A simple model for traffic jams

Márton Balázs

School of Mathematics

Open Day, University of Bristol, 26th October, 2024

[Traffic jams](#page-2-0) [Arriving to a traffic jam](#page-2-0) [Leaving a traffic jam](#page-55-0)

[Being ageless](#page-150-0)

[Totally Asymmetric Simple Exclusion Process](#page-163-0) [Stationary distribution](#page-202-0) [The infinite model](#page-708-0)

[On large scales](#page-712-0) [Start of the traffic jam](#page-715-0) [End of the traffic jam](#page-777-0)

[Remarks](#page-809-0)

 \mathbf{D}

forc

tote

65

んしゅうかん しゅうしゃ

大大

Arriving to a traffic jam

C.

RAN

んしゅう しんしゃく しゅうしゃ

SALE

65

んしゅう しんしゃく しゅうしゃ

んしゅう しゅうしゃ

んしゅう しゅうしゃ

んじゅう しゅうしゃ

んしゅう しゅうしゃ

大人

RAN

da da da da 6

We notice the slow cars \rightsquigarrow strong braking immediately.

Arriving to a traffic jam is always sharp.

We notice the slow cars \rightsquigarrow strong braking immediately.

Arriving to a traffic jam is always sharp.

This is one aspect that makes motorways dangerous places.

Continuous, long acceleration for those starting from the rear

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Why is there such a difference between the two ends of a traffic jam?

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Why is there such a difference between the two ends of a traffic jam?

Totally asymmetric simple exclusion process: an explanation

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

$$
\mathbf{P}\{\tau > t\} = e^{-t} \qquad \text{for all } t > 0.
$$

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

$$
\mathbf{P}\{\tau > t\} = e^{-t} \qquad \text{for all } t > 0.
$$

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

$$
\mathbf{P}\{\tau > t\} = e^{-t} \qquad \text{for all } t > 0.
$$

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$
\frac{\mathbf{P}\{\tau > t + s\}}{\mathbf{P}\{\tau > t\}} = \frac{e^{-(t+s)}}{e^{-t}} = e^{-s}.
$$

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

$$
\mathbf{P}\{\tau > t\} = e^{-t} \qquad \text{for all } t > 0.
$$

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$
\frac{\mathbf{P}\{\tau > t + s\}}{\mathbf{P}\{\tau > t\}} = \frac{e^{-(t+s)}}{e^{-t}} = e^{-s} = \mathbf{P}\{\tau > s\}.
$$

The same as $P\{\tau > s\}$, regardless of *t*!

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

$$
\mathbf{P}\{\tau > t\} = e^{-t} \qquad \text{for all } t > 0.
$$

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$
\frac{\mathbf{P}\{\tau > t + s\}}{\mathbf{P}\{\tau > t\}} = \frac{e^{-(t+s)}}{e^{-t}} = e^{-s} = \mathbf{P}\{\tau > s\}.
$$

The same as $P\{\tau > s\}$, regardless of *t*! We have found the secret of being ageless.

 \heartsuit ← This will be the ageless alarm clock that rings at time τ

 \heartsuit \leftarrow This will be the ageless alarm clock that rings at time τ

 \rightsquigarrow What is the probability that an \heartsuit rings within a small time *t*?

 \heartsuit \leftarrow This will be the ageless alarm clock that rings at time τ

 \rightsquigarrow What is the probability that an \heartsuit rings within a small time *t*?

 $P\{\tau \leq t\} = 1 - P\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1-t) + \text{error} = t + \text{error}.$

 \heartsuit \leftarrow This will be the ageless alarm clock that rings at time τ

 \rightsquigarrow What is the probability that an \heartsuit rings within a small time *t*?

$$
P\{\tau \leq t\} = 1 - P\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.
$$

 \rightsquigarrow What is the probability that *two* independent \heartsuit \heartsuit both ring within a small time *t*?

 \heartsuit \leftarrow This will be the ageless alarm clock that rings at time τ

 \rightsquigarrow What is the probability that an \heartsuit rings within a small time *t*?

$$
P\{\tau \leq t\} = 1 - P\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.
$$

 \rightsquigarrow What is the probability that *two* independent \heartsuit \heartsuit both ring within a small time *t*?

$$
\mathsf{P}\{\tau \leq t\} \cdot \mathsf{P}\{\tau \leq t\} \simeq t^2 + \text{error} = \text{error}.
$$

 \heartsuit \leftarrow This will be the ageless alarm clock that rings at time τ

 \rightsquigarrow What is the probability that an \heartsuit rings within a small time *t*?

$$
P\{\tau \leq t\} = 1 - P\{\tau > t\} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.
$$

 \rightsquigarrow What is the probability that *two* independent $\mathbb{Q} \mathbb{Q}$ both ring within a small time *t*?

$$
\mathsf{P}\{\tau \leq t\} \cdot \mathsf{P}\{\tau \leq t\} \simeq t^2 + \text{error} = \text{error}.
$$

 \rightarrow More \heartsuit 's, even smaller probability.

\rightsquigarrow What is the probability that *none* of *k* independent \heartsuit 's ring within a small time *t*?

 \rightsquigarrow What is the probability that *none* of *k* independent \heartsuit 's ring within a small time *t*?

$$
\begin{aligned} \mathbf{P}\{\text{none of them ring}\} &= \mathbf{P}\{\tau > t\}^k \\ &= e^{-kt} \\ &\simeq (1 - kt) + \text{error.} \end{aligned}
$$

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

Each listening to its own \heartsuit . When that rings, the ball tries to jump to the right. But sometimes it's blocked.

m balls in *N* possible slots.

Each listening to its own \heartsuit . When that rings, the ball tries to jump to the right. But sometimes it's blocked. Ageless, independent \mathbb{Q} 's \Rightarrow if we know the present, no need to know the past. *Markov property*, makes things handy.

Random process \rightsquigarrow need to talk about *distributions*.

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With *N* and *m* fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With *N* and *m* fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability 1/ $\binom{N}{n}$ *m* $\big).$

Random process \rightsquigarrow need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With *N* and *m* fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability 1/ $\binom{N}{n}$ *m* $\big).$

2nd remark. With fixed *N*, *m*, there is no other stationary distribution.

Almost proof

The number of critical clocks for $\omega =$ the number of pre-images of $\omega = k$

Almost proof

Suppose that each configuration has the same probability *p* at time *s*. What is the probability of the state ω after a small time *t*?

Almost proof

Suppose that each configuration has the same probability *p* at time *s*. What is the probability of the state ω after a small time *t*?

 $P\{\omega \text{ at time } s+t\}$

Almost proof

Suppose that each configuration has the same probability *p* at time *s*. What is the probability of the state ω after a small time *t*?

- $P\{\omega \text{ at time } s+t\}$
- $=$ **P**{ ω at time *s* and no jumps within time *t*}
	- $+$ **P**{was a pre-image of ω at time *s*, and jumps to ω }
	- + error (at least two jumps occur within the small time *t*)

Almost proof

Suppose that each configuration has the same probability *p* at time *s*. What is the probability of the state ω after a small time *t*?

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and no jumps within time *t*}

- $+$ **P**{was a pre-image of ω at time *s*, and jumps to ω }
- + error (at least two jumps occur within the small time *t*)
- $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $^{+}$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error
Almost proof

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $+$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error

Almost proof

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $+$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error

$$
= p \cdot (1 - kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \text{error}
$$

Almost proof

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $+$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error

 $p = p \cdot (1 - kt) + \sum_{r \in \mathcal{F}} p \cdot t + \text{error}$ η is a pre-image of ω $= p \cdot (1 - kt) + k \cdot p \cdot t +$ error

Almost proof

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $+$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error

$$
= p \cdot (1 - kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \text{error}
$$

$$
= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error} = p + \text{error}.
$$

Almost proof

 $P\{\omega \text{ at time } s+t\}$

 $=$ **P**{ ω at time *s* and none of the *k* critical \heartsuit 's ring}

 $+$ \sum η is a pre-image of ω **P**{ η at time *s* and the right critical \heartsuit rings}

 $+$ error

 $p = p \cdot (1 - kt) + \sum_{r \in \mathcal{F}} p \cdot t + \text{error}$ η is a pre-image of ω $= p \cdot (1 - kt) + k \cdot p \cdot t +$ error $= p +$ error.

In fact error $\simeq t^2$, stays small if summed up for more and more smaller and smaller intervals of length *t*.П

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ρ is the *density of particles*, or the probability that a given slot has a ball.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ρ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ρ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

In the limit we obtain a model on $\mathbb Z$. In its stationary distribution we have a ball with probability ρ , and don't have one with probability 1 $-\rho$ independently for each slot.

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

Theorem

The density $\rho(T, X)$ as a function of the large scale variables satisfies the differential equation

$$
\frac{\partial}{\partial T}\varrho + \frac{\partial}{\partial X}[\varrho(1-\varrho)] = 0
$$

(*Burgers equation*).

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

Theorem

The density $\rho(T, X)$ as a function of the large scale variables satisfies the differential equation

$$
\frac{\partial}{\partial T}\varrho + \frac{\partial}{\partial X}[\varrho(1-\varrho)] = 0
$$

(*Burgers equation*).

The following are solutions of this equation:

The start of the jam: sharpens.

End of the jam: smoothens.

In general, non-linear differential equations are fun. (And difficult.)

E.g., solitary waves were discovered by John Scott Russell in 1834: he chased one along a canal for miles!

<http://youtu.be/MADng1fqECY>

▶ Of course there are much more sophisticated models for traffic modelling.

- \triangleright Of course there are much more sophisticated models for traffic modelling.
- ▶ https://youtu.be/7wm-pZp_mi0

- ▶ Of course there are much more sophisticated models for traffic modelling.
- ▶ https://youtu.be/7wm-pZp_mi0
- \triangleright But TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

- ▶ Of course there are much more sophisticated models for traffic modelling.
- ▶ https://youtu.be/7wm-pZp_mi0
- \triangleright But TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

Thank you.