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Asymmetric simple exclusion

Particles try to jump

to the right with rate p,
to the left withrate g =1 —p < p.

The jump is suppressed if the destination site is occupied by
another particle.

l.i.d. Bernoulli(p) distribution is time-stationary for any
(0<o<).
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(wi+1> <Wi+1 + 1) plwis wivt)
wj wj+ 1 .
— with rate q(wj, wj,1), where
Wit wip1 — 1

» pand g are such that they keep the state space (ASEP,
ZRP),

> pis non-decreasing in the first, non-increasing in the
second variable, and q vice-versa (attractivity),

> they satisfy some regularity conditions to make sure the
dynamics exists,

» they satisfy some algebraic conditions to get a product
stationary distribution for the process.
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Under these conditions, for every feasible density o,

(wi)iez ~iid. p8 =: p?

is stationary for some explicit ¢ probability distribution on Z.

Here
o=FEluw;= ZZMQ(Z).
z

Theorem
For each feasible o, the process (w(1)),
distribution 11° is ergodic (for time shifts).

in stationary
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Integrated particle current

ht

hve (D)}

o

hy:(t) = height as seen by a moving observer of velocity V.
= net number of particles passing the window s — Vs.

(Remember: particle current=change in height.)



The question

... is the properties of hy;(t) under the time-stationary evolution.



The question

... is the properties of hy;(t) under the time-stationary evolution.

> E(hy(t)) = t- E(growth rate) is easily computed with
martingales.



Ergodicity

The question

.. is the properties of h,(t) under the time-stationary evolution.
> E(hy(t)) = t- E(growth rate) is easily computed with
martingales.

» Law of Large Numbers: hV'T(t) =2 E(growth rate) p¢-a.s.
—00 -
by ergodicity arguments.



The question

.. is the properties of hy;(t) under the time-stationary evolution.

> E(hy(t)) = t- E(growth rate) is easily computed with
martingales.

» Law of Large Numbers: hV'T(t) =2 E(growth rate) p¢-a.s.
—00 -
by ergodicity arguments.

» Var(hy(t))? That is, time-order and scaling limit? Central
Limit Theorem, if relevant at all?



The question

... is the properties of hy;(t) under the time-stationary evolution.

> E(hy(t)) = t- E(growth rate) is easily computed with
martingales.

» Law of Large Numbers: thT(t) =2 E(growth rate) p¢-a.s.
—00 -
by ergodicity arguments.

» Var(hy(t))? That is, time-order and scaling limit? Central
Limit Theorem, if relevant at all?

» Distributional limit of hy4(t) in the correct scaling?



The question

... is the properties of hy;(t) under the time-stationary evolution.

> E(hy(t)) = t- E(growth rate) is easily computed with
martingales.
» Law of Large Numbers: hV'T(t) = E(growth rate) p¢-a.s.
—00 -
by ergodicity arguments.
» Var(hy(t))? That is, time-order and scaling limit? Central
Limit Theorem, if relevant at all?

» Distributional limit of hy4(t) in the correct scaling?



2™ class

Tool: the second class particle

States n and w only differ at one site.




2™ class

Tool: the second class particle

States n and w only differ at one site.

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
N rate<rate

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
N rate<rate
with rate:

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:

%e %o



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate:

oo oo
o



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
N rate<rate
with rate-rate:

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:




2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:




2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:




2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:




2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:




2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

o0 oo
°
oo %o

|

Growth on the right:
rate<rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the right:
rate<rate
with rate-rate:

T
o o
(e 000)(]

|



2™ class

Tool:

the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate N

oo oo
QD)



Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate N
with rate:

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate:

°
% %o
oo oo

*l



Tool: the second class particle

States n and w only differ at one site.

.
-

Growth on the left:
rate>rate N
with rate:



Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate N
with rate-rate:

oo oo
QD)



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:

°
% oo
o0 oo



2™ class

Tool: the second class particle

States n and w only differ at one site.

Growth on the left:
rate>rate
with rate-rate:

QD)
oo oo



2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




Tool: the second class particle

States n and w only differ at two neighbouring sites:

i

QD)
QD)
o0 oo



2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:

1




2™ class

Tool: the second class particle

States n and w only differ at two neighbouring sites:
Difference vanishes by any time with positive probability.

1
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» Which allows any permutation of w; values in space i € Z.

» Hewitt-Savage 0-1 law: a function that’s invariant to any
permutation of i.i.d. random variables is a.s. constant.
QED.
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We have no clue when not i.i.d. Thank you.
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