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The Bernoulli(̺) distribution is time-stationary for any

(0 ≤ ̺ ≤ 1). Any translation-invariant stationary distribution is a

mixture of Bernoullis.
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Totally asymmetric zero range process

Extremal translation-invariant stationary distributions are still

product, and rather explicit in terms of r(·).

Two special cases:

◮ r(ωi) = 1{ωi > 0}: classical zero range; ωi ∼ Geom(θ).

◮ r(ωi) = ωi : independent walkers; ωi ∼ Poi(θ).
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Totally asymmetric bricklayers process

i i + 1

}

ωi+1=−1

ωi ∈ Z

(

ωi

ωi+1

)

||
(

1

−1

)

a brick is added with rate [r(ωi) + r(−ωi+1)]

(r(ω) · r(1 − ω) = 1; r non-decreasing).
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Totally asymmetric bricklayers process

Extremal translation-invariant stationary distributions are still

product, and rather explicit in terms of r(·).

A special case: r(ωi) = e
βωi : ωi ∼ discrete Gaussian( θ

β
, 1√

β
).
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A single discrepancy , the second class particle, is conserved.

Its position at time t is Q(t).
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Ferrari-Kipnis ’95 for TASEP

Blue TASEP ω:

Bernoulli(̺) for sites {. . . , −2, −1, 0},

Bernoulli(λ) for sites {1, 2, 3, . . . }.

Black TASEP η:

Bernoulli(̺) for sites {. . . , −3, −2, −1},

Bernoulli(λ) for sites {0, 1, 2, . . . }.

-3 -2 -1 0 1 2 3

̺

λ

̺i

i

hi(t), gi(t) are the respective numbers of particles jumping over
the edge (i , i + 1) by time t (i > 0).
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◮ ωi(0) = ηi(0) ∼ Bernoulli(̺) for i < 0

◮ (ω0(0), η0(0)) = (0, 0) w. prob. 1 − ̺
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Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = (̺− λ) · P{Q(t) > i}.
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Ferrari-Kipnis ’95 for TASEP, Part 2

Second realization:

ωi(t) ≡ ηi−1(t) ∀i , ∀t .
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Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = (̺− λ) · P{Q(t) > i},
Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = Eηi(t)− Eηi(0),



Models Hydro 2nd cl F-K (TASEP) Gen.

Ferrari-Kipnis ’95 for TASEP

Thus,

Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = (̺− λ) · P{Q(t) > i},
Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = Eηi(t)− Eηi(0),

P{Q(t) > i} =
Eηi(t)− Eηi(0)

̺− λ
.



Models Hydro 2nd cl F-K (TASEP) Gen.

Ferrari-Kipnis ’95 for TASEP

Thus,

Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = (̺− λ) · P{Q(t) > i},
Ehi(t)− Egi(t) = E(hi(t)− gi(t)) = Eηi(t)− Eηi(0),

P{Q(t) > i} =
Eηi(t)− Eηi(0)

̺− λ
.

Combine with hydrodynamics to conclude

Q(t)

t
⇒

{

shock velocity in a shock,

U
(

H ′(̺), H ′(λ)
)

in a rarefaction wave.
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Let’s generalise

Other models have more than 0 or 1 particles per site. How do

we start the second class particle?

◮ Shall we do

◦
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••
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? Or . . .
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we start the second class particle?

◮ Shall we do

◦
•

? Or •
••

? Or ••
••
•

? Or . . .

◮ Recall for TASEP we increased λ to ̺ by adding or not

adding a 2nd class particle.

(ω0(0), η0(0)) = (0, 0) w. prob. 1 − ̺
(ω0(0), η0(0)) = (1, 0) w. prob. ̺− λ
(ω0(0), η0(0)) = (1, 1) w. prob. λ
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Let’s generalise: problems with coupling

Fix λ < ̺ ≤ λ+ 1. Is there a joint distribution of (ω0, η0) such

that

◮ the first marginal is ω0 ∼ stati. µ̺;

◮ the second marginal is η0 ∼ stati. µλ;

◮ η0 ≤ ω0 ≤ η0 + 1?
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Let’s generalise: problems with coupling

Fix λ < ̺ ≤ λ+ 1. Is there a joint distribution of (ω0, η0) such

that

◮ the first marginal is ω0 ∼ stati. µ̺;

◮ the second marginal is η0 ∼ stati. µλ;

◮ η0 ≤ ω0 ≤ η0 + 1?

Proposition

◮ Of course for Bernoulli (TASEP).

◮ No for Geometric (classical TAZRP with r(ωi) = 1{ωi > 0}).

◮ No for Poisson (indep. walkers with r(ωi) = ωi ).

◮ Yes for discrete Gaussian (bricklayers with r(ωi ) = e
βωi ).
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Let’s generalise

Keep calm and couple anyway.

Find a coupling measure ν with

◮ first marginal ω0 ∼ stati. µ̺;

◮ second marginal η0 ∼ stati. µλ;

◮ zero weight whenever ω0 /∈ {η0, η0 + 1}.

Not many choices:

ν(x , x) = µ̺{−∞ . . . x} − µλ{−∞ . . . x − 1},
ν(x + 1, x) = µλ{−∞ . . . x} − µ̺{−∞ . . . x},

ν = zero elsewhere.
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Let’s generalise

ν(x , x) = µ̺{−∞ . . . x} − µλ{−∞ . . . x − 1},
ν(x + 1, x) = µλ{−∞ . . . x} − µ̺{−∞ . . . x},

ν = zero elsewhere.

◮ Bad news: ν(x , x) can be negative (e.g., Geom., Poi).

◮ Good news: Who cares? No 2nd class particle there.

◮ Good news: ν(x + 1, x) ≥ 0 (attractivity).

We can still use the signed measure ν formally, as we only care

about ν(x + 1, x). Scale this up to get the initial distribution at

the site of the second class particle:

µ(ω0, η0) = µ(η0 + 1, η0) =
ν(η0 + 1, η0)
∑

x ν(x + 1, x)
=

ν(η0 + 1, η0)

̺− λ
.
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Let’s generalise

µ(ω0, η0) =
ν(η0 + 1, η0)

̺− λ

◮ is a proper probability distribution;

◮ actually agrees with the coupling measure ν conditioned

on a 2nd class particle when ν behaves nicely (Bernoulli,

discr.Gaussian);
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Let’s generalise

Theorem
Starting in

⊗

i<0

µ̺

i
⊗ µ0 ⊗

⊗

i>0

µλ
i ,

lim
N→∞

P

{Q(NT )

N
> X

}

=
̺(X , T )− λ

̺− λ

where ̺(X , T ) is the entropy solution of the hydrodynamic

equation with initial data

̺ on the left

λ on the right.
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What do we have?

lim
N→∞

P

{Q(NT )

N
> X

}

=
̺(X , T )− λ

̺− λ

 The solution ̺(X , T ) is the distribution of the velocity for Q.

◮ Shock: distribution is step function, velocity is deterministic

(LLN).

◮ Rarefaction wave: distribution is continuous, velocity is

random (e.g., Uniform for TASEP).
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A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

ωi = −1, 0, 1;

(0, −1) → (−1, 0) with rate
1

2
,

(1, 0) → (0, 1) with rate
1

2
,

(1, −1) → (0, 0) with rate 1,

(0, 0) → (−1, 1) with rate c.
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A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Hydrodynamic flux H(̺), for certain c:

0
-1 -0.5 0 0.5 1
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A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)
Here is what can happen (R: rarefaction wave, S: Shock):
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A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Examples for ̺(T , X ):

R-S-R S-R-S

lim
N→∞

P

{Q(NT )

N
> X

}

=
̺(X , T )− λ

̺− λ

 The solution ̺(X , T ) is the distribution of the velocity for Q.

I haven’t seen a walk with a random velocity of mixed distribution

before.
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Storytelling. . .

µ(ω0, η0) =
ν(η0 + 1, η0)

̺− λ

In the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen)

we had to start the second class particle in a ̺ = λ flat

environment. We came up with a measure µ̂ for this which

worked nicely with our formulas. But at that time we had no

idea why.

As it turns out: µ̂ = lim
λր̺

µ.
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Symmetric case

Everything works with partially asymmetric models (allow left

jumps too).

In fact everything works for symmetric models as well. The

hydrodynamic scaling is diffusive there with the limit being of

heat equation type. In this case:
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Symmetric case

Theorem (Symmetric version)

Starting in
⊗

i<0

µ̺

i ⊗ µ0 ⊗
⊗

i>0

µλ
i ,

lim
N→∞

P

{Q(NT )√
N

> X
}

=
̺(X , T )− λ

̺− λ

where ̺(X , T ) is the entropy solution of the hydrodynamic

equation with initial data

̺ on the left

λ on the right.

SSEP: CLT (of course. . . ). Other models: interesting!
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One more result

Theorem
If µ̺ are the stationary product marginals then, under our initial

distribution, ηQ(t)(t) is stationary in time.

Proof.
Repeat the argument with EΦ

(

ηi(t)
)

instead of Egi(t).
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One more result

Theorem
If µ̺ are the stationary product marginals then, under our initial

distribution, ηQ(t)(t) is stationary in time.

Proof.
Repeat the argument with EΦ

(

ηi(t)
)

instead of Egi(t).

This was not even a question with exclusion.

Only the site Q(t)!



TASEP and the corner growth model

1



TASEP: Interacting particles

✲
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times ✐∼ Exponential(1).

 Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.
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Therefore:
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The competition interface
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(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

126



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

•

•

•

·

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

127



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

•

•

•

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

128



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

•

•

•

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

129



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

•

•

•

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

130



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

•

•

•

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

131



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

132



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

133



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

134



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

135



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

136



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

137



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

138



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

139



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

140



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

141



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

142



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

143



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

144



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

145



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

146



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

147



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

148



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

149



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

150



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

151



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

152



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

153



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

154



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

155



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

156



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

157



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

158



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

159



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

160



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

161



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

162



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

163



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

164



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

165



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

166



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

167



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

168



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

169



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

170



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

171



The competition interface

✲

✻

0 1 2 i
0

1

2

j

• • • •

• •

• •

• •

• •

• • • •

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m,n), then Gmn is not sensi-

tive to decreasing the ✐ weights on the j-axis.

If it passes below (m,n), then Gmn is not sen-

sitive to decreasing the ✐weights on the i-axis.

Thank you.

172


	The models
	Simple exclusion
	Zero range
	Bricklayers
	

	Hydrodynamics
	The second class particle
	Ferrari-Kipnis for TASEP
	Let's generalise

