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The Bernoulli(̺) distribution is time-stationary for any
(0 ≤ ̺ ≤ 1). Any translation-invariant stationary distribution is a
mixture of Bernoullis.
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(
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)
with rate q(ωi , ωi+1), where

◮ p and q are such that they keep the state space (ASEP,
ZRP),

◮ p is non-decreasing in the first, non-increasing in the
second variable, and q vice-versa (attractivity),

◮ they satisfy some algebraic conditions to get a product
stationary distribution for the process,

◮ they satisfy some regularity conditions to make sure the
dynamics exists.
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Integrated particle current

i
t=0

t

h t

0

0

hVt (t)

Vt

hVt(t) = height as seen by a moving observer of velocity V .

= net number of particles passing the window s 7→ Vs.

(Remember: particle current=change in height.)
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H : = E[growth rate] both depend on a parameter of the
stationary distribution.

◮ H(̺) is the hydrodynamic flux function.
◮ If the process is locally in equilibrium, but changes over

some large scale (variables X = εi and T = εt), then

∂T ̺(T , X ) + ∂X H(̺(T , X )) = 0 (conservation law).

◮ The characteristics is a path X (T ) where ̺(T , X (T )) is
constant.
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∂T ̺ + ∂X H(̺) = 0

∂T ̺ + H ′(̺) · ∂X ̺ = 0 (while smooth)

∂T ̺ + Ẋ (T ) · ∂X ̺ =
d

dT
̺(T , X (T )) = 0

So, Ẋ (T ) = H ′(̺) = : C is the characteristic speed.
If H(̺) is convex or concave, then the Rankine-Hugoniot speed
for densities ̺ and λ is

R =
H(̺) − H(λ)

̺ − λ
.

This would be the speed of a shock of densities ̺ and λ.
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Tool: the second class particle
States ω and ω only differ at one site.

Growth on the left:
rate≥rate
with rate-rate:
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••

A single discrepancy , the second class particle, is conserved.
Its position at time t is Q(t).
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Tool: the second class particle

Theorem (B. - Seppäläinen; also ideas from B. Tóth, H. Spohn
and M. Prähofer)
Started from (almost) equilibrium,

E(Q(t)) = C · t

in the whole family of processes.

C is the characteristic speed.

The second class particle follows the characteristics, people
have known this for a long time.



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

•

•

• •

•

• •

λ



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •

•

• • • •

̺

•

•

• •

•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •

•

• • • •

̺

•

•

• •

•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •

•

• • • •

̺

•

•

• •

•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •

•

• • • •

̺

•

•

• •

•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •
•

• • • •

̺

•

•

• •
•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •
•

• • • •

̺

•

•

• •
•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •
•

• • • •

̺

•

•

• •
•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • •
•

• • • •

̺

•

•

• •
•

• •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •

•

• • • • • • • • •

̺

•

•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •
•

• • • • • • • • •

̺

•
•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •
•

• • • • • • • • •

̺

•
•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •
•

• • • • • • • • •

̺

•
•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• •
•

• • • • • • • • •

̺

•
•

• • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • • • • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • • •

•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •
•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •
•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •
•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •
•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1

0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1

0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

•

• • • • • •

̺

• • • • • • •

λ

-2 -1

0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•
•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•
•

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

••

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

• •

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

• •

• • • • • •

̺

• • • • • • •

λ

-2 -1
0

1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•
•

• • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

• • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

• • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2



Models Hydrodynamics 2nd class Results Proof Other Single Many

Many second class particles

-5 0 5 10 15 i

• • • •

•

• • • • • • •

̺

• • • • • • •

λ

-2 -1 0 1 2

Picture:
The position X (t) of 0 follows the Rankine-Hugoniot speed R.
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Convex flux (some cases of AZRP):

C

λ

R

̺

H(̺)

̺

Recall C = H ′(̺) > R =
H(̺) − H(λ)
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Couple three processes, and X (t) to Q(t).
We’ll assume Q(t) ≤ X (t) can be achieved.
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Normal fluctuations:
Once we have Q(t) ≥ X (t) (convex) or Q(t) ≤ X (t) (concave),

Theorem (Ferrari-Fontes (ASEP); B. (TAZRP))

lim
t→∞

Var(hVt(t))
t

= Var(ω) · |C − V |

i
t=0

t

h t

0

0

hVt (t)

VtCt

Initial fluctuations are transported along the characteristics on
this scale.
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Abnormal fluctuations:
Once we have Q(t) ≥ X (t) (convex) or Q(t) ≤ X (t) (concave),
On the characteristics V = C,

Theorem (B. - Komjáthy - Seppäläinen (ASEP, some
special TAZRP’s so far, but...))

0 < lim inf
t→∞

Var(hCt(t))
t2/3

≤ lim sup
t→∞

Var(hCt(t))
t2/3

< ∞.

Important preliminaries were Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.

Other exclusion processes: Quastel and Valkó 2007.

There are limit distribution results for TASEP by Johansson
2000, Prähofer and Spohn 2001, Ferrari and Spohn 2006.
Their methods give limit distributions as well, but are very
model-dependent: they rewrite the model as a determinantal
process, and perform asymptotic analysis of the determinants.
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Upper bound

P{Q(t) is too large} ≤ P{X (t) is too large}

≤ P{too many ’s have crossed Ct}

≤ P{hCt(t) − hCt(t) is too large(λ)}.

Centering hCt(t) − hCt(t) brings in a second-order
Taylor-expansion of H(̺). This is another point where concavity of
the flux matters.

Optimize “too large(λ)” in λ, use Chebyshev’s inequality and
relate Var(hCt(t)) to Var(hCt(t)).

The computations result in (remember E(Q(t)) = Ct)

P{Q(t) − Ct ≥ u} ≤ c ·
t2

u4 · Var(hCt(t)).
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Theorem (B. - Seppäläinen; also ideas from B. Tóth, H. Spohn
and M. Prähofer)
Started from (almost) equilibrium,

Var(hCt(t)) = c · E|Q(t) − C · t |

in the whole family of processes.

Hence proceed with

P{Q(t) − Ct ≥ u} ≤ c ·
t2

u4 · Var(hCt(t))

= c ·
t2

u4 · E|Q(t) − C · t |.
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that is, E3 ≤ c · t2.

Var(hCt(t))
Thm
= const. · E|Q(t) − Ct |

= const. · E ≤ c · t2/3.
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The lower bound works with similar arguments: compare
models of which the densities differ by t−1/3, and use
connections between Q(t), X (t) and heights.
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Lower bound

In the upper bound, the relevant orders were

u (deviation of Q(t)) ∼ t2/3, ̺ − λ ∼ t−1/3.

The lower bound works with similar arguments: compare
models of which the densities differ by t−1/3, and use
connections between Q(t), X (t) and heights.

The critical feature in both the upper bound and lower bound
was Q(t) ≥ X (t) (convex) or Q(t) ≤ X (t) (concave).
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Coupling results

Model H(̺) is Feature? t2/3 law
TASEP concave Q(t) ≤ X (t) proved (B.-S.)

ASEP concave Q(t)≤X (t)+Err proved (B.-S.)

rate 1 TAZRP concave Q(t) ≤ X (t) proved (B.-K.)

concave exp rate
TAZRP

concave Q(t)≤X (t)+Err seems ok (B.-K.-S.)

convex exp rate
TABLP

convex Q(t)≥X (t)−Err might work (B.-K.-S.)
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This process mQ(t) is influenced by the background, and is
pretty complicated in general.

In the cases we succeeded so far, mQ(t) behaved nicely:
◮ Either mQ(t) ≤ 0 a.s. (TASEP, Rate 1 TAZRP),

◮ Or mQ(t)
d
≤ Geometric (ASEP, Concave exponential rate

TAZRP).

Generalizing requires finding more models with nice mQ(t)
behavior, or handle less nice cases of mQ(t) processes. This is
subject to future work.



Models Hydrodynamics 2nd class Results Proof Other Linear Nonconvex

Linear models

There are asymmetric models with linear hydrodynamics:
◮ The random average process (RAP),
◮ The AZRP with linear rates = independent random walkers.



Models Hydrodynamics 2nd class Results Proof Other Linear Nonconvex

Linear models

There are asymmetric models with linear hydrodynamics:
◮ The random average process (RAP),
◮ The AZRP with linear rates = independent random walkers.

In their cases, we have

lim
t→∞

Var(hCt(t))
t1/2

= . . . ,

even convergence of the finite-dimensional distributions of the
hCt(t) process to Gaussian limits is known (Seppäläinen 2005,
Ferrari and Fontes 1998, B., Rassoul-Agha and Seppäläinen
2006).
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Nonconvex, nonconcave

And there are attractive asymmetric models with nonlinear,
nonconvex and nonconcave hydrodynamics:

◮ 2-jump exclusion: ••• H(̺) is a cubic polynomial;
◮ A three-state process with variable rates (B. Tóth - I. Tóth).
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C

̺λ

R

̺

H(̺)

C > R

Q(t)
?
≥ X (t)

Inequality changes with the density... ?
Any coupling must be very very tricky.
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Thank you.
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