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a brick is added with rate r(w;) + r(—wjy1).
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The totally asymmetric bricklayers process

eSS Ran () = ()

a brick is added with rate r(w;) + r(—wjy1).

A mirror-symmetrized version of the extended zero range. Left
and right jumps of the dynamics cooperate, if
(r(w)-r(1 —w)=1; rnon-decreasing).
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The density o0 = o(#) : = E?(w) and the hydrodynamic flux
H = HY : = E?[growth rate] both depend on a parameter o or 6
of the stationary distribution.

» H(o) = H% is the hydrodynamic flux function.

» If the process is locally in equilibrium, but changes over
some large scale (variables X = ei and T = ¢t), then

8TuQ(T’ X)+8XH(Q(T> X)):O ( )-

dr0+ OxH(o) =0 o= E(w), H(o)=E’[growth rate]
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Hydrodynamics (very briefly)
For the ASEP, H(0) = (p — q) - o(1 — 0), concave.

For the zero range and bricklayers, H(o) is convex/concave if
the rate function r is convex/concave.

Special case: r(w) =e?;  H(p) is convex.

~ TAGEZRP, TAEBLP.

Special case: r(w) =1 — gv; H(p) is concave.
~ TA1-ZRP.

~ Either convex or concave, discontinuous shock solutions
exist.

Oro+ 0xH(0) =0 0=E(w), H(o)=E"“)[growth rate]
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The second class particle

States w and w only differ at one site.

rate>rate
with rate-rate:

;

B

. . t / o
A single discrepancyt, the second class particle, is conserved.
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Here is the question:
For the TAEBLP, let 1y be the product distribution

vy = <® Mgleﬂ) ® ( Qright) ® <® IuQright)’
i<0 i>0

Qi

Does it satisfy

d
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dt

when
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Theorem (Gy. Farkas, P. Kovacs, A. Rakos, B. '10)

Yes, and yes. Even more, the thing also works for the
TAGEZRP.

This explains both types of the previous results.

The presence of a second class particle in the measure
significantly simplifies the computations. ~~ This is how we
discovered the TAGEZRP.
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...well, isn’t it? Normally, the second class particle is a terribly
complicated object. It sometimes has t°/2-scale fluctuations!

It also gives a rough tail bound for the second class particle in a
flat initial distribution; essential in the 3/ proofs for the
models.
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0
Oleft 0
[ 3 =2 T o 1 2 3
» EBLP, TAGEZRP: Nice convex rates;
Wl = w41~ et
Qi
Oleft
Oright
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» TAq-ZRP: Nice concave rates; Bethe Ansatz, exact
solvability. .. ?
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The story of a search

The ZRP family is simple enough that we can feed it into the
Big RandomWalkingShocksMachine.
Here’s what comes out (L. Duffy, D. Pantelli, B. '18).

» AZRP with linear rates, r(w) = w, no shock (gieit = oright)-

» TAGEZRP; r(w) = .
» Infact, r(w) = e’ + const. When const = —1, TAEZRP.
» Surprise: TAq-ZRP; r(w) =1 —q“.
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1
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S
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Qi
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Impossible to find this without the second class particle.
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Interactions:
We also see that shocks+second class particles

>

locally interact by exclusion in ASEP, and don’t locally
interact in TAGEZRP, TAEBLP, but

their jump rates depend on their ranks, making them attract
each other such that

their center of mass has the Rankine-Hugoniot velocity for
the large shock they jointly represent.

It's a mess for TAq-ZRP. Shocks+second class particles
locally interact and their jump rates depend on ranks,

we could only verify Rankine-Hugoniot for two shocks.

Thank you.
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The Bernoulli(p*) distribution is stationary for

b +br+c+c

0



Earlier results: as seen by the rightmost particle

Theorem
For the BCRW, the Bernoulli product distribution with densities

is stationary for the process, as seen from the



Earlier results: random walking shocks

Theorem (Krebs, Jafarpour and Schiitz '03)

For the BCRW with the very same parameters, the Bernoulli
product distribution 1.y with densities

evolves according to

i :C/-(b/-i-br)-l-Q'(C/-i-Cr).[M = ol
dt'uo b+ br+c +cr - 0
b+ br+c+c
+p g — ol

C/+Cr
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The question:

Is it the rightmost particle that performs the random walk?



Answer

Here is the question:
For the BCRW, let 1 be the Bernoulli product distribution

o= (@) o ()0 (®:).

where 0(0) = 1.

Does it satisfy

iy:C/'(b/+br)+CI‘(C/+Cr)'[V )
dt ° b+ b, +c+c -t
b +b-+c+c
_'_p‘l r / r‘[V1—V0]?

C/+Cr



The answer

» ... is, of course, yes again. [Gy. Farkas, P. Kovacs, A.
Rakos, B. '10]



The answer

» ... is, of course, yes again. [Gy. Farkas, P. Kovacs, A.
Rakos, B. '10]

» Fronts of the other direction: 0 — 1 — o* can also be
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