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I.i.d. Bernoulli(̺) distribution is time-stationary for any

(0 ≤ ̺ ≤ 1).
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ωi + 1
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)

with rate q(ωi , ωi+1), where

◮ p and q are such that they keep the state space (ASEP,

ZRP),

◮ p is non-decreasing in the first, non-increasing in the

second variable, and q vice-versa (attractivity),

◮ they satisfy some regularity conditions to make sure the

dynamics exists,

◮ they satisfy some algebraic conditions to get a product

stationary distribution for the process.
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Under these conditions, for every feasible density ̺,

(ωi)i∈Z ∼ i.i.d. µ̺ = : µ̺

is stationary for some explicit µ̺ probability distribution on Z.

Here

̺ = E
̺ ωi =

∑

z

zµ̺(z).

Theorem
For each feasible ̺, the process

(

ω(t)
)

t∈R
in stationary

distribution µ̺ is ergodic (for time shifts).
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Integrated particle current

i

t=0

t

h t

0

0

hVt(t)

Vt

hVt(t) = height as seen by a moving observer of velocity V .

= net number of particles passing the window s 7→ Vs.

(Remember: particle current=change in height.)
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Tool: the second class particle

States η and ω only differ at two neighbouring sites:

Difference vanishes by any time with positive probability.

i

• ••
• •• ••

••
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