Sequences of random variables - Examples
 Further Topics in Probability School of Mathematics, University of Bristol

Example 1. Let

$$
X_{n}= \begin{cases}n^{2}-1, & \text { with probability } \frac{1}{n^{2}} \\ -1, & \text { with probability } 1-\frac{1}{n^{2}}\end{cases}
$$

be independent. One easily checks $\mathbf{E} X_{n}=0 \forall n$, hence $\lim _{n \rightarrow \infty} \mathbf{E} X_{n}=0$. However, the probabilities in the first line are summable, hence Borel-Cantelli implies that a.s. $X_{n} \neq-1$ only happens for finitely many n. It follows that $X_{n} \rightarrow-1$ a.s., the limit does not swap with the expectation. Conditions of both Monotone and Dominated convergence fail.

Example 2. Let $U \sim \operatorname{Uniform}(0,1)$, and

$$
\begin{array}{rllll}
X_{1} & =\mathbf{1}_{[0,1]}(U), & X_{2}=\mathbf{1}_{\left[0, \frac{1}{2}\right]}(U), & X_{3}=\mathbf{1}_{\left[\frac{1}{2}, 1\right]}(U), & X_{4}=\mathbf{1}_{\left[0, \frac{1}{3}\right]}(U), \\
X_{6} & =X_{5}=\mathbf{1}_{\left[\frac{1}{3}, \frac{2}{3}\right]}(U), \\
X_{11} & =\mathbf{1}_{\left[0, \frac{1}{5}\right]}(U), & X_{7}=\mathbf{1}_{\left[0, \frac{1}{4}\right]}(U), & X_{8}=\mathbf{1}_{\left[\frac{1}{4}, \frac{2}{4}\right]}(U), & X_{9}=\mathbf{1}_{\left[\frac{2}{4}, \frac{3}{4}\right]}(U),
\end{array}
$$

This sequence converges to 0 in L^{p}, therefore in probability and weakly as well. (Just check the probability that $X_{n} \neq 0$.) However, there is always a later X_{n} with value 1 , hence the sequence does not converge a.s.

Example 3. Let $U \sim \operatorname{Uniform}(0,1)$, and

- $X_{n}:=U^{n}$. This converges to 0 in all senses.
- $X_{n}:=n U^{n}$. This converges to 0 a.s., hence in probability and weakly as well. However,

$$
\mathbf{E}\left|X_{n}-0\right|=n \mathbf{E} U^{n}=n \cdot \frac{1}{n+1} \rightarrow 1 \neq 0
$$

therefore L^{1} convergence does not hold. Notice how both Monotone and Dominated convergence fail for X_{n}.

- We can take this to more extreme by $X_{n}:=\mathrm{e}^{n} \mathbf{1}_{\left[0, \frac{1}{n}\right]}(U)$. Again, this converges to 0 a.s. However, $\left\|0-X_{n}\right\|_{p}=\frac{1}{n^{1 / p}} \cdot \mathrm{e}^{n} \rightarrow \infty$ for any $p>0$.

Example 4. Given a sequence $0 \leq p_{n} \leq 1$, let $X_{n} \sim \operatorname{Bernoulli}\left(p_{n}\right)$ and independent. Then

- by the definitions, $p_{n} \rightarrow 0$ is equivalent to each of L^{p} and in probability convergence to 0 ,
- by the two Borel-Cantelli lemmas, $\sum_{n} p_{n}<\infty$ is equivalent to a.s. convergence to 0 .

The choice $p_{n}=\frac{1}{n}$ therefore gives L^{p} but not a.s. convergence.

