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a brick is added with rate r(ωi) + r(−ωi+1).

A mirror-symmetrized version of the extended zero range. Left

and right jumps of the dynamics cooperate, if

(r(ω) · r(1 − ω) = 1; r non-decreasing).
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For the ASEP: the Bernoulli(̺) distribution is time-stationary for

any (0 ≤ ̺ ≤ 1).
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any (0 ≤ ̺ ≤ 1).

For zero range, bricklayers: the product of marginals

µθ(ωi) =
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θωi

r(ωi)!
·
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Z (θ)

is stationary for any θ ∈ R that makes Z (θ) finite.
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Stationary product distributions

For the ASEP: the Bernoulli(̺) distribution is time-stationary for

any (0 ≤ ̺ ≤ 1).

For zero range, bricklayers: the product of marginals

µθ(ωi) =
e
θωi

r(ωi)!
·

1

Z (θ)

is stationary for any θ ∈ R that makes Z (θ) finite.

Here r(0)! : = 1, and r(z + 1)! = r(z)! · r(z + 1) for all z ∈ Z.
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The density ̺ = ̺(θ) := Eθ(ω) and the hydrodynamic flux

H = Hθ : = Eθ[growth rate] both depend on a parameter ̺ or θ

of the stationary distribution.
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Hydrodynamics (very briefly)

For the ASEP, H(̺) = (p − q) · ̺(1 − ̺), concave.

For the zero range and bricklayers, H(̺) is convex/concave if

the rate function r is convex/concave.

Special case: r(ω) = e
βω; H(̺) is convex.

 TAGEZRP, TAEBLP.

Special case: r(ω) = 1 − q
ω; H(̺) is concave.

 TAq-ZRP.

 Either convex or concave, discontinuous shock solutions

exist.

∂T̺+ ∂X H(̺) = 0 ̺ = E(ω), H(̺) = Eθ(̺)[growth rate]
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Shock wave

X

̺(T , X)

0.2

0.4

0.6

0.8

1.0

Traffic jam

̺left

̺right

Discontinuous shock appears. Its velocity is given by the

Rankine-Hugoniot speed for densities ̺left and ̺right

R =
H(̺left)− H(̺right)

̺left − ̺right
.

Let’s look for the corresponding microscopic structure.
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The second class particle

States ω and ω only differ at one site.

Growth on the left:

rate≥rate

with rate-rate:

i

• ••
•• •• ••

••

A single discrepancy , the second class particle, is conserved.
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Earlier results: as seen by the second class particle

Theorem (Derrida, Lebowitz, Speer ’97)

For the ASEP, the Bernoulli product distribution with densities

-3 -2 -1 0 1 2 3

̺left
0

̺right

̺i

i

is stationary for the process, as seen from the second class

particle, if
̺right · (1 − ̺left)

̺left · (1 − ̺right)
=

p

q
.
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For the ASEP, the Bernoulli product distribution with densities

-3 -2 -1 0 1 2 3

̺left
0

1
̺right

̺i

i

is stationary for the process, as seen from the second class

particle, if
̺right · (1 − ̺left)

̺left · (1 − ̺right)
=

p

q
.



Models Hydrod. 2nd class Before Question Answer

Earlier results: random walking shocks

Theorem (Belitsky and Schütz ’02)

For the ASEP with the very same parameters, the Bernoulli

product distribution µ0 with densities

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i

evolves according to

d

dt
µ0 = p ·

̺left

̺right
· [µ−1 − µ0] + q ·

̺right

̺left
· [µ1 − µ0].
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d
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Multiple shocks and their interactions are also handled.
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:
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For the TAEBLP, the product distribution of marginals µ̺i with

densities
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̺right
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is stationary for the process, as seen from the second class

particle, if

̺left − ̺right = 1.
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Theorem (B. ’04)

For the very same parameters, the product distribution µ0 with
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The question

 Of course, the drift of the walk X (t) is the same as the

expected drift of the second class particle in its stationary

shock distribution,

and also agrees with the Rankine Hugoniot formula for the

speed of shocks.

Is it the second class particle that performs the simple random

walk in the middle of a shock?

In what sense? Annealed w.r.t. the initial shock distribution...

But what does this mean?
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Here is the question:

For the ASEP, let ν0 be the Bernoulli product distribution

ν0 =
(

⊗

i<0

µ̺left

)

⊗
(

δ
)

⊗
(

⊗

i>0

µ̺right

)

,

where

µ̺(ω = ω) =

{

̺, if ω = 1,

1 − ̺, if ω = 0;
δ(0, 1) = 1.
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1
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̺i

i



Models Hydrod. 2nd class Before Question Answer

Here is the question:

For the ASEP, let ν0 be the Bernoulli product distribution

-3 -2 -1 0 1 2 3

̺left
0

1
̺right

̺i

i

Does it satisfy

d

dt
ν0 = p ·

̺left

̺right
· [ν−1 − ν0] + q ·

̺right

̺left

· [ν1 − ν0]

when
̺right · (1 − ̺left)

̺left · (1 − ̺right)
=

p

q
?
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Here is the question:

For the TAEBLP, let ν0 be the product distribution

ν0 =
(

⊗

i<0

µ̺left

)

⊗
(

δ̺right

)

⊗
(

⊗

i>0

µ̺right

)

,

where

µ̺(ω = ω) =
e
θ(̺)·ω

r(ω)!
·

1

Z (θ(̺))
;

δ̺(ω, ω + 1) =
e
θ(̺)·ω

r(ω)!
·

1

Z (θ(̺))
.

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i
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Here is the question:
For the TAEBLP, let ν0 be the product distribution

ν0 =
(

⊗

i<0

µ̺left

)

⊗
(

δ̺right

)

⊗
(

⊗

i>0

µ̺right

)

,

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i

Does it satisfy

d

dt
ν0 = Cleft · [ν−1 − ν0] + Cright · [ν1 − ν0].

when

̺left − ̺right = 1 ?
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Here is the answer:

Theorem (Gy. Farkas, P. Kovács, A. Rákos, B. ’10)

Yes, and yes. Even more, the thing also works for the

TAGEZRP.

The second class particle, annealed w.r.t. the initial shock

product distribution, does perform a drifted simple random walk

in these cases.

This explains both types of the previous results.

The presence of a second class particle in the measure

significantly simplifies the computations.  This is how we

discovered the TAGEZRP.
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Nice, since

. . . well, isn’t it? Normally, the second class particle is a terribly

complicated object. It sometimes has t2/3-scale fluctuations!

It also gives a rough tail bound for the second class particle in a

flat initial distribution; essential in the t2/3 proofs for the

exponential models.
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◮ ASEP: Fundamental example, nice combinatorics, unique

second class particle.
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◮ EBLP, TAGEZRP: Nice convex rates;

ω ∼ µ̺ ⇒ ω + 1 ∼ µ̺+1.
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◮ ASEP: Fundamental example, nice combinatorics, unique

second class particle.

-3 -2 -1 0 1 2 3

̺left
0

1
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̺i

i

◮ EBLP, TAGEZRP: Nice convex rates;

ω ∼ µ̺ ⇒ ω + 1 ∼ µ̺+1.

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i

1

◮ TAq-ZRP: Nice concave rates; Bethe Ansatz, exact

solvability. . . ?
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The ZRP family is simple enough that we can feed it into the

Big RandomWalkingShocksMachine.

Here’s what comes out (L. Duffy, D. Pantelli, B. ’18).

◮ AZRP with linear rates, r(ω) = ω, no shock (̺left = ̺right).

Independent walkers. . .
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The story of a search

The ZRP family is simple enough that we can feed it into the

Big RandomWalkingShocksMachine.

Here’s what comes out (L. Duffy, D. Pantelli, B. ’18).

◮ AZRP with linear rates, r(ω) = ω, no shock (̺left = ̺right).

Independent walkers. . .

◮ TAGEZRP; r(ω) = e
βω. We knew this.

◮ In fact, r(ω) = e
βω + const. When const = −1, TAEZRP.

◮ Surprise: TAq-ZRP; r(ω) = 1 − q
ω.
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TAq-ZRP

-3 -2 -1 0 1 2 3

̺left
0

1
̺right

̺i

i

ASEP

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i

1

TAGEZRP

-3 -2 -1 0 1 2 3

̺left

̺right

̺i

i

1
TAq-ZRP :-(

Impossible to find this without the second class particle.
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Interactions:
We also see that shocks+second class particles

◮ locally interact by exclusion in ASEP, and don’t locally

interact in TAGEZRP, TAEBLP, but

◮ their jump rates depend on their ranks, making them attract

each other such that

◮ their center of mass has the Rankine-Hugoniot velocity for

the large shock they jointly represent.

Macroscopically it’s one shock after all.

◮ It’s a mess for TAq-ZRP. Shocks+second class particles

locally interact and their jump rates depend on ranks,

◮ we could only verify Rankine-Hugoniot for two shocks.

Thank you.
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A similar result: branching coalescing random walk

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• ••

With rate br : branching to the right

The Bernoulli(̺∗) distribution is stationary for

̺∗ =
bl + br

bl + br + cl + cr
.
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Earlier results: as seen by the rightmost particle

Theorem
For the BCRW, the Bernoulli product distribution with densities

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

is stationary for the process, as seen from the rightmost

particle.
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Earlier results: random walking shocks

Theorem (Krebs, Jafarpour and Schütz ’03)

For the BCRW with the very same parameters, the Bernoulli

product distribution µ0 with densities

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

evolves according to

d

dt
µ0 =

cl · (bl + br ) + q · (cl + cr )

bl + br + cl + cr
· [µ

−1 − µ0]

+ p ·
bl + br + cl + cr

cl + cr
· [µ1 − µ0].



Models Hydrod. 2nd class Before Question Answer

Earlier results: random walking shocks

Interpretation: random walking shock µ(t) = µX(t):

with rate
cl ·(bl+br )+q·(cl+cr )

bl+br+cl+cr
:

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

X(t) = 0
µ0

d

dt
µ0 =

cl · (bl + br ) + q · (cl + cr )

bl + br + cl + cr
· [µ

−1 − µ0]

+ p ·
bl + br + cl + cr

cl + cr
· [µ1 − µ0].
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Earlier results: random walking shocks

Interpretation: random walking shock µ(t) = µX(t):

with rate
cl ·(bl+br )+q·(cl+cr )

bl+br+cl+cr
:

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

X(t) = −1
µ−1

d

dt
µ0 =

cl · (bl + br ) + q · (cl + cr )

bl + br + cl + cr
· [µ

−1 − µ0]

+ p ·
bl + br + cl + cr

cl + cr
· [µ1 − µ0].
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Earlier results: random walking shocks

Interpretation: random walking shock µ(t) = µX(t):

with rate p · bl+br+cl+cr

cl+cr
:

-3 -2 -1 0 1 2 3
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̺i
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X(t) = 0
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Earlier results: random walking shocks

Interpretation: random walking shock µ(t) = µX(t):

with rate p · bl+br+cl+cr

cl+cr
:
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Earlier results: random walking shocks

Interpretation: random walking shock µ(t) = µX(t):

with rate p · bl+br+cl+cr

cl+cr
:

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

X(t) = 1

µ1

d

dt
µ0 =

cl · (bl + br ) + q · (cl + cr )

bl + br + cl + cr
· [µ

−1 − µ0]

+ p ·
bl + br + cl + cr

cl + cr
· [µ1 − µ0].
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The question:

Is it the rightmost particle that performs the random walk?
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Here is the question:
For the BCRW, let ν0 be the Bernoulli product distribution

ν0 =
(

⊗

i<0

µ̺∗
)

⊗
(

δ
)

⊗
(

⊗

i>0

µ0
)

,

where δ(0) = 1.

-3 -2 -1 0 1 2 3

̺∗

̺ = 0

̺i

i

1

Does it satisfy

d

dt
ν0 =

cl · (bl + br ) + q · (cl + cr )

bl + br + cl + cr
· [ν−1 − ν0]

+ p ·
bl + br + cl + cr

cl + cr
· [ν1 − ν0]?
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The answer

◮ ... is, of course, yes again. [Gy. Farkas, P. Kovács, A.

Rákos, B. ’10]
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The answer

◮ ... is, of course, yes again. [Gy. Farkas, P. Kovács, A.

Rákos, B. ’10]

◮ Fronts of the other direction: 0 − 1 − ̺∗ can also be

handled.

Thank you.
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