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The asymmetric zero range process

We need r non-decreasing.

Examples:
» ‘Classical’ ZRP: r(w;) = 1{w; > 0}.
» Independent walkers: r(w;) = wj.
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Models Asymmetric simple exclusion Zero range

Hills

Can we model sedimentation and erosion processes with these
surfaces?

Issues:
» Hills are not always straight «+ translation invariance.
» Most hillslopes are rather stationary < particle current.



Convex hills

Wikipedia



Models Zero range

Concave hills

Stockphotos4free




ASEP ZRP More

Product blocking measures

Solution: block particles (no current) and make their rates
asymmetric (non-constant density).

Can we have a reversible stationary distribution in product form:

wlw) = ®ui(wi);

,U/(Q) . rate(g N gir\vi—H) — H(Qimj—H) . rate(gimi—H N g) ?
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ASEP ZRP More

Asymmetric zero range process

,U/(Q) . rate(g N gir\vi—H) — H(gimi—H) . rate(gimi—H N g) ?

AZRP, classical:

pi(wiptivr (wip1) - pHw; > 0} = pi(w; — Vi (wivr +1) - q

Solution:  pj ~ Geometric<1 — <g)icon8t).



ASEP ZRP More

Asymmetric zero range process

,U/(Q) . rate(g N gir\vi—H) — H(gimi—H) . rate(gimi—H N g) ?

AZRP, independent walkers:

pi(wi)itipr(wis) - pwi = pilw; — Dpipr(Wipr +1) - qwipq + 1)

Solution:  pj ~ Poisson((g)iconSt).
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Further models

In fact product blocking measures are very general.
» ASEP
» K-exclusion (!)

» All zero range processes (“classical”, independent walkers,
g-zero range)

> / bricklayers processes
Other models can be stood up:
» ASEP

» g-exclusion

>



Product blocking measures

They are also very handy, due to reversibility.

Take a stationary, reversible Markov chain. Cut any of its
edges. It stays reversible stationary w.r.t. the same distribution.

In our case: freeze the boundaries to obtain a stationary hill
slope.



Hills Micro Hydro

Microscopic model
Our choice: AZRP with frozen boundaries. p > q: convex

H

12 3 ' ' L

to the right with rate p - r(wj)

Particles jump , u o \oft with rate q - r(w).
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Microscopic model

Notice:
» The height of the hill H is conserved, the product measure
is not ergodic.
» One-site marginals, given H, are in general not explicit.
» Except for independent walkers, where w; are Binomial.
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Microscopic model

Notice:
» The height of the hill H is conserved, the product measure
is not ergodic.
» One-site marginals, given H, are in general not explicit.
» Except for independent walkers, where w; are Binomial.



Hydrodynamics

o - - - - - - - - - - - - - - - - A A A A AAA
1 L aa

N
O-A-ALA.ALA.AA-A...---.-_-_____

A blocking measure is a microscopic object. Here is its scaling

o(x)

limit: = x , not very interesting.
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Hills Micro  Hydro

Scaling parameter: L
Blocking measure marginals depend on
(&)= (&)™

q q/ -
Scale p=4+7, g=13—

Then check {-Ew(7).

~=2
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H » Scaling parameter: L
» Blocking measure marginals depend on
()= (&)™
q q
o *»Scale p=3+7,q9=5-7.
Sece . » Then check L Ew;(7).
T2 3 ry

Notice: this is not KPZ scaling (p = 3 + I a= 5 - 7).

ng,- =

ar (Er(wi-1) — 2Er(w;) + Er(wit1))

(Er(wit1) — Er(wi—1)).

r~\~2 m\—s
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" » Scaling parameter: L
» Blocking measure marginals depend on
(8) = (2)"
q q
o *»Scale p=%+7,q9=%-7.

Sece . » Then check L Ew;(7).

T2 3 -

Notice: this is not KPZ scaling (p = } + I a= 5 - I

(Er(wi_1) — 2Er(w;) + Er(wis))

2
- %(Ef(wm) —Er(wj-1)).
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" » Scaling parameter: L
» Blocking measure marginals depend on
() =(®)"™
q q
, *>Scaep=3+},q9=25-7.
Sece . » Then check L Ew;(7).
T2 3 ry

1

Notice: this is not KPZ scaling (p = 5 + ﬁ q= ).

N —
&
<

d 1
d—TEw,- = ~(Er(wj_1) — 2Er(wj) + Er(wj;1))

2
- %(Ef(’w‘m) — Er(wi_1)).
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d 1
g Ewi = 5 (Br(wi1) = 2Er(w) + Er(wi+))

- %(Ef(wm) —Er(wj-1)).

which dictates diffusive scaling:

1., 7 1 )
»p=3+10=3-1;

> o(t, X) = Bwpy(L20);
» also define G(p) = E¢r(w):

d L2
ao =5
— YL(Er(wit1) — Er(wi_1)),

2
S olt, )= 1 2 Glolt, x)) ~ 27 Glolt, X))

Er(wi—1) — 2Er(wj) + Er(wit ))
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=

> p= 1? + ”Z , =
» o(t, x) = Ew,(L21);
» also define G(p) = E¢r(w):

How about the boundaries?

iEm _1 (Er(wz) — Er(wy)) —

I 5 (Er(wz) + Er(wq)),

~1=
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» also define G(p) = E¢r(w):
How about the boundaries?

iEm _1 (Er(wz) — Er(wy)) —

ar E (Ef(wg) + EI’(W1 )),

~1=



Hills Micro  Hydro

Hydrodynamics

» also define G(p) = E¢r(w):

How about the boundaries?

;’TEM - %(Er(wz) — Er(wy)) — %(Er(wz) +Er(w)),
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» also define G(p) = E¢r(w):

How about the boundaries?

;’TEM - %(Er(wz) — Er(wy)) — %(Er(wz) +Er(w)),
1Ld(7'd/L2) Ewi = é(Er(wg) — Er(w1)) — ’y(Er(wg) + Er(w1)),
0= 33 Glolt, 0) ~ 21G(alt, 0)).
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> p= % + ZL’ , =
» o(t, x) = Ewx(L?1);
» also define G(p) = E¢r(w):

How about the boundaries?

;’TEM = %(Er(wz) — Er(w)) — 7 (Er(we) + Er(wy)).
1Ld(7'd/L2) Ewi = é(Er(wg) — Er(w1)) — ’y(Er(wg) + Er(w1)),
0= 33 Glolt, 0) ~ 21G(alt, 0)).

Also: 0 = ;;XG(Q(Z‘, 1)) — 27G(o(t, 1)).
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2
(;jt (t, x) = ;aagG(Q( X)) — 2768 G(o(t, x)),
0= 12 Gle(t. 0) - 21G(e(t. 0)
0= 2 aelt. 1) - 21G(e(t, 1)

Convection-diffusion type equation with Robin boundary.

The time-stationary solution G(o(x)) = Ce** is consistent with
the stationary blocking measure.
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The stationary slope

Glo(x)) = Ceb
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The stationary slope
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Dynamics

Space scale: x € [0, 1] < we € hill.

Problem 1: The stationary hillslope will not tell us the time
scale.

~+ Observe relaxation to stationarity in Nature and in the PDE.
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Height

Gradient
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elled by hill particles.

Notice: Hill particles # our particles.
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( ), but this is not provided by the model.
One can then give an expected distance travelled by a hill
particle.
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H

Problem 2: Geologists want a prediction for
the hill particle flux, and the distance trav-
elled by hill particles.

Notice: Hill particles # our particles.
0

Seecoe ° This is not part of the core argument, in-
tes "/ stead, is done by heuristics:

» Erosion flow speed ~ average deposition rate pEr.

» Time of hill particle spent in the flow to be picked as a
constant or function of the slope p.

» Average hill particle flux is the same across the hill
( ), but this is not provided by the model.

One can then give an expected distance travelled by a hill
particle. Thank you.
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