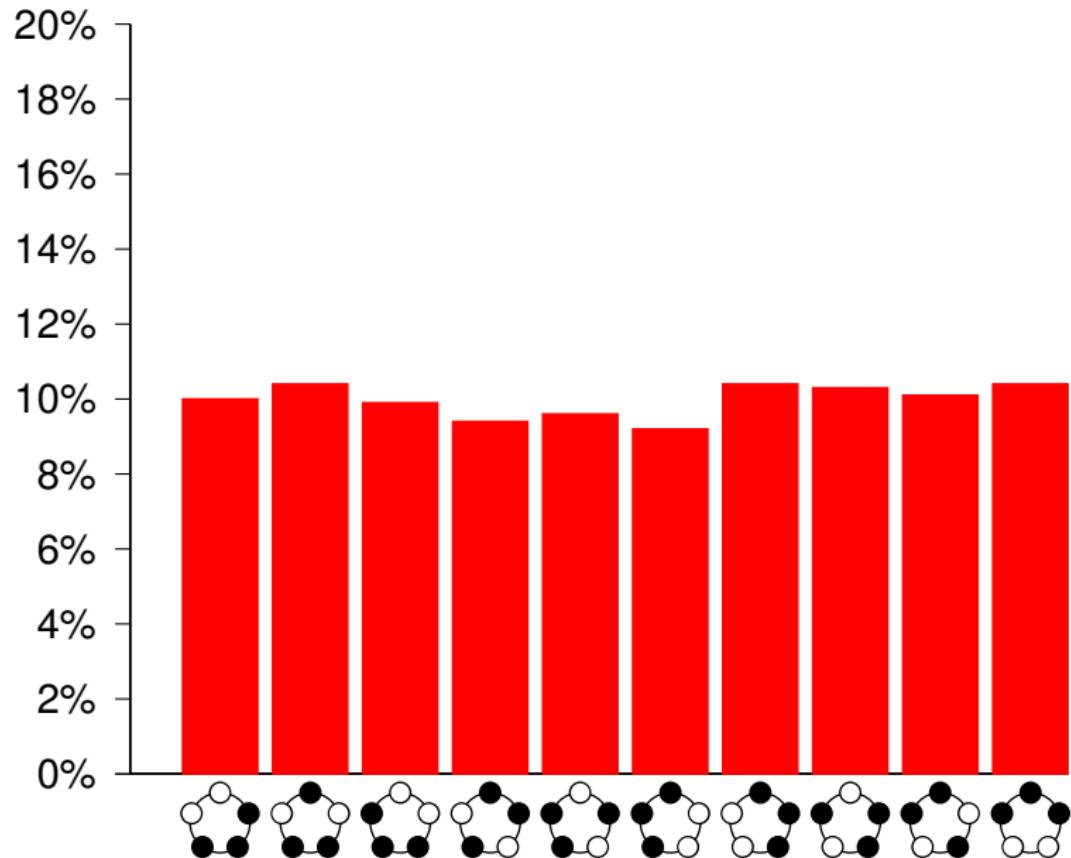
Stationary distribution



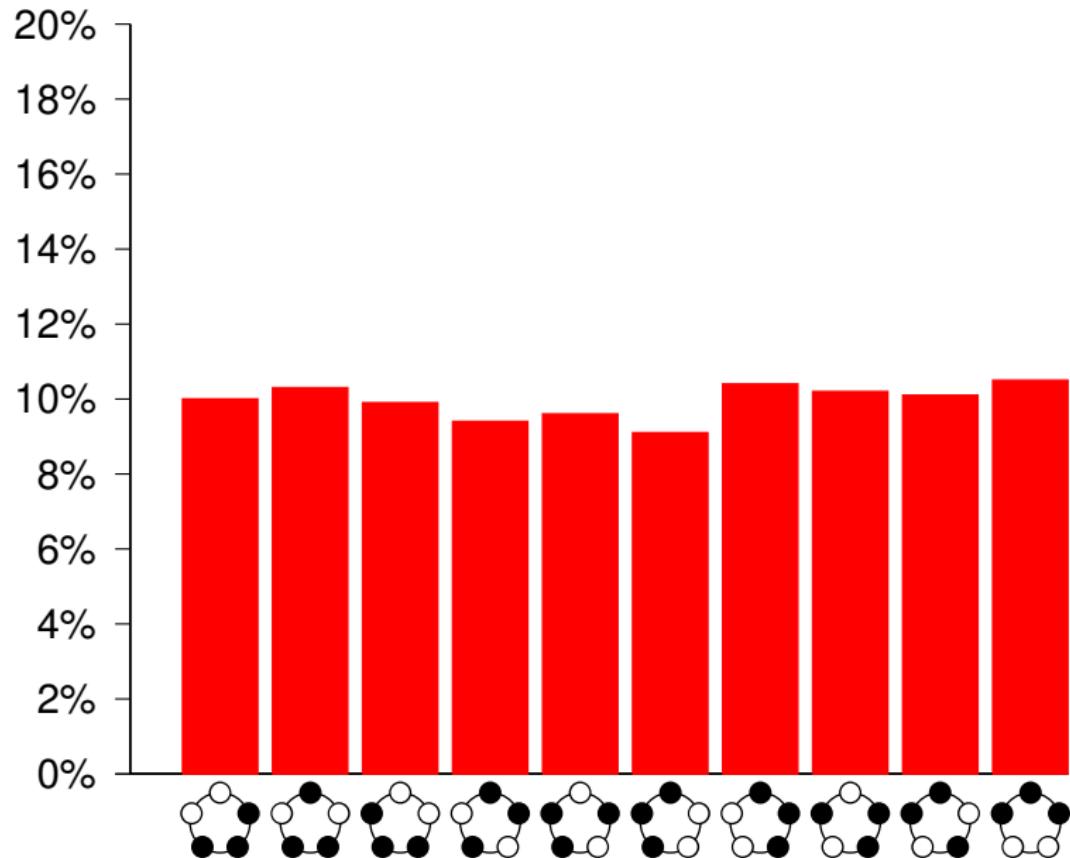
Stationary distribution



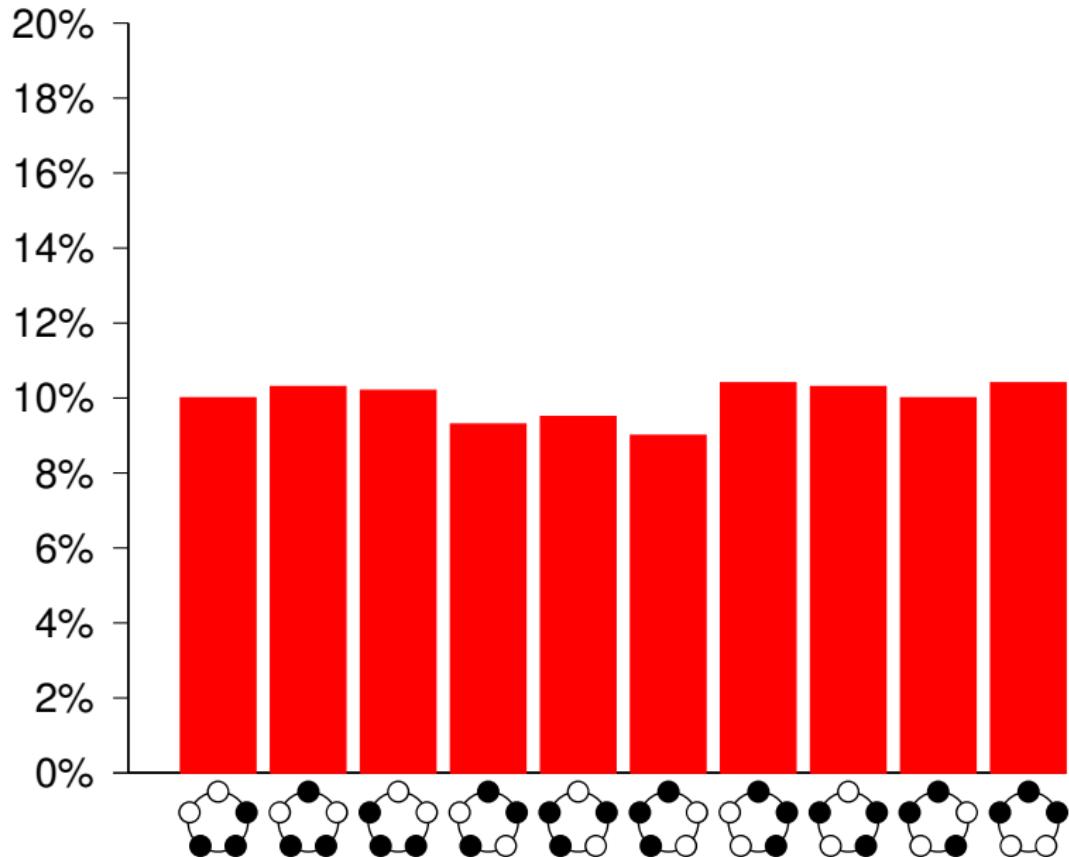
Stationary distribution



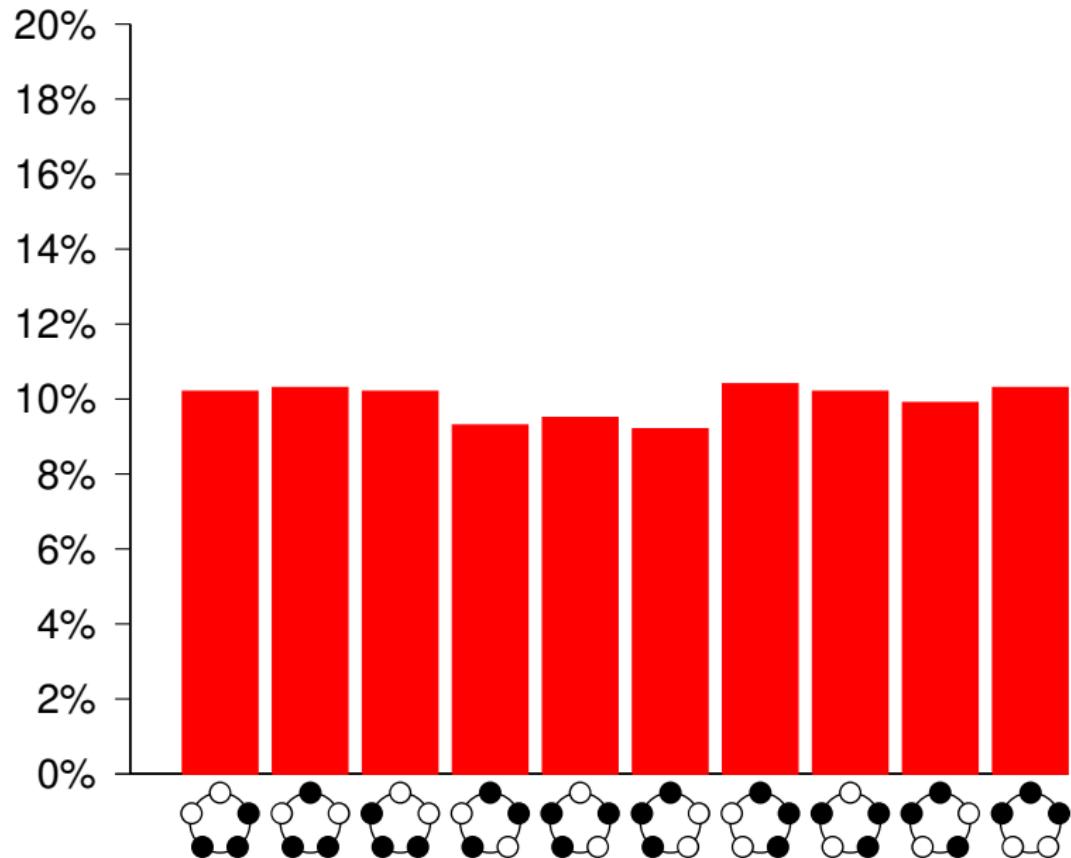
Stationary distribution



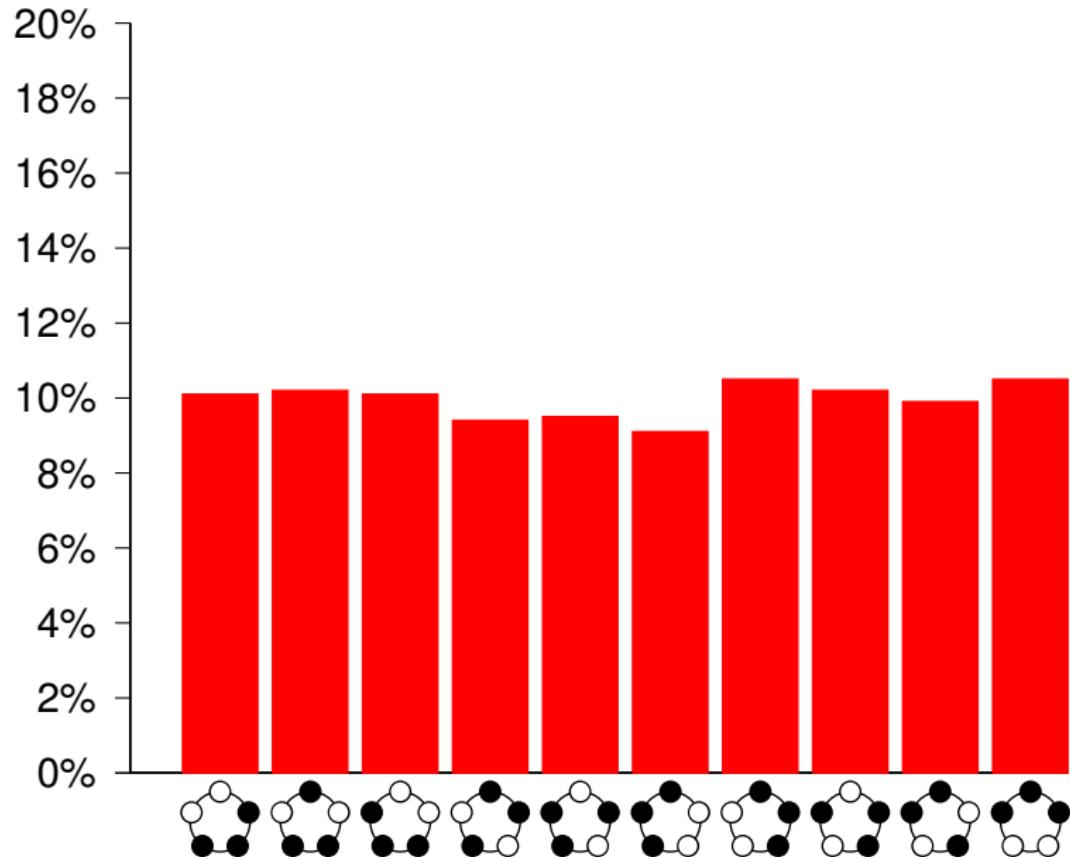
Stationary distribution



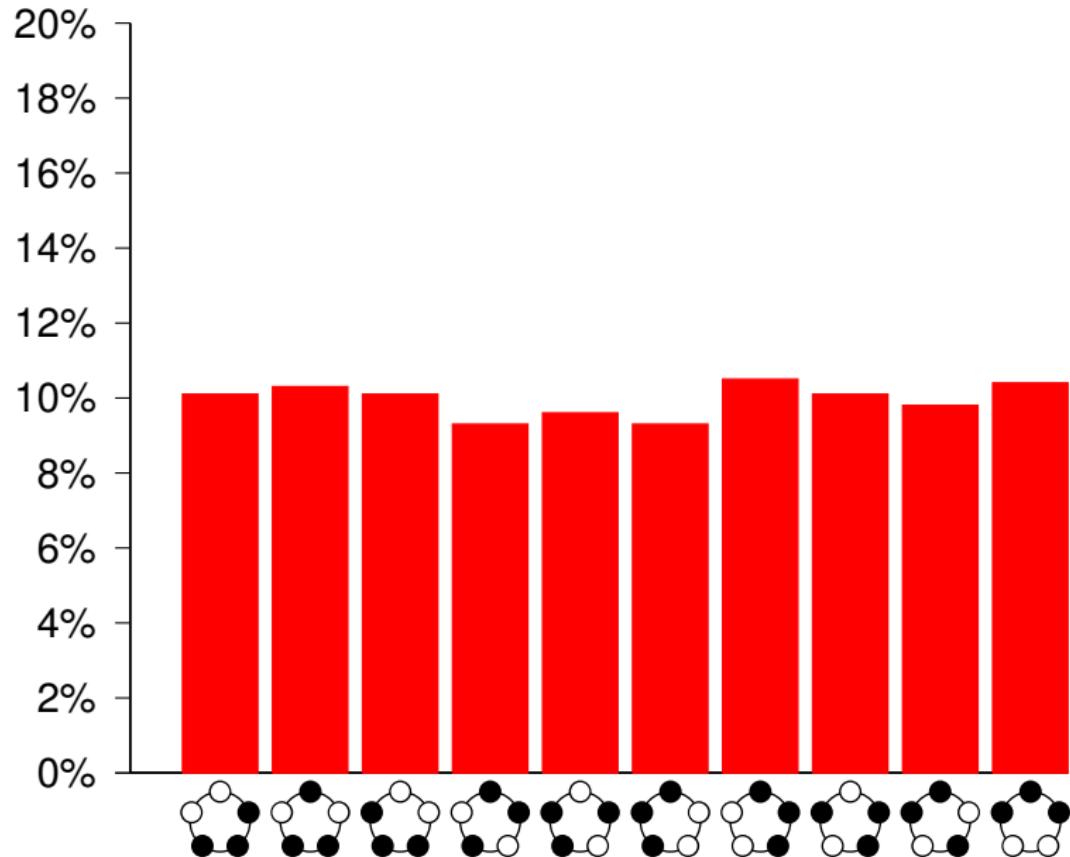
Stationary distribution



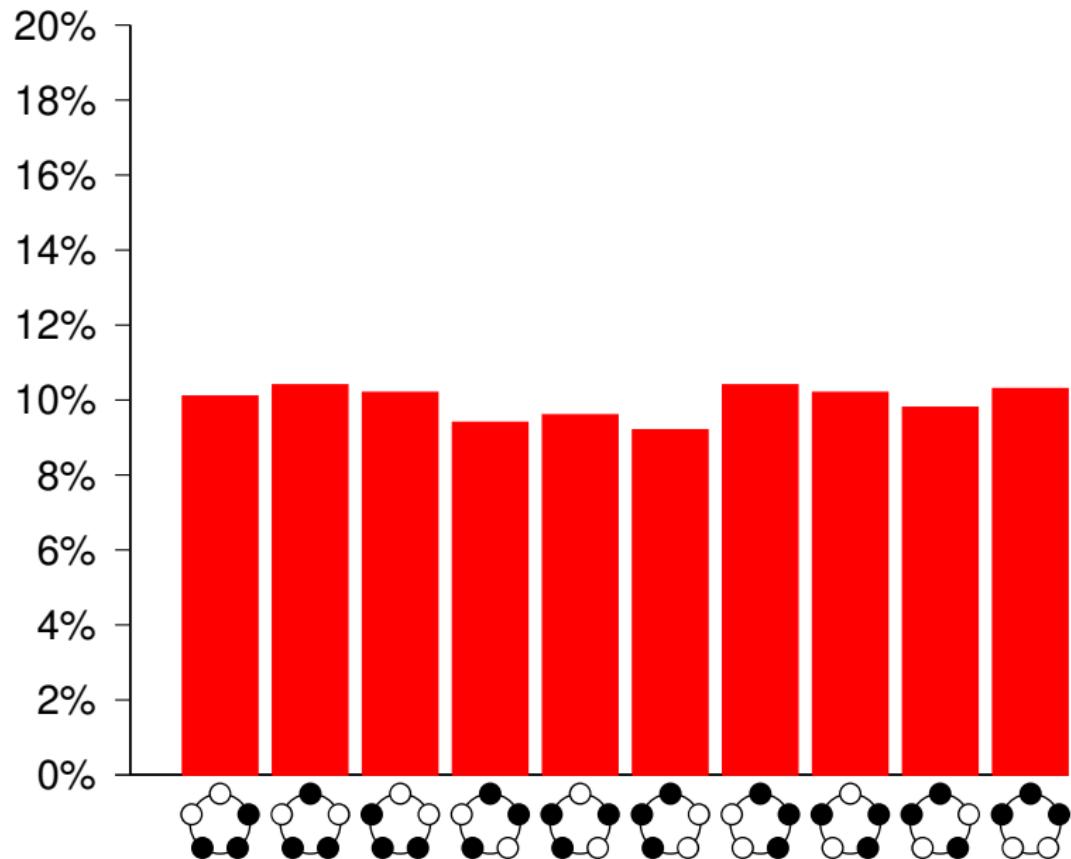
Stationary distribution



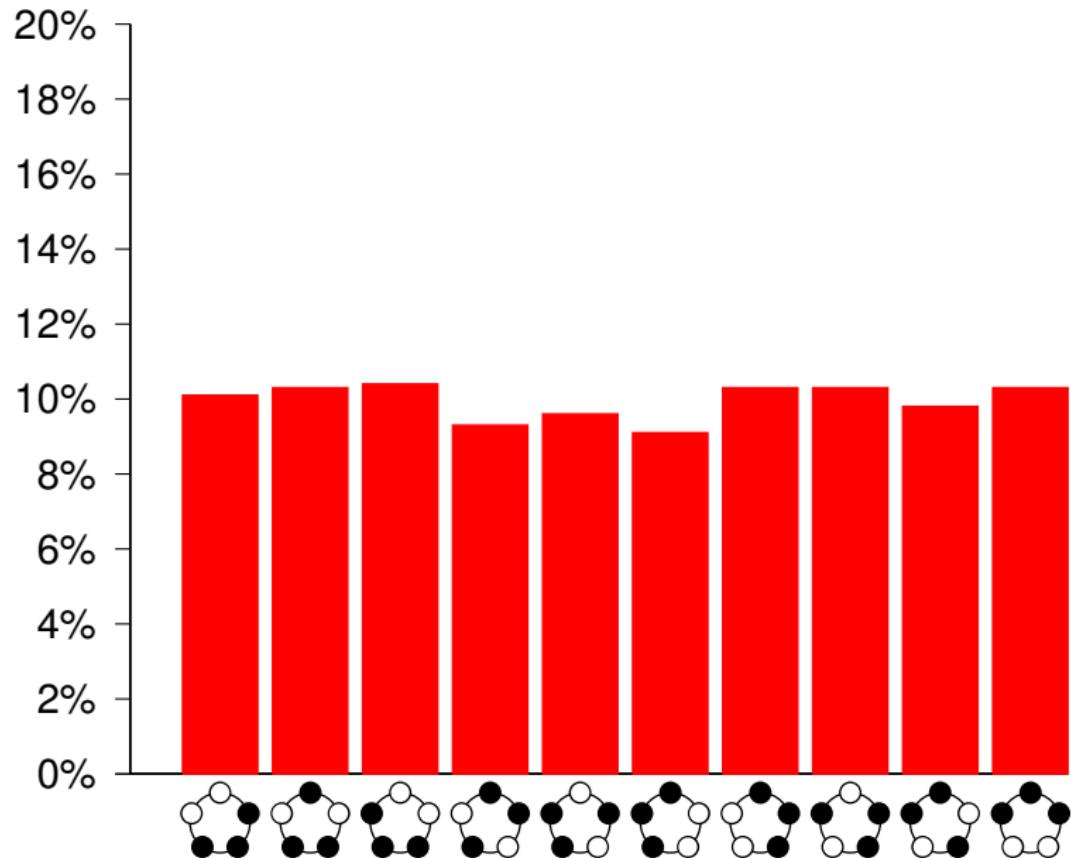
Stationary distribution



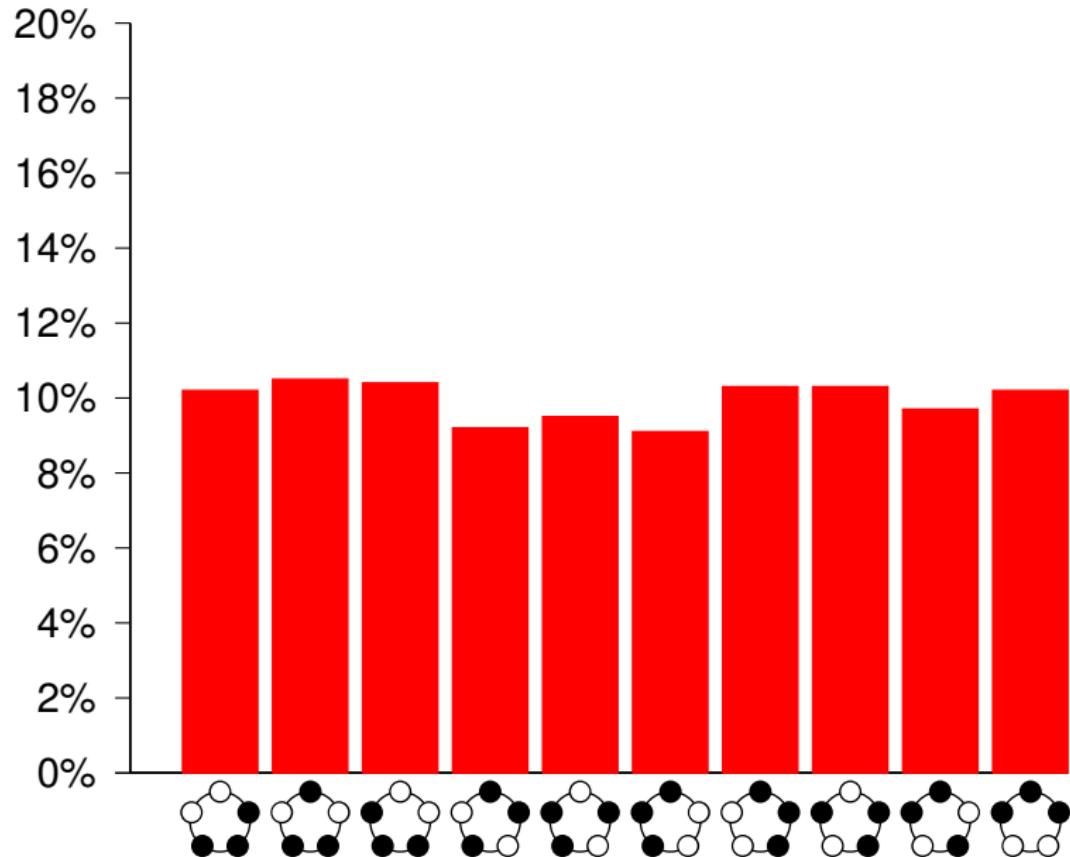
Stationary distribution



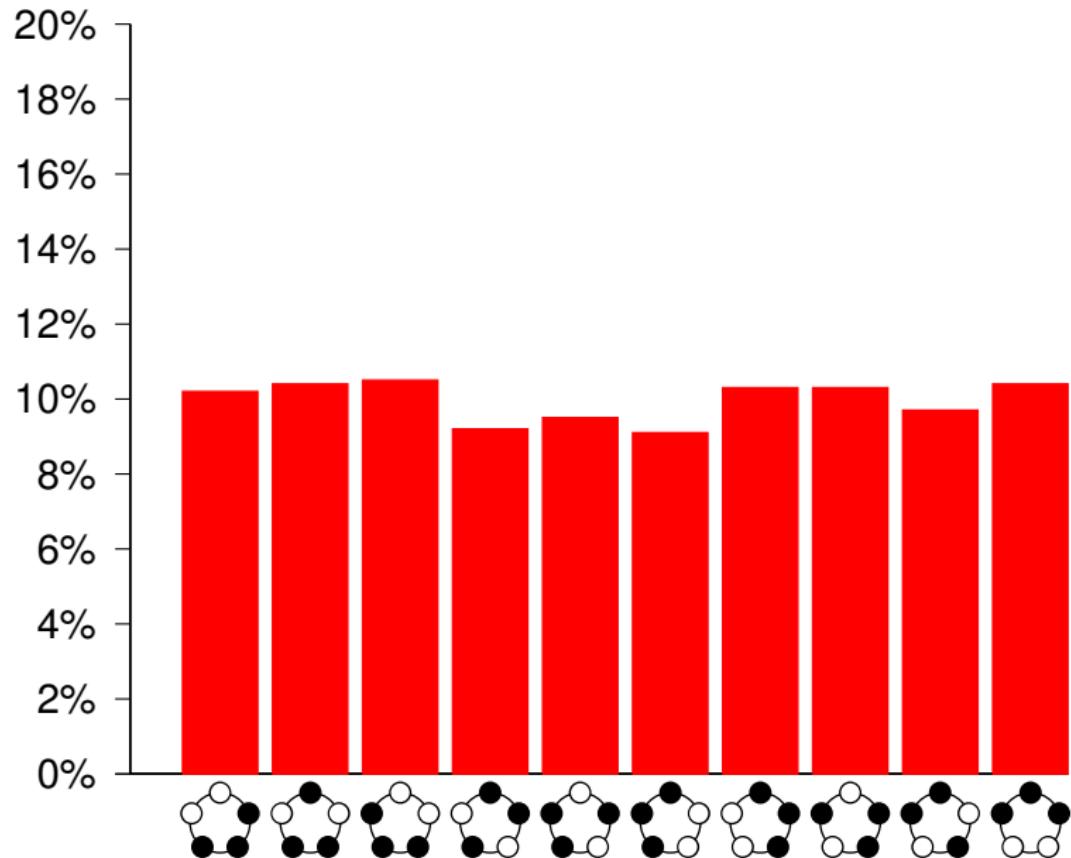
Stationary distribution



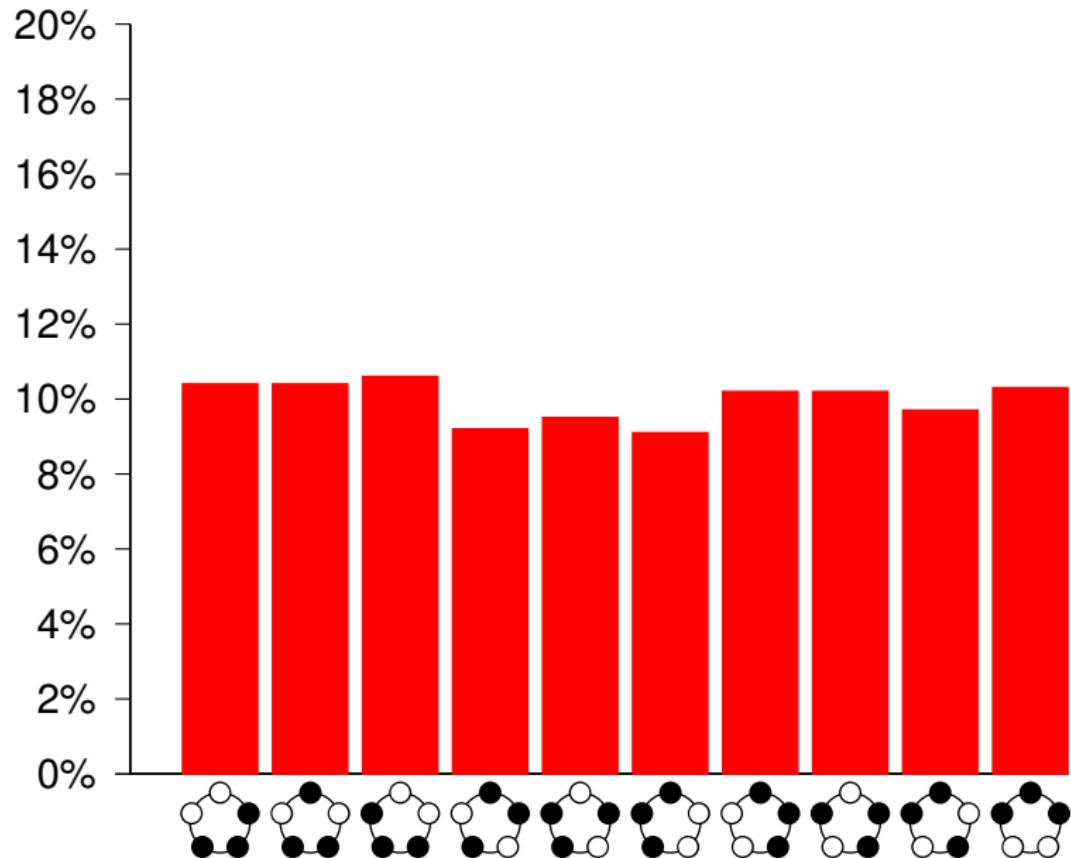
Stationary distribution



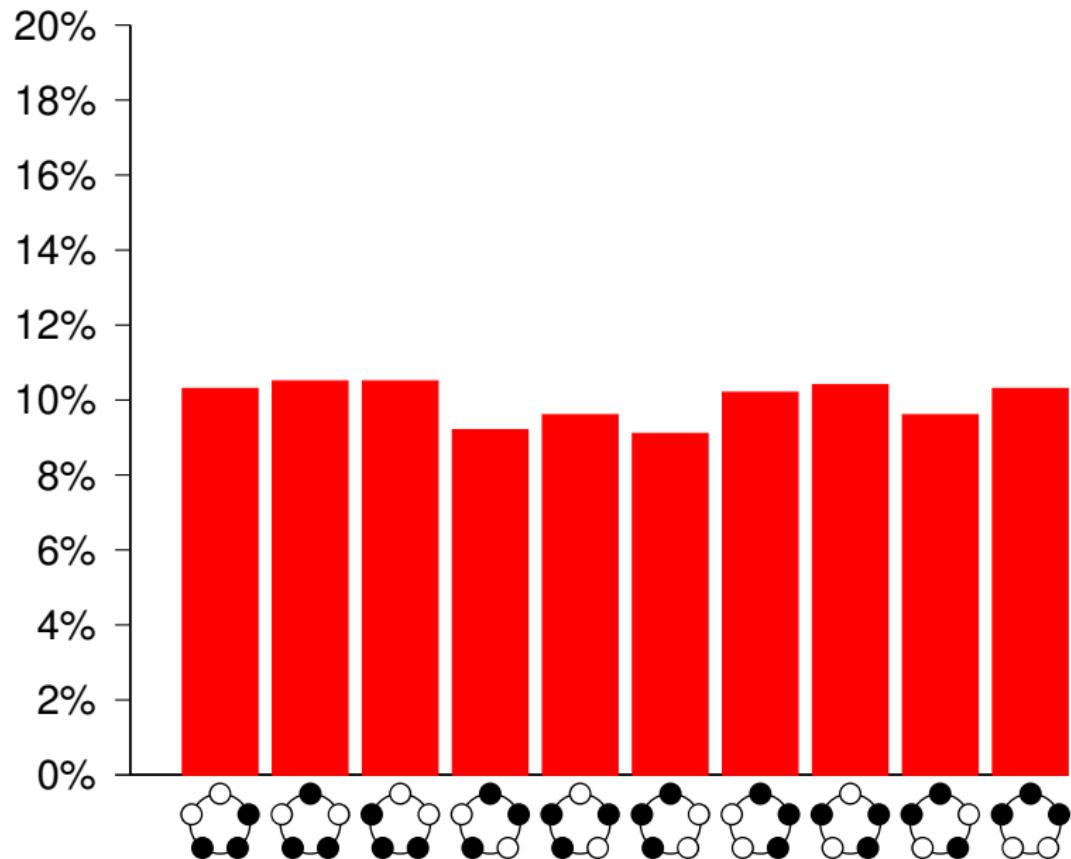
Stationary distribution



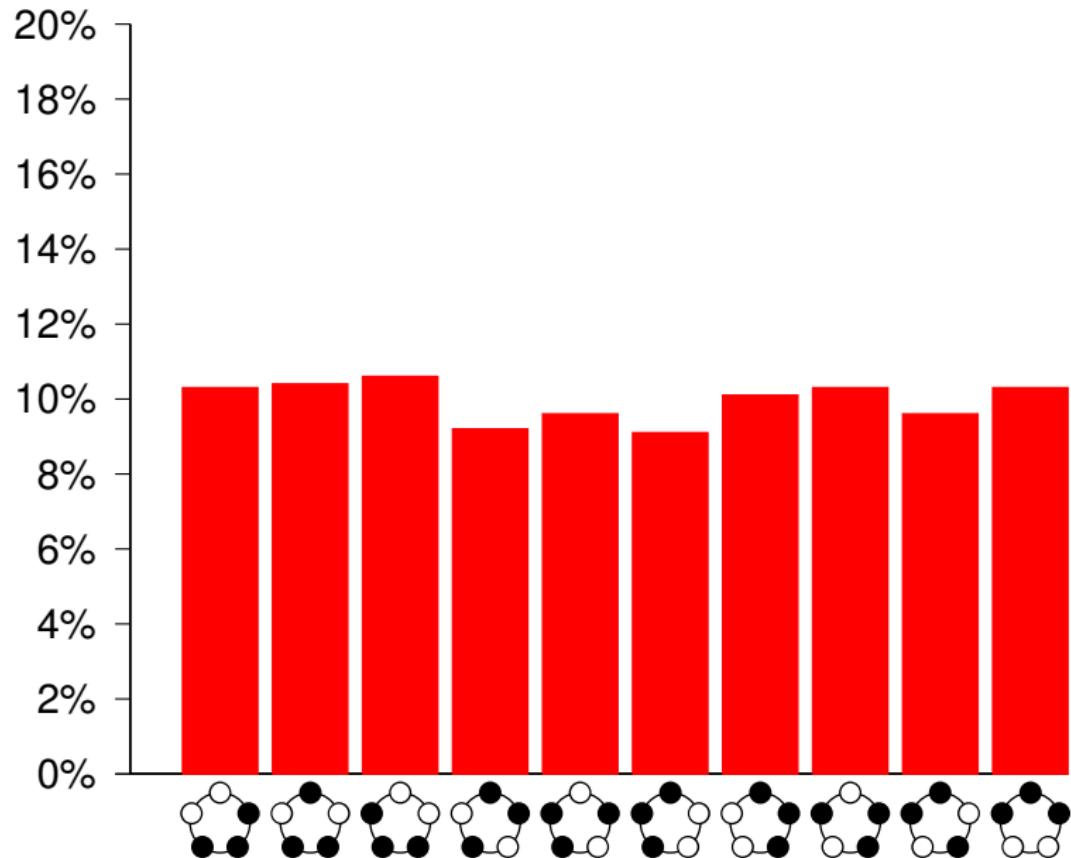
Stationary distribution



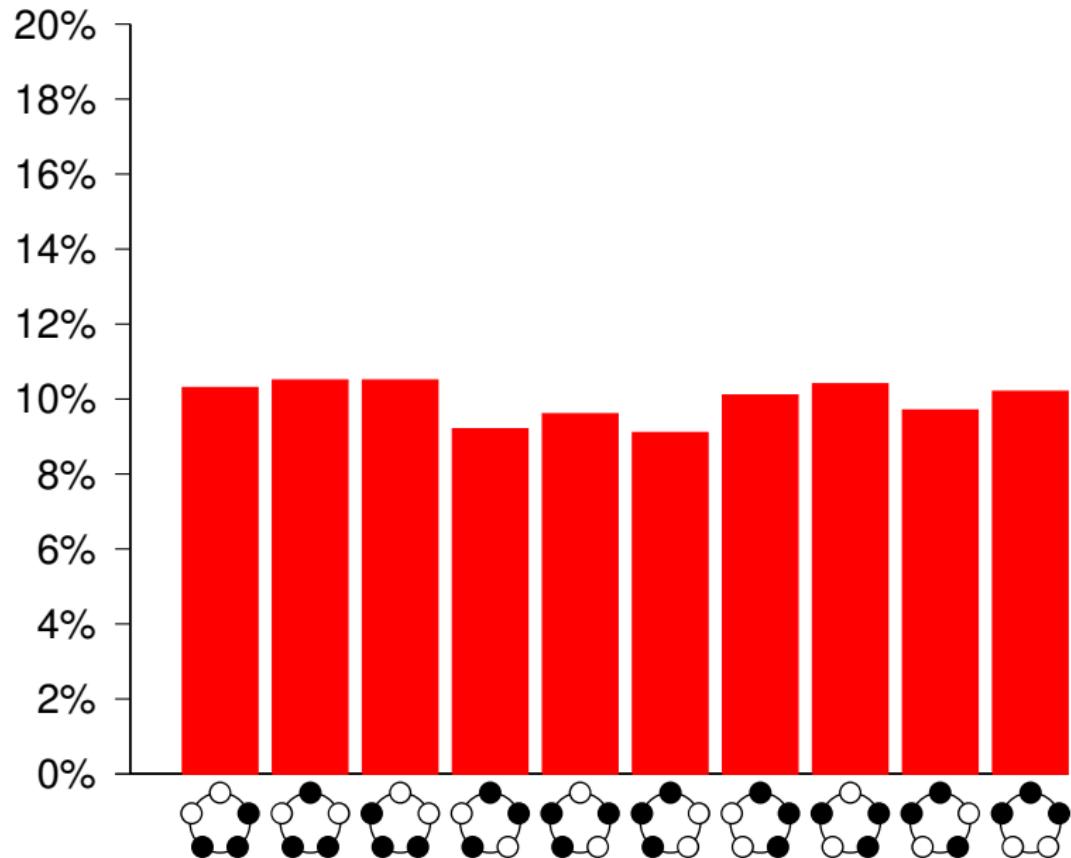
Stationary distribution



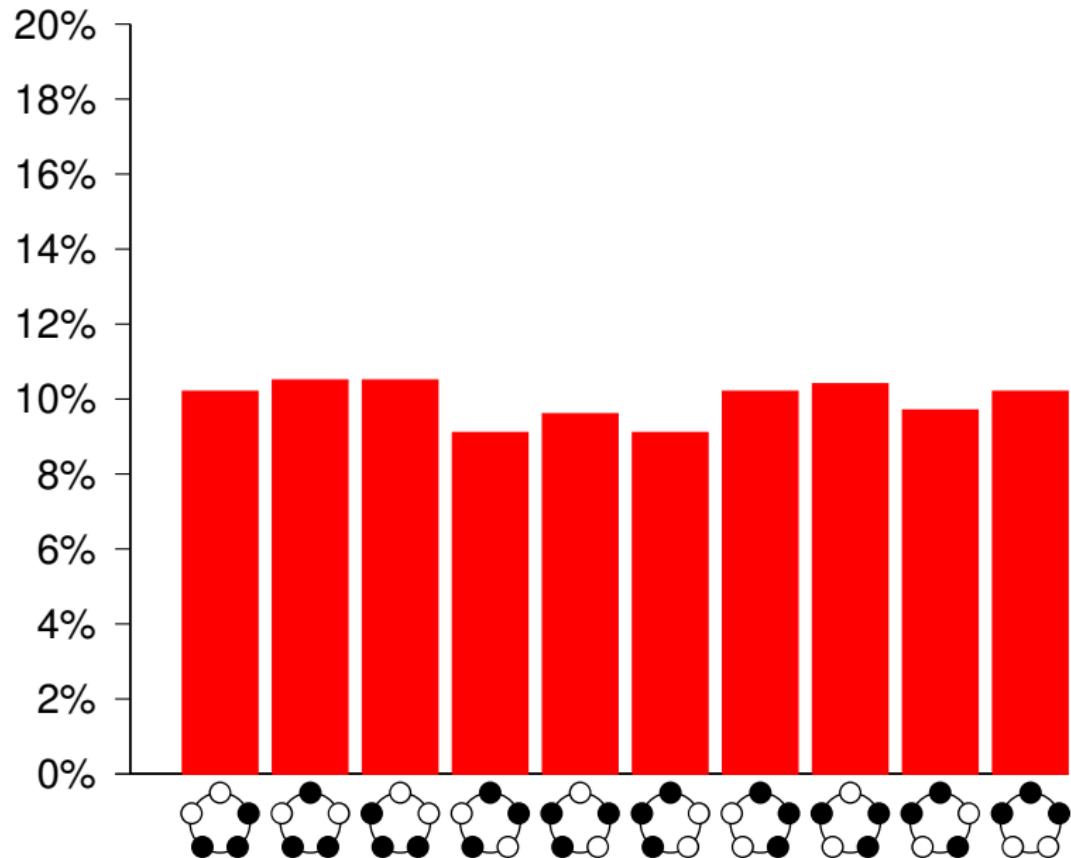
Stationary distribution



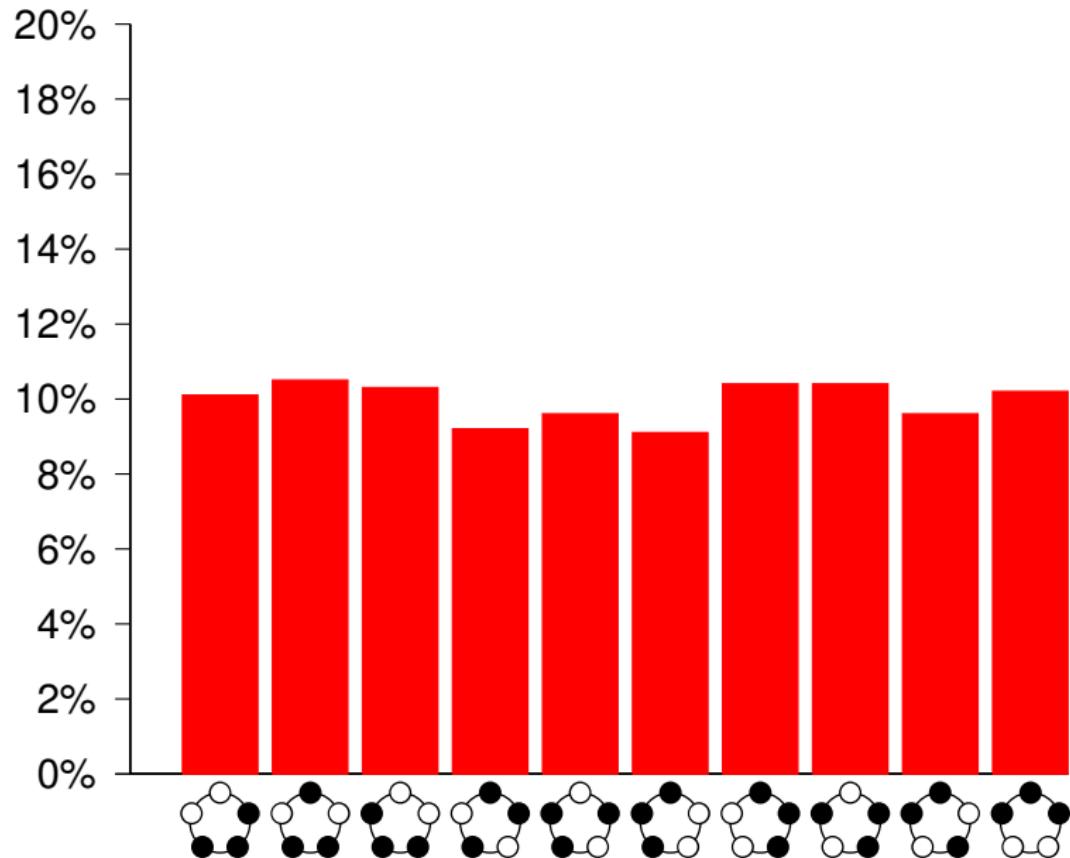
Stationary distribution



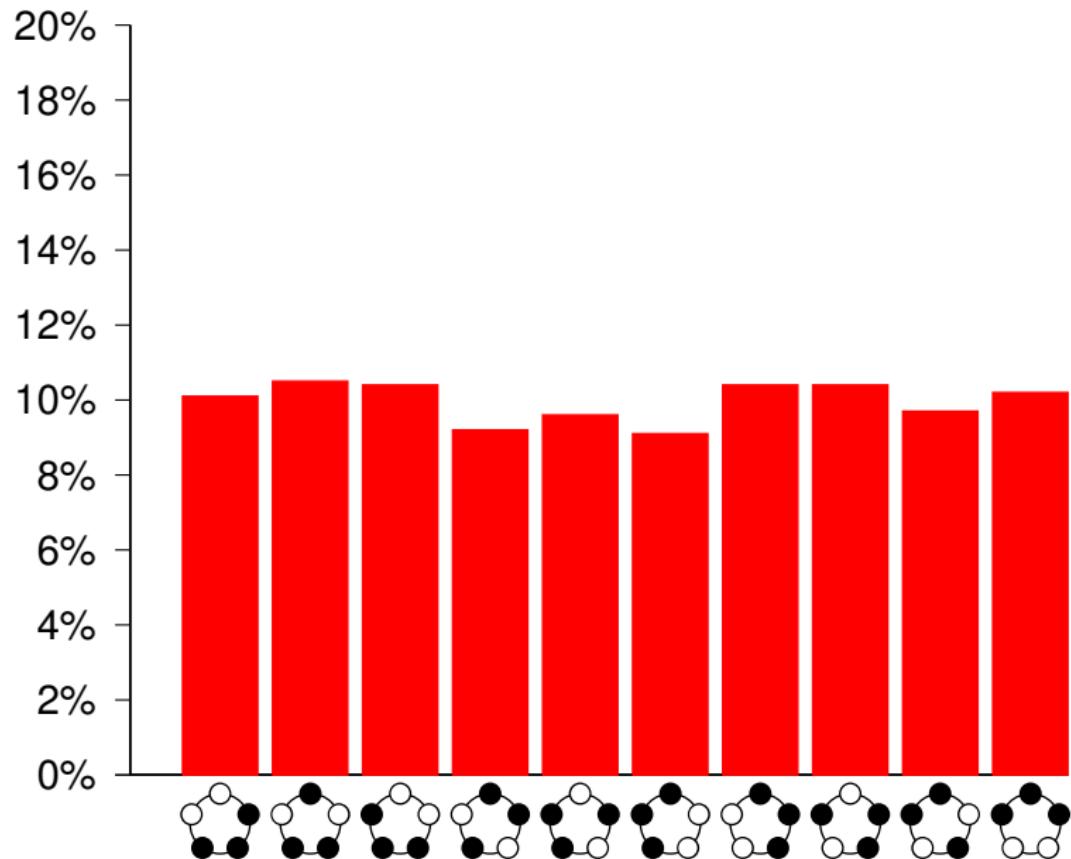
Stationary distribution



Stationary distribution



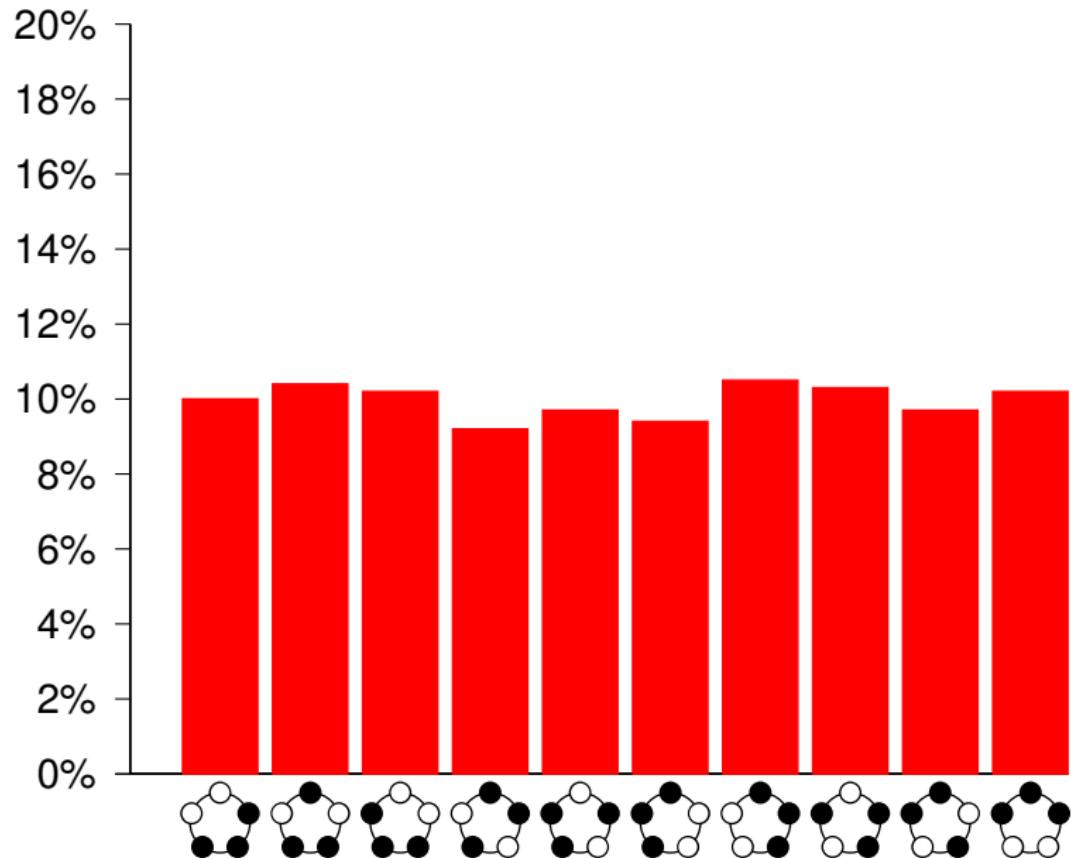
Stationary distribution



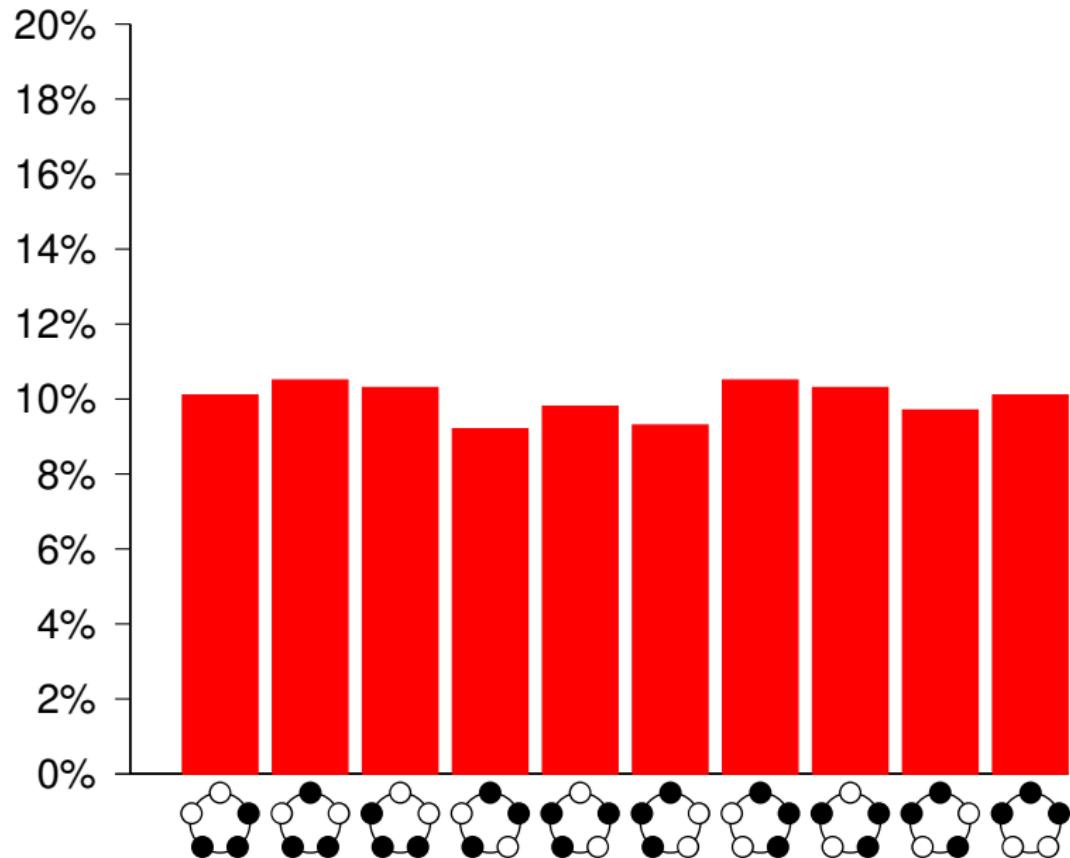
Stationary distribution



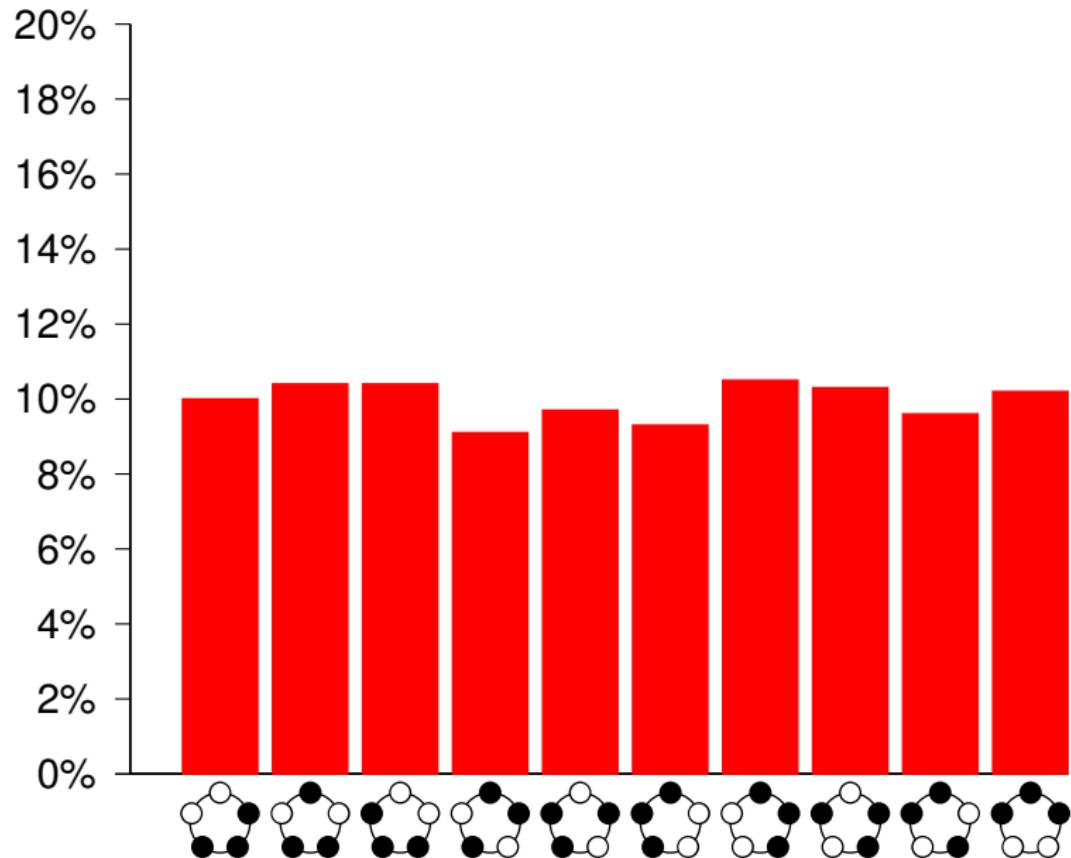
Stationary distribution



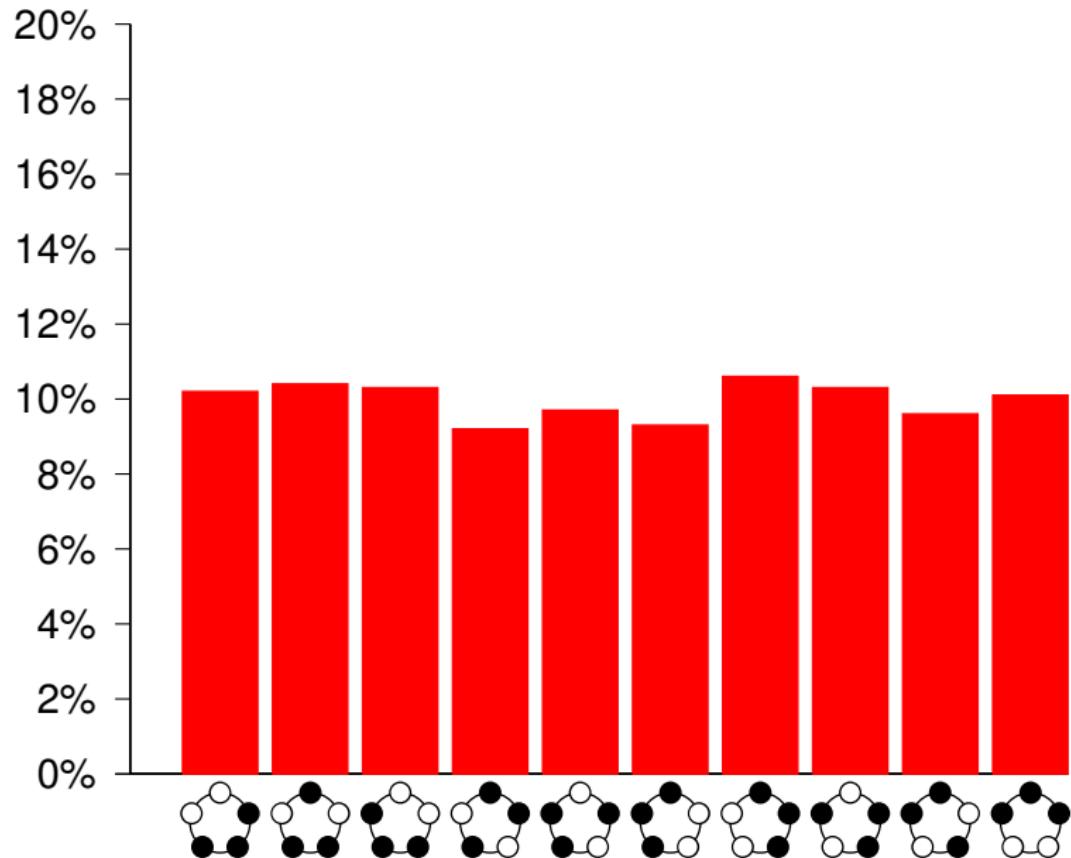
Stationary distribution



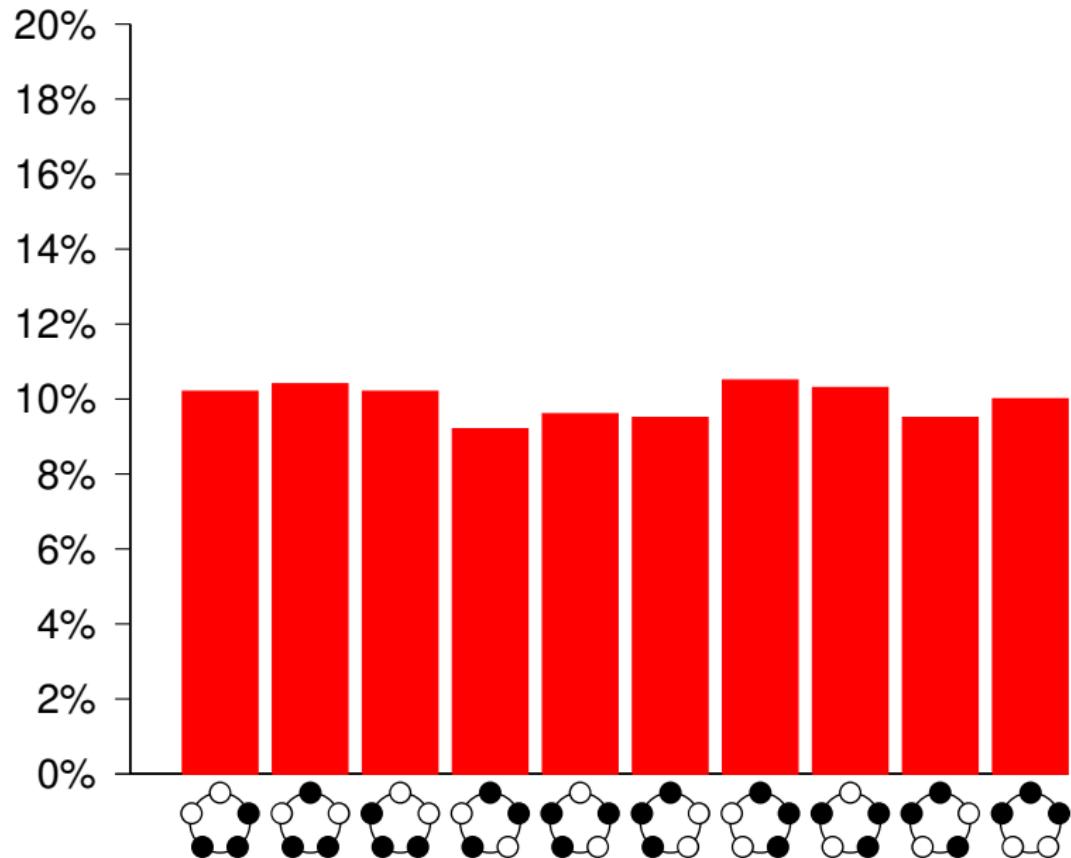
Stationary distribution



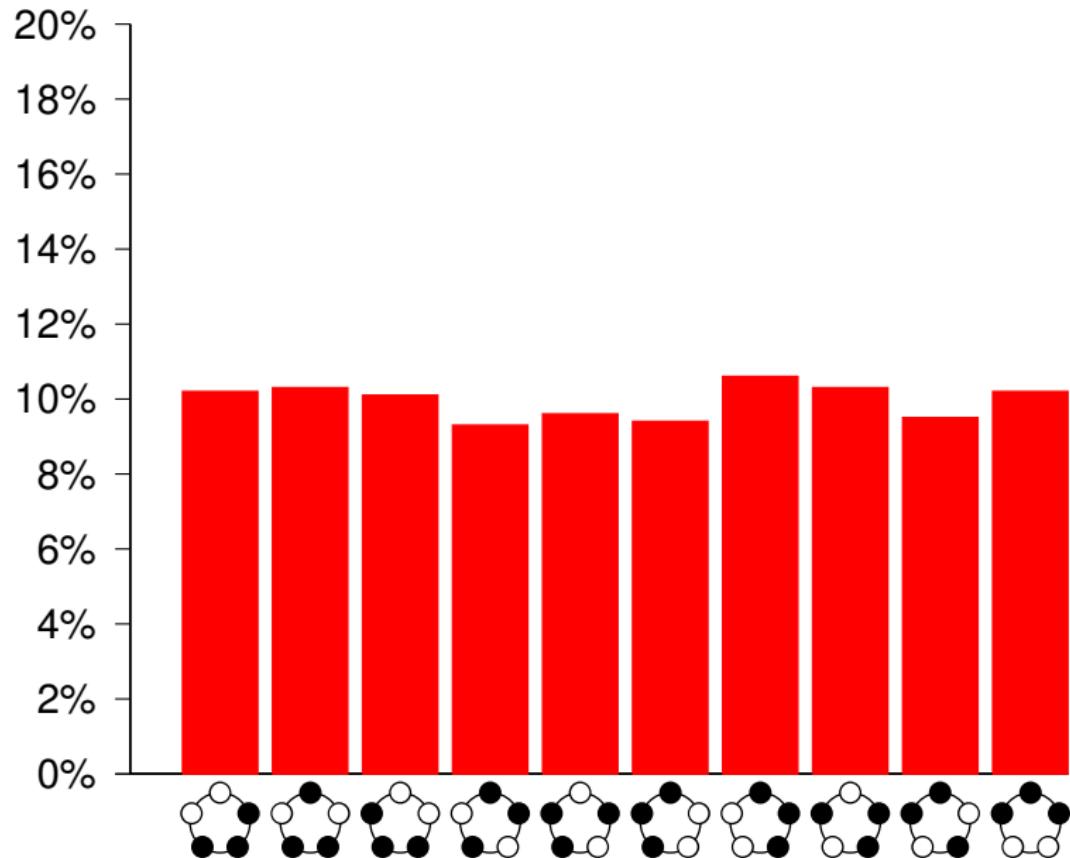
Stationary distribution



Stationary distribution



Stationary distribution



The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m/N \simeq \varrho$.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m/N \simeq \varrho$.

ϱ is the *density of particles*, or the probability that a given slot has a ball.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m/N \simeq \varrho$.

ϱ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m/N \simeq \varrho$.

ϱ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

In the limit we obtain a model on \mathbb{Z} . In its stationary distribution we have a ball with probability ϱ , and don't have one with probability $1 - \varrho$ independently for each slot.

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

- ▶ The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

- ▶ The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.
- ▶ If the process is *locally* in equilibrium, but changes over some *large scale* (variables $X = \varepsilon i$ and $T = \varepsilon t$), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

- ▶ The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.
- ▶ If the process is *locally* in equilibrium, but changes over some *large scale* (variables $X = \varepsilon i$ and $T = \varepsilon t$), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

- ▶ This is a *nonlinear partial differential equation*. This type is called a *conservation law*.

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

- ▶ The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.
- ▶ If the process is *locally* in equilibrium, but changes over some *large scale* (variables $X = \varepsilon i$ and $T = \varepsilon t$), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

- ▶ This is a *nonlinear partial differential equation*. This type is called a *conservation law*.
- ▶ These are fun.

On large scales: hydrodynamics

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ϱ on the large (X) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (T).

- ▶ The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.
- ▶ If the process is *locally* in equilibrium, but changes over some *large scale* (variables $X = \varepsilon i$ and $T = \varepsilon t$), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

- ▶ This is a *nonlinear partial differential equation*. This type is called a *conservation law*.
- ▶ These are fun.
- ▶ (And difficult.)

Characteristics (very briefly)

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

Characteristics (very briefly)

$$\begin{aligned}\partial_T \varrho + \partial_X \mathcal{H}(\varrho) &= 0 \\ \partial_T \varrho + \mathcal{H}'(\varrho) \cdot \partial_X \varrho &= 0 \quad (\text{while smooth})\end{aligned}$$

Characteristics (very briefly)

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

$$\partial_T \varrho + H'(\varrho) \cdot \partial_X \varrho = 0 \quad (\text{while smooth})$$

$$\frac{d}{dT} \varrho(T, X(T)) = 0$$

Characteristics (very briefly)

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

$$\partial_T \varrho + H'(\varrho) \cdot \partial_X \varrho = 0 \quad (\text{while smooth})$$

$$\partial_T \varrho + \dot{X}(T) \cdot \partial_X \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

Characteristics (very briefly)

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

$$\partial_T \varrho + H'(\varrho) \cdot \partial_X \varrho = 0 \quad (\text{while smooth})$$

$$\partial_T \varrho + \dot{X}(T) \cdot \partial_X \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

Characteristics (very briefly)

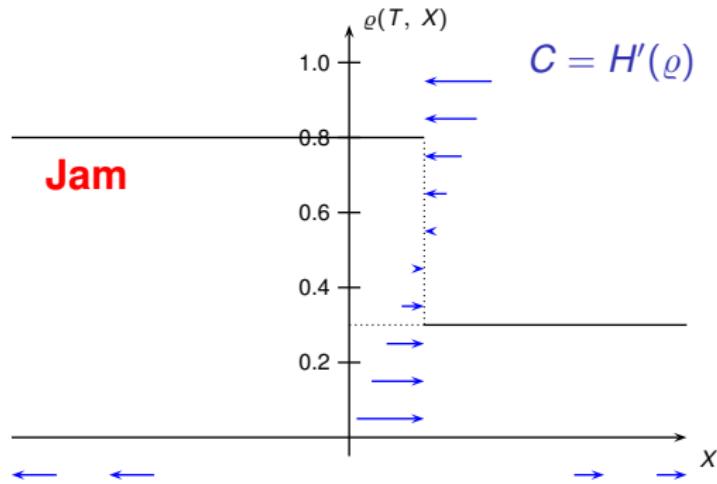
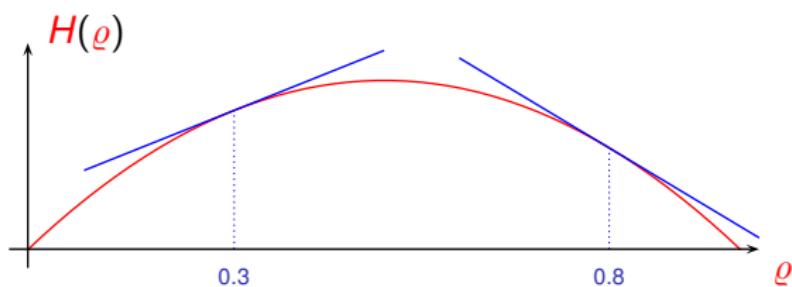
$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

$$\partial_T \varrho + H'(\varrho) \cdot \partial_X \varrho = 0 \quad (\text{while smooth})$$

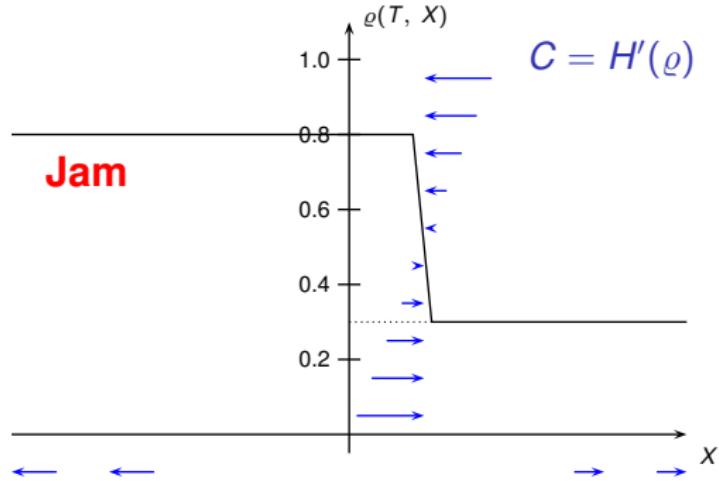
$$\partial_T \varrho + \dot{X}(T) \cdot \partial_X \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

So, $\dot{X}(T) = H'(\varrho) =: C$ is the *characteristic speed*.

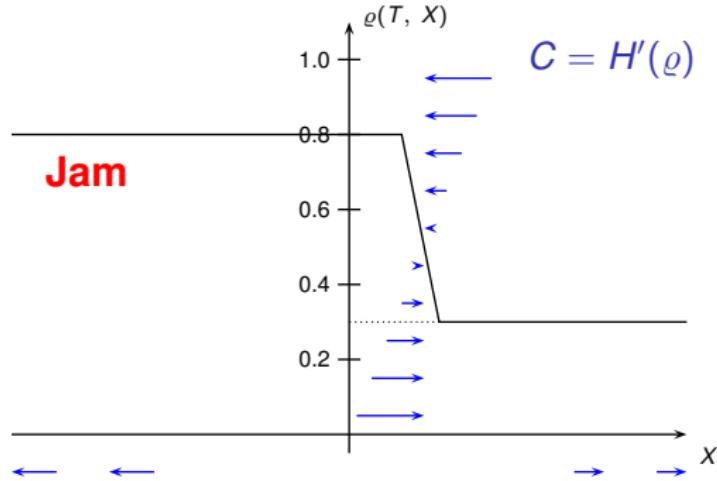
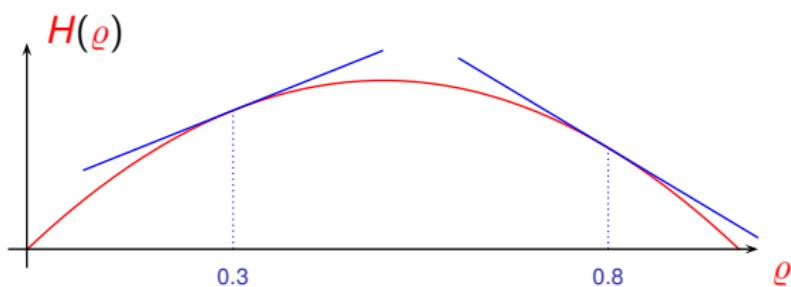
Rescaled version: rarefaction fan



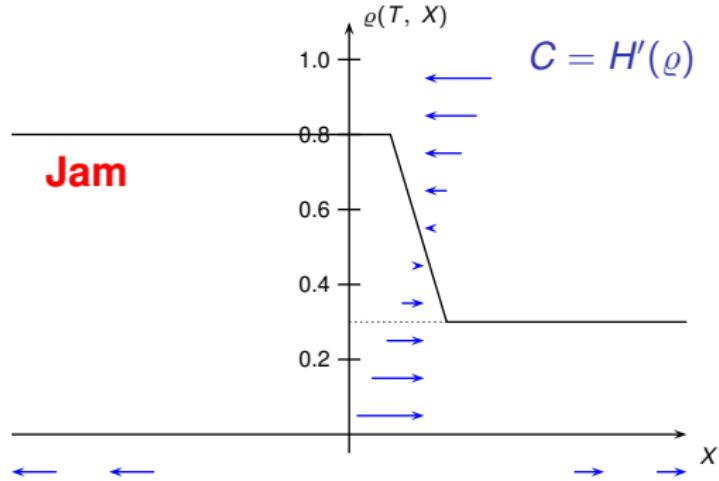
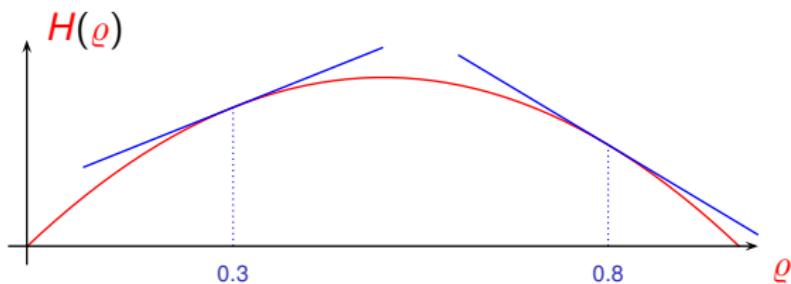
Rescaled version: rarefaction fan



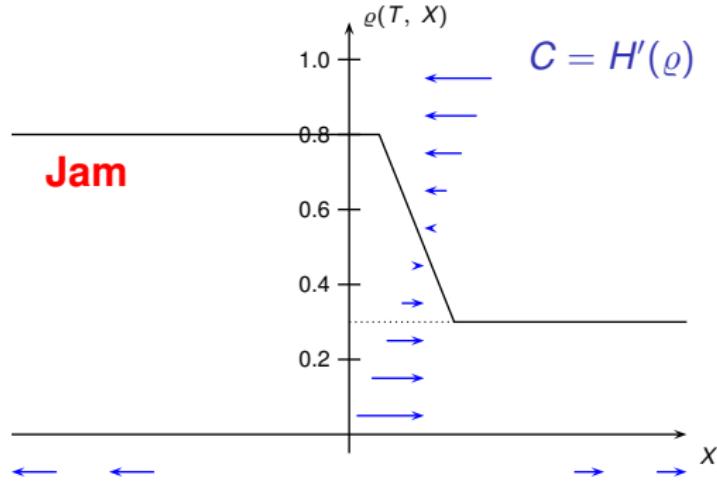
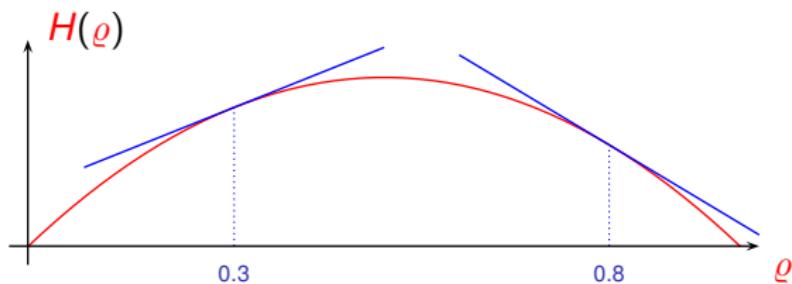
Rescaled version: rarefaction fan



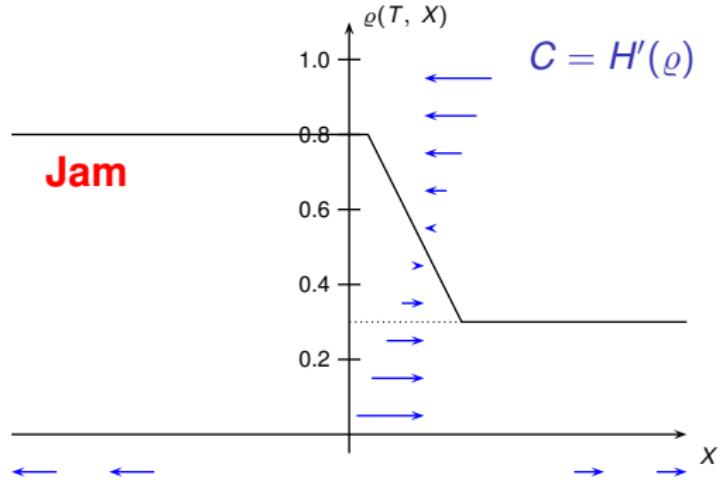
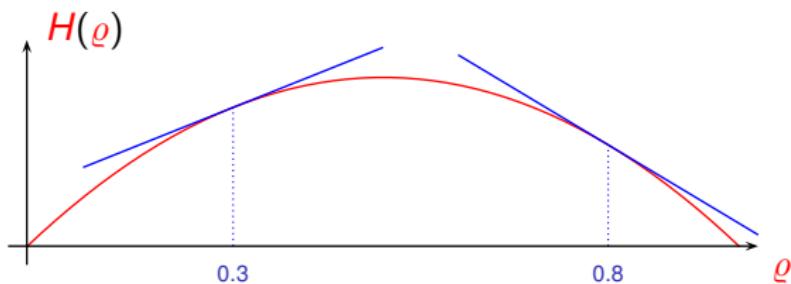
Rescaled version: rarefaction fan



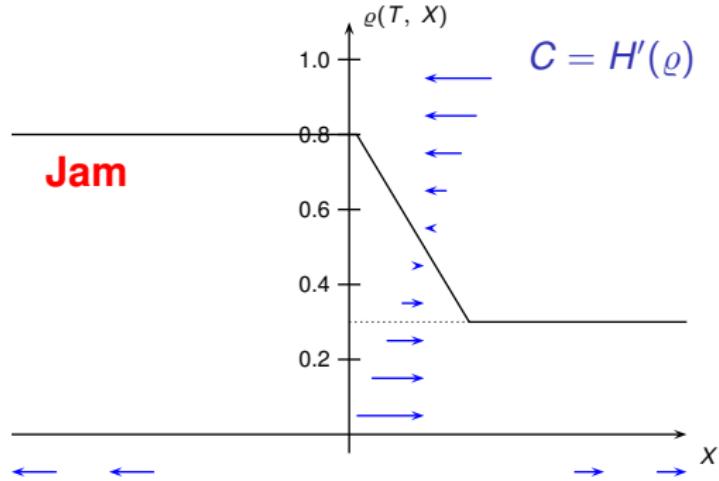
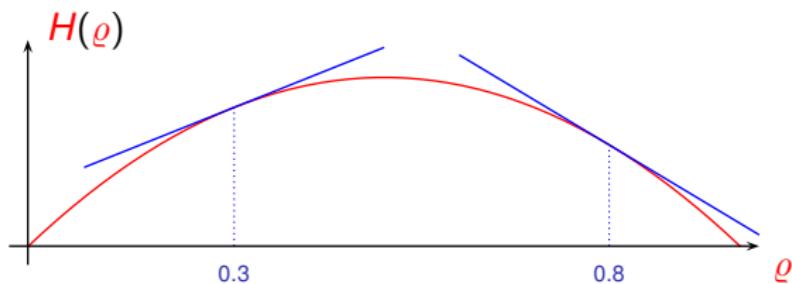
Rescaled version: rarefaction fan



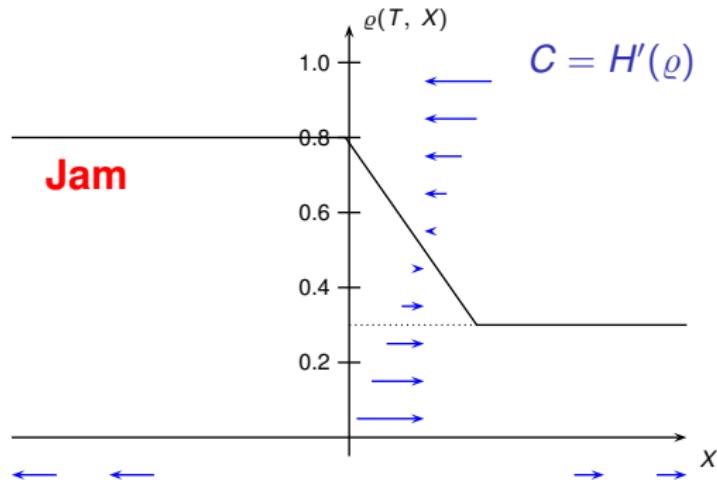
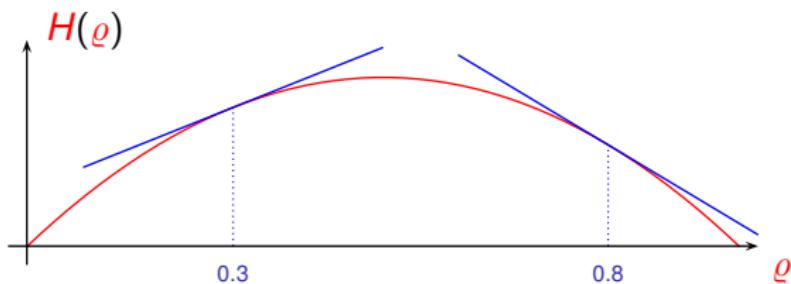
Rescaled version: rarefaction fan



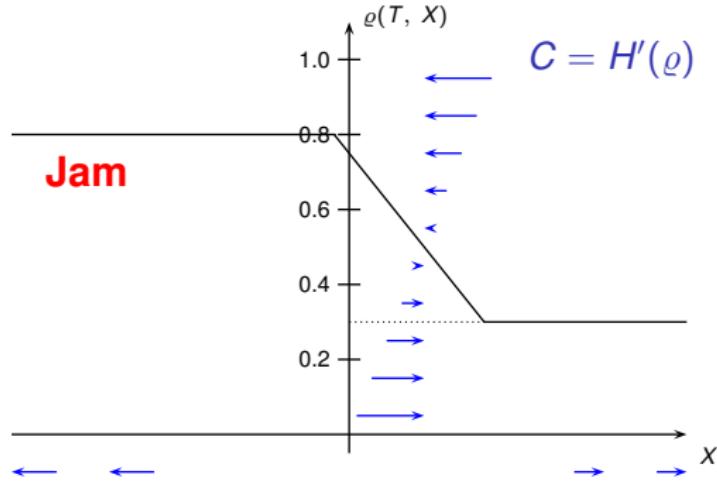
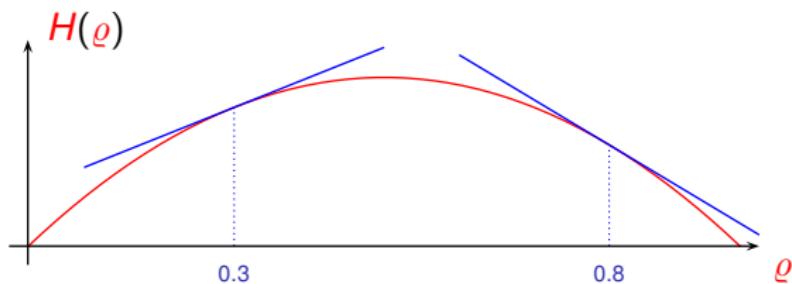
Rescaled version: rarefaction fan



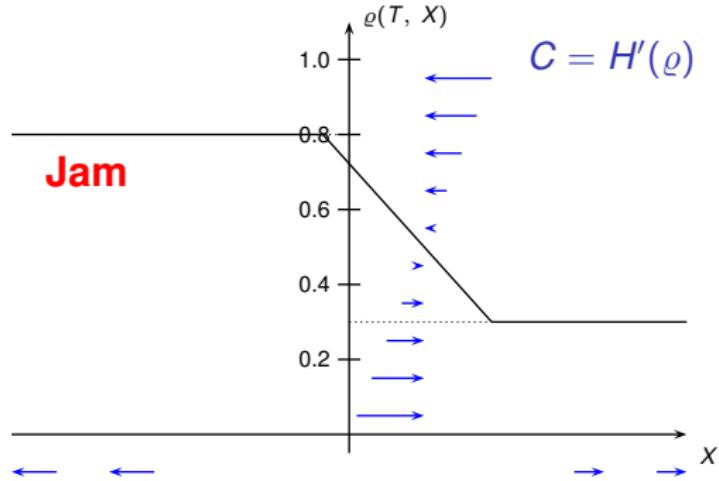
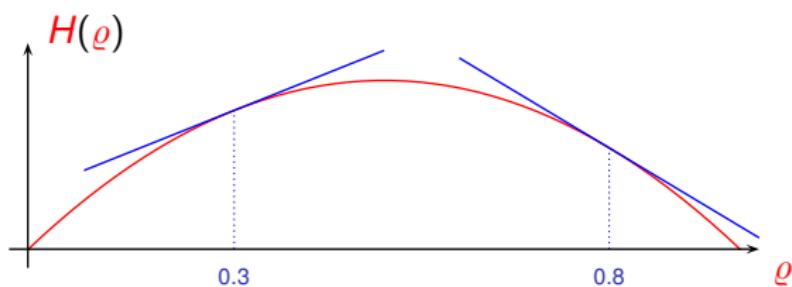
Rescaled version: rarefaction fan



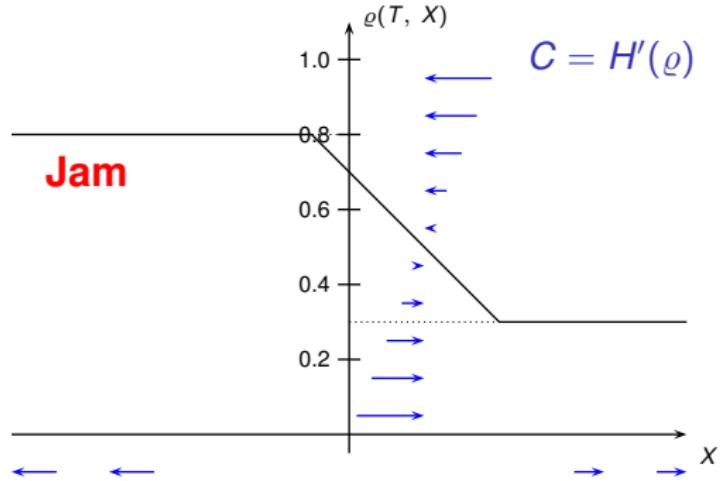
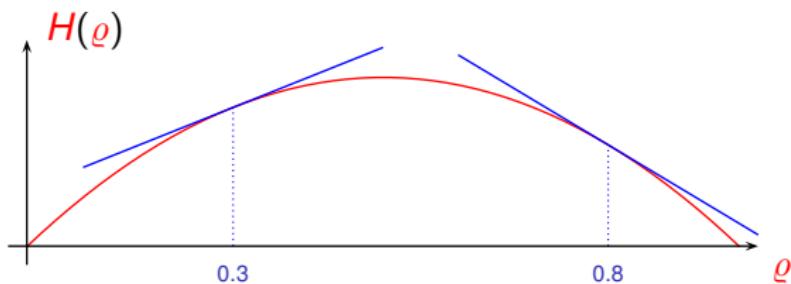
Rescaled version: rarefaction fan



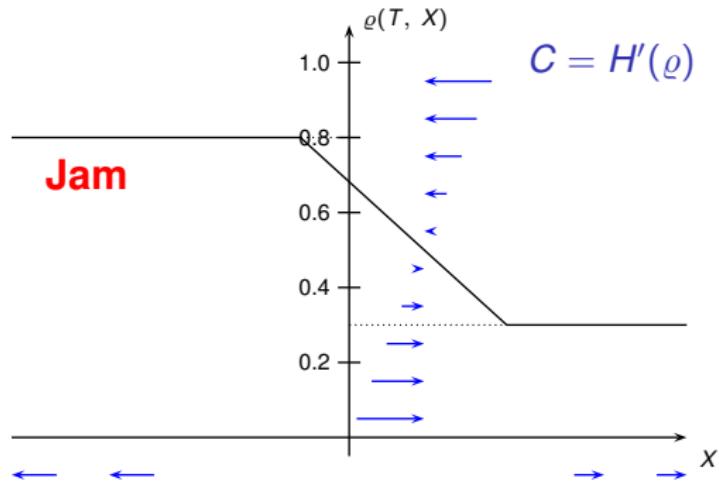
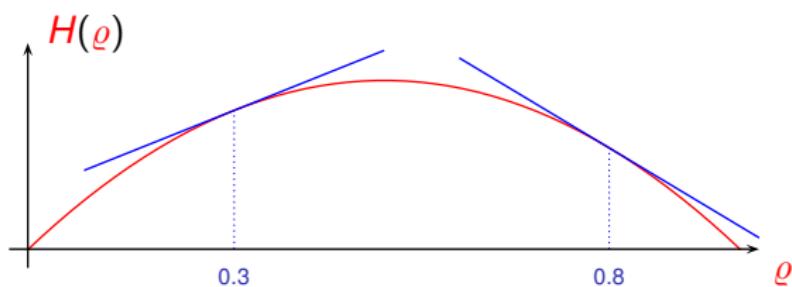
Rescaled version: rarefaction fan



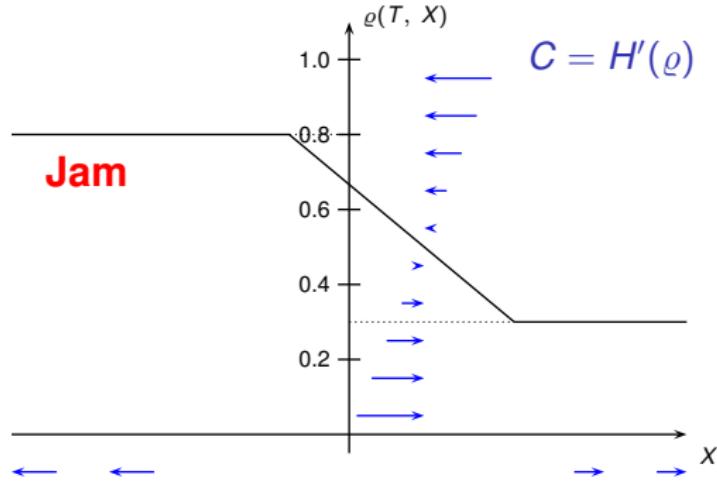
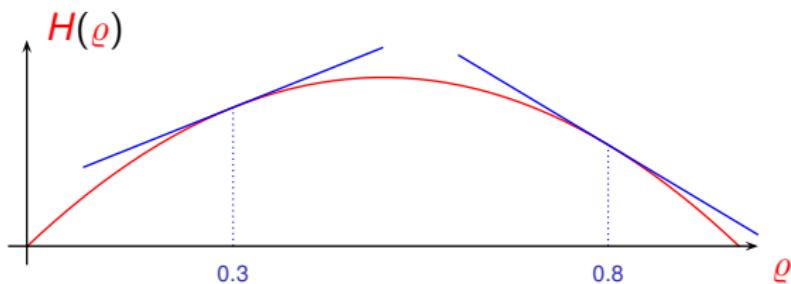
Rescaled version: rarefaction fan



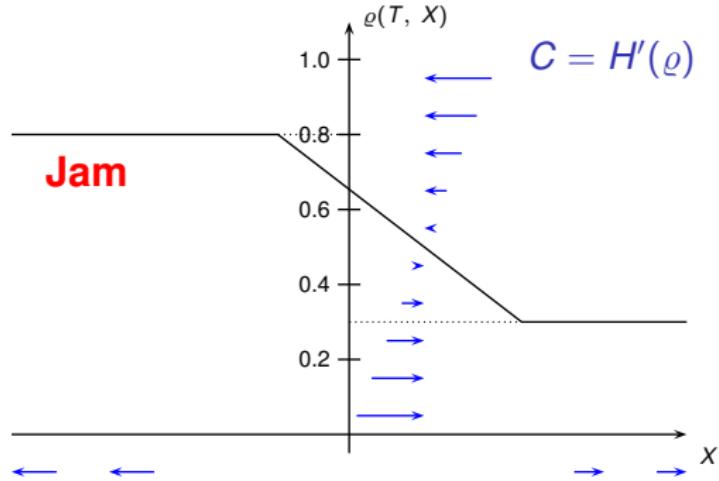
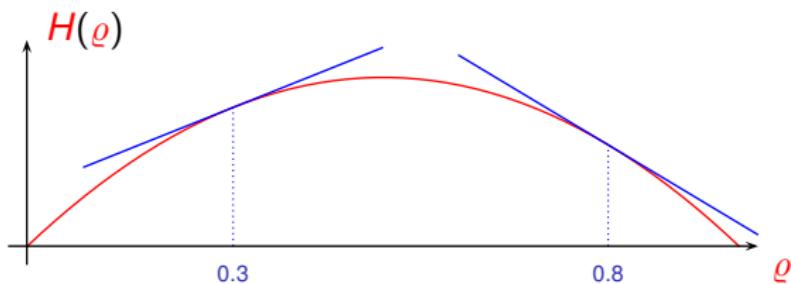
Rescaled version: rarefaction fan



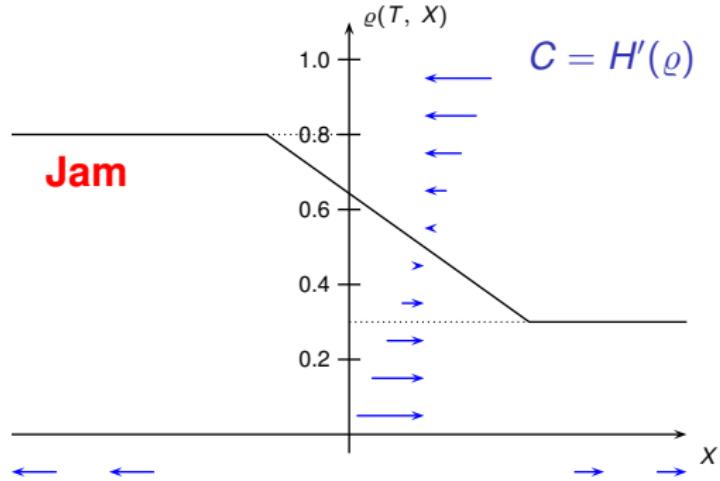
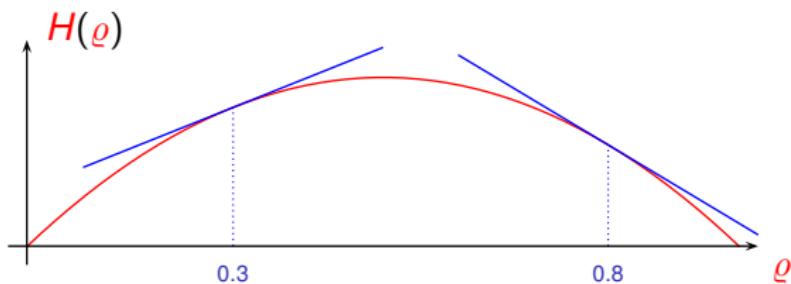
Rescaled version: rarefaction fan



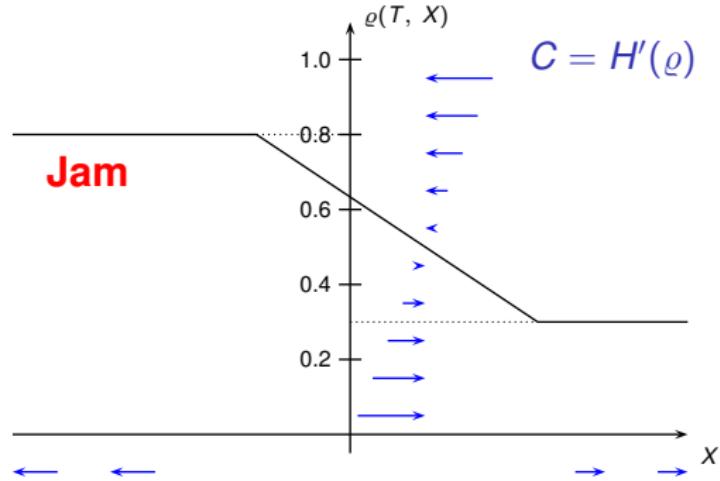
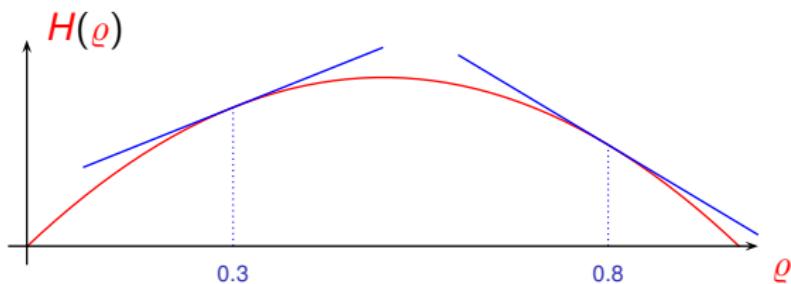
Rescaled version: rarefaction fan



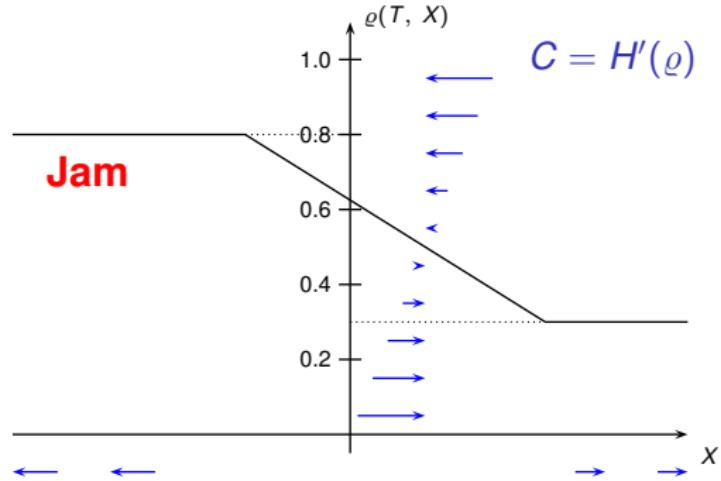
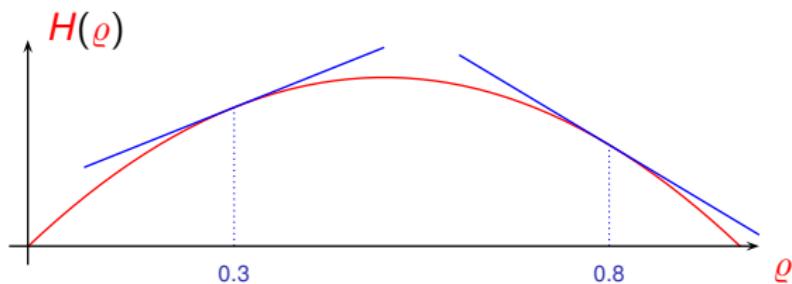
Rescaled version: rarefaction fan



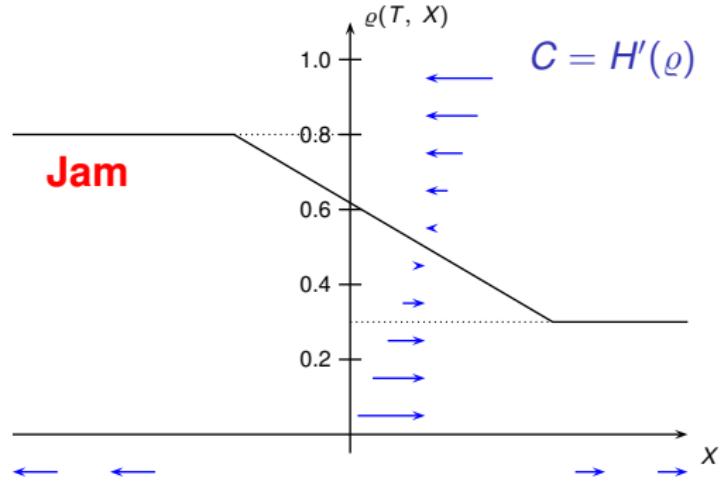
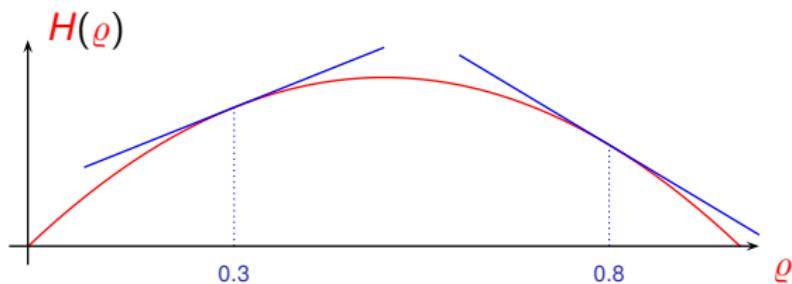
Rescaled version: rarefaction fan



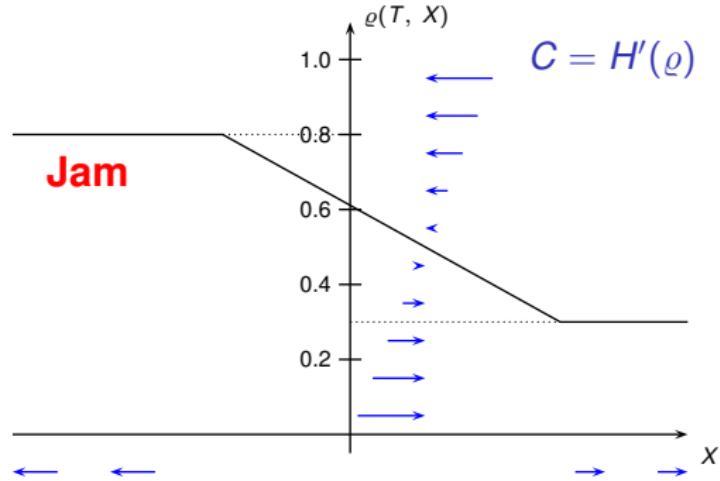
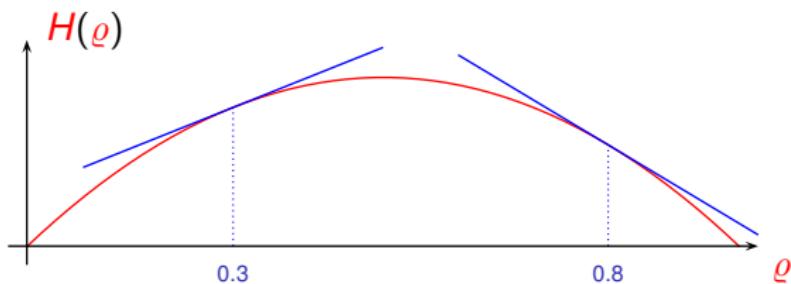
Rescaled version: rarefaction fan



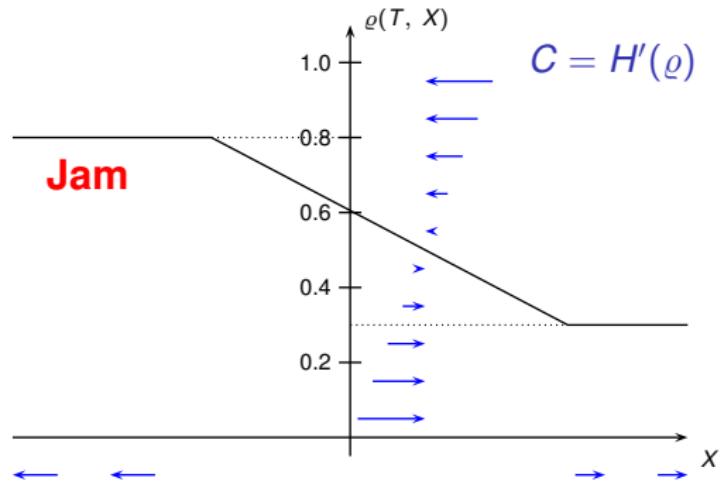
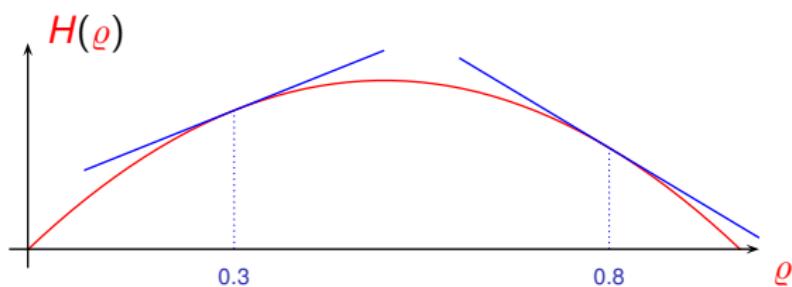
Rescaled version: rarefaction fan



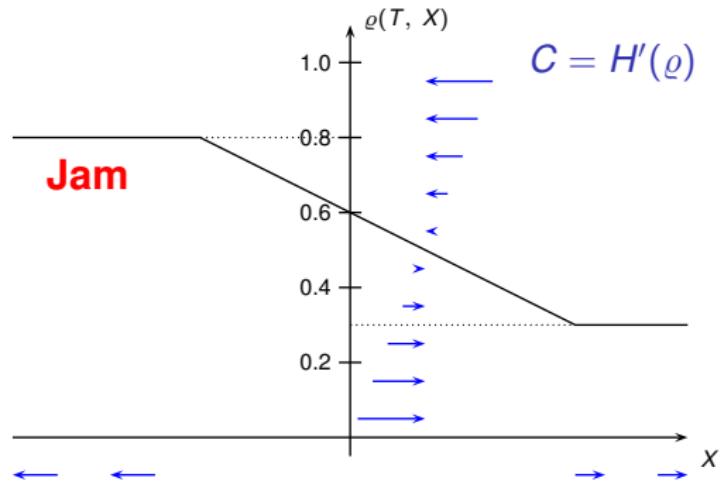
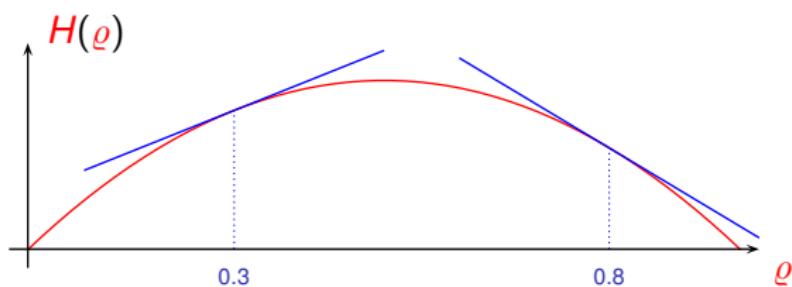
Rescaled version: rarefaction fan



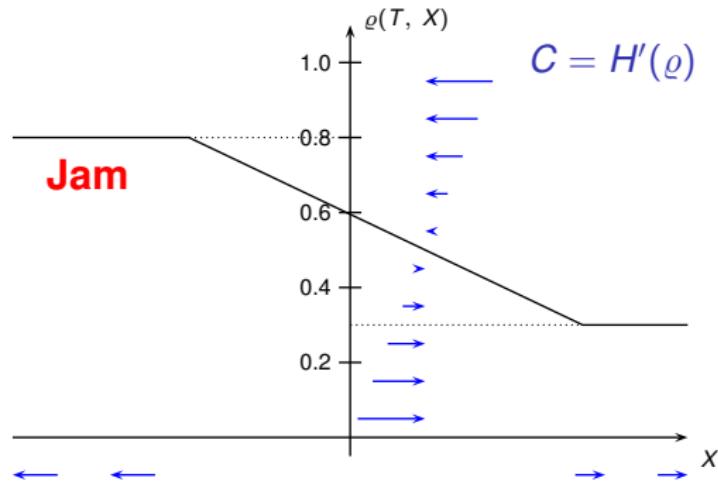
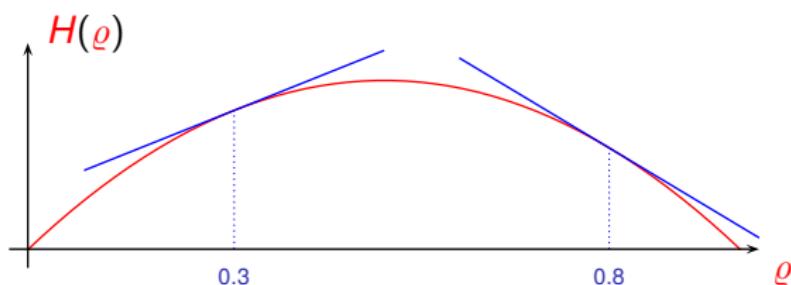
Rescaled version: rarefaction fan



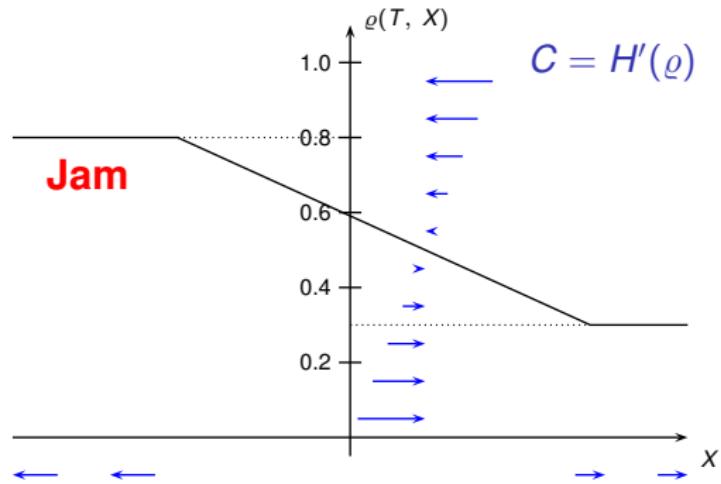
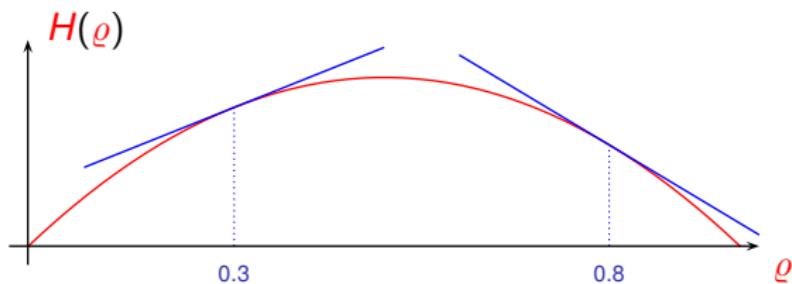
Rescaled version: rarefaction fan



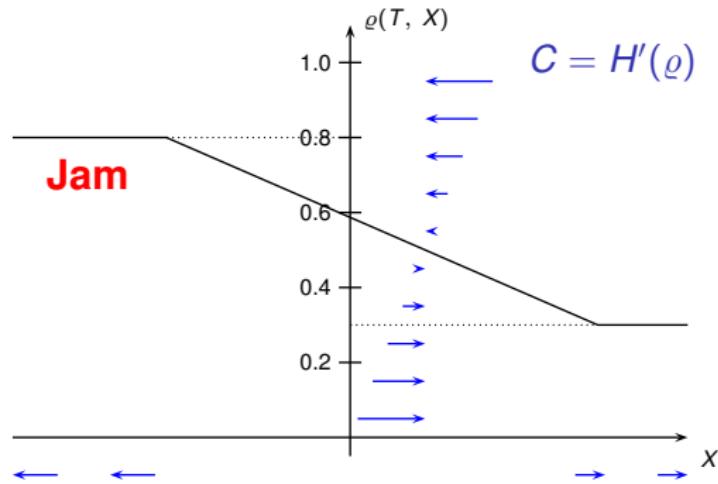
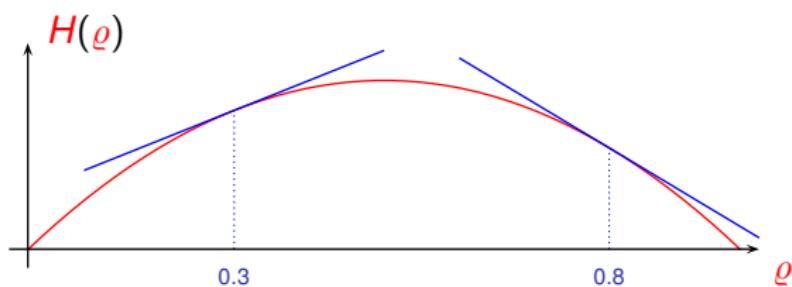
Rescaled version: rarefaction fan



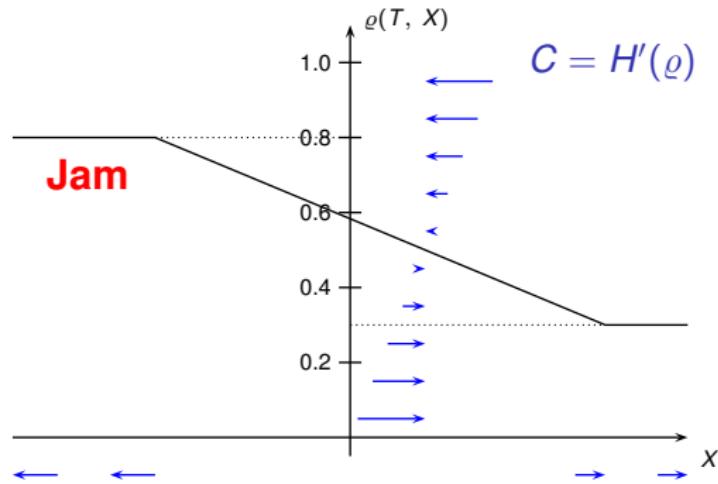
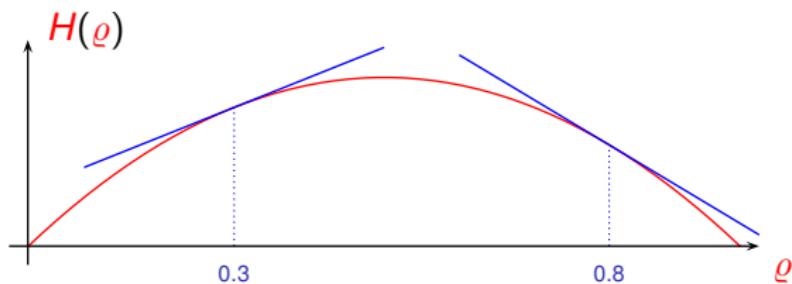
Rescaled version: rarefaction fan



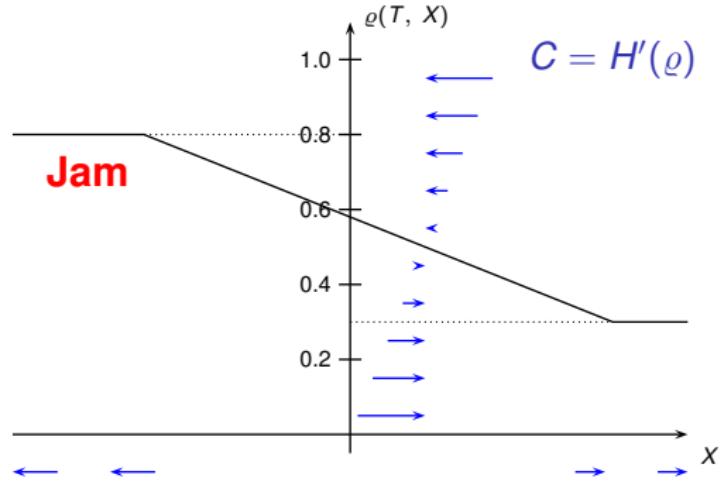
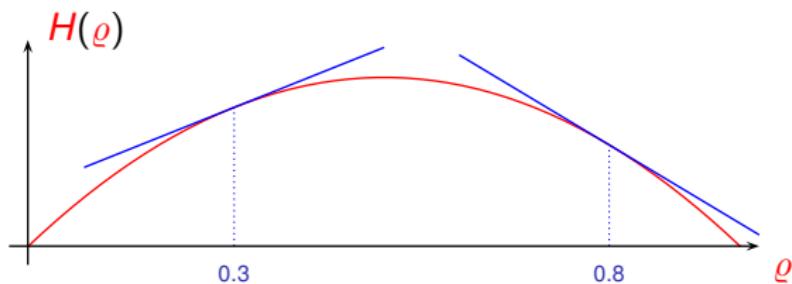
Rescaled version: rarefaction fan



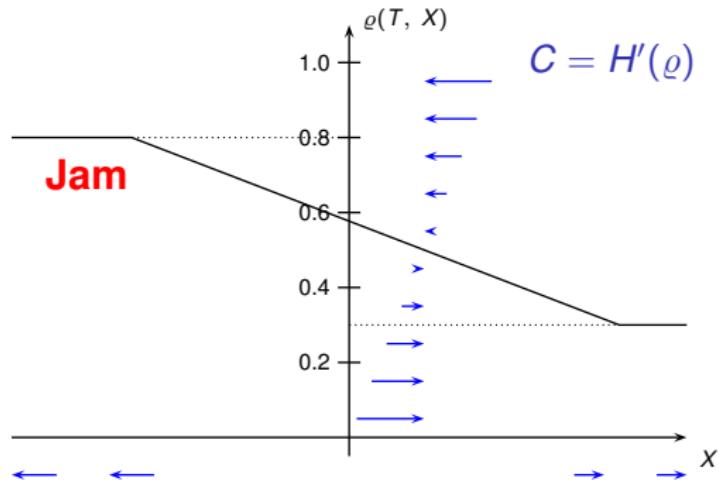
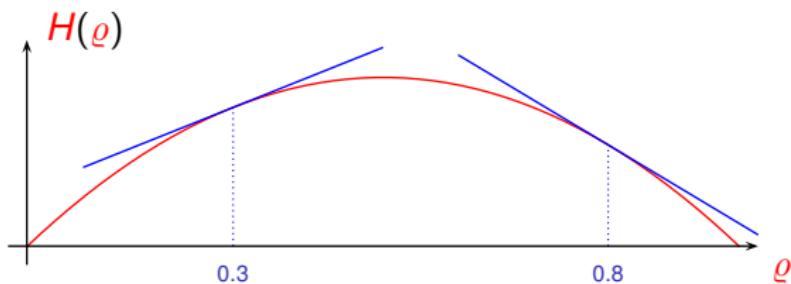
Rescaled version: rarefaction fan



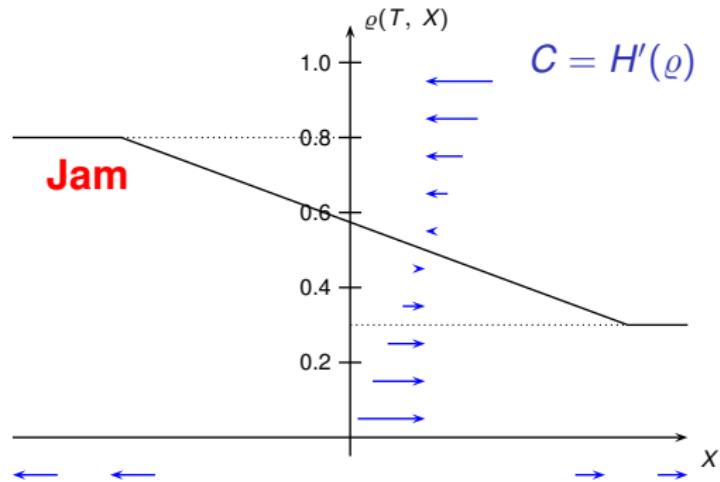
Rescaled version: rarefaction fan



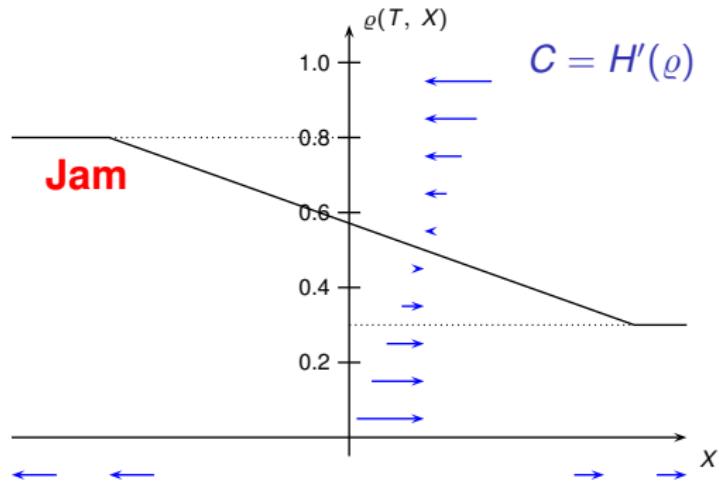
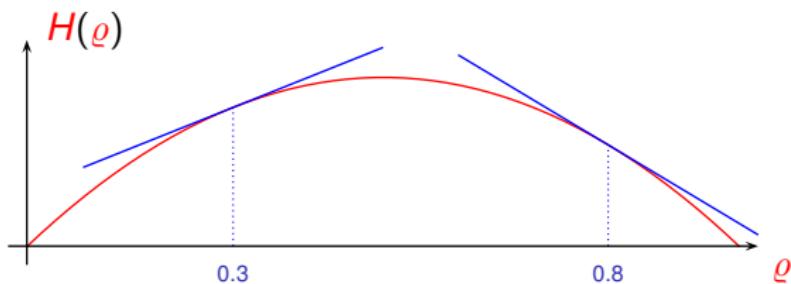
Rescaled version: rarefaction fan



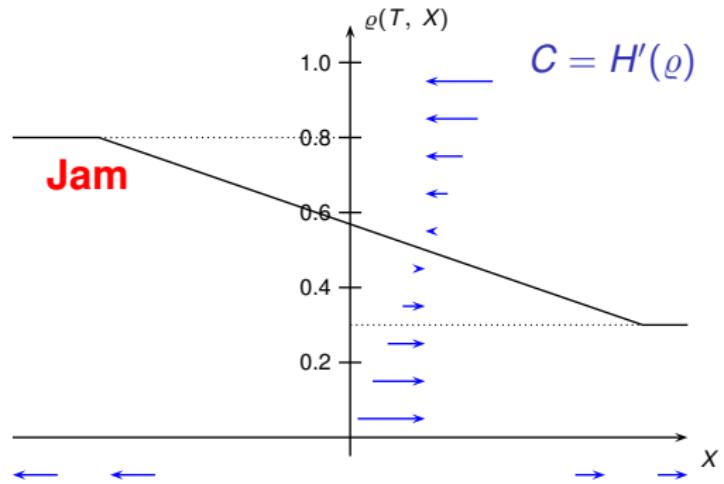
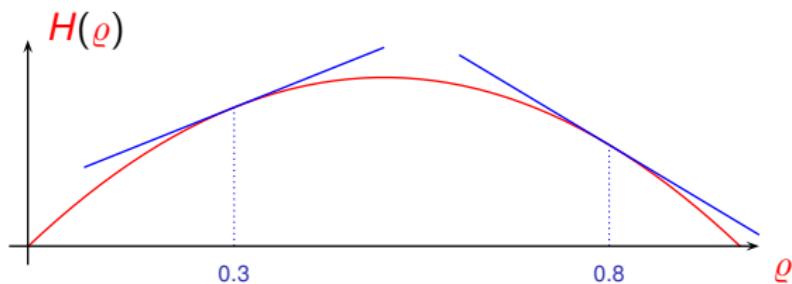
Rescaled version: rarefaction fan



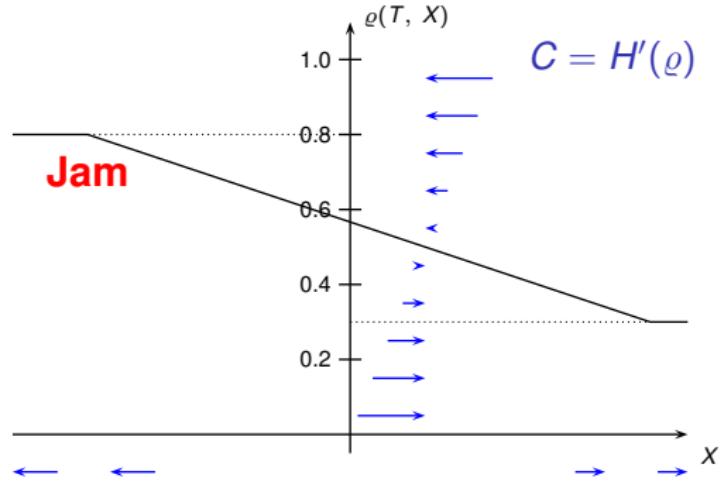
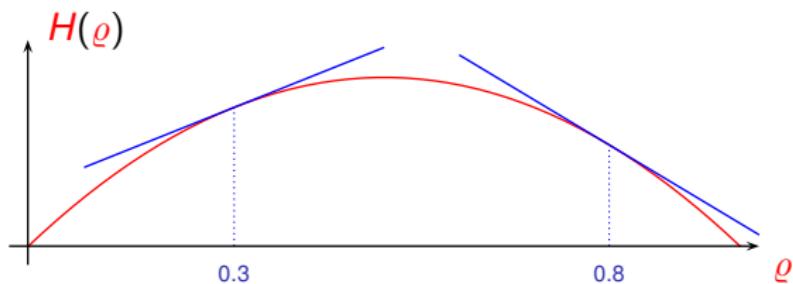
Rescaled version: rarefaction fan



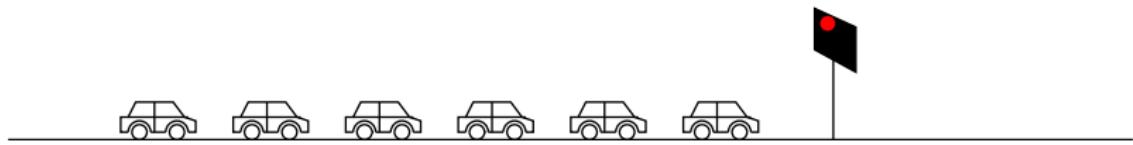
Rescaled version: rarefaction fan



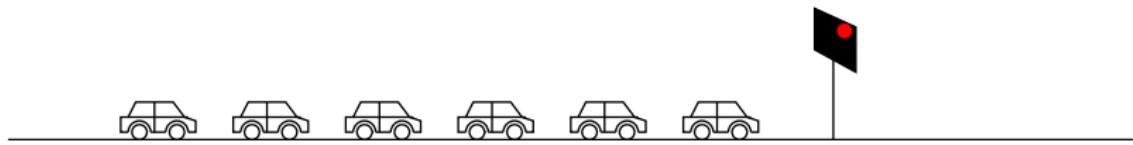
Rescaled version: rarefaction fan



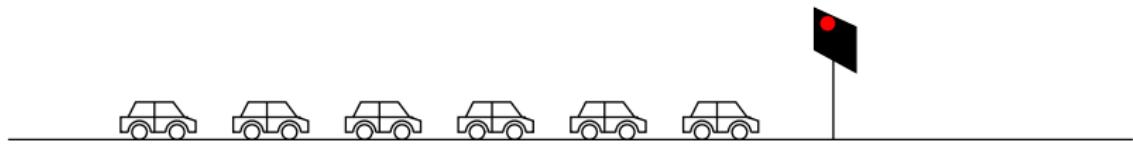
Leaving a traffic jam



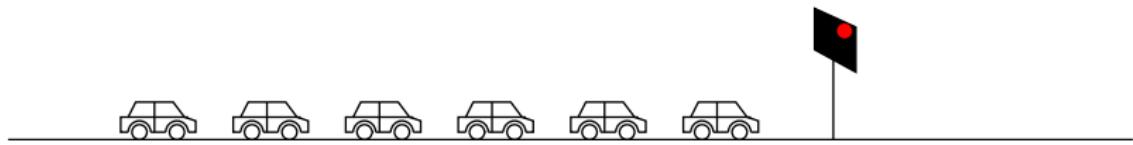
Leaving a traffic jam



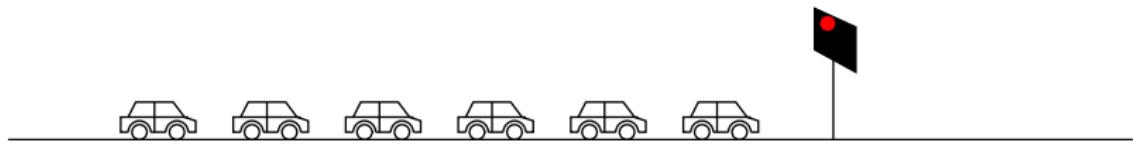
Leaving a traffic jam



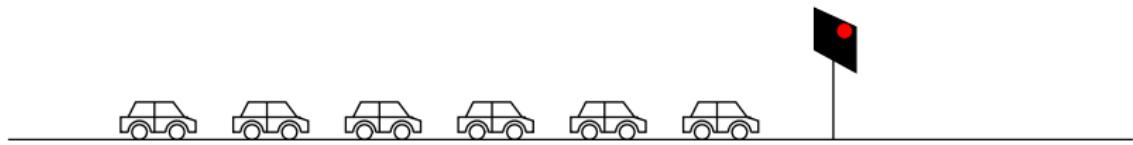
Leaving a traffic jam



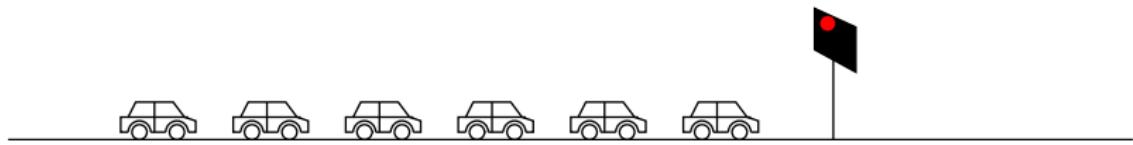
Leaving a traffic jam



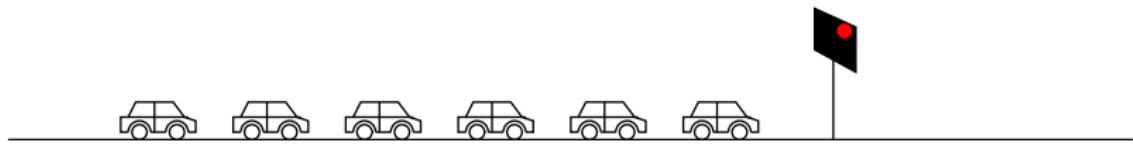
Leaving a traffic jam



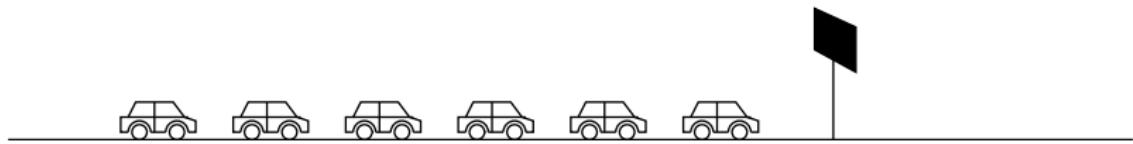
Leaving a traffic jam



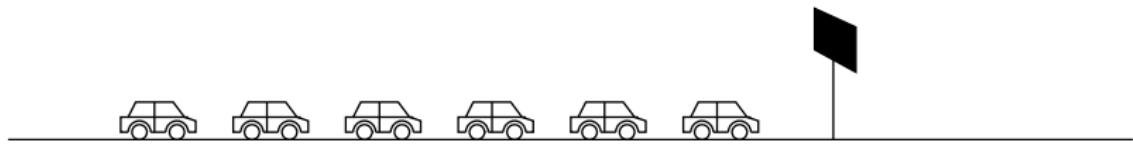
Leaving a traffic jam



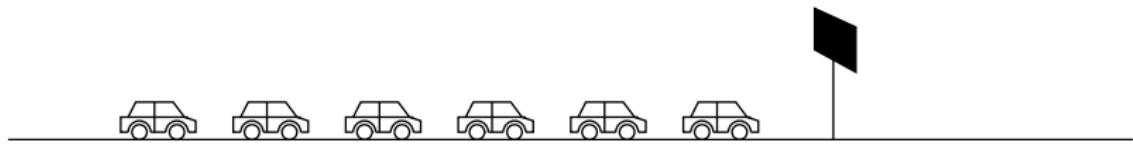
Leaving a traffic jam



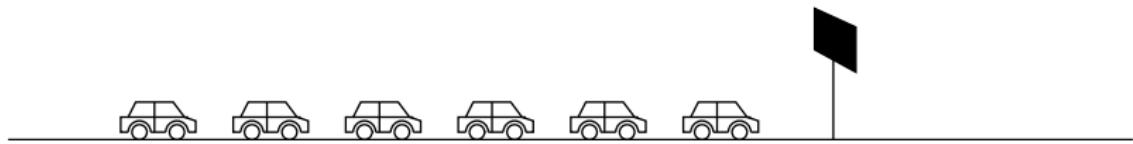
Leaving a traffic jam



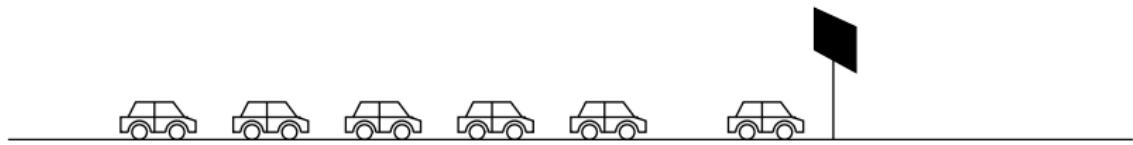
Leaving a traffic jam



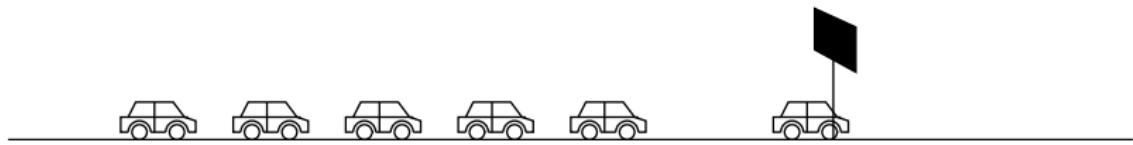
Leaving a traffic jam



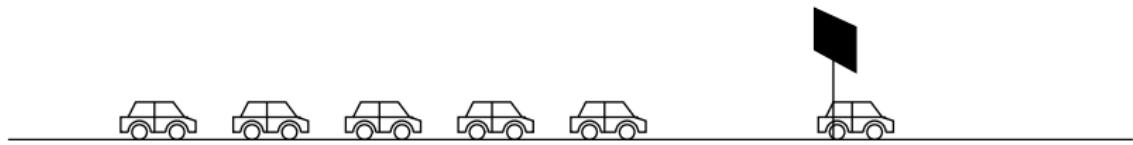
Leaving a traffic jam



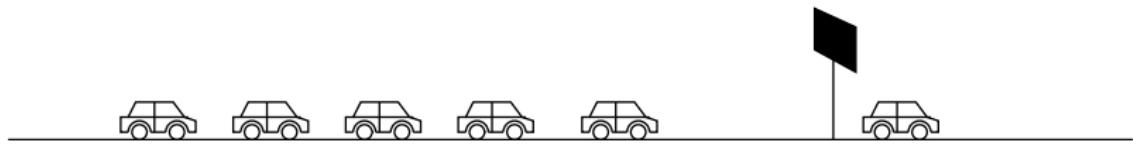
Leaving a traffic jam



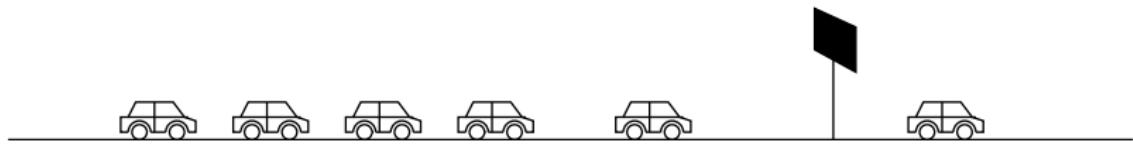
Leaving a traffic jam



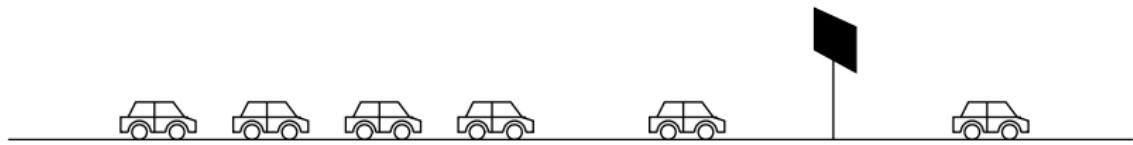
Leaving a traffic jam



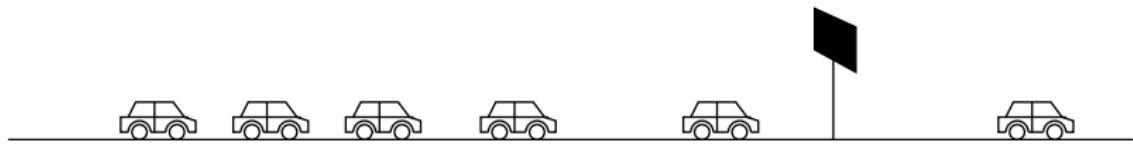
Leaving a traffic jam



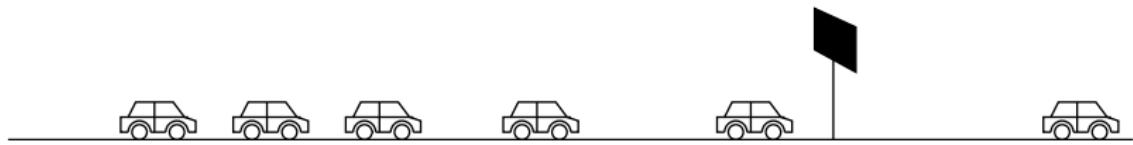
Leaving a traffic jam



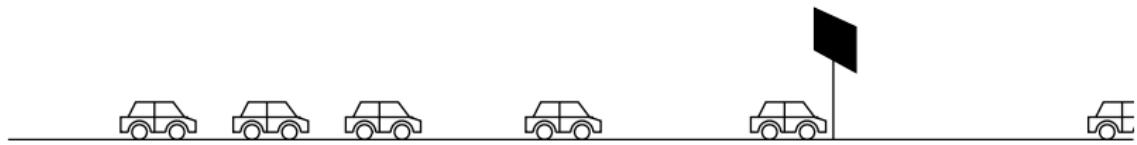
Leaving a traffic jam



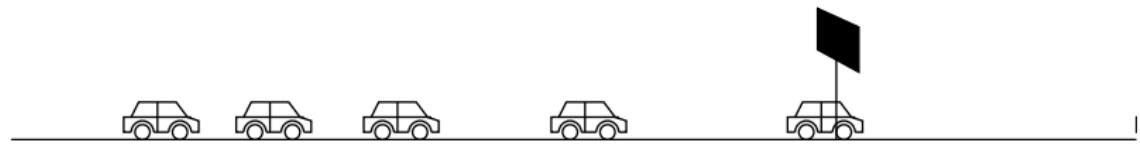
Leaving a traffic jam



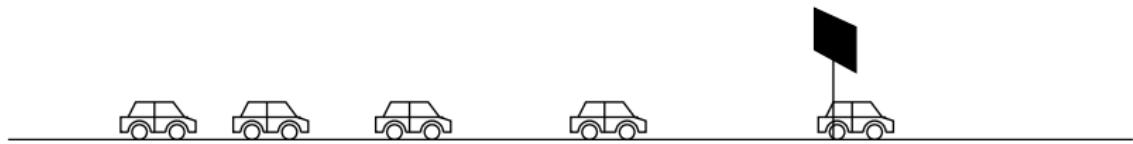
Leaving a traffic jam



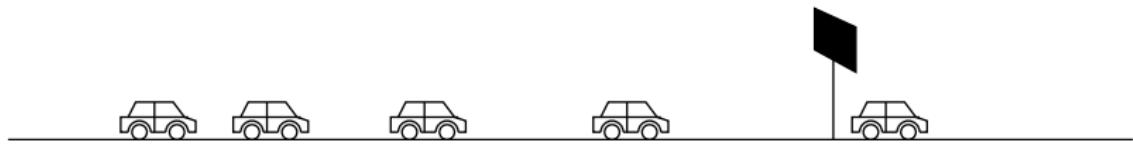
Leaving a traffic jam



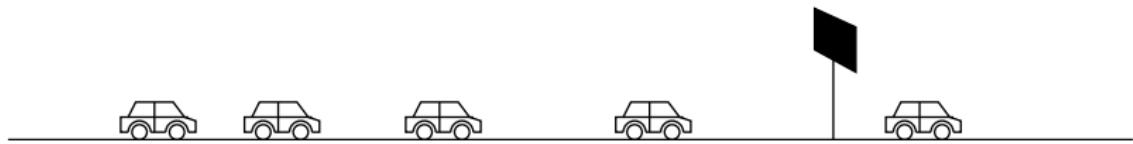
Leaving a traffic jam



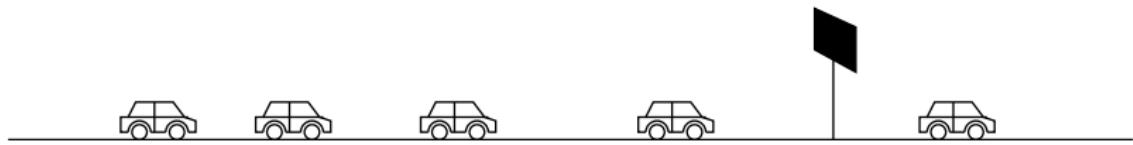
Leaving a traffic jam



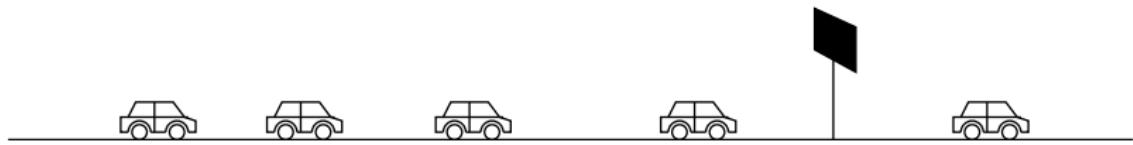
Leaving a traffic jam



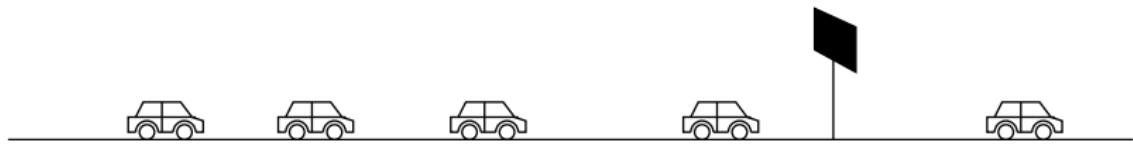
Leaving a traffic jam



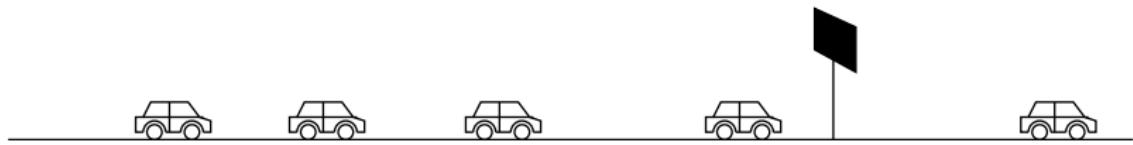
Leaving a traffic jam



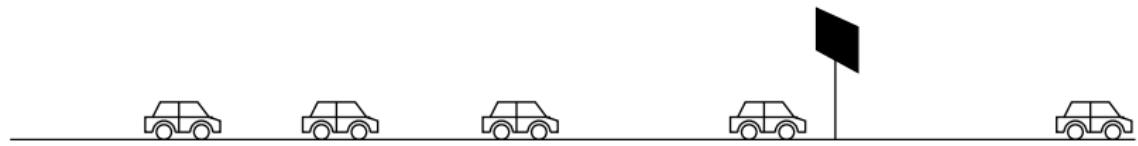
Leaving a traffic jam



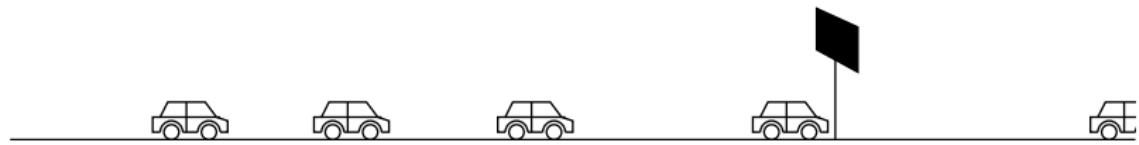
Leaving a traffic jam



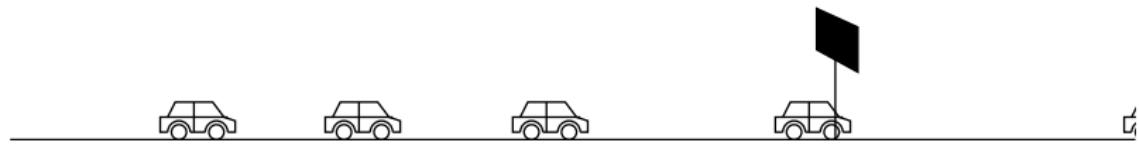
Leaving a traffic jam



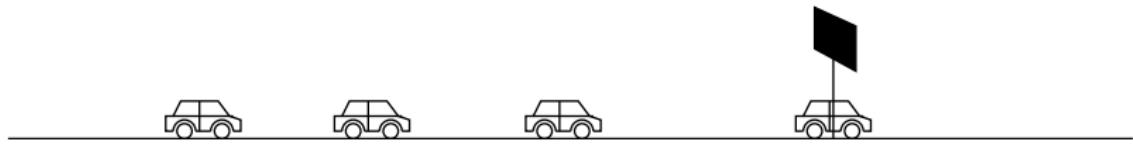
Leaving a traffic jam



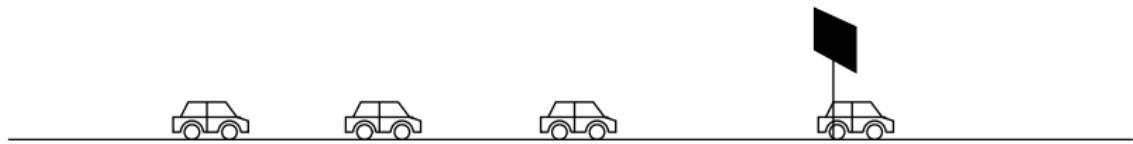
Leaving a traffic jam



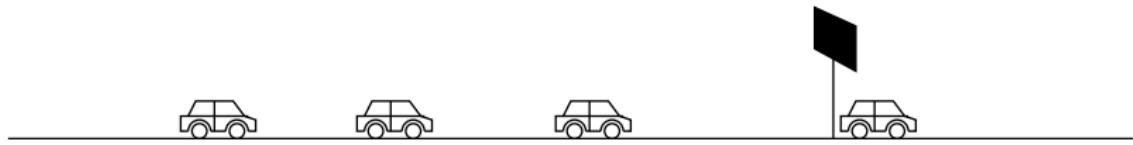
Leaving a traffic jam



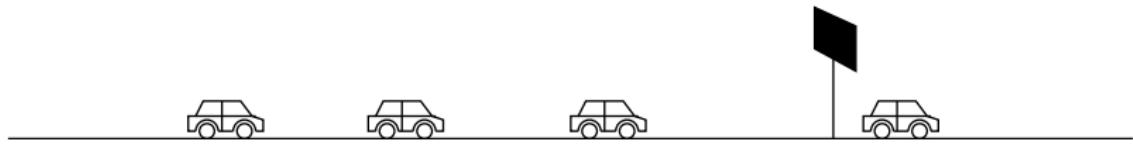
Leaving a traffic jam



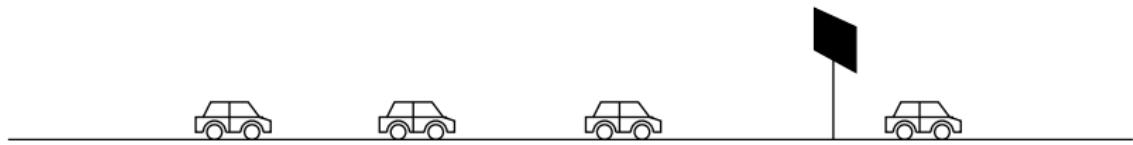
Leaving a traffic jam



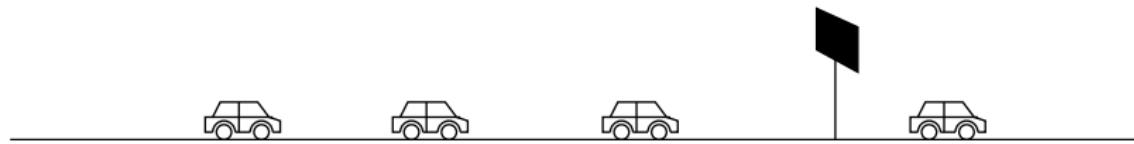
Leaving a traffic jam



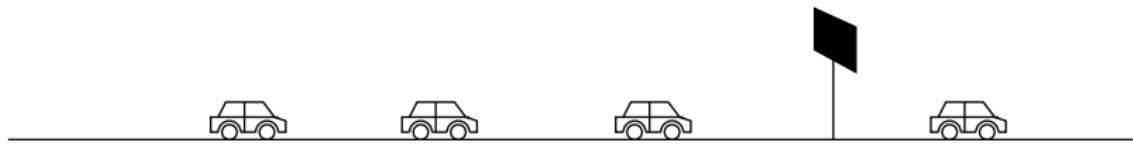
Leaving a traffic jam



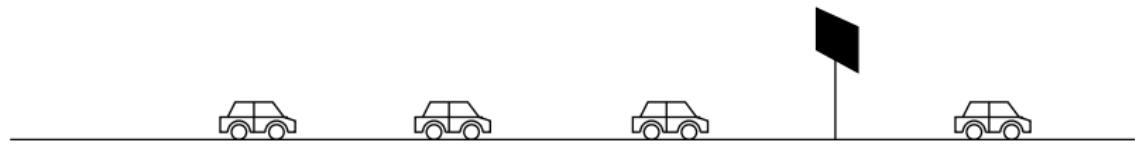
Leaving a traffic jam



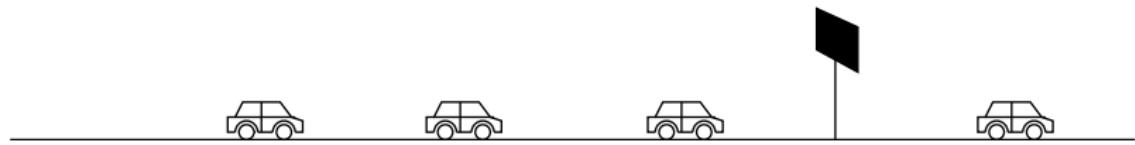
Leaving a traffic jam



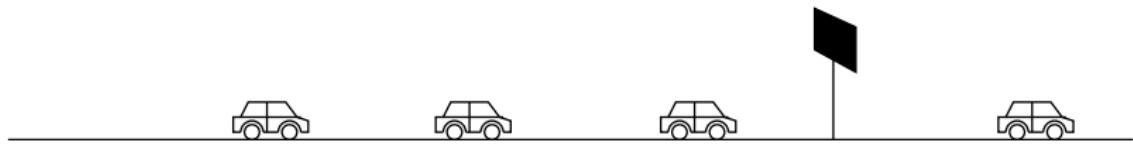
Leaving a traffic jam



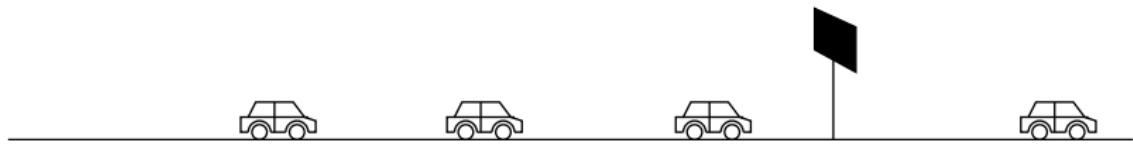
Leaving a traffic jam



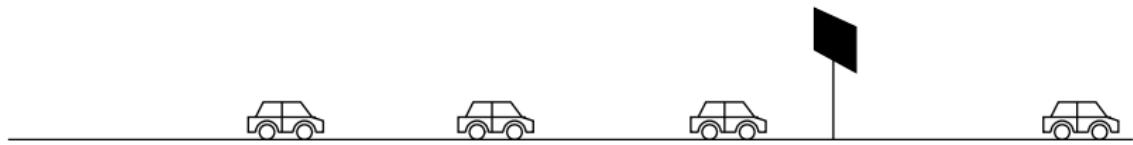
Leaving a traffic jam



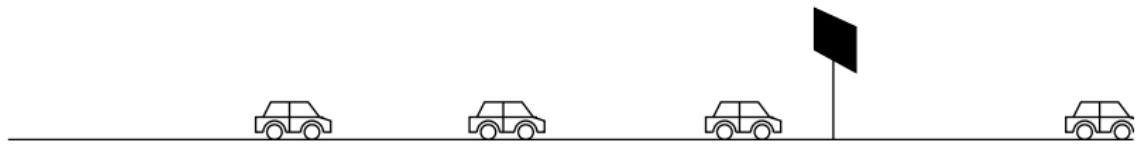
Leaving a traffic jam



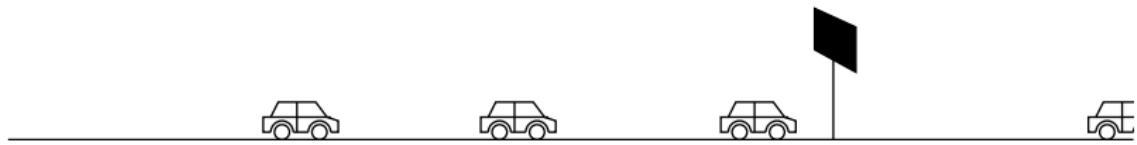
Leaving a traffic jam



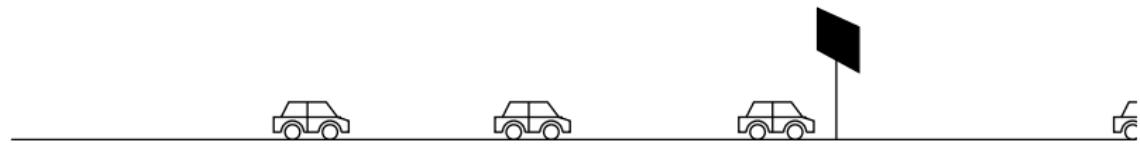
Leaving a traffic jam



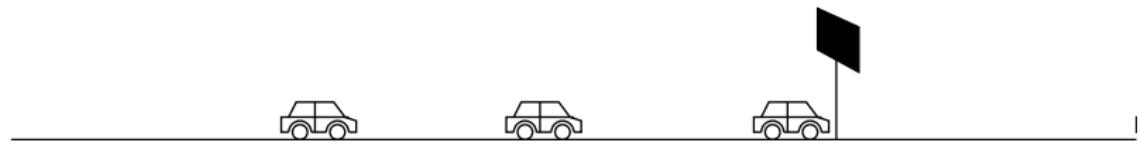
Leaving a traffic jam



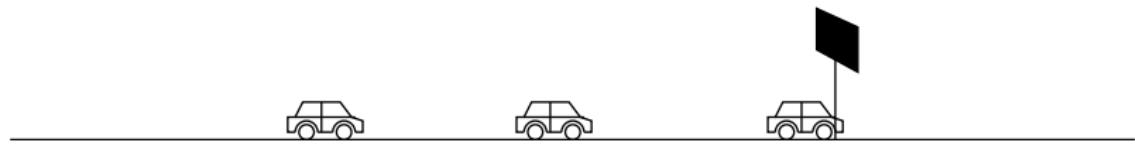
Leaving a traffic jam



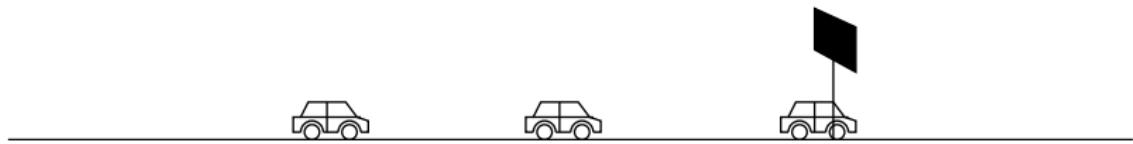
Leaving a traffic jam



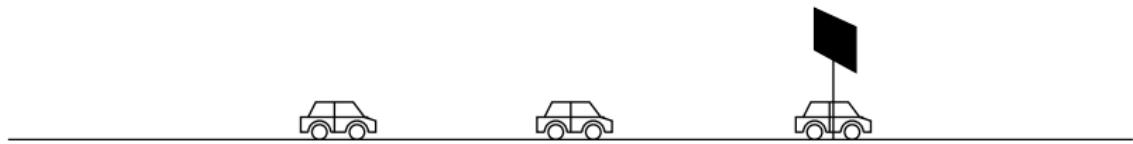
Leaving a traffic jam



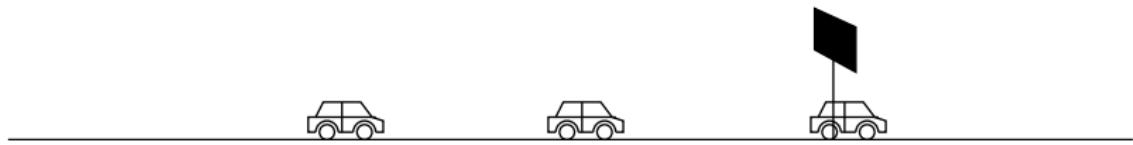
Leaving a traffic jam



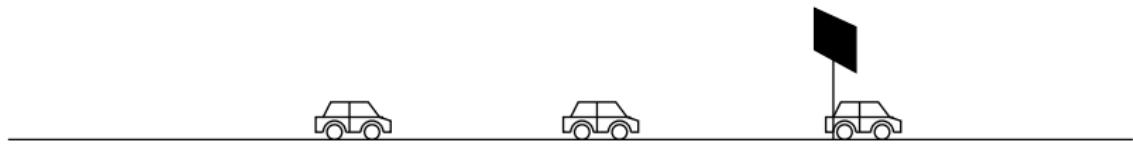
Leaving a traffic jam



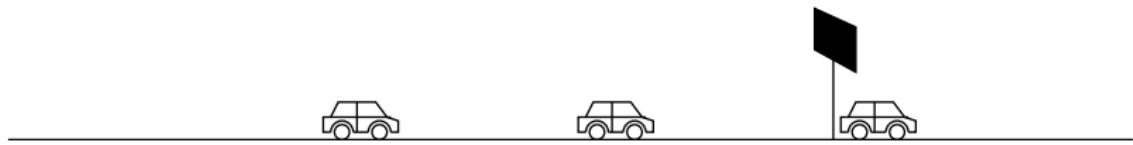
Leaving a traffic jam



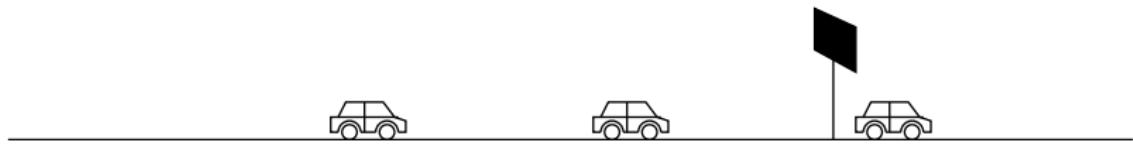
Leaving a traffic jam



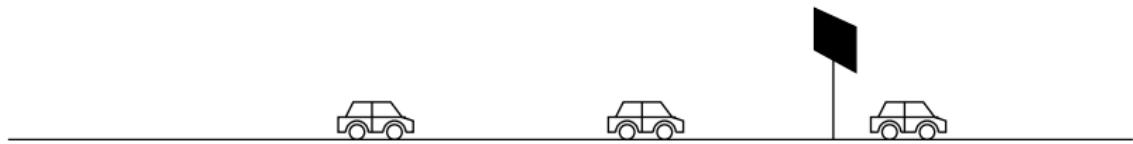
Leaving a traffic jam



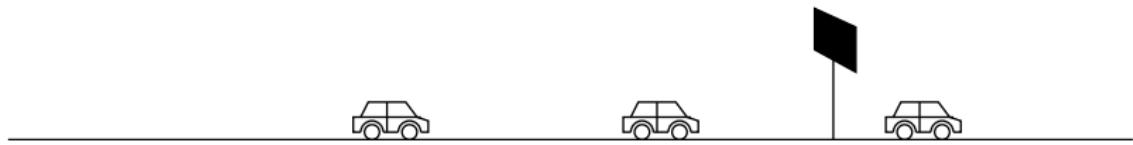
Leaving a traffic jam



Leaving a traffic jam



Leaving a traffic jam



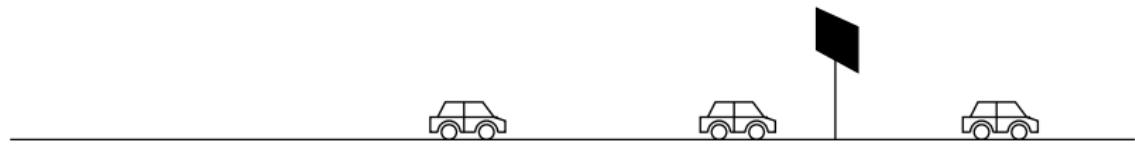
Leaving a traffic jam

Leaving a traffic jam

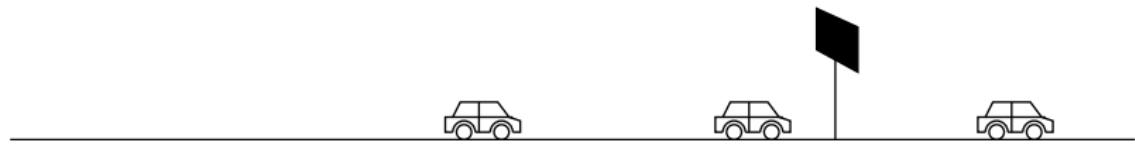
Leaving a traffic jam

Leaving a traffic jam

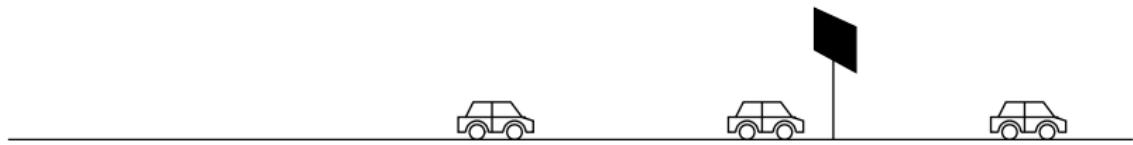
Leaving a traffic jam



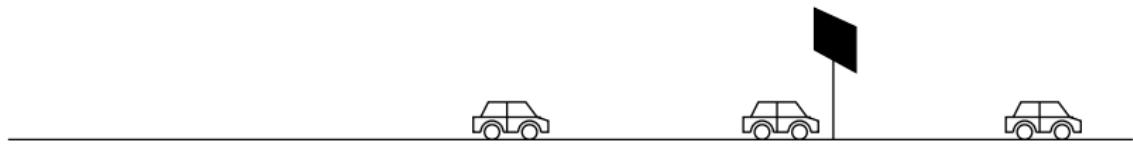
Leaving a traffic jam



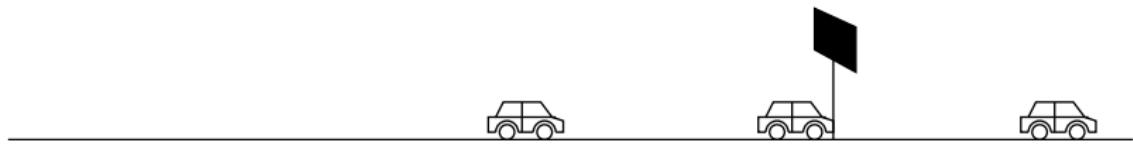
Leaving a traffic jam



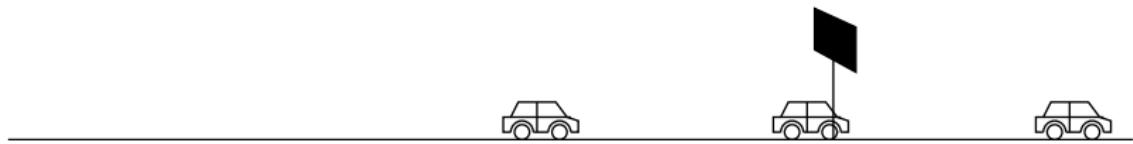
Leaving a traffic jam



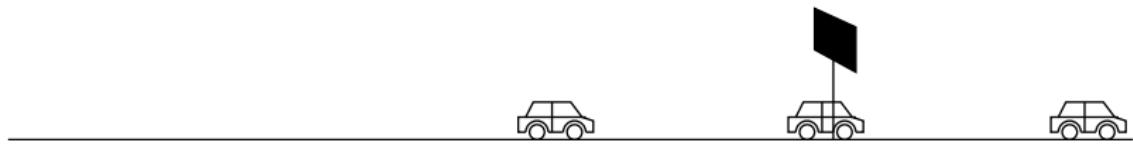
Leaving a traffic jam



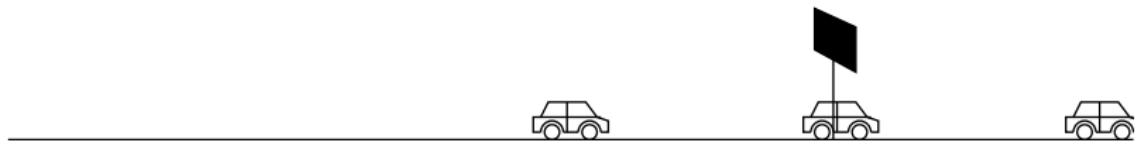
Leaving a traffic jam



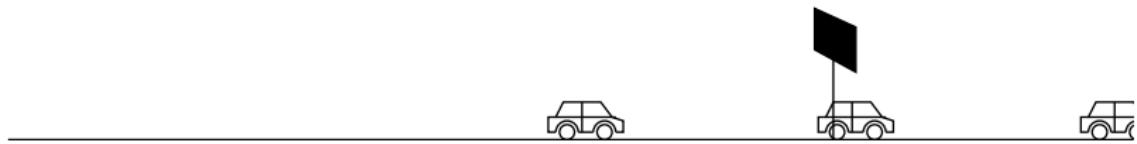
Leaving a traffic jam



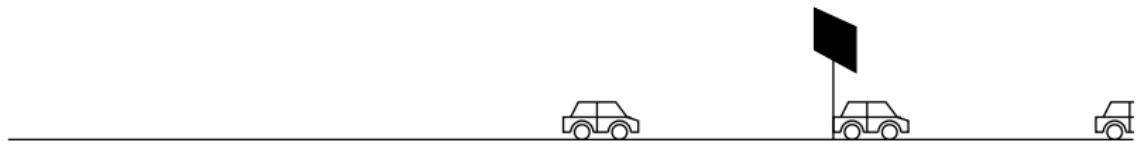
Leaving a traffic jam



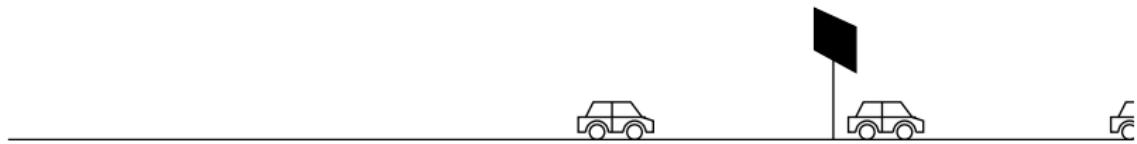
Leaving a traffic jam



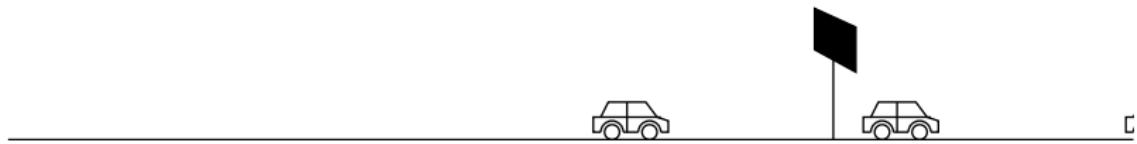
Leaving a traffic jam



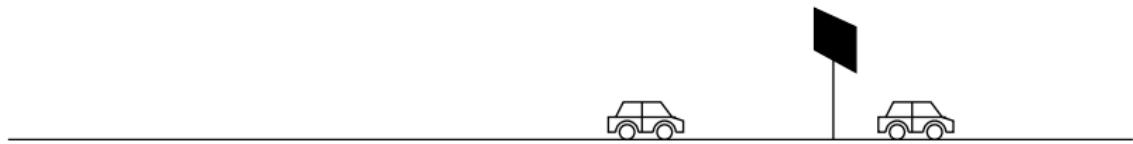
Leaving a traffic jam



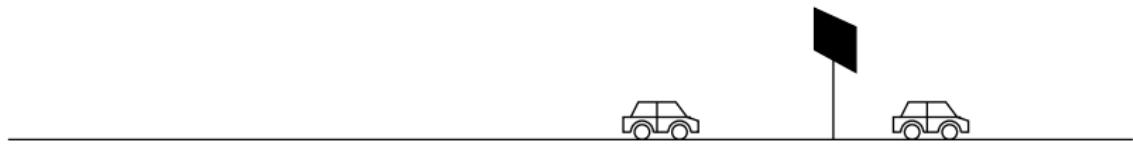
Leaving a traffic jam



Leaving a traffic jam



Leaving a traffic jam



Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

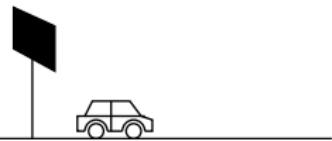
Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam



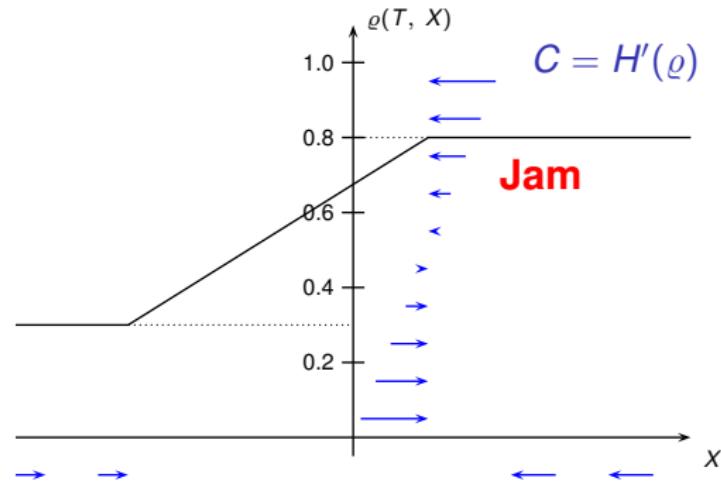
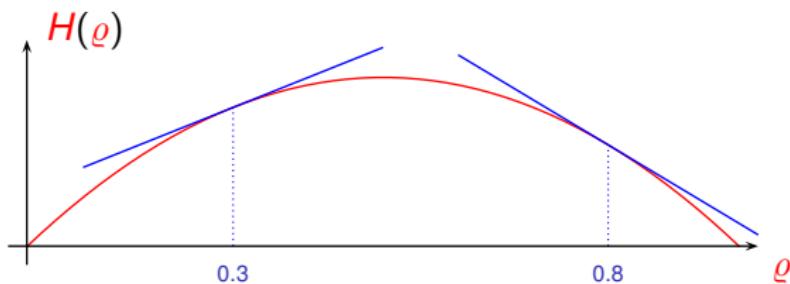
Continuous, long acceleration for those starting from the rear

Leaving a traffic jam

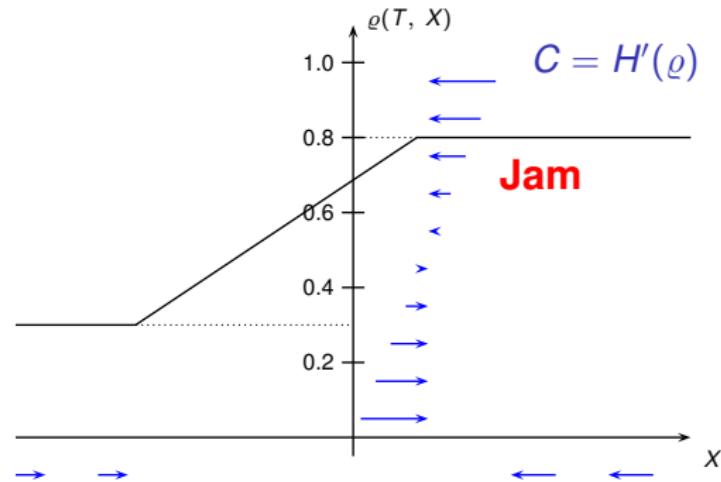
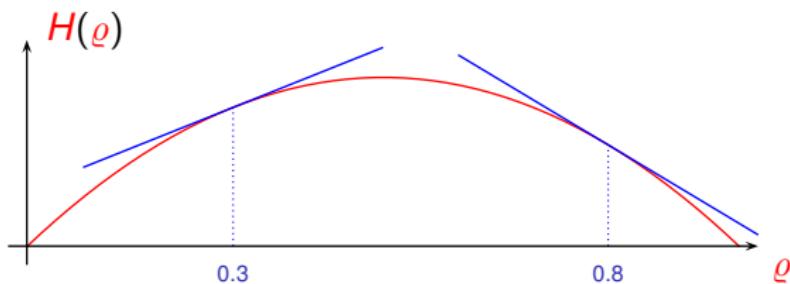
Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, “blurry”.

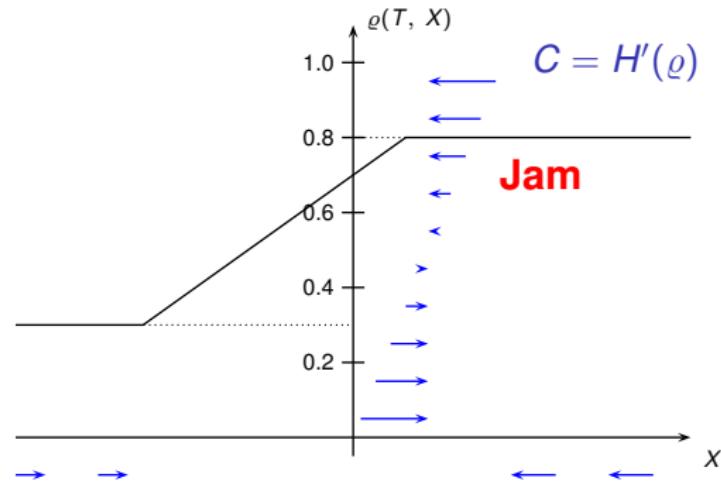
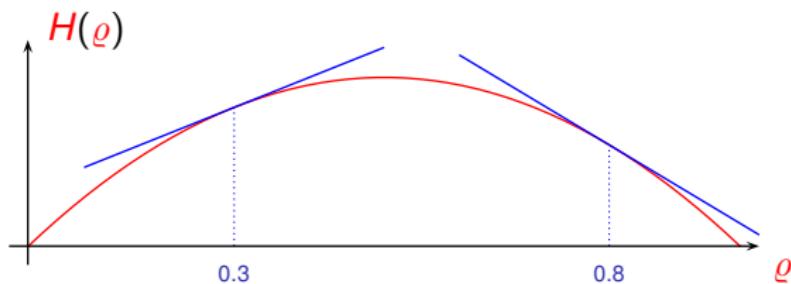
Rescaled version: shock



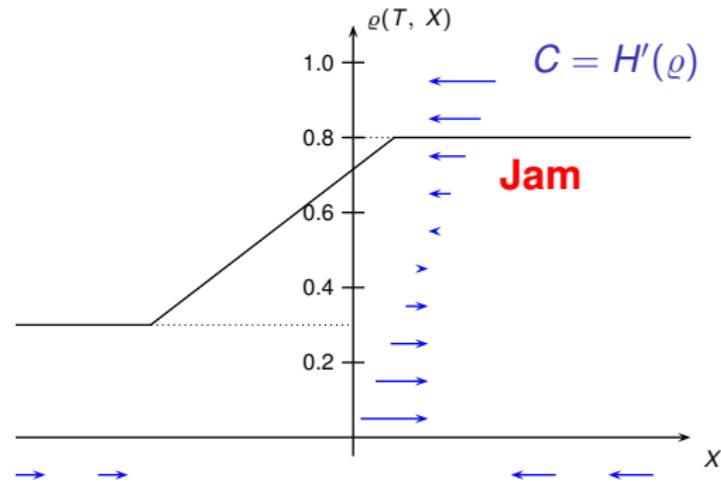
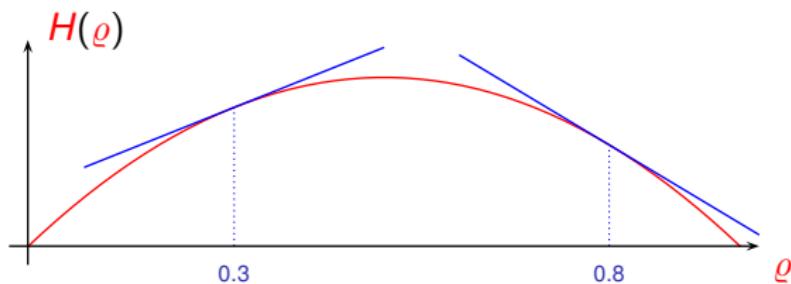
Rescaled version: shock



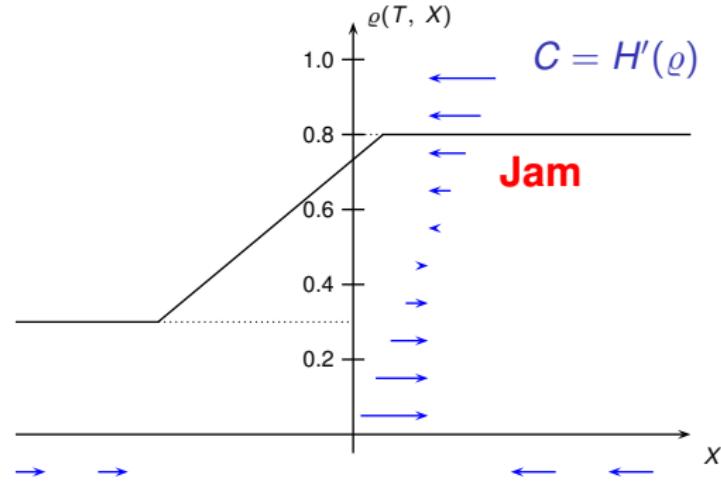
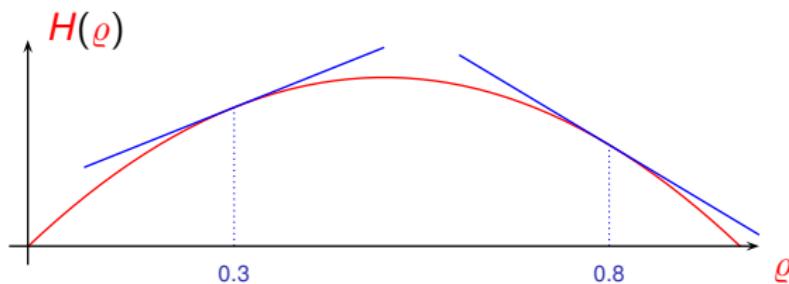
Rescaled version: shock



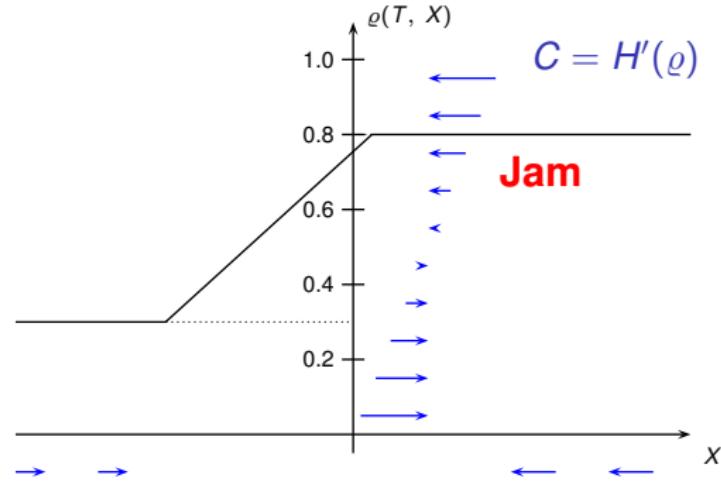
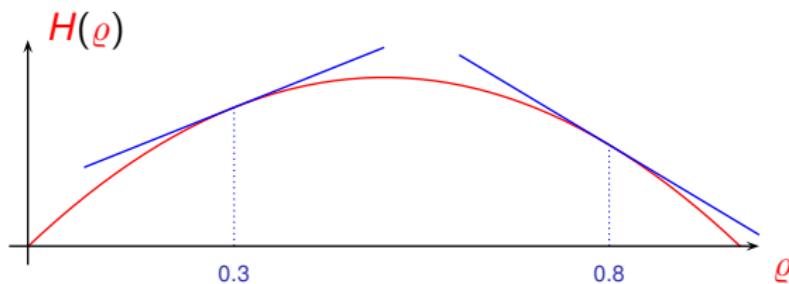
Rescaled version: shock



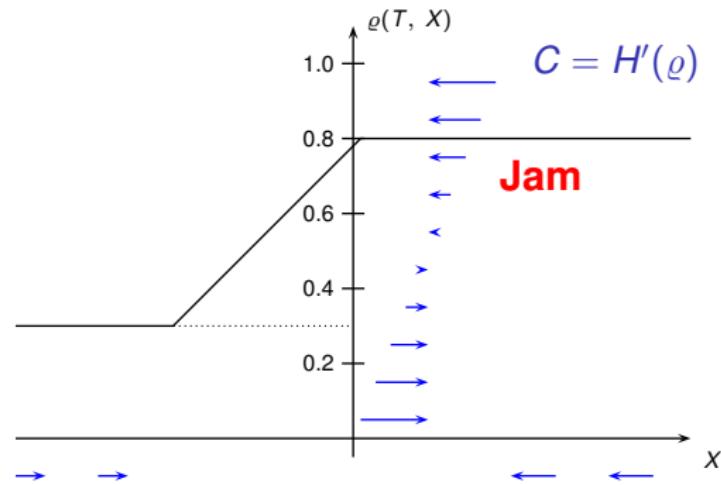
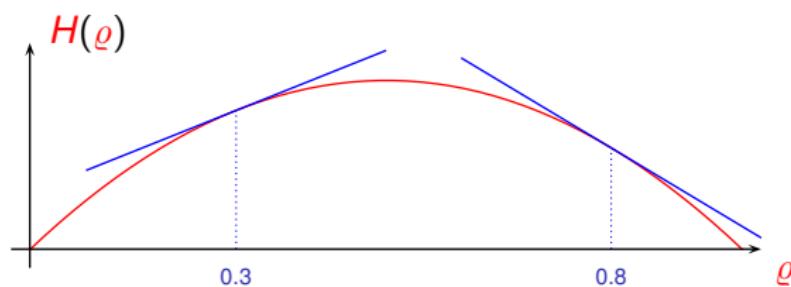
Rescaled version: shock



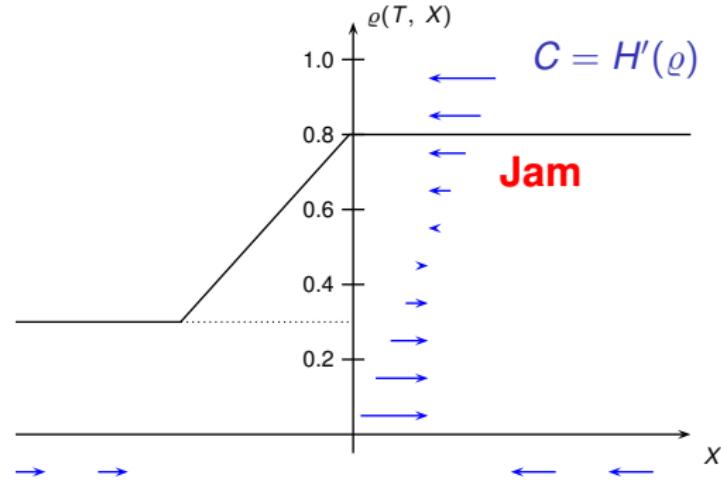
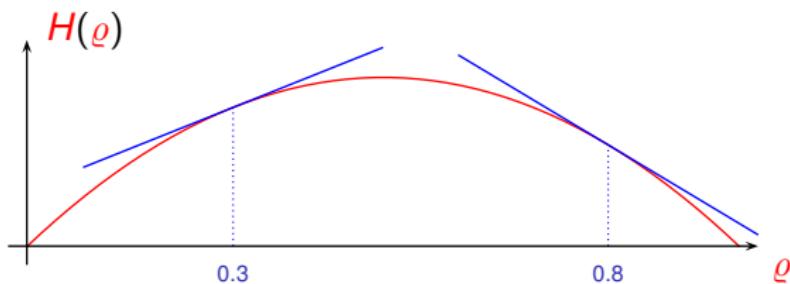
Rescaled version: shock



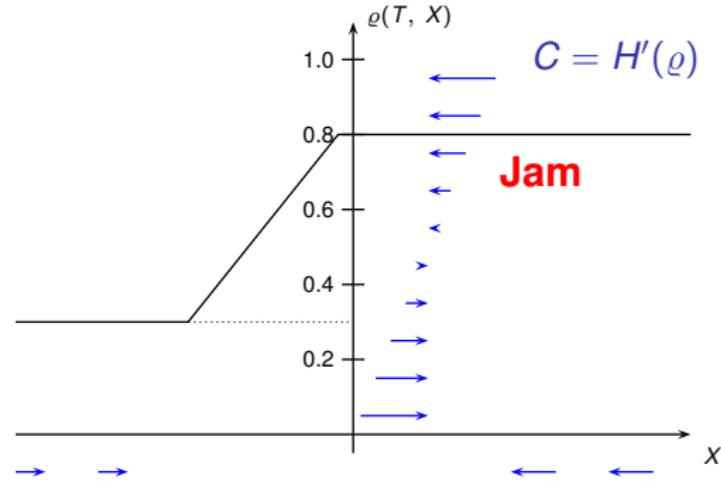
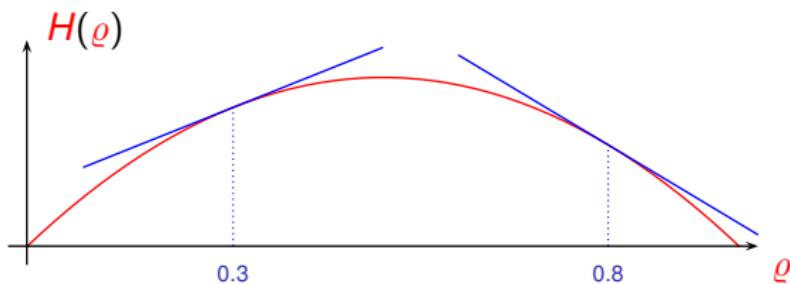
Rescaled version: shock



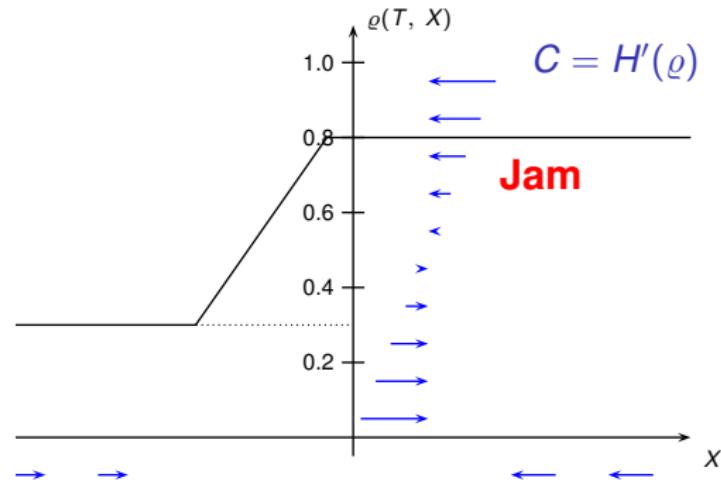
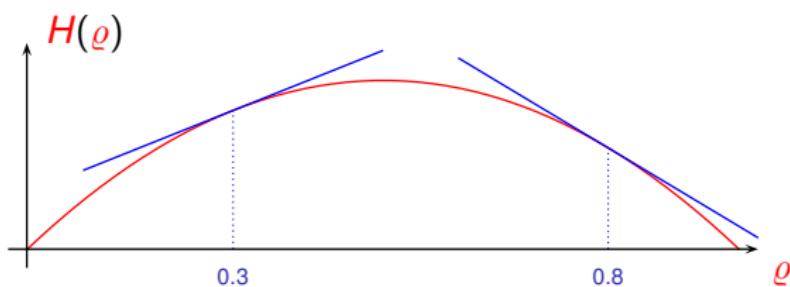
Rescaled version: shock



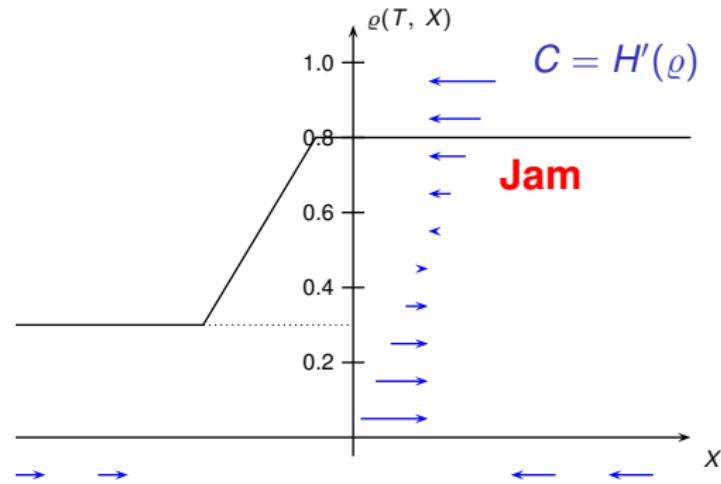
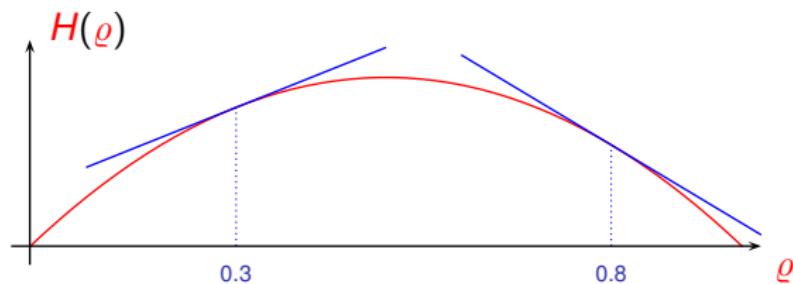
Rescaled version: shock



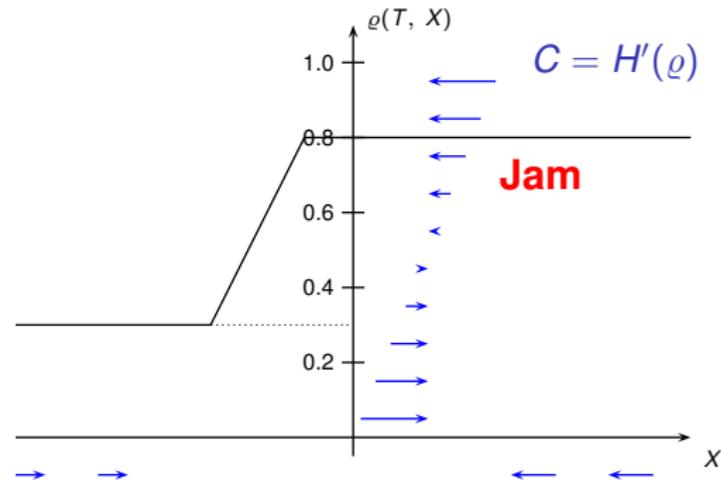
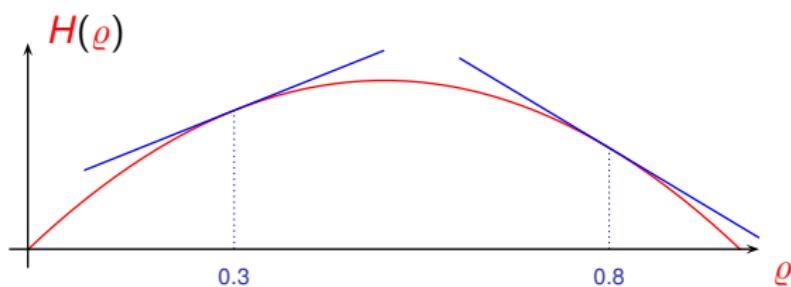
Rescaled version: shock



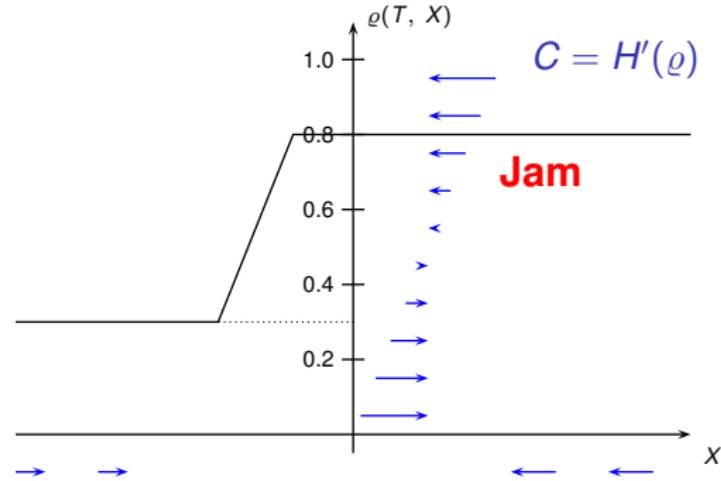
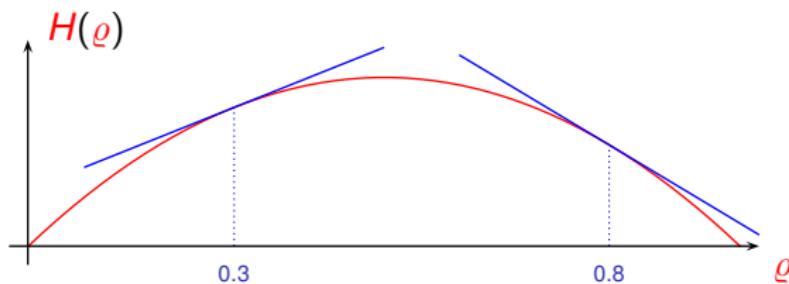
Rescaled version: shock



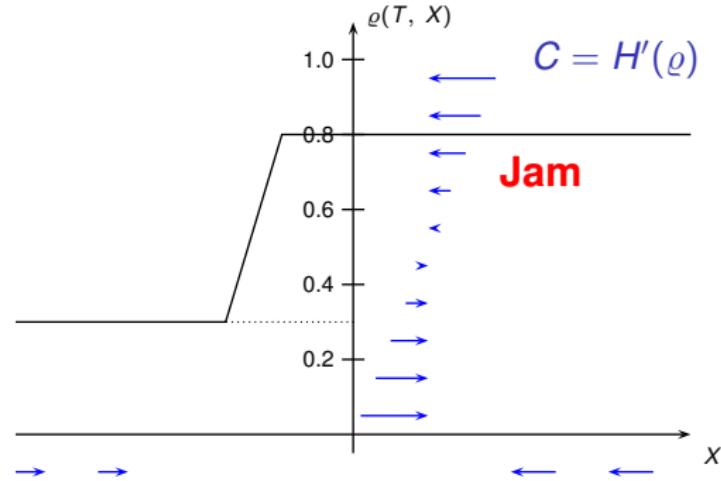
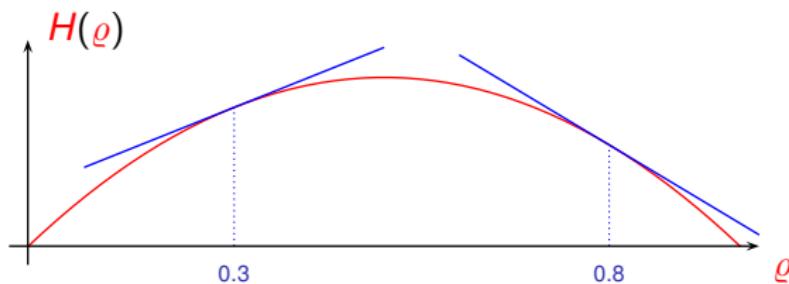
Rescaled version: shock



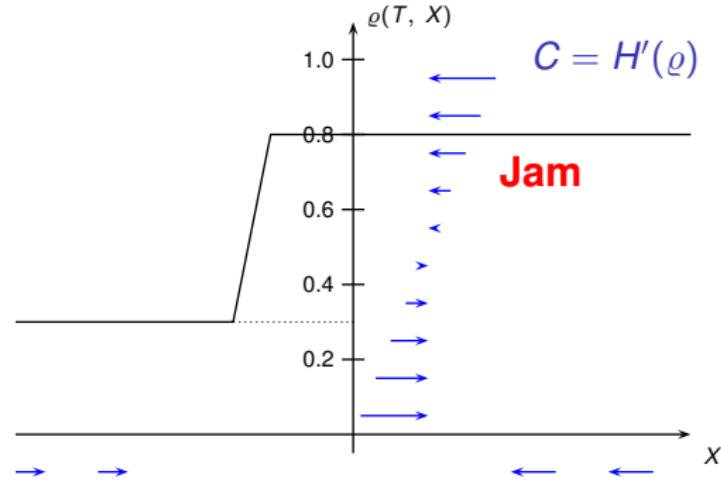
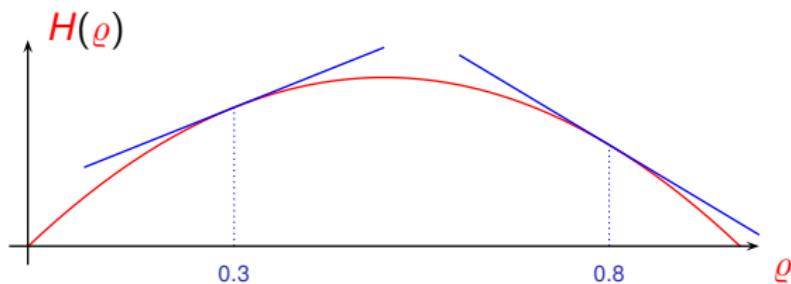
Rescaled version: shock



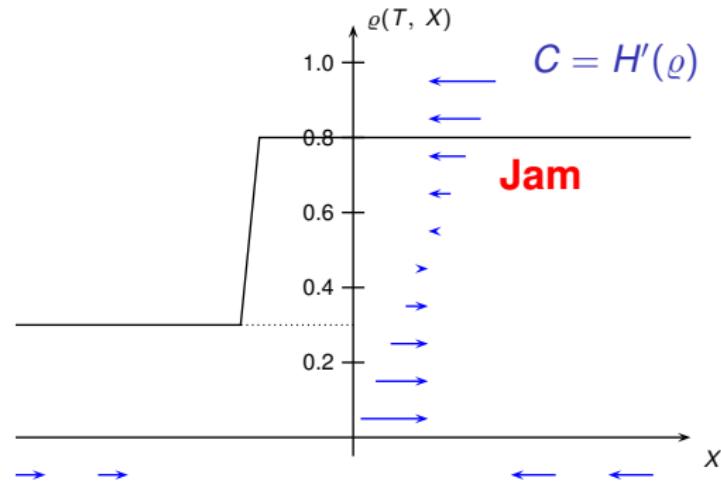
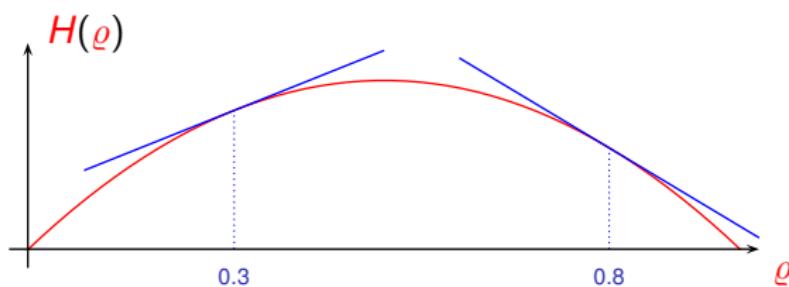
Rescaled version: shock



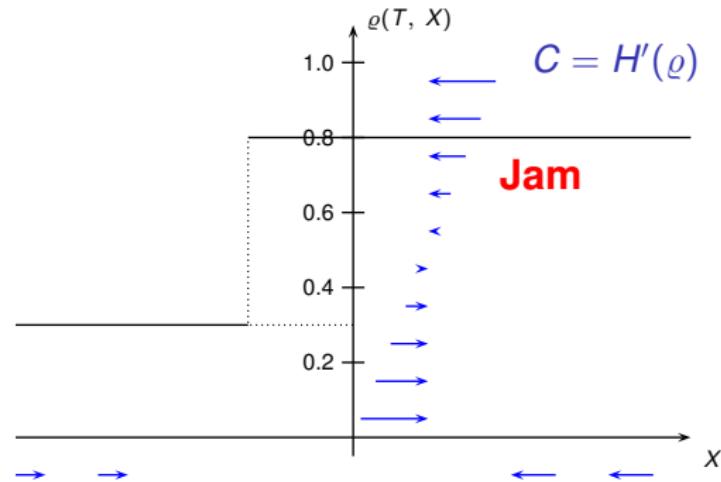
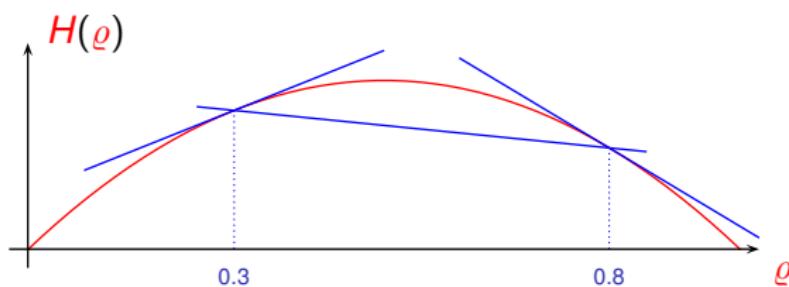
Rescaled version: shock



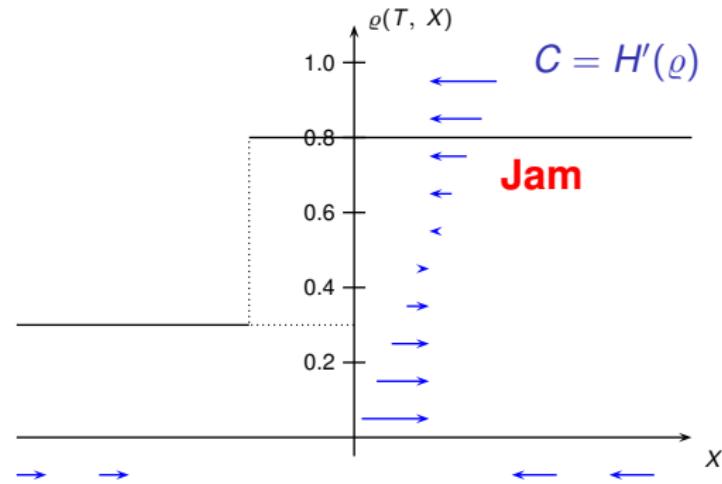
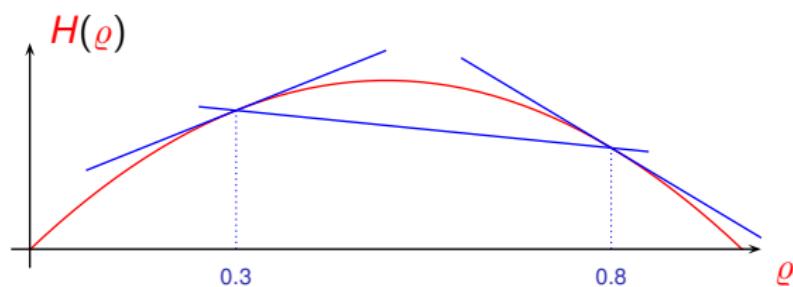
Rescaled version: shock



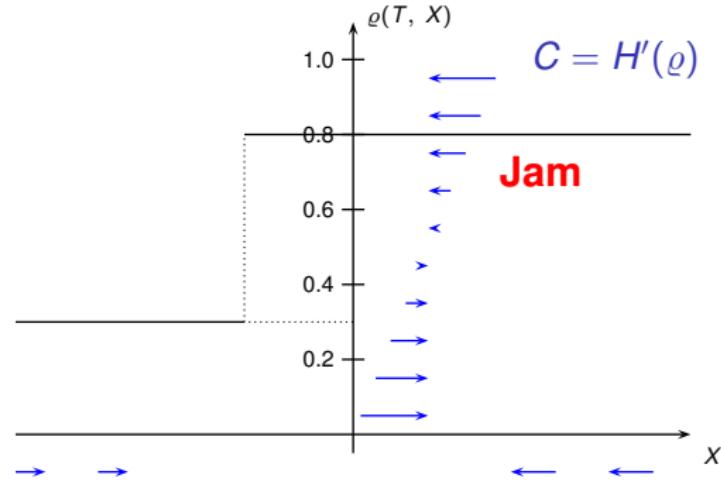
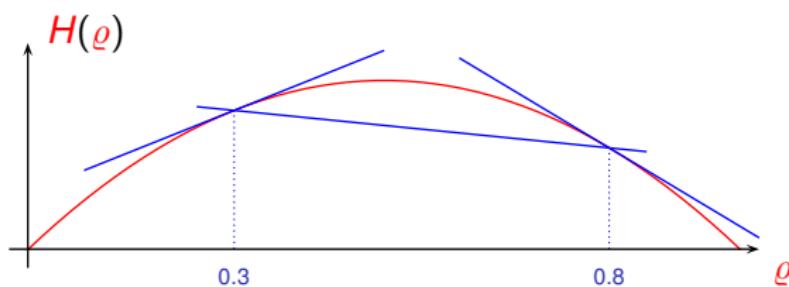
Rescaled version: shock



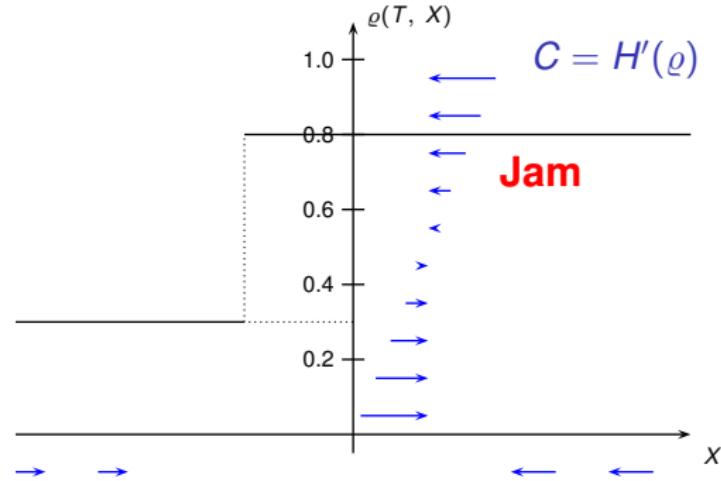
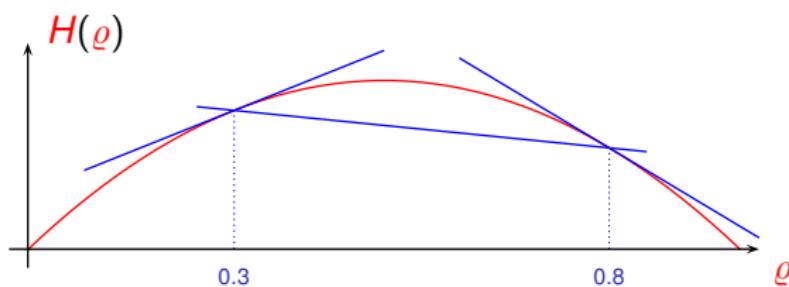
Rescaled version: shock



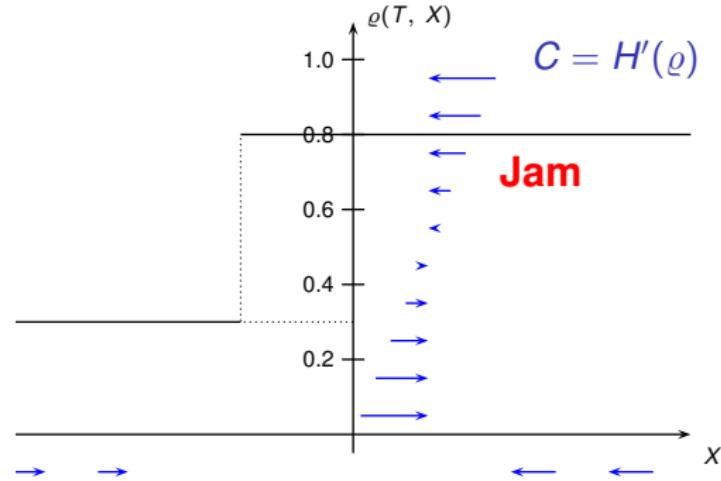
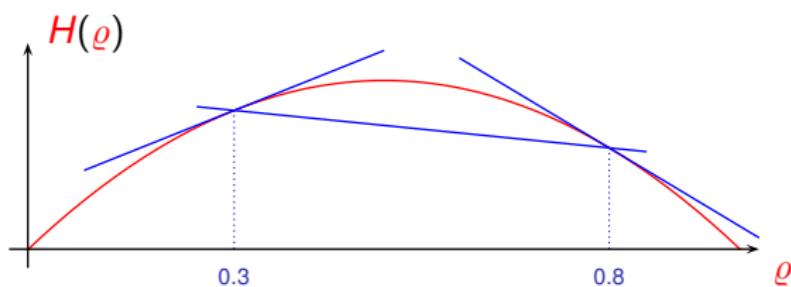
Rescaled version: shock



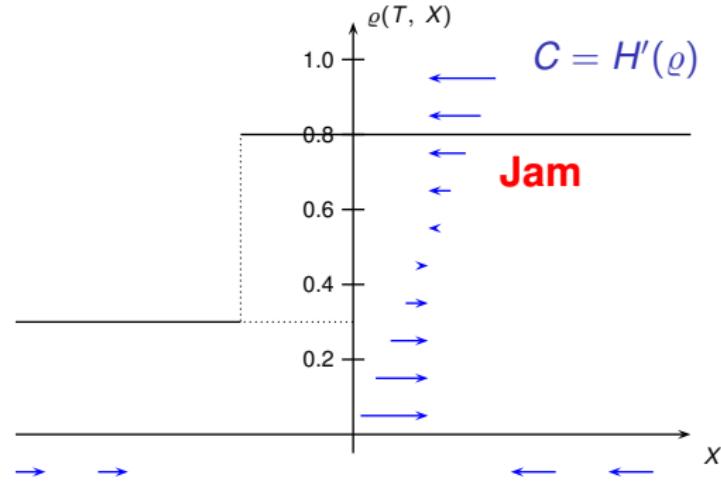
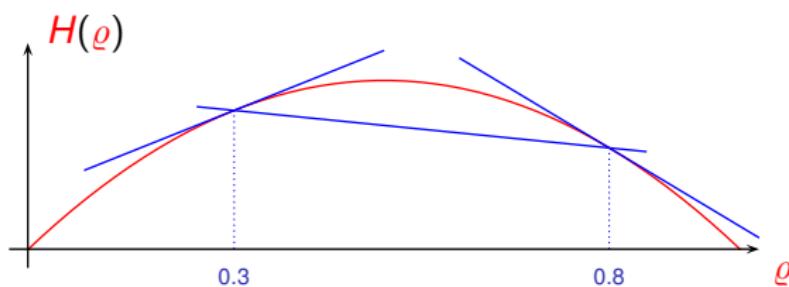
Rescaled version: shock



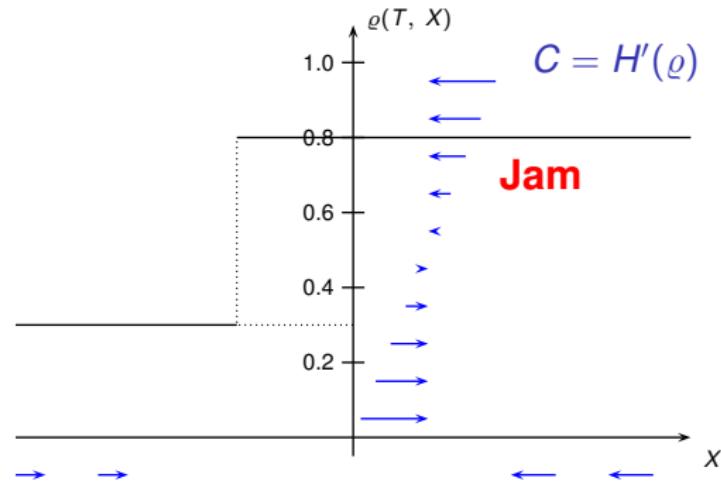
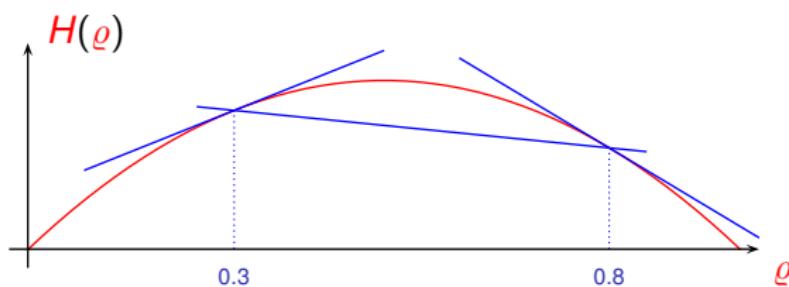
Rescaled version: shock



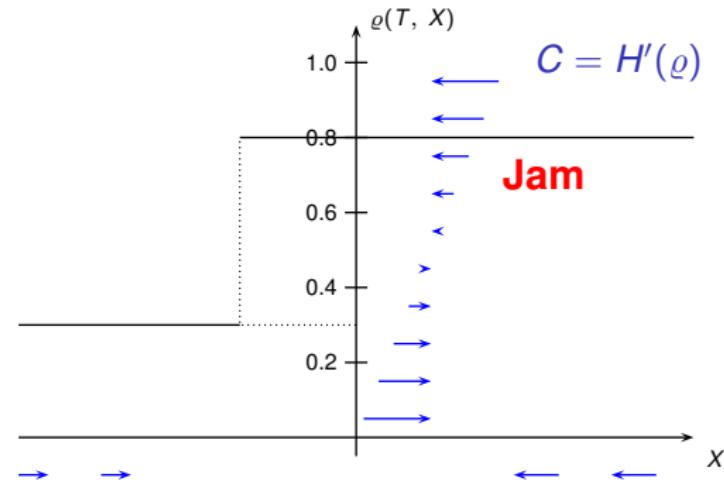
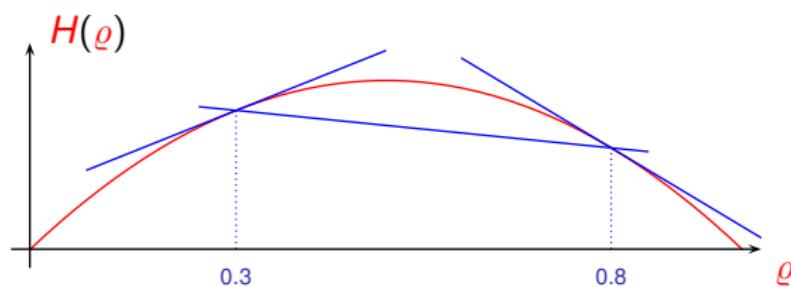
Rescaled version: shock



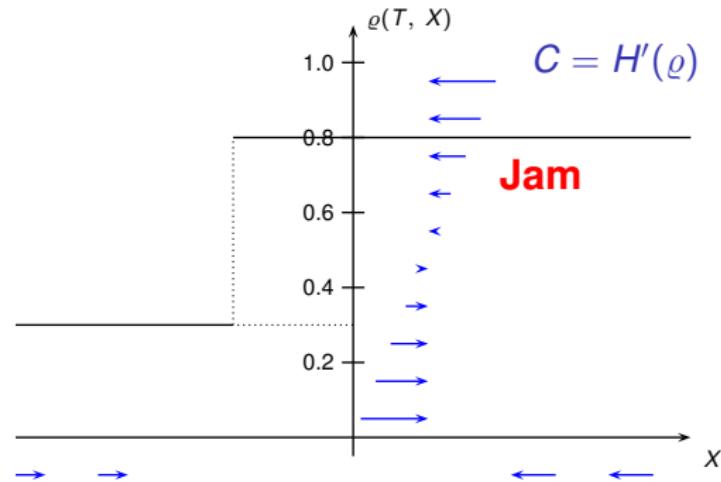
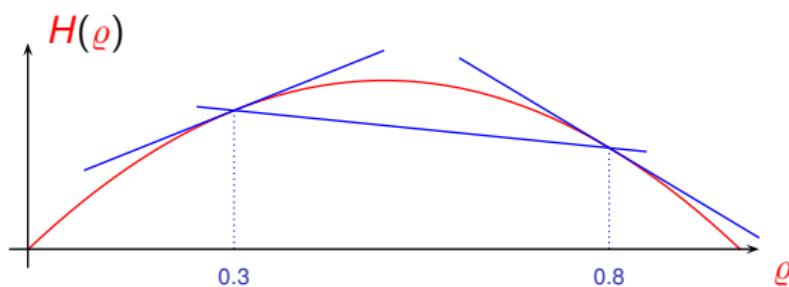
Rescaled version: shock



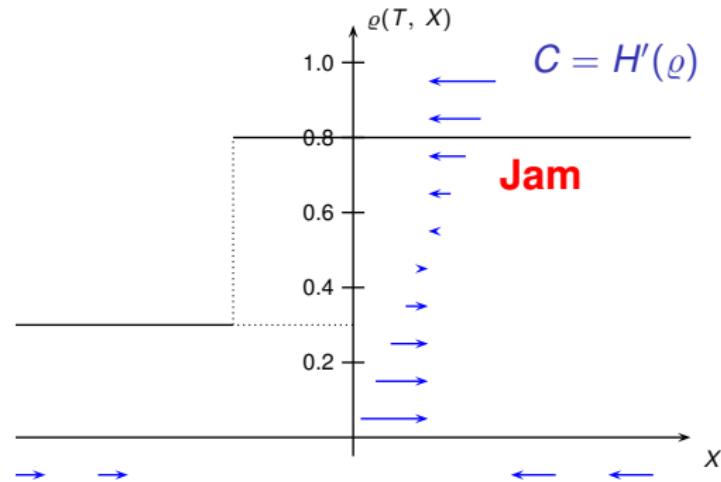
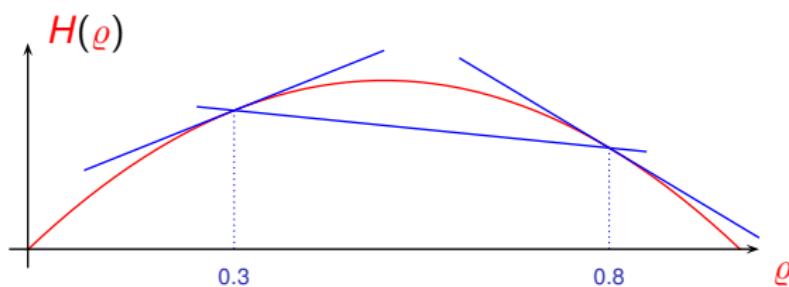
Rescaled version: shock



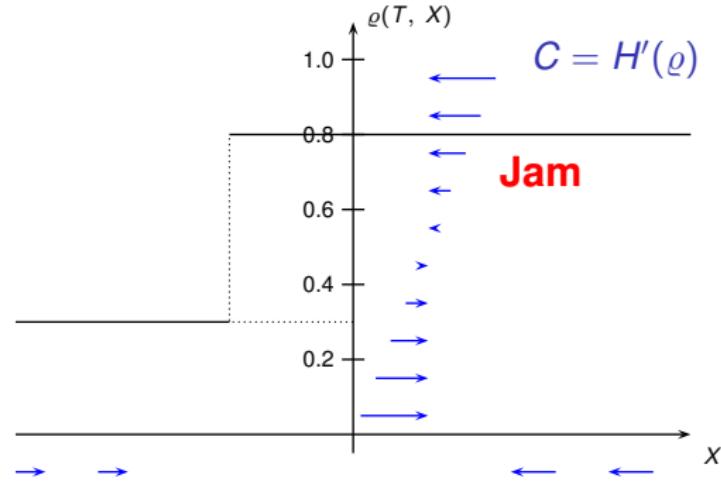
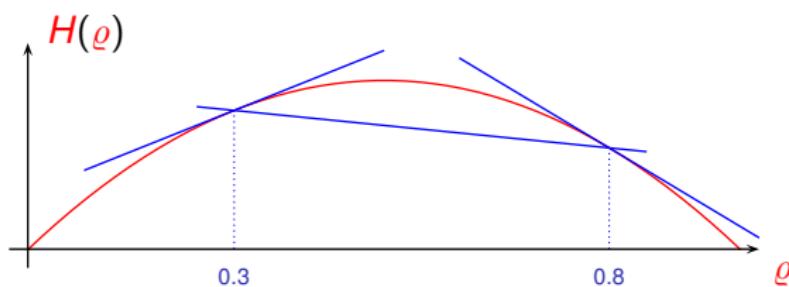
Rescaled version: shock



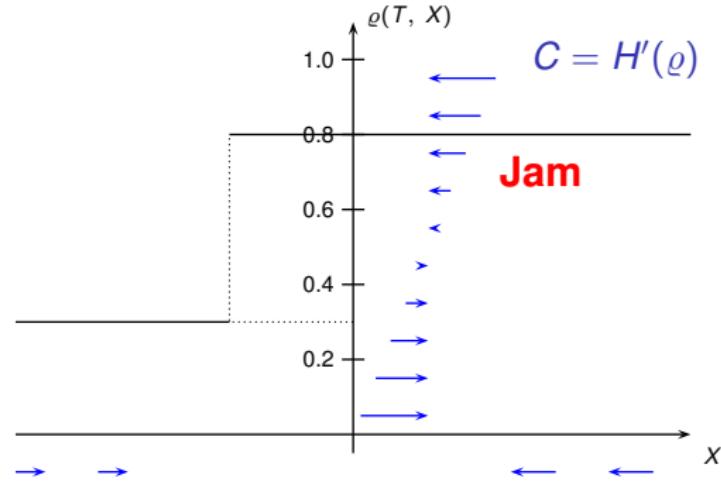
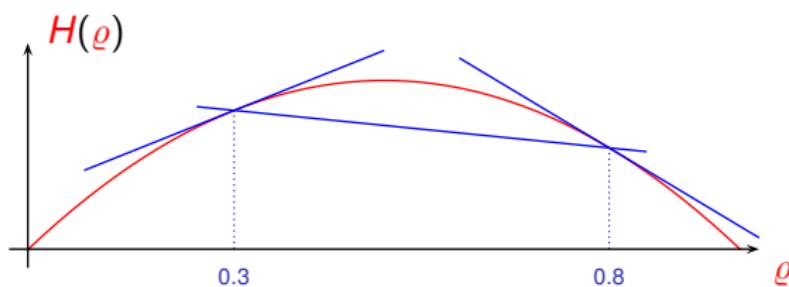
Rescaled version: shock



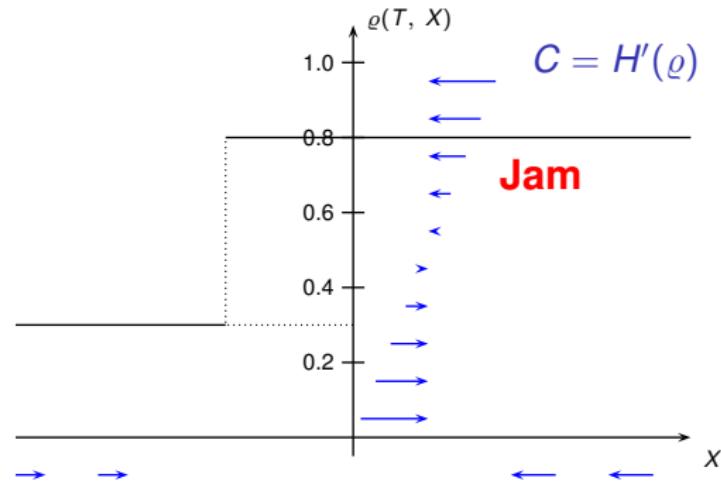
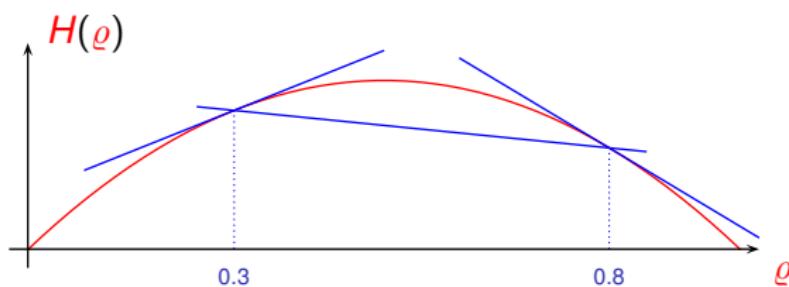
Rescaled version: shock



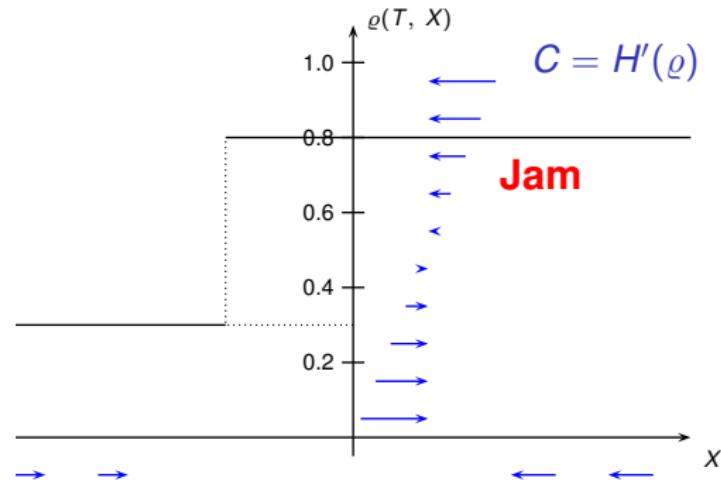
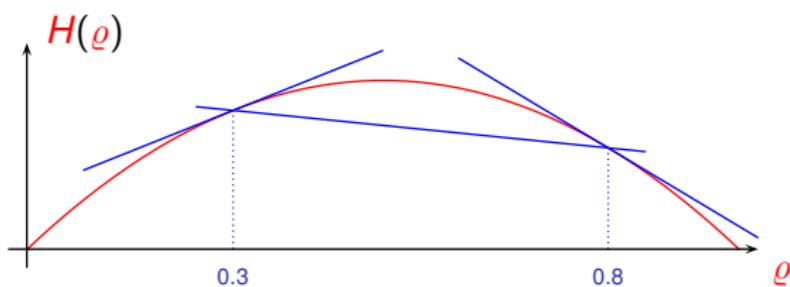
Rescaled version: shock



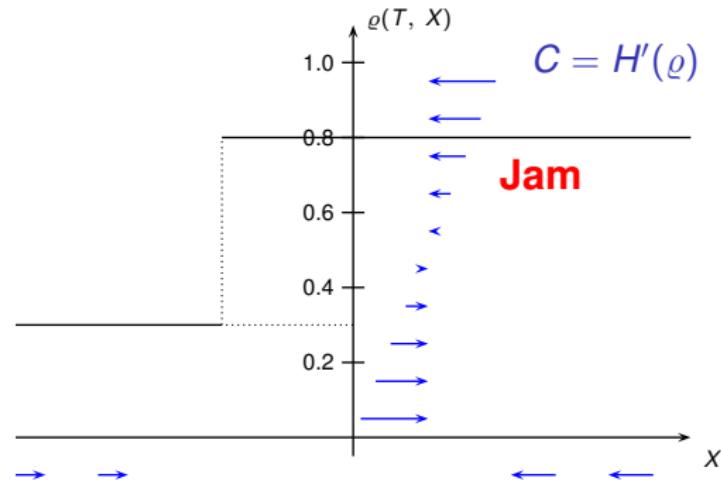
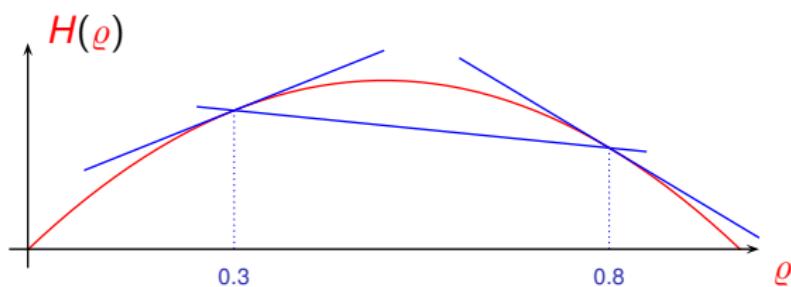
Rescaled version: shock



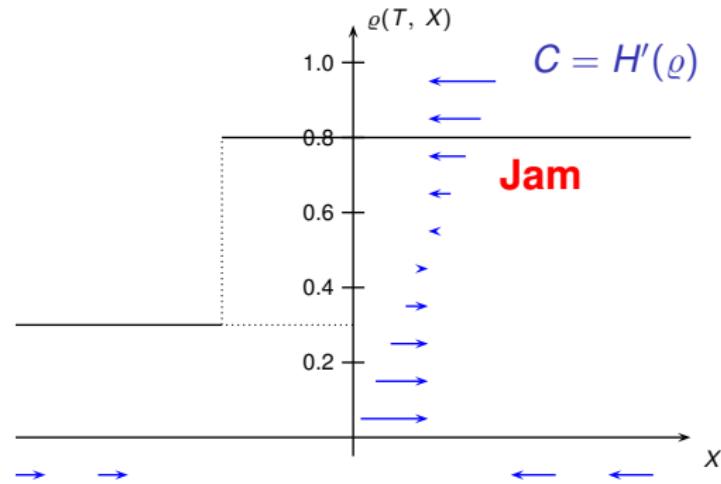
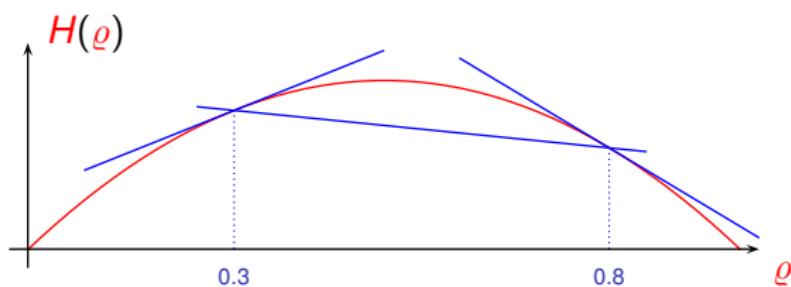
Rescaled version: shock



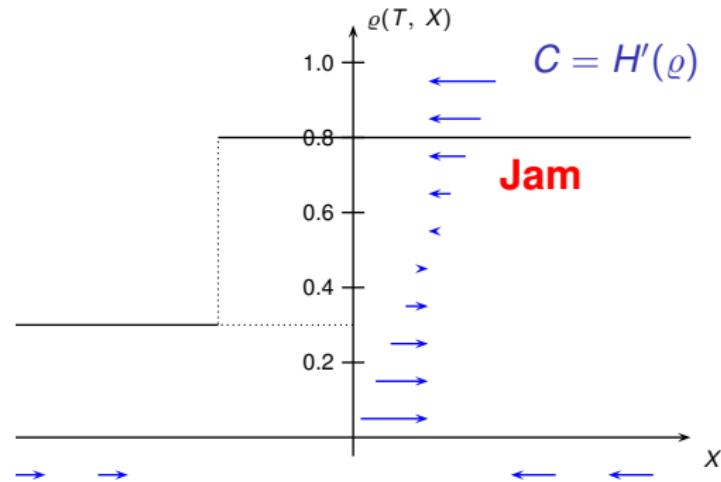
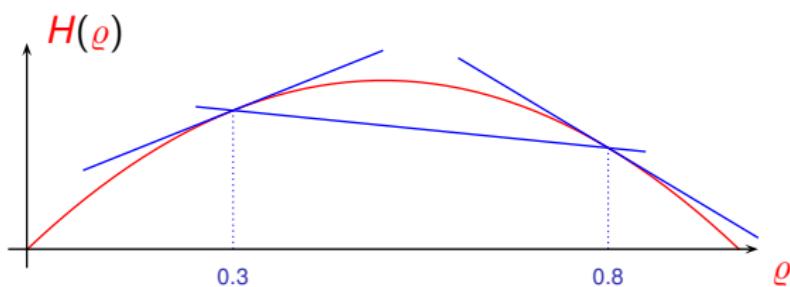
Rescaled version: shock



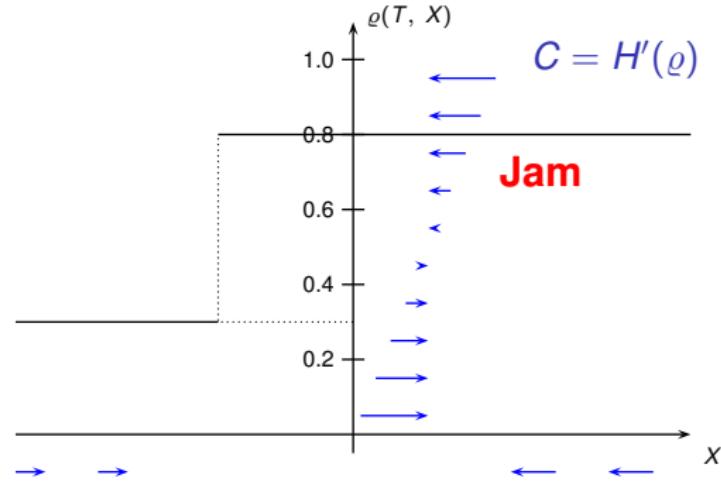
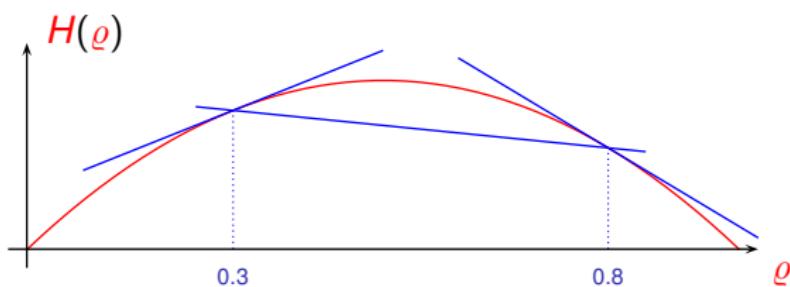
Rescaled version: shock



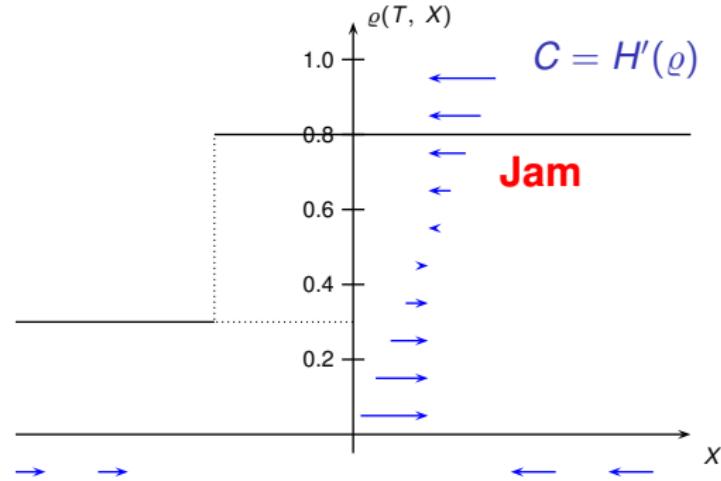
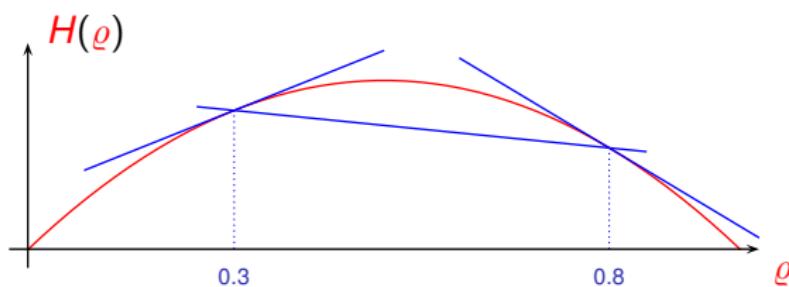
Rescaled version: shock



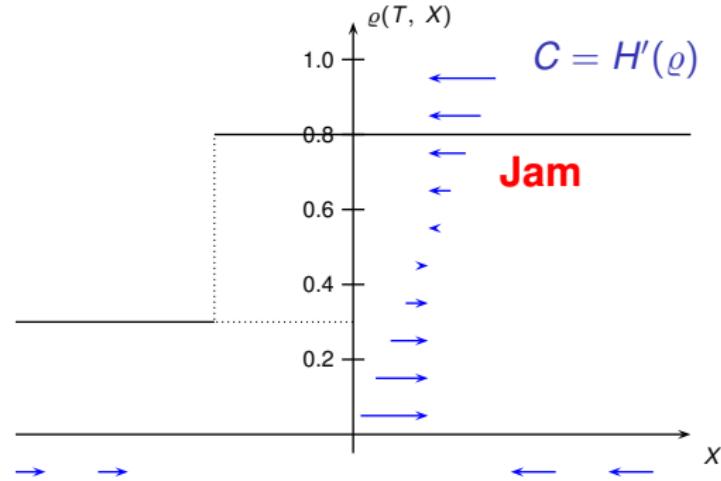
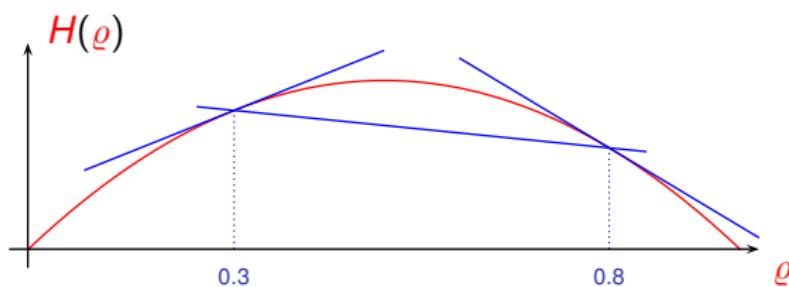
Rescaled version: shock



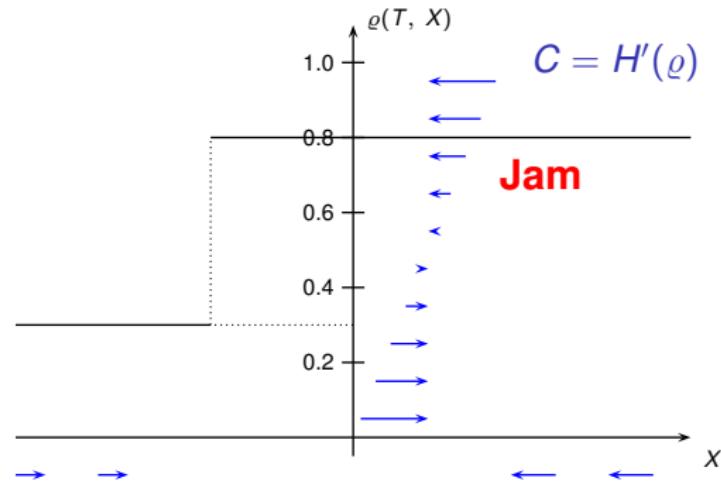
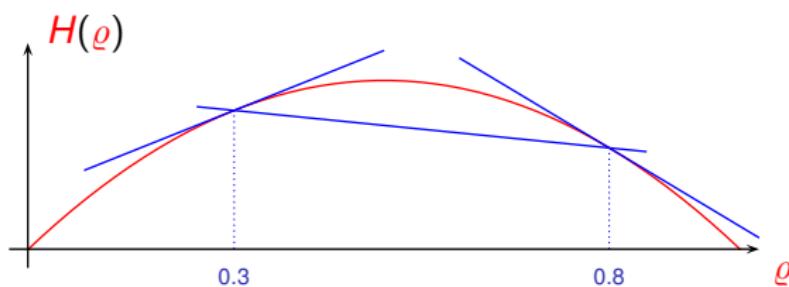
Rescaled version: shock



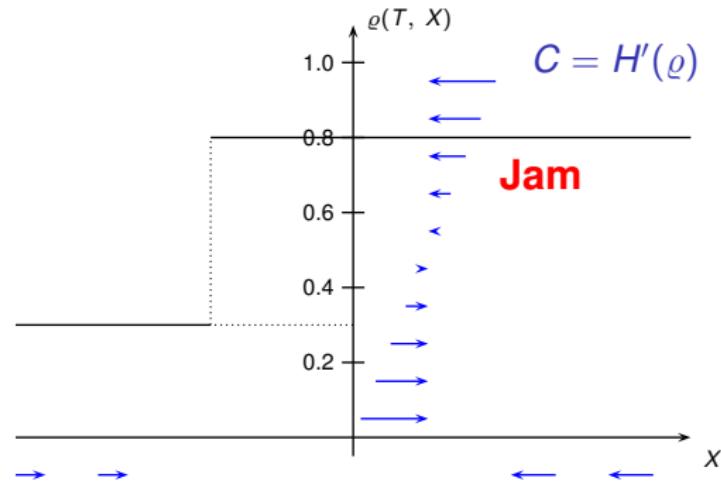
Rescaled version: shock



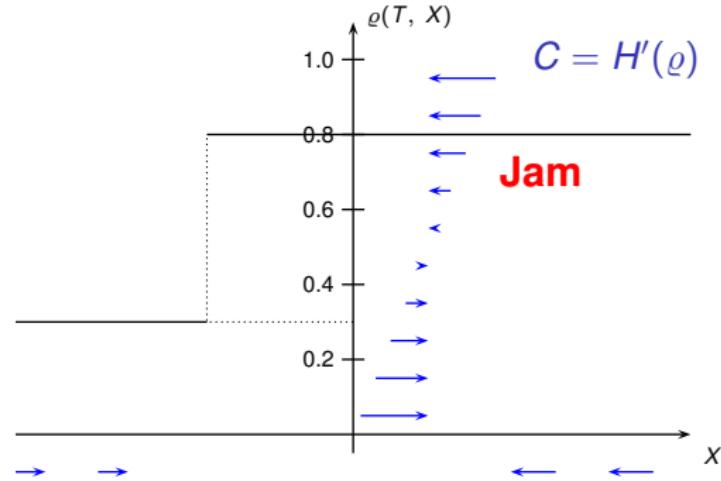
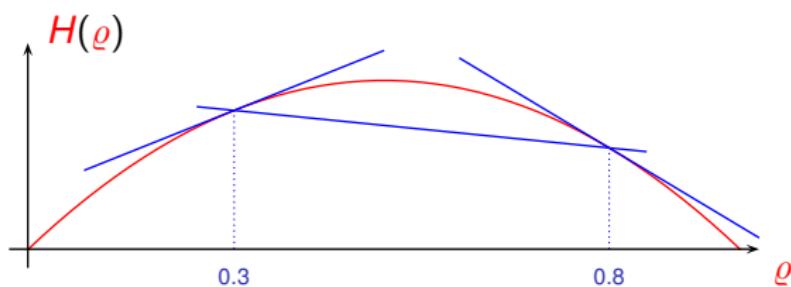
Rescaled version: shock



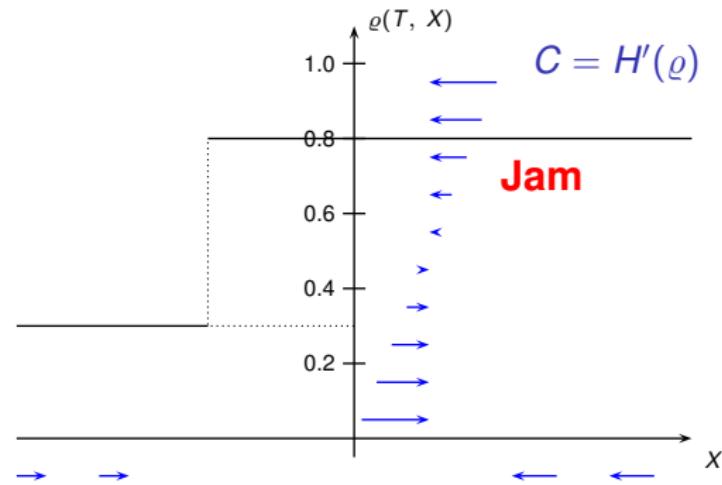
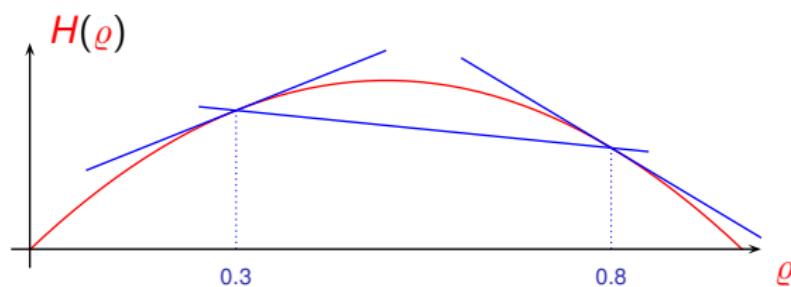
Rescaled version: shock



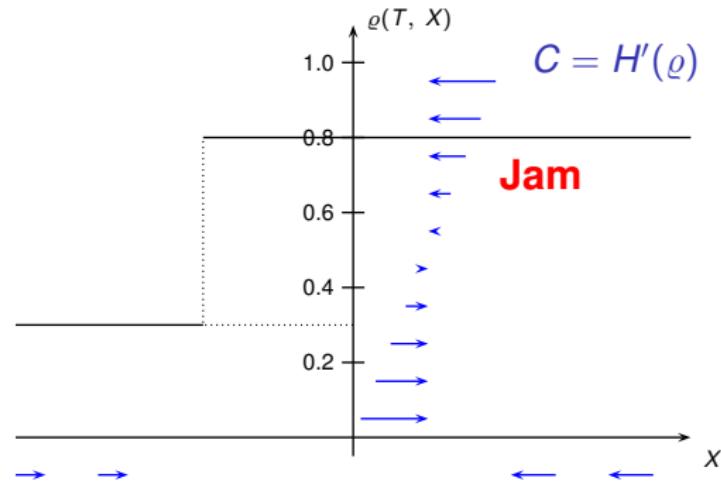
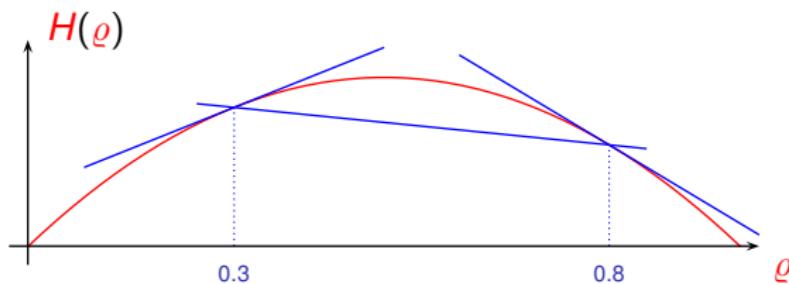
Rescaled version: shock



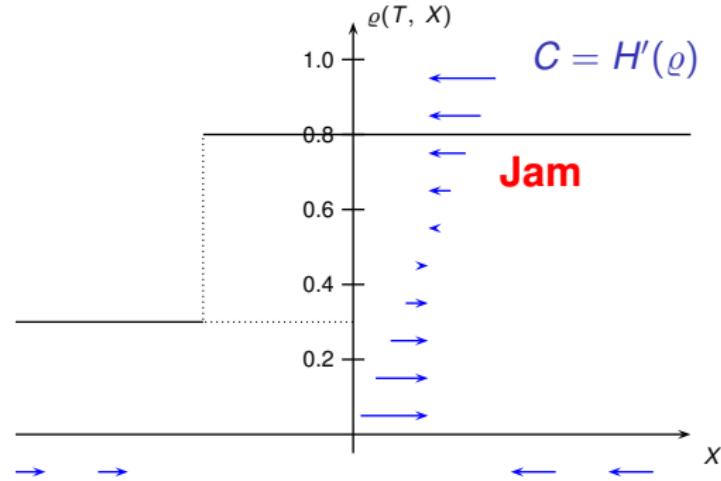
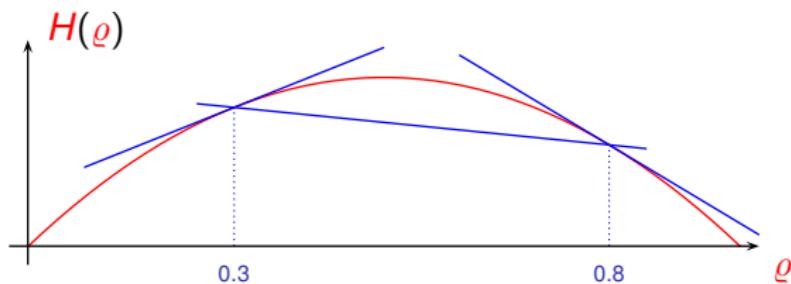
Rescaled version: shock



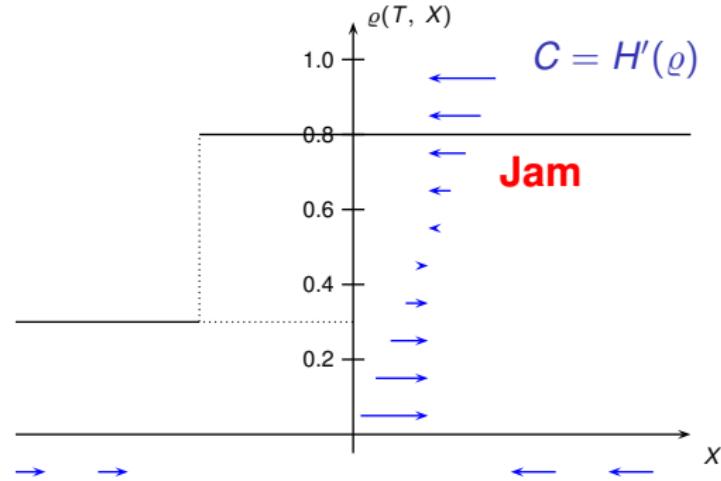
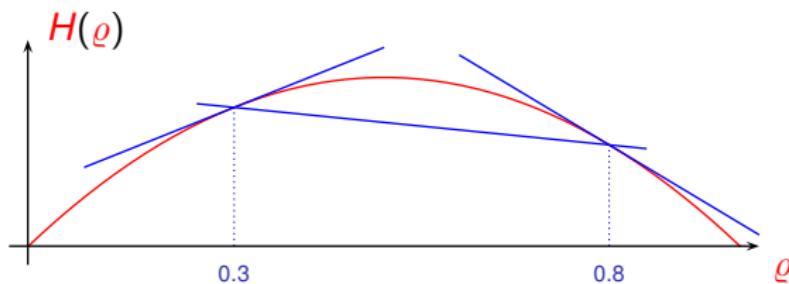
Rescaled version: shock



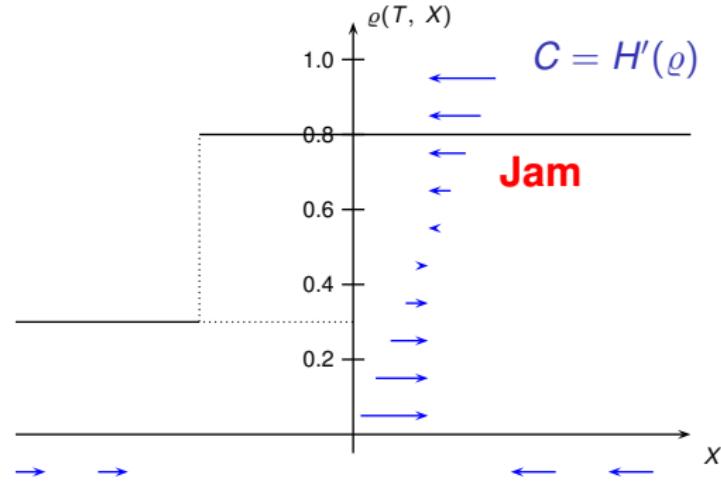
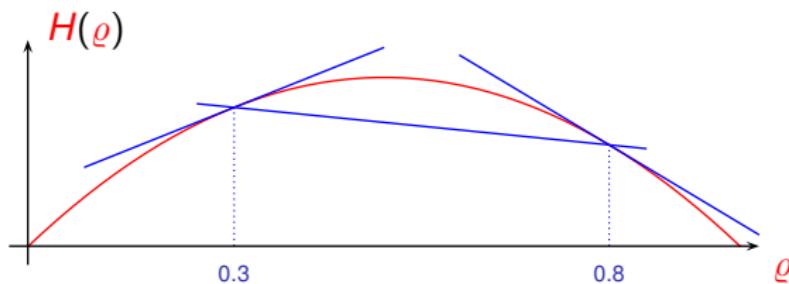
Rescaled version: shock



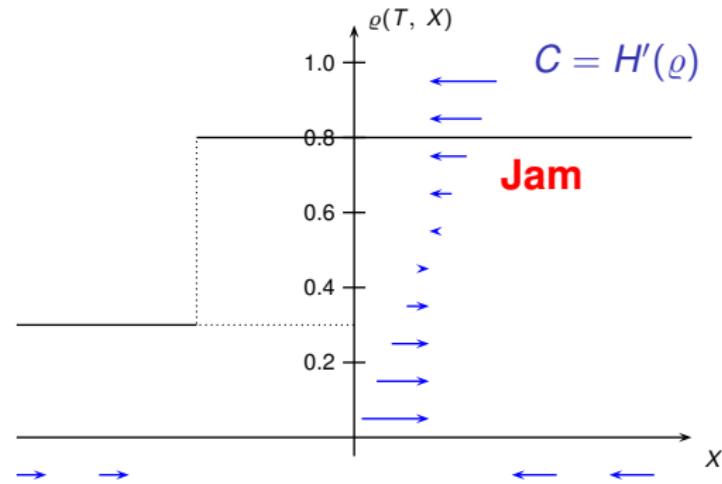
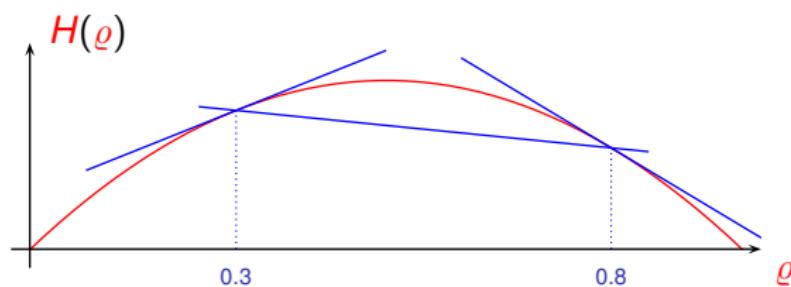
Rescaled version: shock



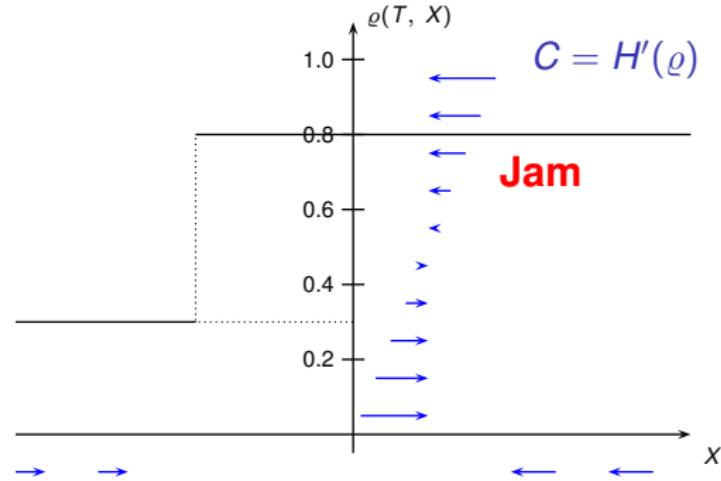
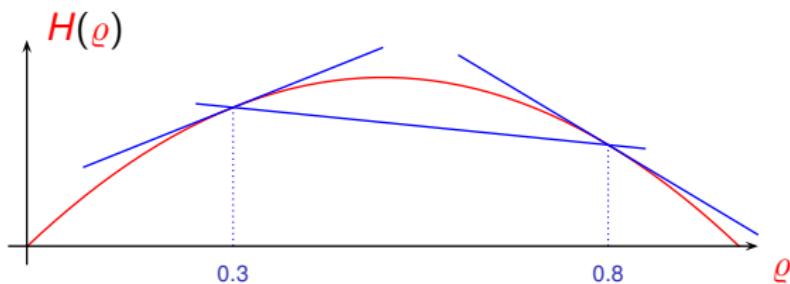
Rescaled version: shock



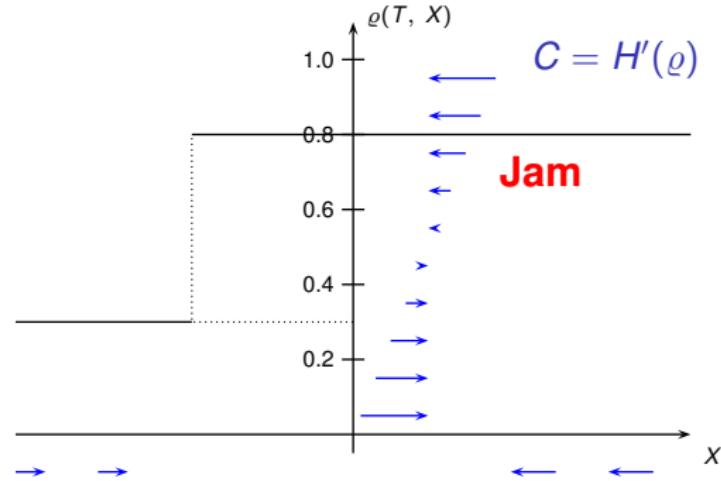
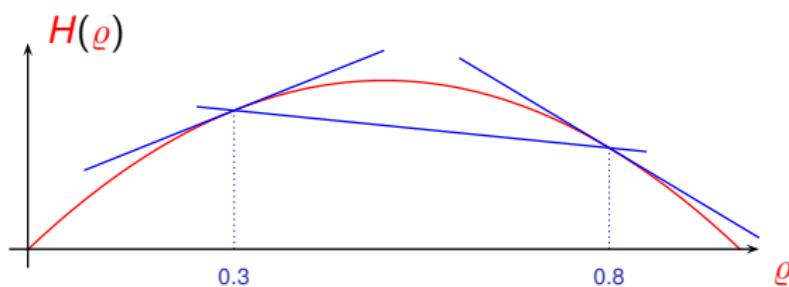
Rescaled version: shock



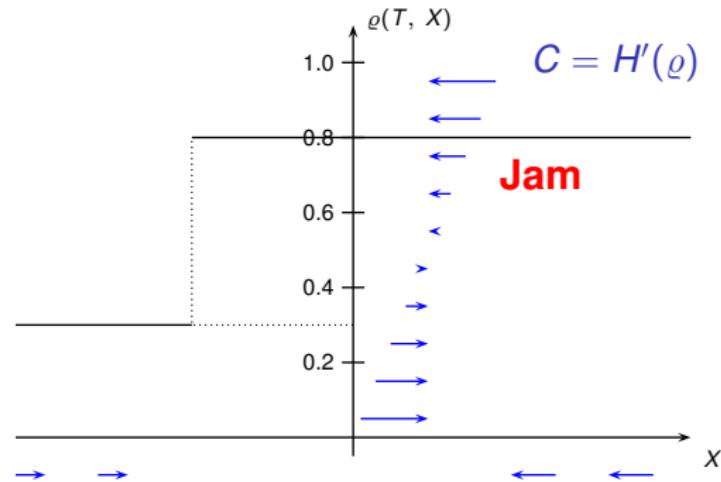
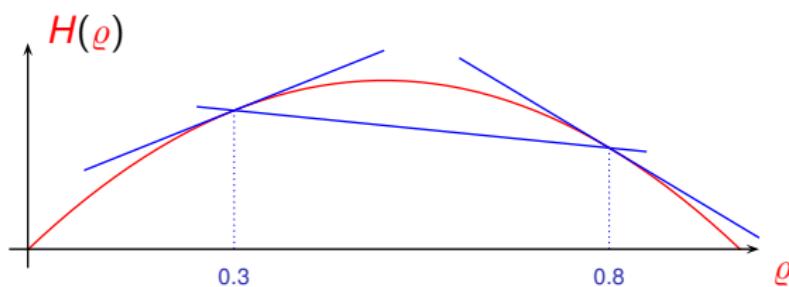
Rescaled version: shock



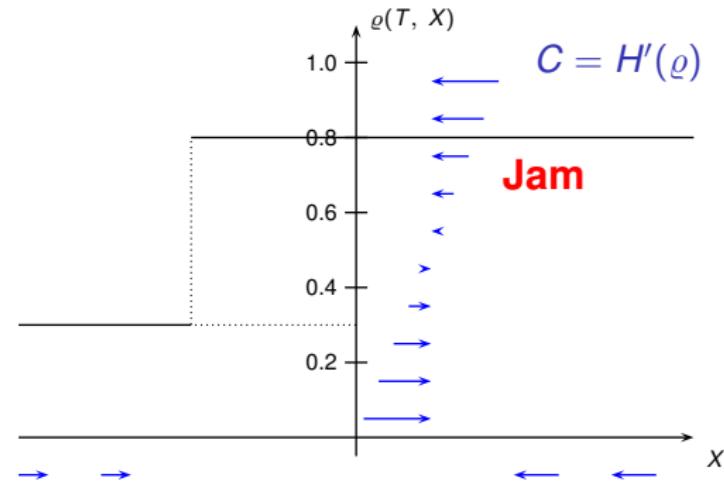
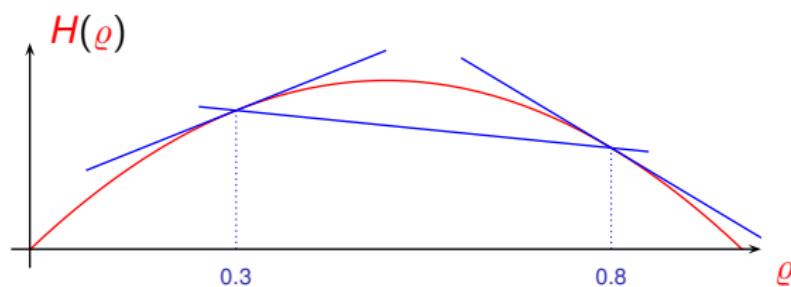
Rescaled version: shock



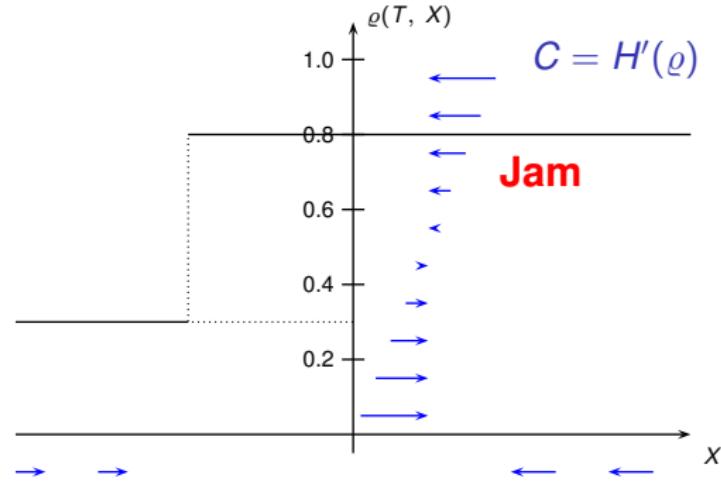
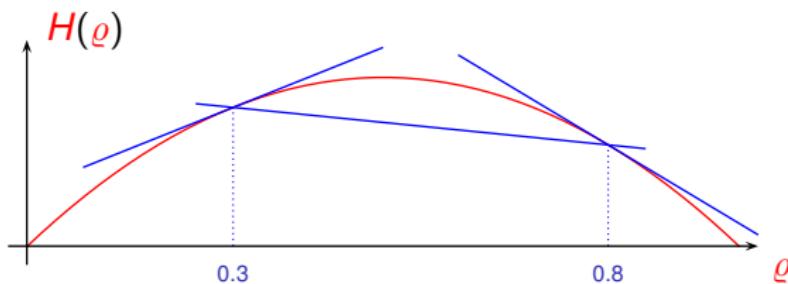
Rescaled version: shock



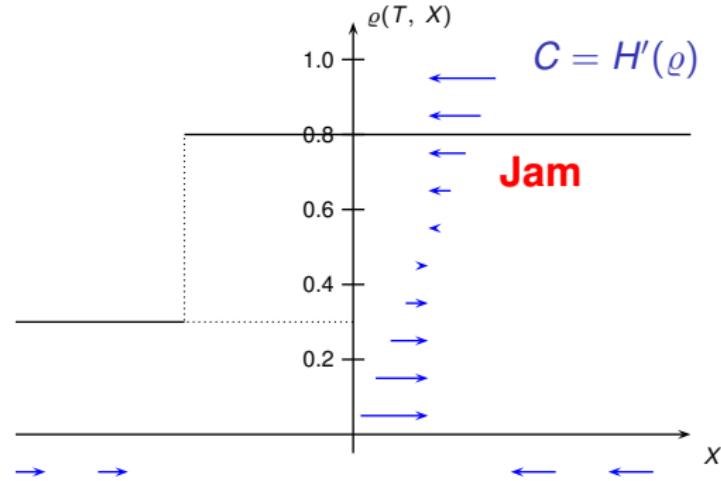
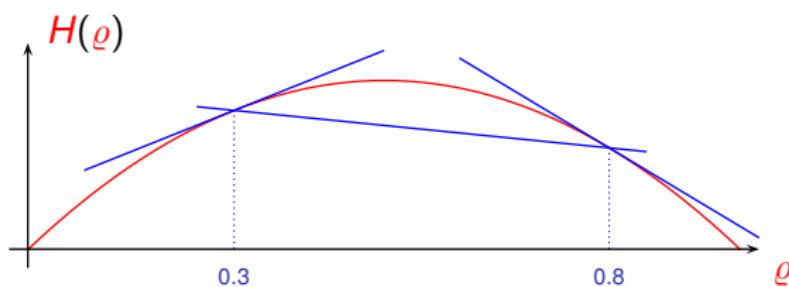
Rescaled version: shock

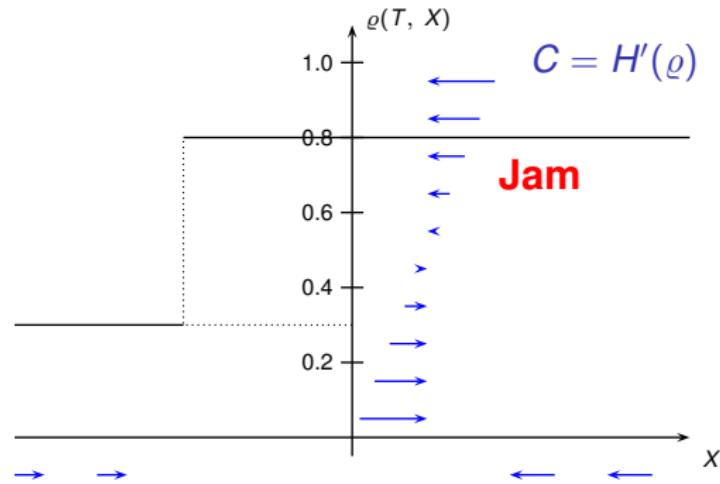
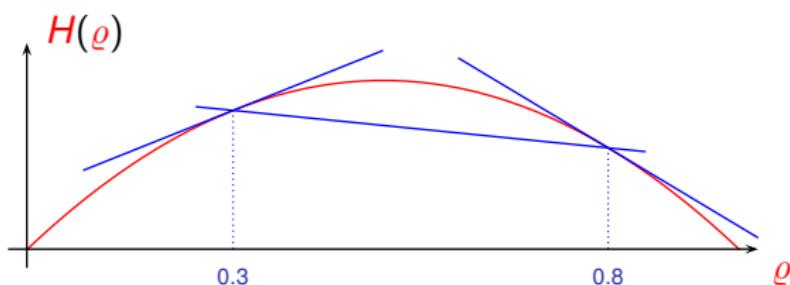


Rescaled version: shock

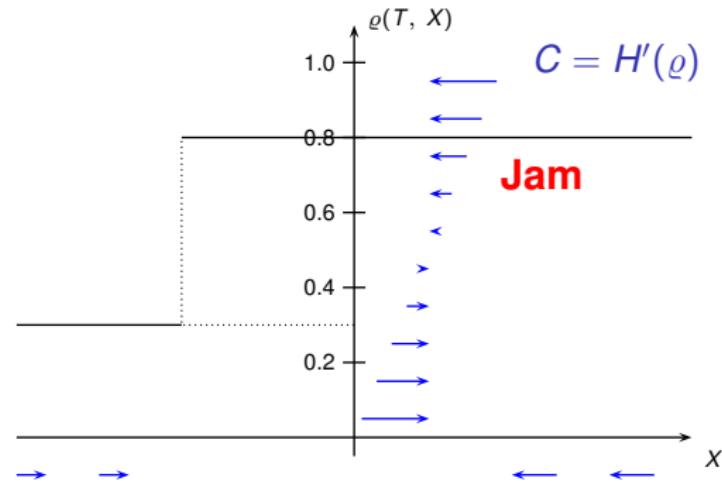
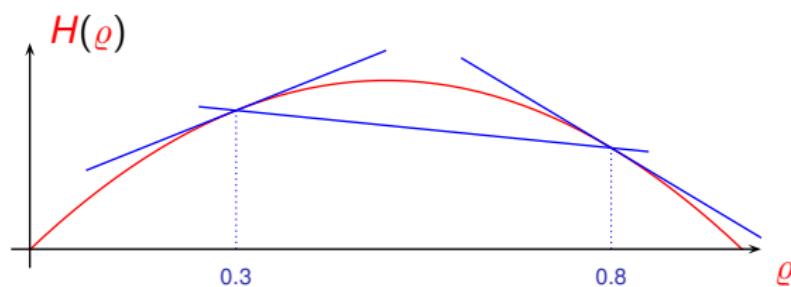


Rescaled version: shock

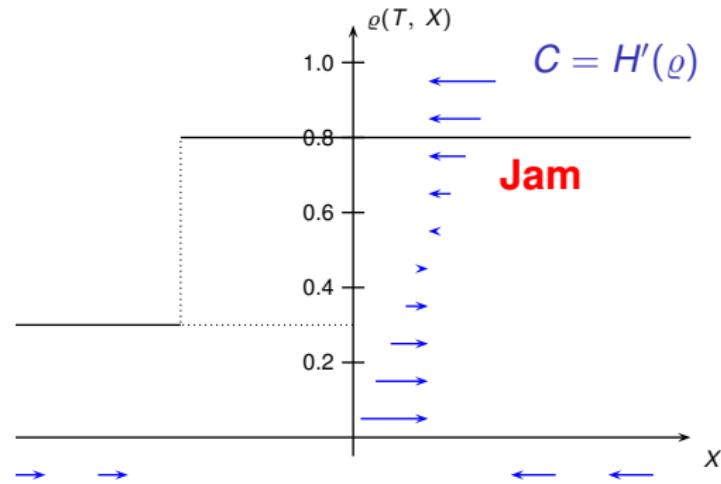
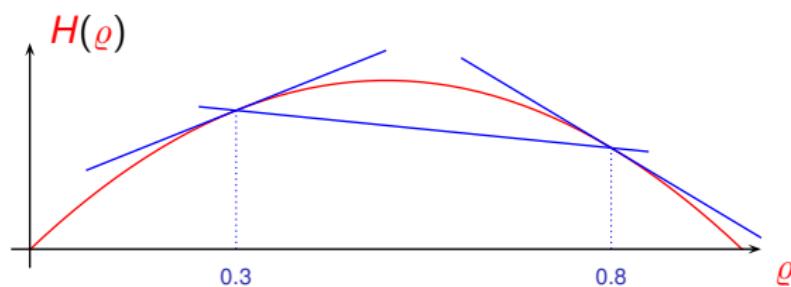




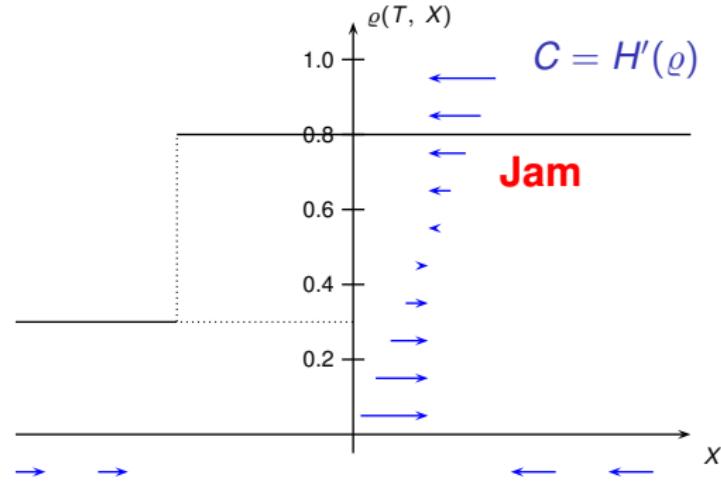
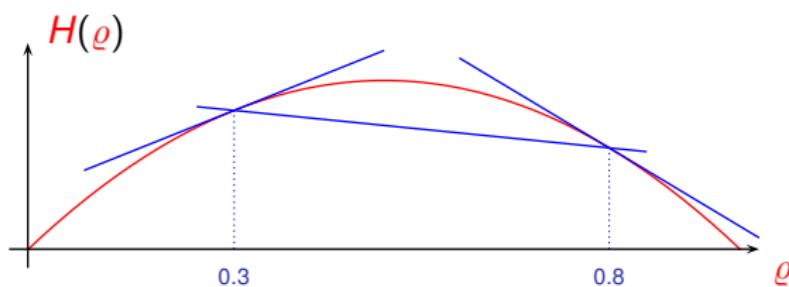
Rescaled version: shock



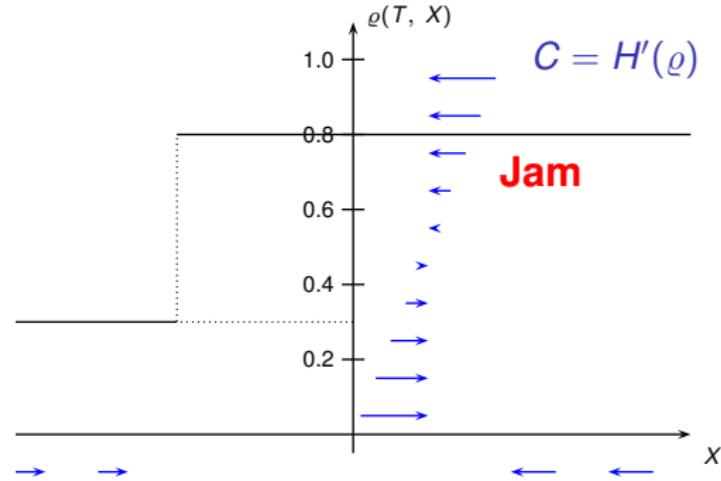
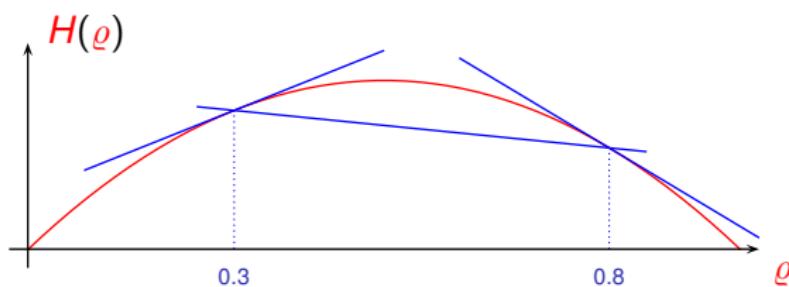
Rescaled version: shock



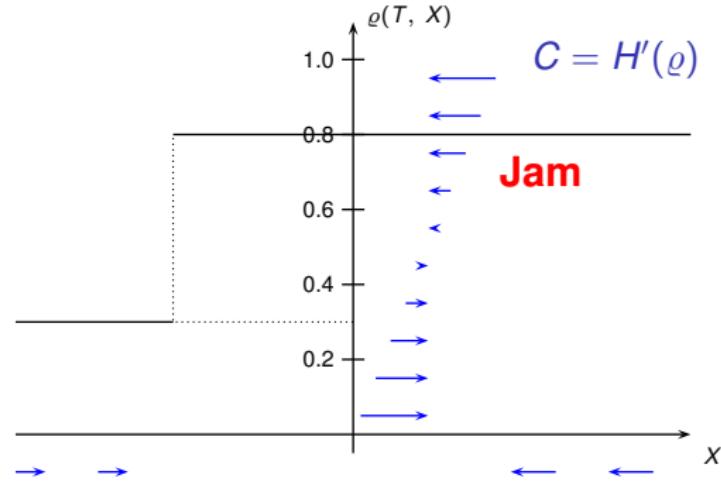
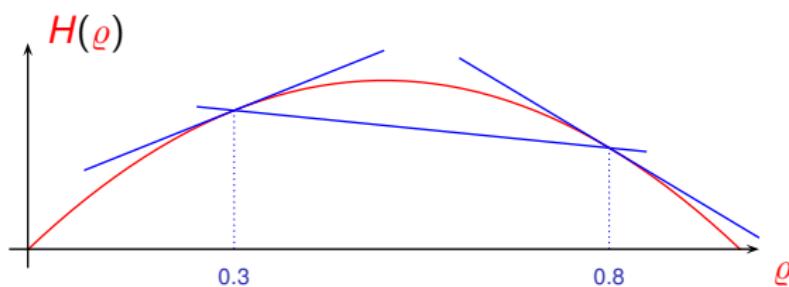
Rescaled version: shock



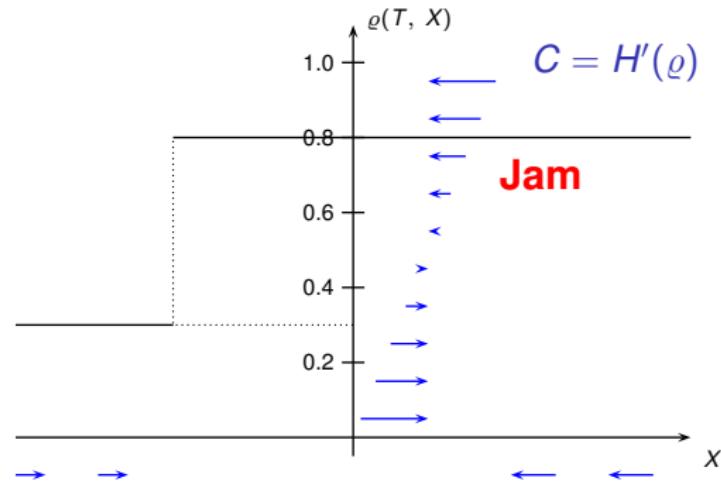
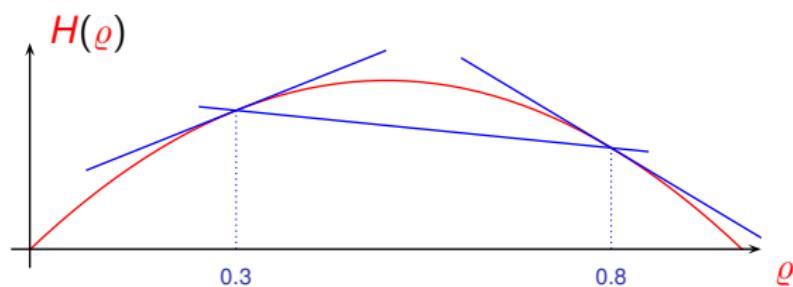
Rescaled version: shock



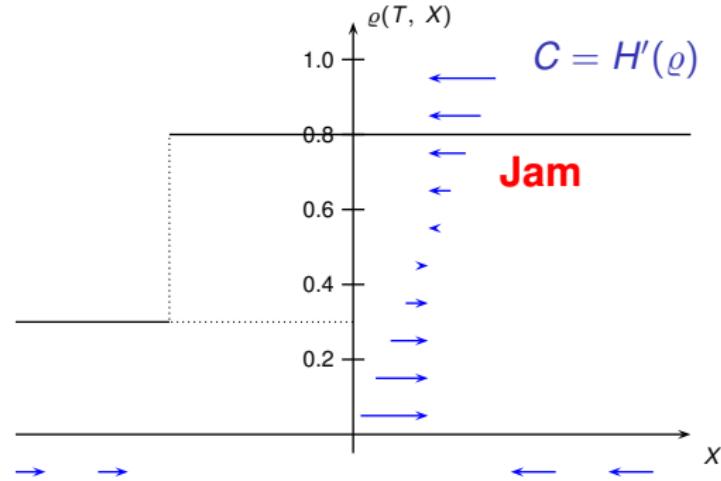
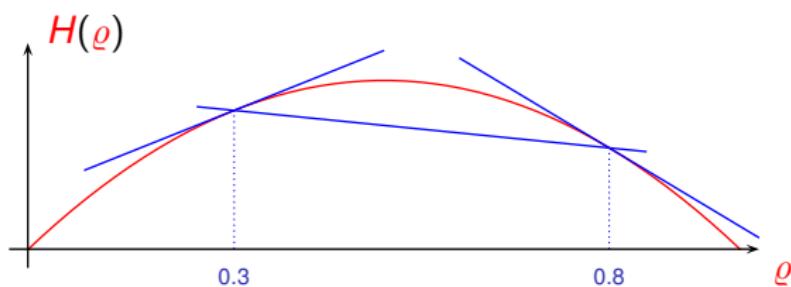
Rescaled version: shock



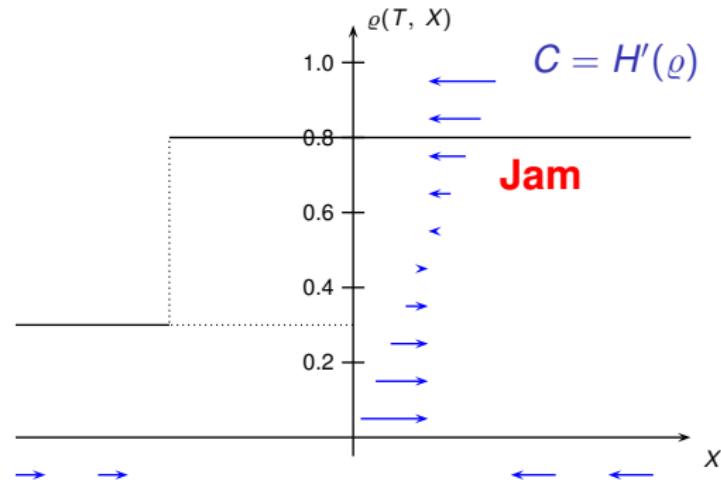
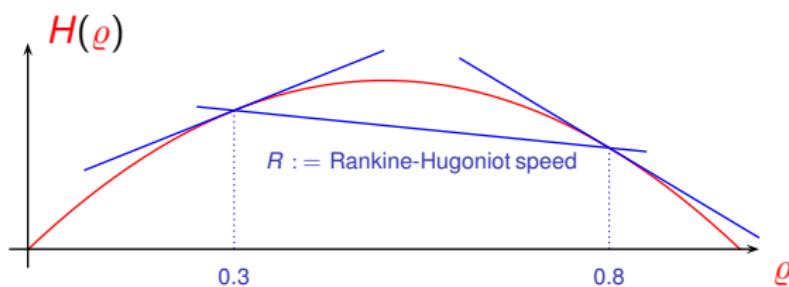
Rescaled version: shock



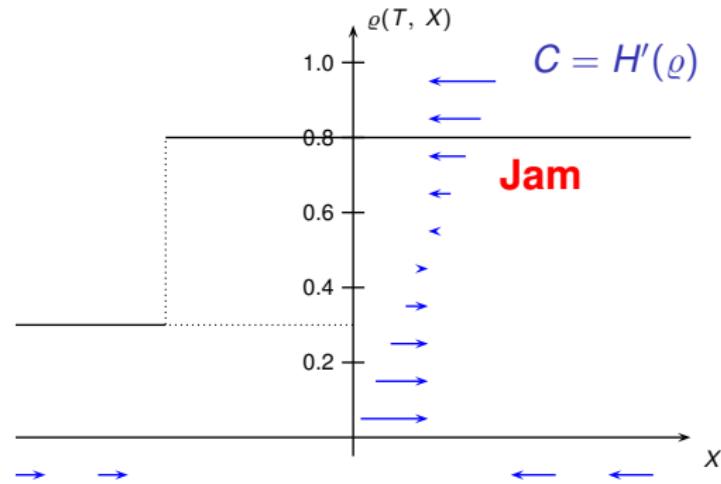
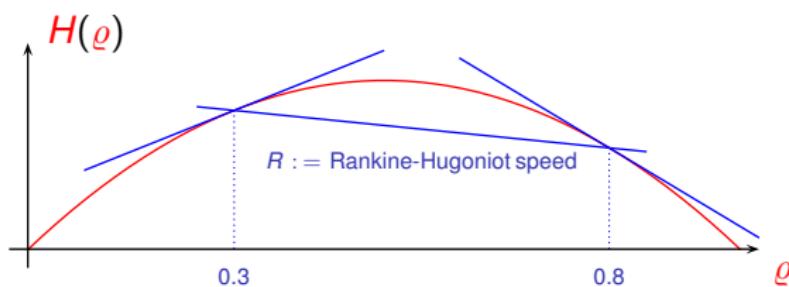
Rescaled version: shock



Rescaled version: shock



Rescaled version: shock



Arriving to a traffic jam

Arriving to a traffic jam

3

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

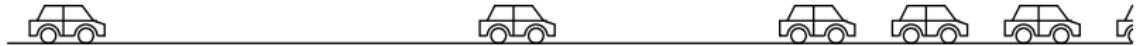
Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam



Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

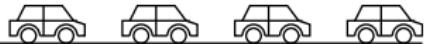
Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam



Arriving to a traffic jam

We notice the slow cars \rightsquigarrow strong braking immediately.

Arriving to a traffic jam is always sharp.

Arriving to a traffic jam

We notice the slow cars \rightsquigarrow strong braking immediately.

Arriving to a traffic jam is always sharp.

This is one aspect that makes motorways dangerous places.

Remarks.

- ▶ Of course there are much more sophisticated models for traffic modelling.

Remarks.

- ▶ Of course there are much more sophisticated models for traffic modelling.
- ▶ <http://youtu.be/Suugn-p5C1M>

Remarks.

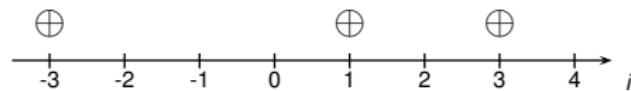
- ▶ Of course there are much more sophisticated models for traffic modelling.
- ▶ <http://youtu.be/Suugn-p5C1M>
- ▶ **TASEP** is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

Remarks.

- ▶ Of course there are much more sophisticated models for traffic modelling.
- ▶ <http://youtu.be/Suugn-p5C1M>
- ▶ **TASEP** is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.
- ▶ But we'll now go crazy with shocks and rarefaction fans.

$A \oplus \ominus 0$ model

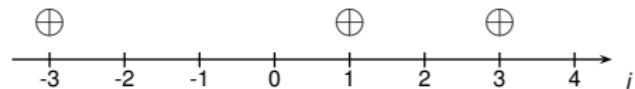
(Joint with A.L. Nagy, B. Tóth, I. Tóth)



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

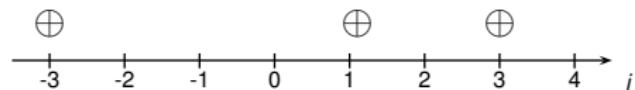
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

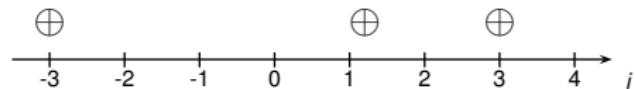
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

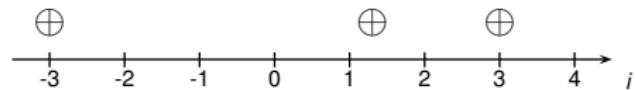
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

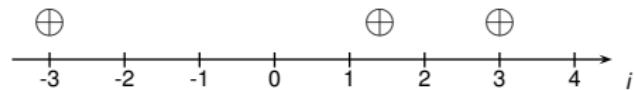
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

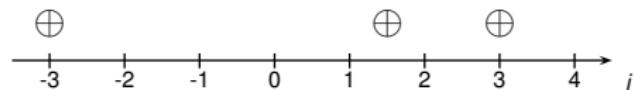
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

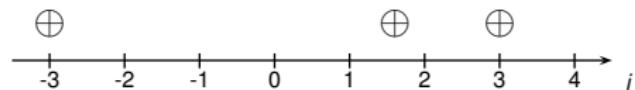
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

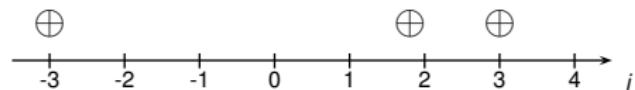
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

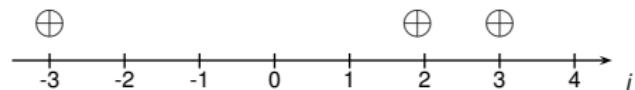
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

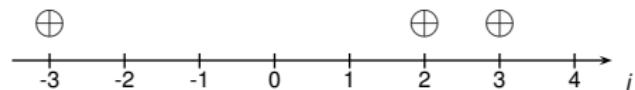
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

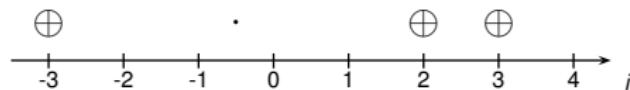
\oplus to the right: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

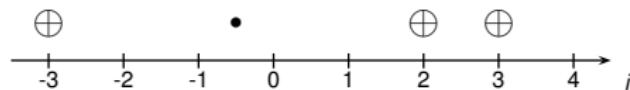
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

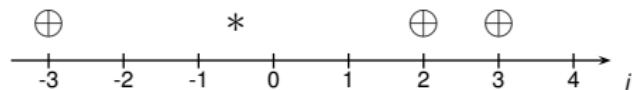
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

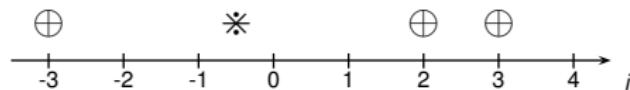
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

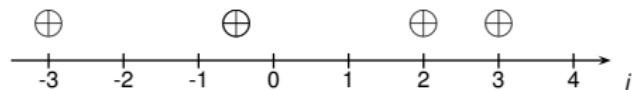
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

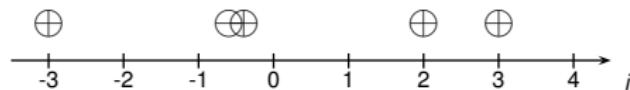
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

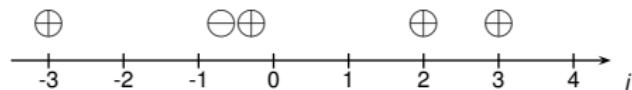
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

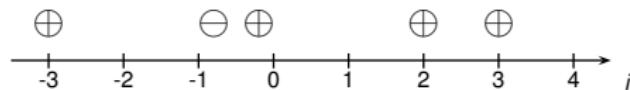
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

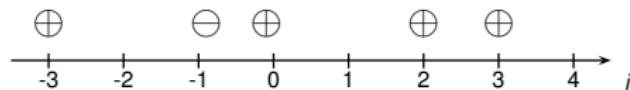
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

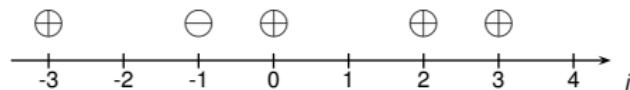
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

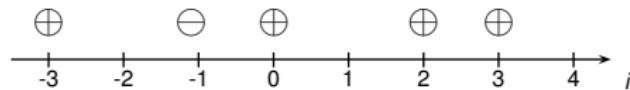
pair creation from vacuum: rate c



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

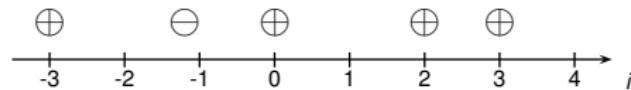
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

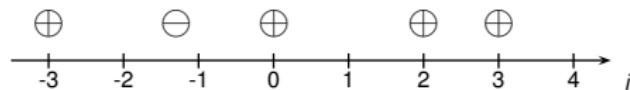
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

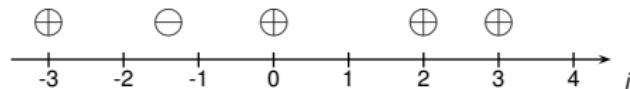
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

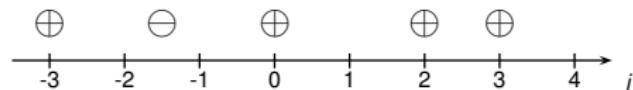
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

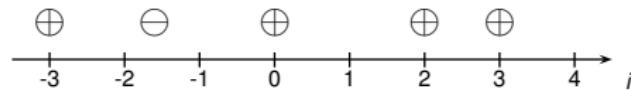
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

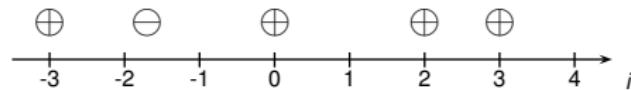
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

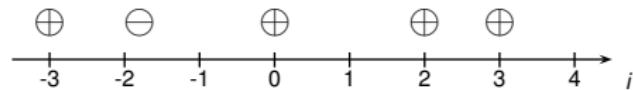
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

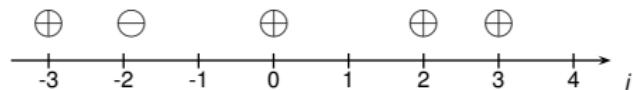
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

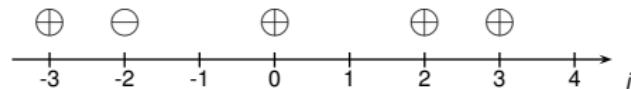
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

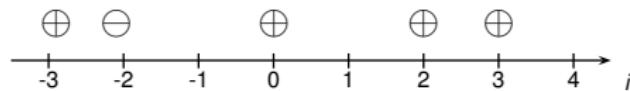
\ominus to the left: rate 1



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

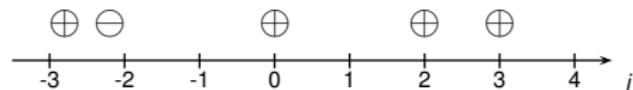
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

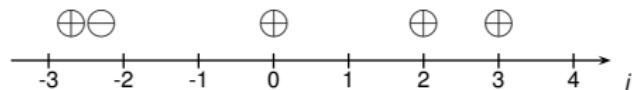
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

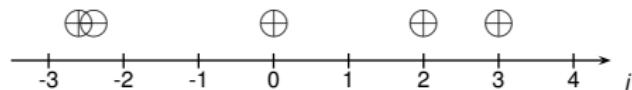
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

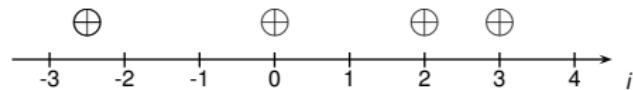
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

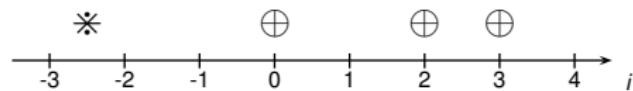
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

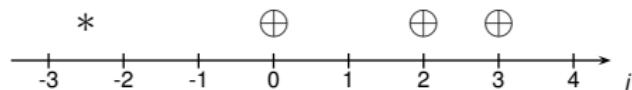
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

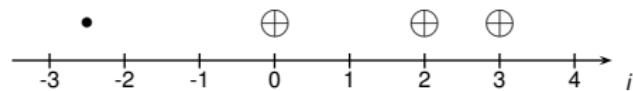
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

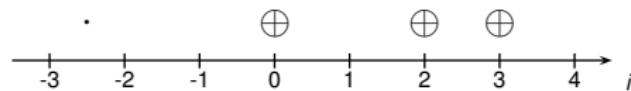
annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)

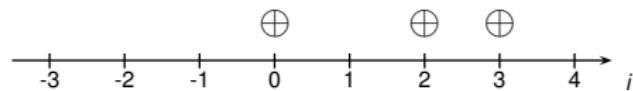
annihilation: rate 2



$A \oplus \ominus 0$ model

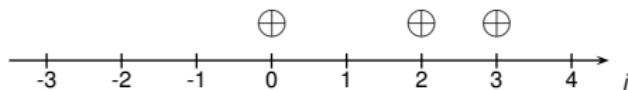
(Joint with A.L. Nagy, B. Tóth, I. Tóth)

annihilation: rate 2



$A \oplus \ominus 0$ model

(Joint with A.L. Nagy, B. Tóth, I. Tóth)



The important stationary distributions are again i.i.d. on the set $\{\ominus, 0, \oplus\}$.

Calling $\ominus = -1$, $0 = 0$, $\oplus = 1$, the mean ϱ makes sense as a signed density of particles.

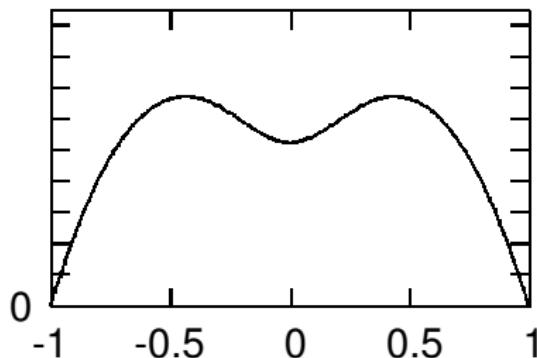
And $H(\varrho)$ makes sense as a signed particle current.

$A \oplus \ominus 0$ model

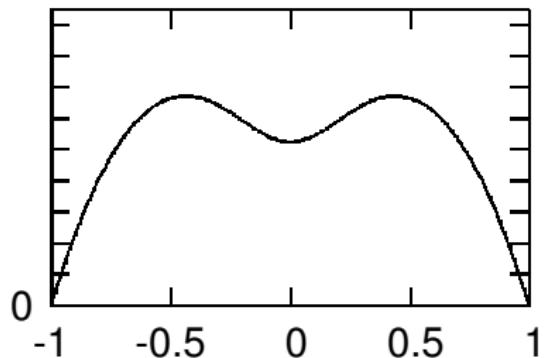
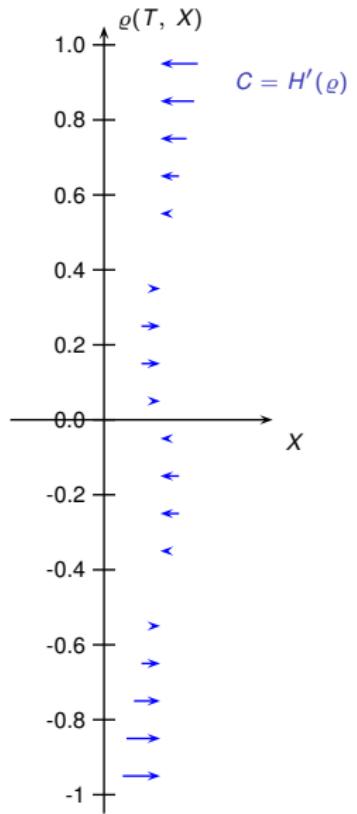
We still have

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0.$$

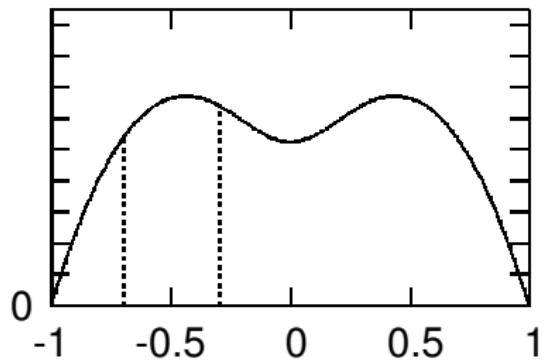
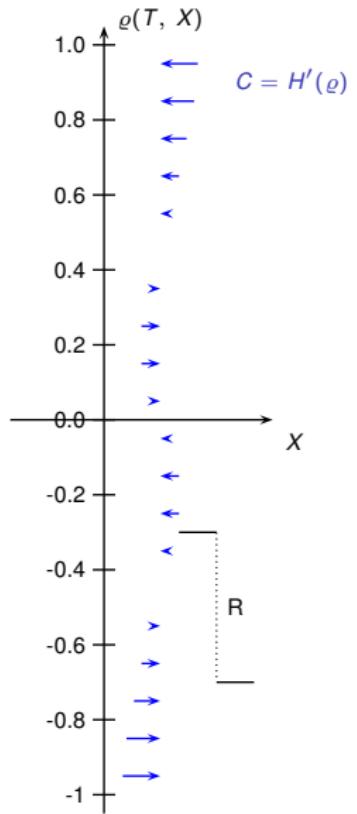
The hydrodynamic flux $H(\varrho)$, for certain c :



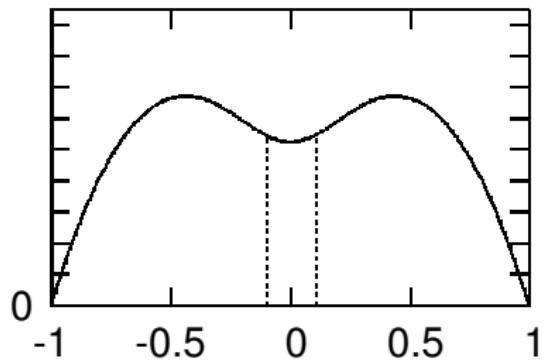
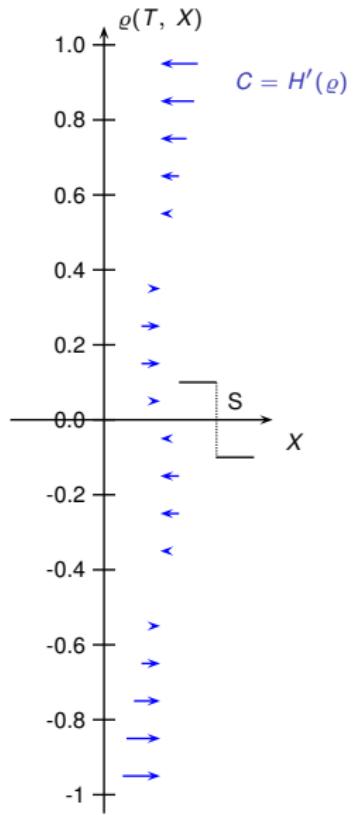
$A \oplus \ominus 0$ model



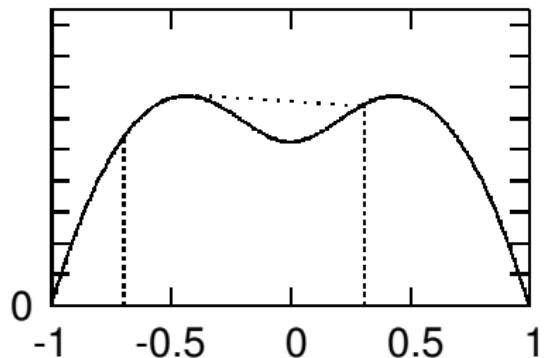
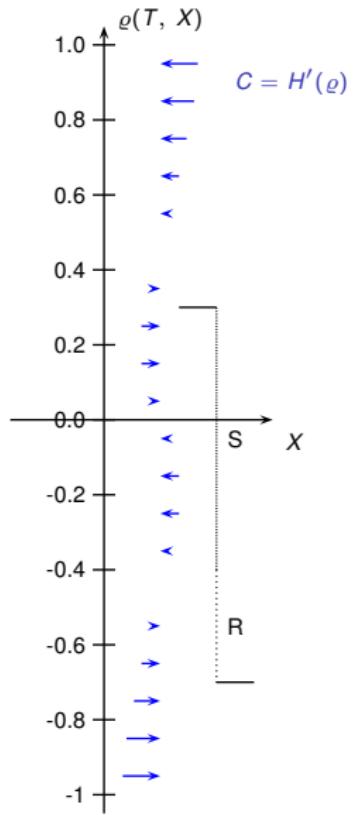
$A \oplus \ominus 0$ model



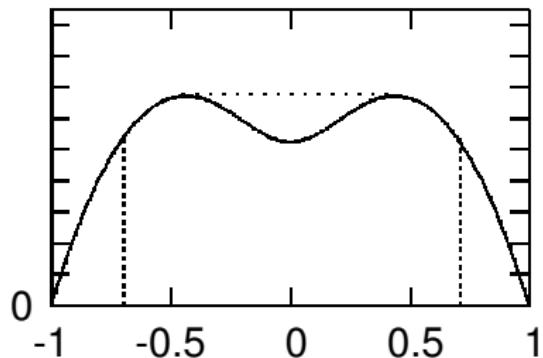
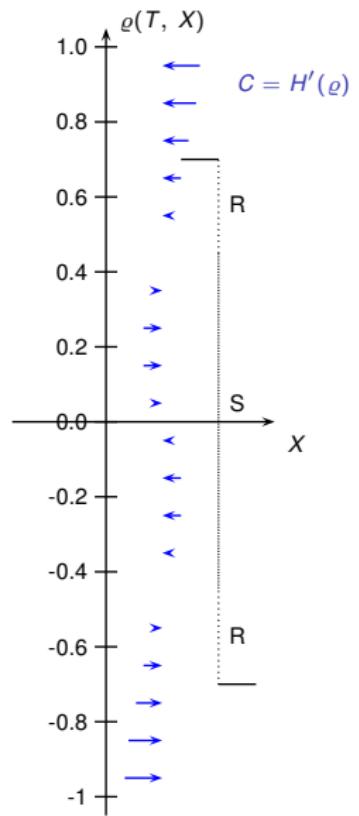
$A \oplus \ominus 0$ model



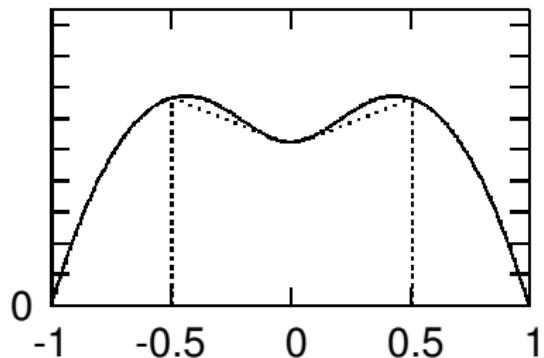
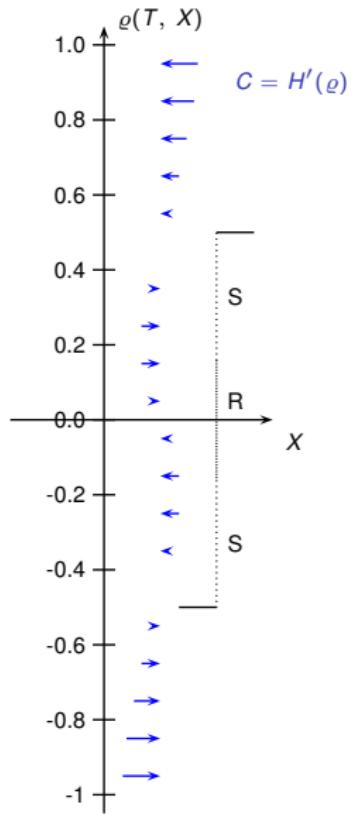
$A \oplus \ominus 0$ model



$A \oplus \ominus 0$ model

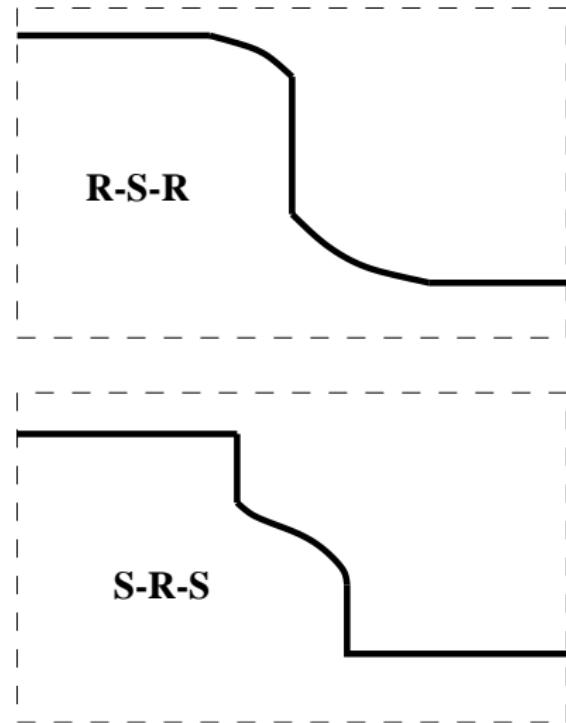


$A \oplus \ominus 0$ model



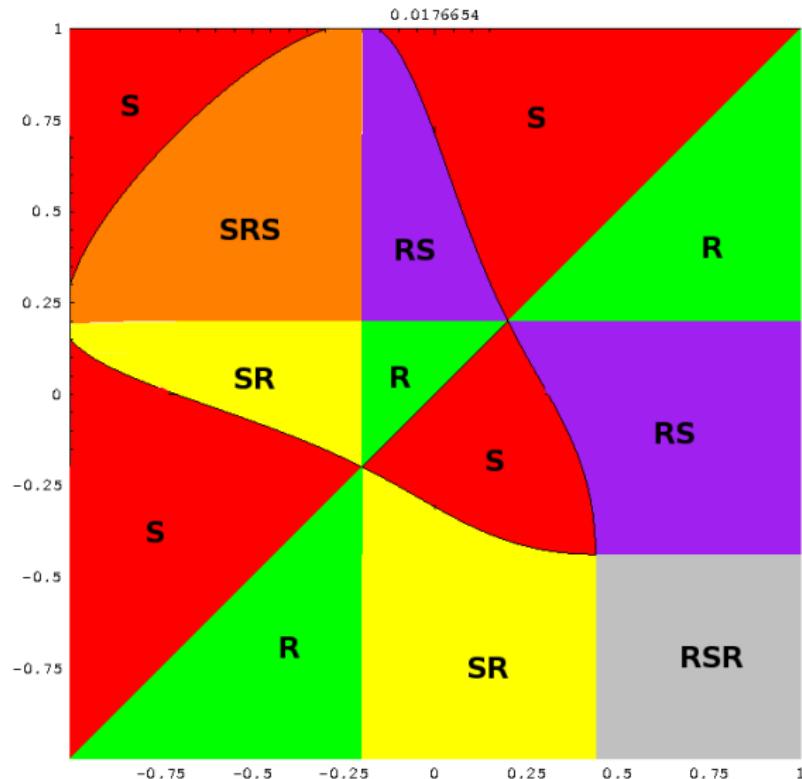
$A \oplus \ominus 0$ model

Examples for $\varrho(T, X)$:



$A \oplus \ominus 0$ model

Here is the full picture (**R**: rarefaction wave, **S**: Shock):



Thank you.