
TASEP and the corner growth model

1



TASEP: Interacting particles

✲
x
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Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times ✐∼ Exponential(1).

 Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.
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Burke’s Theorem:
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independently of the ✐’s.

Therefore:
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
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





independently
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Burke’s Theorem:
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governed by the right orange part

H0 jumps according to a Poisson(̺) process,
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Therefore:
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M. Prähofer and H. Spohn 2002

✐∼ Exponential(1− ̺)

✐ ∼ Exponential(̺)

✐∼ Exponential(1)















independently

✐starts ticking when its west neighbor becomes

occupied

✐ starts ticking when its south neighbor becomes

occupied
✐starts ticking when both its west and south

neighbors become occupied

Gij =the occupation time of (i, j)

Gij =the maximum weight collected by a north

-east path from (0,0) to (i, j).
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