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The Bernoulli(p) distribution is time-stationary for any
(0<o<).
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The model

wi wi—1 :
th rat o
<Wi+1> - <Wi+1 + 1> witn rate p(w” wl—&-l)y
Wi wi+1 . o
(wi+1> N <Wi+1 B 1) with rate ¢(wi, wiy1), where

» p and g are such that they keep the state space (
)

» p is non-decreasing in the first, non-increasing in the
second variable, and q vice-versa ( ),

» they satisfy some algebraic conditions to get a product
stationary distribution for the process,

» they satisfy some regularity conditions to make sure the
dynamics exists.
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Integrated particle current

ht

hve (O oo Lo L

o

hy(t) = height as seen by a moving observer of velocity V.
= net number of particles passing the window s — Vs.

( )
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Hydrodynamics Characteristics

Hydrodynamics (very briefly)

The density o : = E(w) and the hydrodynamic flux
H : = E[growth rate] both depend on a parameter of the
stationary distribution.

» H(p) is the hydrodynamic flux function.

» If the process is locally in equilibrium, but changes over
some large scale (variables X =¢i and T = &t), then

Oro(T, X)+ 9xH(o(T, X)) =0 ( )

» The characteristics is a path X(T) where o(T, X(T)) is
constant.
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Tool: the second class particle

Theorem (B. - Seppéalainen;

)

Started from ( ) equilibrium,
E(Q(t))=C-t

in the whole family of processes.

C is the characteristic speed.

The second class particle follows the characteristics, people
have known this for a long time.



Many second class particles




2" class Single Many

Many second class particles

e

-




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
2 -1,0 1 2\—
f ) ot




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO $1 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO 11 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO Tl 72




2" class Single Many

Many second class particles
o

-

A
TZ TilTO $1 72




2" class Single Many

Many second class particles

Q

-




2" class Single Many

Many second class particles
o

-

A
TZ TilTO $1 72




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

o
A
12 0 pp?




2" class Single Many

Many second class particles

o
A
12 10 pp?




2" class Single Many

Many second class particles

o
A
12 top° pp?




2" class Single Many

Many second class particles

o
A
12 P10 pp?




2" class Single Many

Many second class particles

o
A
12 (I pp?




2" class Single Many

Many second class particles

o
A
12 P90 pp?




2" class Single Many

Many second class particles

%

A

12 ptoy° pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 P90 pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 ttot° pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 to1° pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 to1° pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 1t 0 pp?
L]

N



2" class Single Many

Many second class particles

%

A

12 0 pp?
L]

N



2" class Single Many

Many second class particles

o
A
12 0 pp?




2" class Single Many

Many second class particles

o
A
12 140 pp?




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

0
A
T 2 T—l?o $1 TZ




2" class Single Many

Many second class particles

0
A
2 P 1y




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

0
A
0
2 ! 11y2




2" class Single Many

Many second class particles

0
A
T*Z JAlO $1 TZ




2" class Single Many

Many second class particles

0
A
T*Z T](.) $1 TZ




2" class Single Many

Many second class particles

o
A
(. {fj t 12




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

e

A
0
TZ ;—1 $1 72




2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

4
A
TO
(N £ 1
L]
[ S S



2" class Single Many

Many second class particles

e

>




2" class Single Many

Many second class particles

%
A
. 0
12 t pp?
°®
H S S Y S Y



2" class Single Many

Many second class particles

%
A
0
2 rﬁ 11y2
+ 55: + + :(:): + + :é: + + :1:0: + + :1:5:i



2" class Single Many

Many second class particles

o
A
0
12 i $ 42
+ 55# + + #(#)# + + #é# + + :1:0: + + :1:5:i



2" class Single Many

Many second class particles

%
A
2 47 242
+ 55 + + + + (:) + + + + é + + + + 1:0 + + + + 1:5 :i



2" class Single Many

Many second class particles

o
A
0
12 4 pp?
L]
N



2" class Single Many

Many second class particles

0
A
TZ T—lTO $1T2
L]
s o s 7 10 a5



2" class Single Many

Many second class particles

o
A
12 1140 pp?
L]
N



2" class Single Many

Many second class particles

o
Py
T—Z T—lTO $1 TZ
:55::::(:)::::é::::l:o::::l:s:i
Picture:

The position X (t) of1° follows the Rankine-Hugoniot speed R.
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Recall C=H (o) >R = H(Q):')"\()‘)

4

2
Do we have Q(t) > X(t) — tight error
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property, if there is such a three-process coupling by which
Q(t) > X(t)—tight error can be achieved.

We ( ) say that a model has the microscopic concavity
property, if there is such a three-process coupling by which
Q(t) < X(t)+tight error can be achieved.
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Results Normal Abnormal

Normal fluctuations:
Once we have the microscopic convexity/concavity property,

Theorem (Ferrari-Fontes ( ); B. ( , )
im Vartvi(®) _ var(wy - 1c - v|

Initial fluctuations are transported along the characteristics on
this scale.
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Results Normal Abnormal

Abnormal fluctuations:
Once we have the microscopic convexity/concavity property,
On the characteristics V = C,
Theorem (B. - Komjathy - Seppalainen (
so far...))

Var(he(t))

.. Var(hg(t))
0 <liminf ————+ 2/3

<limsu
t—o0 t2/3 - p

t—oo

< 0.

Important preliminaries were \

Other exclusion processes:

There are limit distribution results for TASEP e.g. by

Their methods give limit distributions as well, but are very
model-dependent: they rewrite the model as a determinantal
process, and perform asymptotic analysis of the determinants.
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Upper bound ( )

P{Q(t) is too large} < P{X(t) is too large}
< P{too many’s have crossed Ct}
< P{h¢t(t) — hee(t) is too large())}.

Centering h¢(t) — he(t) brings in a second-order
Taylor-expansion of H(p).

Optimize “too large()\)” in A\, use Chebyshev’s inequality and
relate Var(hc(t)) to Var(hg(t)).
The computations result in ( Q(t) )

P{Q(t)—Ct>u}<c- lt; -Var(he(t)).
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Upper bound

Theorem (B. - Seppalainen;

)

Started from ( ) equilibrium,
Var(he(t)) = ¢ - E[Q(t) — C - |

in the whole family of processes.

Hence proceed with

P{Q(t)—Ct>u}<c- Lt; - Var(he(t))
:C.E.E|Q(t)—c-t|.
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Upper bound

With B
Q(t):=Q(t) —Ct and E :=E|Q(t)],
we have ( )

—~ t2
P{|Q(t)| >u} <c- e E.

Claim: this already implies the t2/3 upper bound:
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Upper bound
We had P{|Q(t)| > u} <c- & -E.

E = E[Q(t) = /0°° P{Q(t)] > u} du
= E/o P{|Q(t)| > VE} dv

o0 ~ 1
E[ P -
< /1/2 {IQ(t)| > vE} dV+2E

t2 1
<c-— +=E
<c g3+ 5E,

that is, E® < ¢ - t2.
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Upper bound
We had P{|Q(t)| > u} <c- & -E.

E = E[Q(t)] = /0°° P{Q(t)] > u} du

= E/o P{|Q(t)| > VE} dv

o~ 1
E[] P -
< /1/2 {10(t)] > vE} v + 5E

t2 1
<c-— +=-E
< E2+2 ,

that is, E® < ¢ - t2.

Var(hg(t)) = const.-E|Q(t) — Ct|

— const.-E <c-t%/8, n
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Lower bound

In the upper bound, the relevant orders were

u Q(t)) ~t?3, oA~ t™Y3

The lower bound works with similar arguments: compare
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The critical feature: microscopic concavity
Q(t) < X(t)-+tight error

This process mq(t) is influenced by the background, and is
pretty complicated in general.

In the cases we succeeded so far, mg(t) behaved nicely:

» Either mg(t) < Oa.s. ;
deterministicly adorable!

d
» Or mp(t) < Geometric

d

> —Geometric ;

behaves like a drifted simple random walk.
This is the form of microscopic concavity we currently use:

Mg (t) is dominated by a time-independent distribution with
finite variance.
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The critical feature: microscopic concavity

The exponentially convex/concave rates make it possible to
separate the drift of mg(t) from the background process: the
drift has a uniform lower bound for all background
configurations. Drifted random walk only wants to cross the
origin occasionally, hence the geometric bound.

If we drop “exponentially”, we loose the uniform bound. Then
Mg (t) starts behaving like a diffusion. Diffusion in the random
environment of second class particles!

We don't yet see the techniques to bound this diffusion in the
order of magnitude our arguments would require.

Once this is done, we could proceed with less and less
convex/concave models to see how t1/3 scaling turns to t1/4 for
linear models ( )...



Upper bound L bound  Micro c.

Thank you.
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