How to initialise a second class particle? Joint with Attila László Nagy

Márton Balázs

University of Bristol

Advances in Last Passage Percolation 26 June, 2019.

The models

Simple exclusion
Zero range
Bricklayers

Hydrodynamics

The second class particle

Ferrari-Kipnis for TASEP

Let's generalise

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(() distribution; $\omega_{i}=0$ or 1 .
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli(ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

Totally asymmetric simple exclusion

Bernoulli (ϱ) distribution; $\omega_{i}=0$ or 1.
Particles try to jump to the right with rate 1.
The jump is suppressed if the destination site is occupied by another particle.

The Bernoulli(ϱ) distribution is time-stationary for any $(0 \leq \varrho \leq 1)$. Any translation-invariant stationary distribution is a mixture of Bernoullis.

Totally asymmetric zero range process

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

Totally asymmetric zero range process

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Particles jump to the right with rate $r\left(\omega_{i}\right) \quad$ (r non-decreasing).

Totally asymmetric zero range process

Extremal translation-invariant stationary distributions are still product, and rather explicit in terms of $r(\cdot)$.

Two special cases:

- $r\left(\omega_{i}\right)=\mathbf{1}\left\{\omega_{i}>0\right\}$: classical zero range; $\omega_{i} \sim \operatorname{Geom}(\theta)$.
- $r\left(\omega_{i}\right)=\omega_{i}$: independent walkers; $\omega_{i} \sim \operatorname{Poi}(\theta)$.

Totally asymmetric bricklayers process

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathrm{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathrm{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathrm{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[\mathrm{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+\mathbf{1}}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

a brick is added with rate $\left[r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)\right]$

$$
(r(\omega) \cdot r(1-\omega)=1 ; \quad r \text { non-decreasing }) .
$$

Totally asymmetric bricklayers process

Extremal translation-invariant stationary distributions are still product, and rather explicit in terms of $r(\cdot)$.

A special case: $r\left(\omega_{i}\right)=\mathrm{e}^{\beta \omega_{i}}: \omega_{i} \sim \operatorname{discrete} \operatorname{Gaussian}\left(\frac{\theta}{\beta}, \frac{1}{\sqrt{\beta}}\right)$.

Rescaled version: shock

Rescaled version: rarefaction fan

The second class particle

States ω and η only differ at one site.

The second class particle

States ω and η only differ at one site.

The second class particle

States ω and η only differ at one site.

Growth on the right: rate \leq rate

The second class particle

States ω and η only differ at one site.

Growth on the right: rate \leq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

rate \leq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate:
The second class particle

States ω and η only differ at one site.

Growth on the right: rate \leq rate with rate:

The second class particle

States ω and η only differ at one site.

The second class particle

States ω and η only differ at one site.

The second class particle

States ω and η only differ at one site.

The second class particle

States ω and η only differ at one site.

Growth on the right:

rate \leq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

rate \leq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the right: rate \leq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:

 rate \leq rate with rate-rate:
The second class particle

States ω and η only differ at one site.

Growth on the right:
 rate \leq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left: rate \geq rate

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left: rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left: rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left: rate \geq rate with rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and η only differ at one site.

Growth on the left: rate \geq rate with rate-rate:

A single discrepancy \uparrow, the second class particle, is conserved. Its position at time t is $Q(t)$.

Ferrari-Kipnis '95 for TASEP

Blue TASEP ω :
Bernoulli(ϱ) for sites $\{\ldots,-2,-1,0\}$,
Bernoulli (λ) for sites $\{1,2,3, \ldots\}$.
Black TASEP η :
Bernoulli (ϱ) for sites $\{\ldots,-3,-2,-1\}$,
Bernoulli (λ) for sites $\{0,1,2, \ldots\}$.

$h_{i}(t), g_{i}(t)$ are the respective numbers of particles jumping over the edge $(i, i+1)$ by time $t(i>0)$.

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\varrho)$ for $i<0$

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\varrho)$ for $i<0$
- $\left(\omega_{0}(0), \eta_{0}(0)\right)=(0,0)$ w. prob. $1-\varrho$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,0)$ w. prob. $\varrho-\lambda$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,1)$ w. prob. λ

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\varrho)$ for $i<0$
- $\left(\omega_{0}(0), \eta_{0}(0)\right)=(0,0)$ w. prob. $1-\varrho$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,0)$ w. prob. $\varrho-\lambda$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,1)$ w. prob. λ
- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\lambda)$ for $i>0$

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\varrho)$ for $i<0$
- $\left(\omega_{0}(0), \eta_{0}(0)\right)=(0,0)$ w. prob. $1-\varrho$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,0)$ w. prob. $\varrho-\lambda \quad 2^{\text {nd }}$ class particle $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,1)$ w. prob. λ
- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\lambda)$ for $i>0$

Ferrari-Kipnis '95 for TASEP, Part 1

First realization:

- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\varrho)$ for $i<0$
- $\left(\omega_{0}(0), \eta_{0}(0)\right)=(0,0)$ w. prob. $1-\varrho$ $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,0)$ w. prob. $\varrho-\lambda \quad 2^{\text {nd }}$ class particle $\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,1)$ w. prob. λ
- $\omega_{i}(0)=\eta_{i}(0) \sim \operatorname{Bernoulli}(\lambda)$ for $i>0$

$\mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=(\varrho-\lambda) \cdot \mathbf{P}\{Q(t)>i\}$.

Ferrari-Kipnis '95 for TASEP, Part 2

Second realization:

$$
\omega_{i}(t) \equiv \eta_{i-1}(t) \quad \forall i, \forall t .
$$

Ferrari-Kipnis '95 for TASEP, Part 2

Second realization:

$$
\omega_{i}(t) \equiv \eta_{i-1}(t) \quad \forall i, \forall t .
$$

$\mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=\mathbf{E}\left(\eta_{i}(t)-\eta_{i}(0)\right)=\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0)$.

Ferrari-Kipnis '95 for TASEP

Thus,

$$
\begin{aligned}
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=(\varrho-\lambda) \cdot \mathbf{P}\{Q(t)>i\}, \\
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0),
\end{aligned}
$$

Ferrari-Kipnis '95 for TASEP

Thus,

$$
\begin{aligned}
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=(\varrho-\lambda) \cdot \mathbf{P}\{Q(t)>i\}, \\
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0),
\end{aligned}
$$

$$
\mathbf{P}\{Q(t)>i\}=\frac{\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0)}{\varrho-\lambda}
$$

Ferrari-Kipnis '95 for TASEP

Thus,

$$
\begin{aligned}
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=(\varrho-\lambda) \cdot \mathbf{P}\{Q(t)>i\} \\
& \mathbf{E} h_{i}(t)-\mathbf{E} g_{i}(t)=\mathbf{E}\left(h_{i}(t)-g_{i}(t)\right)=\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0)
\end{aligned}
$$

$$
\mathbf{P}\{Q(t)>i\}=\frac{\mathbf{E} \eta_{i}(t)-\mathbf{E} \eta_{i}(0)}{\varrho-\lambda}
$$

Combine with hydrodynamics to conclude

$$
\frac{Q(t)}{t} \Rightarrow \begin{cases}\text { shock velocity } & \text { in a shock } \\ \mathrm{U}\left(H^{\prime}(\varrho), H^{\prime}(\lambda)\right) & \text { in a rarefaction wave. }\end{cases}
$$

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

- Shall we do

$$
\left.()^{0}\right) \quad \operatorname{Or} ? \quad \text { Or } e_{e}^{\bullet} \text { ? Or } \ldots
$$

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

- Shall we do
- Recall for TASEP we increased λ to ϱ by adding or not adding a $2^{\text {nd }}$ class particle.
$\left(\omega_{0}(0), \eta_{0}(0)\right)=(0,0)$ w. prob. $1-\varrho$
$\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,0)$ w. prob. $\varrho-\lambda$
$\left(\omega_{0}(0), \eta_{0}(0)\right)=(1,1)$ w. prob. λ
ϱ_{i}

Let's generalise: problems with coupling

Fix $\lambda<\varrho \leq \lambda+1$. Is there a joint distribution of $\left(\omega_{0}, \eta_{0}\right)$ such that

- the first marginal is $\omega_{0} \sim$ stati. μ^{ϱ};
- the second marginal is $\eta_{0} \sim$ stati. μ^{λ};
- $\eta_{0} \leq \omega_{0} \leq \eta_{0}+1$?

Let's generalise: problems with coupling

Fix $\lambda<\varrho \leq \lambda+1$. Is there a joint distribution of $\left(\omega_{0}, \eta_{0}\right)$ such that

- the first marginal is $\omega_{0} \sim$ stati. μ^{ϱ};
- the second marginal is $\eta_{0} \sim$ stati. μ^{λ};
- $\eta_{0} \leq \omega_{0} \leq \eta_{0}+1$?

Proposition

- Of course for Bernoulli (TASEP).

Let's generalise: problems with coupling

Fix $\lambda<\varrho \leq \lambda+1$. Is there a joint distribution of $\left(\omega_{0}, \eta_{0}\right)$ such that

- the first marginal is $\omega_{0} \sim$ stati. μ^{ϱ};
- the second marginal is $\eta_{0} \sim$ stati. μ^{λ};
- $\eta_{0} \leq \omega_{0} \leq \eta_{0}+1$?

Proposition

- Of course for Bernoulli (TASEP).
- No for Geometric (classical TAZRP with $r\left(\omega_{i}\right)=\mathbf{1}\left\{\omega_{i}>0\right\}$).

Let's generalise: problems with coupling

Fix $\lambda<\varrho \leq \lambda+1$. Is there a joint distribution of $\left(\omega_{0}, \eta_{0}\right)$ such that

- the first marginal is $\omega_{0} \sim$ stati. μ^{ϱ};
- the second marginal is $\eta_{0} \sim$ stati. μ^{λ};
- $\eta_{0} \leq \omega_{0} \leq \eta_{0}+1$?

Proposition

- Of course for Bernoulli (TASEP).
- No for Geometric (classical TAZRP with $r\left(\omega_{i}\right)=\mathbf{1}\left\{\omega_{i}>0\right\}$).
- No for Poisson (indep. walkers with $r\left(\omega_{i}\right)=\omega_{i}$).

Let's generalise: problems with coupling

Fix $\lambda<\varrho \leq \lambda+1$. Is there a joint distribution of $\left(\omega_{0}, \eta_{0}\right)$ such that

- the first marginal is $\omega_{0} \sim$ stati. μ^{ϱ};
- the second marginal is $\eta_{0} \sim$ stati. μ^{λ};
- $\eta_{0} \leq \omega_{0} \leq \eta_{0}+1$?

Proposition

- Of course for Bernoulli (TASEP).
- No for Geometric (classical TAZRP with $r\left(\omega_{i}\right)=\mathbf{1}\left\{\omega_{i}>0\right\}$).
- No for Poisson (indep. walkers with $r\left(\omega_{i}\right)=\omega_{i}$).
- Yes for discrete Gaussian (bricklayers with $r\left(\omega_{i}\right)=\mathrm{e}^{\beta \omega_{i}}$).

Let's generalise

Keep calm and couple anyway.
Find a coupling measure ν with

- first marginal $\omega_{0} \sim$ stati. μ^{ϱ};
- second marginal $\eta_{0} \sim$ stati. μ^{λ};
- zero weight whenever $\omega_{0} \notin\left\{\eta_{0}, \eta_{0}+1\right\}$.

Not many choices:

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere }
\end{aligned}
$$

Let's generalise

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere. }
\end{aligned}
$$

Let's generalise

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere }
\end{aligned}
$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).

Let's generalise

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere }
\end{aligned}
$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- Good news: Who cares? No $2^{\text {nd }}$ class particle there.

Let's generalise

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere }
\end{aligned}
$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- Good news: Who cares? No $2^{\text {nd }}$ class particle there.
- Good news: $\nu(x+1, x) \geq 0$ (attractivity).

Let's generalise

$$
\begin{aligned}
\nu(x, x) & =\mu^{\varrho}\{-\infty \ldots x\}-\mu^{\lambda}\{-\infty \ldots x-1\} \\
\nu(x+1, x) & =\mu^{\lambda}\{-\infty \ldots x\}-\mu^{\varrho}\{-\infty \ldots x\} \\
\nu & =\text { zero elsewhere } .
\end{aligned}
$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- Good news: Who cares? No $2^{\text {nd }}$ class particle there.
- Good news: $\nu(x+1, x) \geq 0$ (attractivity).

We can still use the signed measure ν formally, as we only care about $\nu(x+1, x)$. Scale this up to get the initial distribution at the site of the second class particle:

$$
\mu\left(\omega_{0}, \eta_{0}\right)=\mu\left(\eta_{0}+1, \eta_{0}\right)=\frac{\nu\left(\eta_{0}+1, \eta_{0}\right)}{\sum_{x} \nu(x+1, x)}=\frac{\nu\left(\eta_{0}+1, \eta_{0}\right)}{\varrho-\lambda} .
$$

Let's generalise

$$
\mu\left(\omega_{0}, \eta_{0}\right)=\frac{\nu\left(\eta_{0}+1, \eta_{0}\right)}{\varrho-\lambda}
$$

- is a proper probability distribution;
- actually agrees with the coupling measure ν conditioned on a $2^{\text {nd }}$ class particle when ν behaves nicely (Bernoulli, discr.Gaussian);

Let's generalise

Theorem
Starting in

$$
\begin{gathered}
\bigotimes_{i<0} \mu_{i}^{\varrho} \otimes \mu_{0} \otimes \bigotimes_{i>0} \mu_{i}^{\lambda}, \\
\lim _{N \rightarrow \infty} \mathbf{P}\left\{\frac{Q(N T)}{N}>X\right\}=\frac{\varrho(X, T)-\lambda}{\varrho-\lambda}
\end{gathered}
$$

where $\varrho(X, T)$ is the entropy solution of the hydrodynamic equation with initial data
ϱ on the left
λ on the right.

What do we have?

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left\{\frac{Q(N T)}{N}>X\right\}=\frac{\varrho(X, T)-\lambda}{\varrho-\lambda}
$$

\rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for Q.

- Shock: distribution is step function, velocity is deterministic (LLN).
- Rarefaction wave: distribution is continuous, velocity is random (e.g., Uniform for TASEP).

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

$$
\begin{array}{rlrl}
\omega_{i}=-1,0,1 ; & & \\
(0,-1) & \rightarrow(-1,0) & & \text { with rate } \frac{1}{2} \\
(1,0) & \rightarrow(0,1) & & \text { with rate } \frac{1}{2} \\
(1,-1) & \rightarrow(0,0) & & \text { with rate } 1 \\
(0,0) & \rightarrow(-1,1) & & \text { with rate } c .
\end{array}
$$

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Hydrodynamic flux $H(\varrho)$, for certain c :

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Here is what can happen (R: rarefaction wave, \mathbf{S} : Shock):

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Examples for $\varrho(T, X)$:

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left\{\frac{Q(N T)}{N}>X\right\}=\frac{\varrho(X, T)-\lambda}{\varrho-\lambda}
$$

\rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for Q.
I haven't seen a walk with a random velocity of mixed distribution before.

Storytelling...

$$
\mu\left(\omega_{0}, \eta_{0}\right)=\frac{\nu\left(\eta_{0}+1, \eta_{0}\right)}{\varrho-\lambda}
$$

In the $1 / 3$-fluctuations papers (B., J. Komjáthy, T. Seppäläinen)
we had to start the second class particle in a $\varrho=\lambda$ flat environment. We came up with a measure $\hat{\mu}$ for this which worked nicely with our formulas. But at that time we had no idea why.

As it turns out: $\hat{\mu}=\lim _{\lambda \nearrow \varrho} \mu$.

Symmetric case

Everything works with partially asymmetric models (allow left jumps too).

In fact everything works for symmetric models as well. The hydrodynamic scaling is diffusive there with the limit being of heat equation type. In this case:

Symmetric case

Theorem (Symmetric version)
Starting in

$$
\begin{gathered}
\bigotimes \mu_{i}^{\varrho} \otimes \mu_{0} \otimes \bigotimes_{i>0} \mu_{i}^{\lambda}, \\
\lim _{N \rightarrow \infty} \mathbf{P}\left\{\frac{Q(N T)}{\sqrt{N}}>X\right\}=\frac{\varrho(X, T)-\lambda}{\varrho-\lambda}
\end{gathered}
$$

where $\varrho(X, T)$ is the entropy solution of the hydrodynamic equation with initial data
ϱ on the left
λ on the right.
SSEP: CLT (of course...). Other models: interesting!

One more result

Theorem
If μ^{o} are the stationary product marginals then, under our initial distribution, $\eta_{Q(t)}(t)$ is stationary in time.

Proof.
Repeat the argument with $\mathbf{E} \Phi\left(\eta_{i}(t)\right)$ instead of $\mathbf{E} g_{i}(t)$.

One more result

Theorem
If μ^{ϱ} are the stationary product marginals then, under our initial distribution, $\eta_{Q(t)}(t)$ is stationary in time.

Proof.
Repeat the argument with $\mathbf{E} \Phi\left(\eta_{i}(t)\right)$ instead of $\mathbf{E} g_{i}(t)$.
This was not even a question with exclusion.

One more result

Theorem
If μ^{e} are the stationary product marginals then, under our initial distribution, $\eta_{Q(t)}(t)$ is stationary in time.

Proof.
Repeat the argument with $\mathbf{E} \Phi\left(\eta_{i}(t)\right)$ instead of $\mathbf{E} g_{i}(t)$.
This was not even a question with exclusion.
Only the site $Q(t)$!

TASEP and the corner growth model

TASEP: Interacting particles

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \cap Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times © Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\mathbb{\sim}$ ~ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

The Bernoulli(ϱ) distribution is time-stationary for any $(0 \leq \varrho \leq 1)$. Any translation-invariant stationary distribution is a mixture of Bernoullis.

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli($\varrho)$ distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli($\varrho)$ distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part independently of the Φ 's.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part
H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part independently of the s's.

Therefore:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

The last passage model

The last passage model

The last passage model

The last passage model

The last passage model

The last passage model

$$
\left.\begin{array}{rl}
\mathbb{Q} & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied

The last passage model

Q Starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied

The last passage model

Q \sim Exponential $(1-\varrho)$
$\left.\begin{array}{l}\qquad \text { Exponential(} \varrho) \\ \sim \text { Exponential }(1)\end{array}\right\}$ independently
© starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© Starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
\otimes \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© Starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?
The competition interface follows the same rules as the second class particle of simple exclusion.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

Thank you.

