TASEP and the corner growth model

TASEP: Interacting particles

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($\varrho)$ distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \cap Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli(e) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times \& Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times © Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\mathbb{\sim}$ ~ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

The Bernoulli(ϱ) distribution is time-stationary for any $(0 \leq \varrho \leq 1)$. Any translation-invariant stationary distribution is a mixture of Bernoullis.

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(}() \text { distribution }
$$

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

$$
\text { Bernoulli(} \varrho) \text { distribution }
$$

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli($\varrho)$ distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli($\varrho)$ distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

TASEP: Last passage percolation

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part independently of the Φ 's.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part
H_{0} jumps according to a Poisson(ϱ) process, governed by the left orange part independently of the s's.

Therefore:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

The last passage model

The last passage model

The last passage model

The last passage model

The last passage model

The last passage model

$$
\left.\begin{array}{rl}
\mathbb{Q} & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied

The last passage model

Q Starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied

The last passage model

Q \sim Exponential $(1-\varrho)$
$\left.\begin{array}{l}\qquad \text { Exponential(} \varrho) \\ \sim \text { Exponential }(1)\end{array}\right\}$ independently
© starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© Starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
\otimes \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© Starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
Q & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
sstarts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
starts ticking when its south neighbor becomes occupied
Q Starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via $(0,1)$?
The competition interface follows the same rules as the second class particle of simple exclusion.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

Thank you.

